军用整车与方舱电磁屏蔽效能测试服务

军用整车与方舱电磁屏蔽效能测试服务
军用整车与方舱电磁屏蔽效能测试服务

军用方舱电磁屏蔽效能测试

摘要:军用方舱电磁屏蔽效能的测试,分为诊断测试和达标测试。不同的测试频率段,设置不同的测试频率点,使用不同的测试方法。

关键词:军用方舱电磁屏蔽效能测试

引言

军用方舱进行电磁屏蔽效能,是对方舱电磁屏蔽设计、生产_」二艺技术和方法的检验。军用方舱作为机动式指挥系统的车载运行环境,必须具备电磁屏蔽性能。在GJB870《军用电子设备方舱通用规范》中要求,军用方舱电磁屏蔽的频率范围为150Khz至orGHz,电磁波的衰减量不低于6ODb。

军用方舱电磁屏蔽效能的测试,可分为诊断测试和达标测试。诊断测试是为了杏明方舱存在电磁泄露的原因和部位,及时采取修正措施,从而改善和提高电磁屏蔽效能;达标测试是根据相应电磁屏蔽效能标准和规范规定的方法,对其进行测试,评估其是否满足标准

要求。在测试中所需测试设备要求也越来越规范和严格。

1军用方舱电磁屏蔽效能测试设置

军用方舱电磁屏蔽效能测试,一般按标准要求并结合被测体实际情况进行设置。包括频率范围选择和测试频率点设置。不同频率段使用不同的发射和接受天线。

1.1测试频段段和测试频率点设置

(1)测试频率段

低频频率段:100Hz-20MHz;超高频频率段:300MHz-1GHz:微波频率段:1.7GHz-12.4GHz。

(2)测试频率点

150KHz、200KHz、1MHz、18MHz、400MHz、1GHz、18GHz

考虑在200MHz-300MHz频段内由于天线尺寸和方舱、厢式车等的谐振效应,可能使测试结果因测试方法的微小变动而产生不正常的变化,所以在该频段内不设测试频率点。

1.2测试用天线

对不同频率段的测试,使用不同的天线。天线一般要求如下:

a)低频频段:小0.m3环型天线、鞭型天线;

b)超高频频段:偶极子天线;

c)微波频段:微波喇叭天线及等效天线。

2测试位置选择

在测试中要对被测方舱、厢式车的各种电缆进出口、门、观察口、空调口、通风口以及板与板之间的连接缝作为测试重点,这些位置是容易出现电磁泄露的地方,直接影响方舱、厢式车等电磁屏蔽性能。基于上述情况,根据方舱、厢式车等的具体结构及实际要求,确定测试位置。在正式测试之前,可对方舱、厢式车进行初测,找出性能差的门、观察口、空调口、通风口等,以便正式测试之前预以修正。

3军用方舱测试方法

方舱电磁屏蔽效能测试,实际上就是要测出作为屏蔽体的方舱使电磁场的衰减程度。即分别在有方舱屏蔽和无方舱屏蔽的情况下,测出同一发射装置在空间同一距离处辐射产生的电磁场强度,二者的差值就是方舱对电磁场能量的衰减值(以dB表示)。

正确连接信号源、接收机、天线等测试设备,并预热到稳定状态。在测试时,测试设备必须设置及调整到预定的工作频率范围。首先在无方舱屏蔽时,模拟自由空间场进行测试,所选择的空间场地尽量无反射和其它电磁场干扰。使发射天线和接收天线的中心距离符合标准(GB12190一90标准)规定要求,记录接收机在测试时所接收的读数lE(Hl);加方舱屏蔽体(在被侧部位)后,同样使发射天线和接收天线中心距离符合标准(GB12190一90标准)规定要求,记录接收机在测试时所接收机的读数2E(2H)将两次记录数据进行处理。

即是方舱的电磁屏蔽效能:SE=E1(H1)-E2(H2)(dB)。

3.1低频频率段测试:

低频频率段电磁屏蔽效能测试,重点是对方舱门、窗口、通风口、电缆进出口等不连续处进行电磁屏蔽效能测试。在低频段测试时,发射天线和接收犬线与屏蔽壁的距离均为0.3m 近似共面测试。在测试中接收天线应反复调节方向,并升高或降低位置以保证测得最场、情况。对每一位置的测试,应记录接收机所接收的最大测试读数。按先无方舱屏蔽时模拟测试,再按以`下低频段电磁屏蔽效能测试设备布置示意图(图1)进行有方舱屏蔽测试:

a)测试频率点:150KHz、200KHz、1MHz、18MHz

b)测试大线:小0.3m环型天线、鞭型天线

3.2超高频频率段测试:

适合于方舱、厢式车高度不超过m3。发射天线应置于被测屏蔽壁平行的平面内,为减少天线的负载效应并实现均匀照射,发射天线到屏蔽壁面距离1.m3一m2为最佳.接收天线应放在方舱内,并平行于被测屏蔽壁面,与壁面相距0.3m,先作水平极化测试,后作垂直极化测试。按先无方舱屏蔽时模拟测试,再按以下超高频段电磁屏蔽效能测试设备布置示意图(图2)进

行方舱屏蔽测试

a)测试频率点:400MHz、IGHz

b)测试天线:偶极子天线

3.3微波频率段测试:

适合于方舱、厢式车高度不超过3m。发射大线中心到被测壁面距离应为2m,接收天线应放在方舱内,根据方舱人小放置在L2/或W2/位置。先作水平极化测试,后作垂直极化洲试。按无方舱屏蔽时模拟测试,再按以下微波频段电磁屏蔽效能测试设备布置示意图(图3)进行有方舱屏蔽测试

a)测试频率点:10GzH

b)测试大线:微波喇叭大线

3.4测试数据处理

按模拟自由空间场的测试方法,在无方舱屏蔽时进行测试,记录接收机接收到的读数

E1(H1);

按有方舱屏蔽后的测试方法,在有方舱屏蔽时进行测试,记录接收机接收到的读数

E2(H2);

电磁屏蔽效能:将E1(H1)、E2(H2)分别代入下面的计算式中,即得电磁屏蔽效能;

SE=(E1-E2)(dB)

SH=(H1-H2)(dB)

式中:E一电场H一磁场

4军用方舱电磁屏蔽效能的现状

军用方舱的研制生产呈逐年增加趋势,已达到上规模水平。在方舱研制生产过程中,电磁屏蔽效能已经作为一项技术指标逐步得到重视。无论从结构设计还是生产工艺上,在电磁屏蔽方面都采取了很多措施.并通过对军用方舱的测试,能及时发现问题解决问题,发挥了比不可少的作用。如军用方舱屏蔽效能是否达到指标要求;如电磁屏蔽设计采取的每项改进措施效果的验证等,均离不开电磁屏蔽效能测试。今后军用方舱电磁屏蔽效能测试将更加标准化、规范化,对提高军用方舱生产水平起到了促进作用。

5结束语

随着军品市场竞争,在军用方舱研制生产过程中,要重视电磁兼容性设计和研究,积极开展并不断提高方舱电磁兼容性测试水平,为军方提供更优质的产品装备部队。

电磁屏蔽一般可分为三种

电磁屏蔽一般可分为三种 :静电屏蔽、静磁屏蔽和高频电磁场屏蔽。三种屏蔽的目的都是防止外界的电磁场进入到某个需要保护的区域中,原理都是利用屏蔽对外场的感应产生的效应来抵消外场的影响。 但是由于所要屏蔽的场的特性不同,因而对屏蔽壳材料的要求和屏蔽效果也就不相同。 一、静电屏蔽 静电屏蔽的目的是防止外界的静电场进入需要保护的某个区域。 静电屏蔽依据的原理是:在外界静电场的作用下导体表面电荷将重新分布,直到导体内部总场强处处为零为止。接地的封闭金属壳是一种良好的静电屏蔽装置。如图所示,接地的封闭金属壳把空间分割成壳内和壳外两个区域,金属壳维持在零电位。根据静电场的唯一性定理,可以证明:金属壳内的电场仅由壳内的带电体和壳的电位所确定,与壳外的电荷分布无关。当壳外电荷分布变化时,壳层外表面上的电荷分布随之变化,以保证壳内电场分布不变。因此,金属壳对内部区域具有屏蔽作用。壳外的电场仅由壳外的带电体和金属壳的电位以及无限远处的电位所确定,与壳内电荷分布无关。当壳内电荷分布改变时,壳层内表面的电荷分布随之变化,以保证壳外电场分布不变。因此,接地的金属壳对外部区域也具有屏蔽作用。在静电屏蔽中,金属壳接地是十分重要的。当壳内或壳外区域中的电荷分布变化时,通过接地线,电荷在壳层外表面和大地之间重新分布,以保证壳层电势恒定。从物理图像上看,因为在静电平衡时,金属内部不存在电场,壳内外的电场线被金属隔断,彼此无联系,因此,导体壳有隔离壳内外静电相互作用的效应。 如果金属壳未完全封闭,壳上开有孔或缝,也同样具有静电屏蔽作用。在许多实际应用中,静电屏蔽装置常常是用金属丝编织成的金属网代替闭合的金属壳,即使一块金属板,一根金属线,亦有一定的静电屏蔽作用,只是屏蔽的效果不如金属壳。 在外电场的作用下,电荷在导体上的重新分布,在10-19秒数量级时间内就可完成,因此对低频变化的电场,导体上的电荷有足够长的时间来保证内部

电磁屏蔽方舱的优化设计研究

电磁屏蔽方舱的优化设计研究 发表时间:2019-02-22T11:00:28.110Z 来源:《防护工程》2018年第32期作者:张利军成丁雨宋甲宁牛海峰王晋会 [导读] 电磁屏蔽方舱不管从设计方面还是工艺方面都是一项实践性非常强的工程技术,但是容易在施工的过程中影响系统的整体屏蔽效能。 山西中电科技特种装备有限公司山西太原 030032 摘要:电磁屏蔽方舱具有良好的防护性能与封闭性能,是一种各方面性能都较好的电磁保护载体,被广泛应用于武器系统、指挥中心以及医疗保护体系中。要想提升战斗力,需要保证方舱良好的电磁屏蔽性能。对电磁屏蔽方舱的基本原理进行研究,对电磁屏蔽方舱的生产流程进行了分析,对提高动态范围的方法进行总结,以提高系统的准确性。 关键词:电磁屏蔽方舱;屏蔽效能;优化设计 自海湾战争、阿富汗战争以来,在高技术的条件下,现代战争中的发展趋势逐渐凸显。在信息化发展如此迅速的年代,战争电磁环境变得越来越复杂,如果不能采取有效的措施,将会导致战场指挥紊乱,影响装备性能,从而造成战争的失败。电子设备需要在电磁环境中得以工作,当电磁辐射超过一定的设定时,电子设备将会失去它的功能。在战争环境中,各种电子设备都处于十分恶劣的环境中,屏蔽条件容易遭到破坏,目前的电子设备防护容易受到攻击。电磁屏蔽在现代战争中有着非常重要的意义,一旦受到电磁干扰,将会造成通讯终端、武器失灵,战争将会以失败告终。因此,提高方舱的电磁屏蔽性能非常有必要。 1.方舱电磁屏蔽的原理 利用金属屏蔽体对外部产生的辐射进行屏蔽,还可以使用相同的屏蔽量对内部产生的电磁泄露进行屏蔽。不管是简单的配置还是复杂的配置,发生电磁干扰需要有干扰源、途径与设备。传导耦合与辐射耦合作为两种重要的传播方式,在进行方舱设计时,以控制辐射传播为主。电磁屏蔽的静电屏蔽,用于防止静电场带来的影响;非静电屏蔽是为了防止电磁场带来的影响。方舱舱体的电磁屏蔽则是采用的非静电屏蔽[1],用于防止发生交变电场。对方舱进行电场屏蔽设计时,要注意选材、舱体接地是否良好、较少屏蔽体的开孔数量。磁场屏蔽分为低频与高频之分,低频主要是利用高导磁材料,构成一种低磁阻,沿屏蔽体通过,屏蔽体的材料越厚说明屏蔽性能越好;高屏蔽是利用涡流作用进行外部的电磁屏蔽,当交变电磁场被金属材料的孔洞包围时,金属材料就会形成一种涡流作用,产生的磁场将会与原有磁场相反,从而将部分的磁场进行消除,通过这样的方式达到电磁屏蔽的效果。 2.对电磁屏蔽方舱的屏蔽效能进行优化设计 电磁屏蔽方舱与普通的方舱区别在于技术要求不同,在组装的过程中要考虑到舱体中每一个组成部分的电气连续性,从而满足屏蔽效能的指标。因此在进行电磁屏蔽方舱设计时,从零部件开始,每一道工序都是严格按照工艺流程进行,零部件的加工质量决定了方舱电磁屏蔽效能的好坏。如果零部件在制造的过程中出现失误,将直接影响到方舱的屏蔽效能,影响屏蔽的等级[2]。 2.1机柜优化 随着信息化的不断推进,电磁屏蔽方舱内部的空间越来越紧张,现有的舱内空间已经无法满足电磁屏蔽效能的相关测试标准,需要对方舱的内部进行优化设计。对整个方舱的内部进行电磁屏蔽效能的测试时在有一定的限制情况下,要保证相应的标准。利用电磁场的相关知识进行推断,机柜的反射条件会影响舱内的接收信号,这会影响屏蔽效能的效果。电子方舱具有电磁屏蔽的功能,结构完全封闭,为了解决设备的散热问题,需要采用大功率的制冷空调进行降温,直接向舱内送冷风。在方舱的内部设置了三个机柜,空调回风孔口设置在方灿高的高端,另外两个是高功放机柜。单个高功放的机柜上安装了六个发射机,发射方舱中安装了两台制冷空调,方舱的顶端设置了制冷风道。高功放机柜从上到下分布了六个发射机单元,发射机的热量需要通过轴流风机排到高功放机柜的后面,从整体的制冷量和发热量进行分析,空调制冷完全可以满足散热要求。 对方舱整体进行优化,设备在自然条件写需要通过环境测试和验收,在使用的过程中,如果太阳直射将会使方舱的内部温度升高,将方舱移到有遮挡条件的环境下,方舱的温度可以保持正常。虽然使用大功率的空调进行降温可以为方舱中注入冷空气,但是从热设计理论进行分析,设备需要有合理的风道设计进行降温。对于方舱整体的风道设计是具有优化空间的,方舱高的制冷空调可以设置在前端,高功放机柜的热量会通过发射机排到柜体的后面,不利于风道的设置。基于此,可以通过三个方面优化设计,改善方舱的散热:(1)增加壁板的厚度;(2)优化方舱的布局;(3)增加隔离板,优化散热风道。优化设计后,方舱内机柜的环境温度得到了有效的改善,为方舱内提供了良好的环境。 2.2屏蔽舱门的优化设计 舱门作为方舱舱体电磁泄露的主要途径,舱门的性能高低对整个舱体的屏蔽效能非常重要,在设计的过程中要充分考虑影响舱门屏蔽效能的因素。屏蔽舱门的材料选择要格外注意,尽量选择良导体,比如铜、铝;屏蔽方舱的舱体需要有较好的接地性;考虑到制作工艺和使用成本,选择高磁导率的钢,铜和铝需要有较高的电导率,这样才可以实现较好的屏蔽功能。针对舱门的位置需要有较高的电磁屏蔽功能,可以采用涂覆的方式增加屏蔽效能。采用双刀指簧屏蔽门,门刀和门框要采用钢板,将其拼焊成型,再进行镀铜处理;屏蔽舱门缝隙也要格外注意,簧片是舱门设计优化中一个重要的要素,簧片的材料表面要有足够的硬度,压缩量以及门体的连接方式都会给舱门的屏蔽效能带来较大的影响。可以采用铍青铜簧片实现弹性变化,簧片与其他的金属构件有一定的接触压力,可以实现高弹性的性能,从而消除门框和门之间的缝隙,达到良好的接触性能,从而实现高性能的电磁屏蔽效能。 2.3方舱孔口优化设计 方舱孔口是方舱与外界进行数据交换的重要通道,是导致电子屏蔽效能出现泄露的薄弱环节,对方舱孔口进行优化设计是保证孔口电磁屏蔽效能的关键。孔口框架与转接板的加工质量决定了方舱孔口的电气连续性,强化孔口框架和转接板的质量可以保证方舱孔口的电磁屏蔽效能不受破坏。对孔口进行装配的过程中要注意电气的连续性,孔口的框架与方舱的蒙皮在进行铆接之前,要清理铆接面,并安装弹性导电,导电衬垫要具有良好的电接触功能,导电衬垫的压缩量要进行合理控制,以保证较好的屏蔽效果。 结束语 电磁屏蔽方舱不管从设计方面还是工艺方面都是一项实践性非常强的工程技术,但是容易在施工的过程中影响系统的整体屏蔽效能。

移动方舱医院医学设备的保障

41创伤与急诊电子杂志 2018年1月第6卷第1期 J TRAUMA EMERG ,Jan.2018,vol.6,No.1 移动方舱医院医学设备的保障 何武兵1,2,朱晓婧1,林孟波1,许玮1,2,喻海燕1,陈锋1,2(1.福建省立医院?福建 省急救中心,福州?350001;2.福建医科大学省立临床医学院,福州?350001) [关键词]灾害救援;移动方舱医院;设备 DOI:10.16746/https://www.360docs.net/doc/e91151289.html,ki.11-9332/r.2018.01.009 灾害救援行动的成功与否,很大程度上取决于救援装备的先进性和实用性,救援队一般会配置搜索、营救、医疗、保障四大类专用设备。其中的医疗设备是医学救援装备的核心,代表着医学救援的能力和水平,主要配备轻便、防水、防潮、抗摔打、易于操作、便于维修、适应实战需求的设备[1]。携行医疗设备从2005年前的急救行囊与心肺复苏装备,发展到野战医院、移动帐篷医院、移动车载医院和目前研制的灾害救援专用方舱医院。作为福建省委省政府2015年为民办实事项目之一,福建省紧急医学救援队省立医院队于2015年4月正式立项,目前已经投资完成了8台特种车辆所构成的移动方舱医院系统和紧急医学后勤保障中心。目前移动方舱医院是刚研制建设的,国内外关于移动方舱医院的硬件配置尚无公开标准,如何做好医学装备的保障也无标准的方案,为了更好应对灾难环境下的医学救援,笔者通过文献回顾研究、演练、专家小组讨论等方法,进行总结,报告如下。 1 资料与方法 1.1 一般资料由院领导班子抽取本院临床、护理、行政管理、后勤保障等63人组成救援队,并从中抽取临床、手术室、设备和院感人员20人组成专家组。 1.2 方法通过广泛的文献回顾,灾难医学书籍复习,了解临床医疗设备配置和保障情况,结合本院紧急医学救援经验总结,在移动方舱医院系统基本配置的前提下,补充和完善手术车的硬件装备;梳理临床颅脑、心胸外科、腹部外科(基本外科、肝胆外科、胃肠外科)、泌尿和骨科的常用手术器械,并通过专家小组讨论形式确定手术器械通用基本包、单独工具包、专科专用包的器械基数;通过文献检索和专家小组讨论确定检伤分类区使用的设备清单;通过文献检索和专家小组讨论确定方舱医院的医疗设备保障方案。 2 结果 2.1 移动方舱医院系统手术装备手术车已经装备了多功能手术床1台、高频电刀1台、吸引器1台、清创台1台、麻醉呼吸机1台、监护仪1台、无影灯1台、移动轻便器械台2台、超声器械清洗机1台、高压蒸气灭菌器1台、空气净化系统1台。为了更好满足野外作业的需要,我们增加脉冲手术清创冲洗机1台、石膏车1台、移动简易手术床1台、野外洗手装置1台、自体血回输装置1台和手术器材补给箱2个。 2.2 手术器械清创缝合包20个(3#刀柄1个,弯组织剪1个,持针器1个,弯蚊钳2个,有齿镊1个,弯盘1个,酒杯+针盒3个,卵圆钳1个,大方纱5条,小方纱5条,擦手巾1条,腹布5条)。 换药包10个(无齿镊2个,弯盘1个,无菌碗1个),一次性换药包30个。 导尿包10个(一次性,带F o l l e y s双腔导尿管)。 气管切开包3个(清创缝合基数,甲状腺拉钩2个,小直角拉钩2个)。 静脉切开包2个(清创缝合基数)。 颅脑外科器械包2个(鹰嘴咬骨钳1个,7#刀柄1个,组织钳1个,有齿爱迪生镊1个,组织剪1个,次弯钳4个,无齿爱迪生镊1个,线剪1个,次直钳2个,枪状镊1个,脑膜剪1个,甲状腺拉钩2个,海绵钳1个,手摇钻柄1个,有齿解剖镊1个,手摇钻钻头1个,无齿解剖镊1个,4.5#吸引器头1个,脑棉1包, 灾害救援 基金项目:国家临床重点专科建设项目(闽卫科教[2012]149号)通信作者:陈锋,E-mail:cf9066@https://www.360docs.net/doc/e91151289.html,

不同材质金属板电磁屏蔽效果的对比分析要点

郑州大学毕业设计(论文) 题目:不同材质金属板电磁屏蔽效果的对比分析指导教师:职称:讲师 学生姓名:学号: 专业: 院(系): 完成时间: 2013年5月20 日

不同材质金属板电磁屏蔽效果的对比分析 摘要高导电性材料在电磁波的作用下将产生较大的感应电流。这些电流按照楞次定律将削弱电磁波的透入。采用的金属网孔愈密,直到采用整体的金属板(壳),屏蔽的效果愈好,但所费材料愈多。 本文主要使用XFDTD仿真软件编写基于FDTD算法的计算机仿真程序,计算出了喇叭天线工作时在铜金属板以及与铁,铝金属板屏蔽下电场强度分布,重点记录了距离端口60cm 平面的电磁参数,以此观察分析不同材质金属板的屏蔽效能,为金属板的电磁屏蔽应用提供科学的理论依据和定量的数据。 关键词屏蔽效能金属板时域有限差分算法喇叭天线电磁波传播模型 Abstact Shielding effectiveness is characterized the attenuation of electromagnetic waves on shield。Because of the high conductive material will be generated a large induction current under the action of electromagnetic waves。These currents according to Lenz's law will weaken the penetration of electromagnetic waves。The metal mesh is more dense, he better the shielding effectt, until the the overall metal shell, but the more charge material used. The this thesis make use of XFdtd simulation of copper metal plate, as well as iron, aluminum metal plate in an electromagnetic field environment。Through the comparison of different materials, thickness, and the source distance parameter, analysis the performance impact of metal shielding. Key Words:Shielding effectiveness Metal plate Finite difference time domain algorithm Horn antenna electromagnetic wave propagation model

电磁屏蔽原理

利用这个特性,可以达到屏蔽电磁波,同时实现一定实体连通的目的。方法是,将波导管的截止频率设计成远高于要屏蔽的电磁波的频率,使要屏蔽的电磁波在通过波导管时产生很大的衰减。由于这种应用中主要是利用波导管的频率截止区,因此成为截止波导管。截止波导管的概念是屏蔽结构设计中的基本概念之一。常用的波导管有圆形、矩形、六角形等,它们的截止频率如下: 矩形波导管的截止频率:f c=15×109 /l式中:l是矩形波导管的开口最大尺寸,单位是cm,f c的单位是Hz。 圆形波导管的截止频率:f c=17.6×109 /d式中:d是圆形波导管的内直径,单位是cm,f c的单位是Hz。 六角形波导管的截止频率:f c=15×109 /w式中:w是六角形波导管的开口最大尺寸,单位是cm,f c的单位是Hz。 截止波导管的吸收损耗:落在波导管频率截止区内的电磁波穿过波导管时,会发生衰减,这种衰减称为截止波导管的吸收损耗,截止波导管的吸收损耗计算公式如下 A=1.8×f c×t×10-9(1-(f/f c)2)1/2(dB) 式中:t是截止波导管的长度,单位是cm,f 是所关心信号的频率(Hz),f c是截止波导管截止频率(Hz)。如果所关心的频率f远低于截止波导管截止频率(f﹤f c/5),则公式化简为:A=1.8×f c×l×10-9 (dB) 圆形截止波导管:A=32t/d(dB) 矩形(六角形)截止波导管: A=27t/l (dB) 从公式中可以看出,当干扰的频率远低于波导管的截止频率使,若波导管的长度增加一个截面最大尺寸,则损耗增加将近30分贝。 截止波导管的总屏蔽效能:截止波导管的屏蔽效能由吸收损耗部分加上前面所讨论的孔洞的屏蔽效能不能满足屏蔽要求时,就可以考虑使用截止波导管,利用截止波导管的深度提供的额外的损耗增加屏蔽效能。 16. 截止波导管的注意事项与设计步骤 1)绝对不能使导体穿过截止波导管,否则会造成严重的电磁泄漏,这是一个常见的错误。 2)一定要确保波导管相对于要屏蔽的频率处于截止状态,并且截止频率要远高于(5倍以上)需要屏蔽的频率。设计截止波导管的步骤如下所示: A) 确定需要屏蔽的最高频率F max和屏蔽效能SE B) 确定截止波导管的截止频率F c,使f c≥5F max C) 根据F c,利用计算F c的方程计算波导管的截面尺寸d D) 根据d和SE,利用波导管吸收损耗公式计算波导管长度t 说明: 在屏蔽体上,不同部分的结合处形成的缝隙会导致电磁泄漏。因此,在结构设计中,可以通过增加不同部分的重叠宽度来形成一系列“截止波导”,减小缝隙的电磁泄露。这时,截止波导的截面最大尺寸可

方舱医院的起源

方舱医院的起源 方舱医院源于越战,兴于海湾战争,服务于人民。 在上个世纪60年代的越南战场上,美军营地里出现了一个个巨大的方形铁疙瘩,它们就是美军为了应对越战需要投入的轻便野战医院——MUST。 这是战场上野战卫生装备新的手段,在这些轻便的野战医院里能实现伤员分类、外科处置、紧急手术、急救护理、卫勤指挥、药材供应等功能,野战医院由此开始方舱化。 此后,多国都开始研制方舱医院,并且开发出以越野汽车载运的各类组合单元。除了越战,方舱医院在海湾战争时期又得到了快速发展。 海湾战争牵涉到多个国家,各国都进一步研制、装备和采购了类型各异、规模不同的方舱医院,在战争中,方舱医院又增加了X射线诊断、临床检验、卫生器材灭菌、远程会诊等新的功能模块,为伤员救治提供了可靠的保障。 战争结束后,方舱医院以其良好的应用性继续成为发展热点,使用范围和面积进一步扩大,方舱医院不再局限于军用,它开始更多应用于非军事行动的保障任务。 我军的方舱医院,在上世纪90年代初就已开始建设。目前为止,所有战区都装备了野战方舱医院,并且技术处于国际先进行列。 所谓“方舱医院”,简单地说是一个可以活动的“房子”,其特点就是组装快、功能全、机动性强,由其构成的野战机动方舱医院功能不可小觑。 方舱医院与野战机动医院类似,通俗地说由活动的“房子”建成,在野战条件下以医疗方舱、技术保障方舱、病房单元、生活保障单元及运力等为主要组成,依托成套的装备保障完成伤员救治等任务,在我国抗震救灾等公共卫生应急保障中发挥巨大作用。 方舱医院内不仅具备流动水手卫生设施、药品及无菌物品存储、器械消毒灭菌、持续的电源供应等条件,还可开展急救、手术,进行

电磁屏蔽材料的研究与发展展望

电磁屏蔽材料的研究与发展展望 ******** *** 摘要:电磁屏蔽是对干扰源或感受器(敏感设备、电路或组件)进行屏蔽,能有效地抑制干扰并提高电子系统或设备的电磁兼容性。因此屏蔽是电子设备结构设计时必须考虑的重要内容之一,是利用屏蔽体阻止或减少电磁能量传输的一种措施,是抑制电磁干扰最有效的手段。本文简述了研究电磁屏蔽材料的重要意义与屏蔽机制,讨论了电磁屏蔽金属材料的发展趋势。 关键词:电磁屏蔽;屏蔽材料;屏蔽机制;屏蔽效能 引言:随着电子工业的发展和电子设备的高度应用,电磁辐射被认为是继水污染、噪音污染、空气污染的第四大公害,它造成的电磁干扰不仅影响人们的正常生活,而且日益威胁国家的军事机密。尤其是在软杀伤武器——电磁波突现的现代化战场上,当电磁波穿透军事设备的敏感器件时,可能致使对方雷达迷茫、无线电通讯指挥系统失效、导弹火炮等武器失控。这种破坏力极大的电磁武器可能成为未来战场上重要的作战手段,因此,研究高性能的电磁屏蔽材料以提高各种武器平台的防护能力是各国军事领域的一项重大任务。此外,电磁辐射也给人们的身体健康带来了严峻的挑战。各种通讯设备、网络以及家用电器所发射的电磁波可能诱发各种疾病,如睡眠不足、头晕、呕吐,严重的甚至可能诱发癌症、心血管病等。因此,电磁屏蔽材料的研究开发是近年来治理电磁环境的重要方法。 常用的电磁屏蔽材料有金属材料和高分子复合材料等。金属类材料能够作为主要的电磁屏蔽材料是由于其具有良好的导电性(铜、铝、镍等)和较高的磁导率(坡莫合金、铁硅合金等), 当电磁能流通过金属材料时,其主要的屏蔽机制(反射衰减R 和吸收衰减A)能够有 效地反射、吸收电磁波,衰减电磁能量,从而达到较好的屏蔽效果。大多数高分子材料的导电性能较金属差,这在很大程度上降低了高分子材料的电磁屏蔽效能。因此,为了提高高分

电磁屏蔽基本原理

1、电磁屏蔽基本原理 如图1所示电磁屏蔽的基本原理是:采用低电阻的导体材料,并利用电磁波在屏蔽导体表面的反射和在导体内部的吸收以及传输过程中的损耗而使电磁波能量的继续传递受到阻碍,起到屏蔽作用。某些屏蔽材料可将大部分入射波反射掉,利用内部吸收及多重反射损耗掉部分进入材料的电磁波,只允许极少量的电磁波透过材料继续传播。 钢金属结构就起到了电磁屏蔽的作用,会大大影响附近基站对楼内的信号覆盖强度,下面用具体公式证明这一点。 钢金属结构对电磁波的损耗主要由反射损耗和吸收损耗组成。吸收损耗是指电磁波穿过屏蔽罩时能量损耗的数量,吸收损耗计算公式为: AdB=(f×σ×μ) /2×t 其中 f:频率(MHz) μ:金属导磁率σ:金属导电率 t:屏蔽罩厚度 联通附近基站使用的频率是900MHz,钢的导磁率约为450×10-4左右,钢的导电率约为×10-5左右,钢结构厚度约为0.02米左右。 将上述参数代入公式,吸收损耗约为31dB。 反射损耗(近场)的大小取决于电磁波产生源的性质以及与波源的距离。对于杆状或直线形发射天线而言,离波源越近波阻越高,反射损耗随波阻与屏蔽阻抗的比率变化,因此它不仅取决于波的类型,而且取决于屏蔽罩与波源之间的距离。 近场反射损耗可按下式计算 RdB=168+10×lg(σ/μrf)

其中 r:波源与屏蔽之间的距离,估算取为200米。 将参数代入公式,得到反射损耗为。 因此,由于钢金属结构引起的损耗为吸收损耗和反射损耗之和,即为,再加上建筑物其他混凝土结构的损耗20dB,总损耗约为97dB。 2、链路预算 下行链路(DownLink)是指基站发,移动台接收的链路。 上行链路(UpLink)是指移动台发,基站接收的链路。 对于GSM900M系统的上下行链路,按照链路预算公式,计算后建筑物内信号电平值为-99dBm左右,基本无法满足正常的通话需求。 对于GSM1800M系统,其覆盖能力还不如GSM900M,也无法达到覆盖效果。 对于CDMA系统,链路预算表格如下表

抗电磁辐射织物的屏蔽效能测试方法探讨

抗电磁辐射织物的屏蔽效能测试方法探讨 发表时间:2018-09-12T16:33:07.283Z 来源:《基层建设》2018年第24期作者:王彦利 [导读] 摘要:在目前现状下,受到网络化带来的显著影响,各类视听设备、移动电话与电磁炉设施都在全面融入平日生活中。 西安市环境监测站陕西西安 710118 摘要:在目前现状下,受到网络化带来的显著影响,各类视听设备、移动电话与电磁炉设施都在全面融入平日生活中。然而不应忽视,上述产品很可能伴有电磁辐射,对此有必要予以相应的屏蔽。某些织物具备屏蔽性能以及抗辐射的效能,针对此类织物有必要予以相应的测试,从而全面评定其具备的屏蔽效能。 关键词:抗电磁辐射织物;屏蔽效能;测试方法 从危害性质来讲,电磁辐射具备显著的累积效应以及热效应,因此其能够伤害到人体健康。为了有效抵抗强度较高的电磁辐射,可以运用织物屏蔽的方式来抵抗辐射。但是实质上,某些织物本身并没能达到最优的屏蔽效能。因此可见,对于多种多样的抗辐射织物都应当予以全方位的效能测试,通过运用测试手段来获得精确结论,进而显著优化了织物具备的防辐射性。 一、抗辐射织物具备的基本原理 与传统织物相比,抗辐射织物具备全新的特征,这是由于此类织物包含了屏蔽性的织物材料,因此能够抵挡相应强度的外界电磁辐射。具体而言,抗辐射织物的基本特征在于电磁能传递的全面限制,从而阻断了特定空间内的电磁辐射传输。从波形衰减的角度来讲,此类织物可以实现衰减电磁波的效应,对于反射与入射的波形予以改变。在此前提下,某些电磁波即便没有受到衰减影响,则也将会被织物表层吸收,从而显著减低了人体遭受电磁波带来的伤害性。 对于织物具备的屏蔽电磁波效能具体在运算时,通常来讲都会涉及到吸收衰减比率、电磁屏蔽效果、多次反射而导致的内部衰减以及单次反射导致的表面衰减。在这其中,对于织物材质本身的屏蔽效能如果要予以精确鉴别,那么必须凭借总屏蔽效应予以全面的确定。某些情形下,如果将织物置于低频的环境下,则反射效应与屏蔽效能之间将会体现为更强的联系。由此可见,织物材料如果体现为较强的反射性,那么意味着与之有关的屏蔽性以及导电性也能够达到优良的水准。除此以外,对于潜在性的吸收损耗也要予以考虑。 经过归纳可知,织物屏蔽效能在根本上关乎电磁波频率、比电导率、材料厚度、待测电磁波的间隔距离、比磁导率、波阻抗、材质本身具备的阻抗以及其他要素。此外,衰减系数也关系到屏蔽效能。具体在选择不同种类的织物时,针对上述的各项要素都要全面予以兼顾。通过运用屏蔽测试的方式,应当能够给出各项要素给织物性能带来的某种影响。 二、测试织物屏蔽效能的具体方法 电磁辐射具备较强伤害性,因此亟待探究可行性的改进举措,通过运用相应的屏蔽方式来阻挡电磁波,避免其威胁到人体。截至目前,与抗辐射织物有关的各种检测方法正在逐步达到完善,其中的测试范围包含了高分子合成的织物、纤维与金属混纺的织物、纳米材质的织物与其他种类织物。具体而言,检测织物屏蔽效能可以用到如下的方法: (一)运用近场法进行测试 针对织物测试可以选择近场法用来实现全面的测定,其中包含双盒法与其他的测试手段。从基本特征来讲,近场法主要针对于近场范围的电磁波,对于织物能够屏蔽近场电磁辐射的具体效能予以测定。例如针对双盒检测法而言,其侧重于测试接收辐射的概率,凭借小型天线与屏蔽盒来完成上述的测试操作。因此相比而言,运用近场法来测定织物屏蔽效能的措施并不会耗费较多资金与较高成本,其具备便捷性与简易性的独特优势。但是不应忽视,如果选择了此类测试方法,那么将会受到谐振影响,对此有必要引发重视。 (二)运用远场法进行测试 远场测试法的测试对象包含远场的电磁波辐射,在此前提下测定屏蔽效能。在这其中,对于远场法可以将其分成同轴传输线、法兰同轴检测法与其他的检测方式。在全面实现远场电磁测试的前提下,主要能够测定平面波受到织物吸收与织物反射的比率。对于同轴传输线而言,应当将其置于特定强度的磁场中,然后根据织物本身具备的屏蔽效能来实现全过程的检测。因此,选择远场检测方法能够达到较宽的动态测试范围,与之有关的损耗能量相对较低,同时也无需配备某些辅助性的检测设施。 (三)运用屏蔽室法进行测试 运用屏蔽室来测定织物具有的屏蔽效能,其基本特征在于设置必要的信号接收设施,在此前提下给出功率值与场强的差值。因此可见,对于上述的差值就可以将其视作织物具备的屏蔽性。相比而言,屏蔽室法具备更高层次的精准性,然而很可能会耗费较高比例的资金。与此同时,运用此类检测方式还可能将会受到电磁泄露给其带来的某些干扰。具体在进行选择时,应当能够结合织物特征加以灵活的选择。 结束语: 经过全面的分析,可以得知抗辐射织物是否具备优良的辐射屏蔽效能,其在根本上决定于电磁波频率、材料特性、屏蔽体与辐射源的间隔距离与其他有关要素。因此在全面施行织物检测时,应当因地制宜选择与之相适应的测试方法,在此前提下得出精确度较高的效能检测结论,为改善织物性能提供必要的参照。 参考文献: [1]吴雄英,张亚雯,袁志磊.纺织品电磁屏蔽效能评价标准的现状分析[J].纺织学报,2016,37(02):170-176. [2]郑倩雪,刘哲,张永恒等.双层防电磁辐射织物的屏蔽效能[J].纺织学报,2016,37(01):47-51. [3]王飞龙.金属混纺织物设计与屏蔽性能影响因素分析[J].产业用纺织品,2015,33(01):34-37. [4]程明军,吴雄英,张宁等.抗电磁辐射织物屏蔽效能的测试方法[J].印染,2013(09):31-35.

PCB电磁屏蔽详解

PCB电磁屏蔽详解 电磁兼容中的屏蔽技术 屏蔽是利用屏蔽体来阻挡或减少电磁能传输的一种重要的防护手段。屏蔽技术用来抑制电磁噪声沿着空间的传播,即切断辐射电磁噪声的传播途径,通常用金属材料或磁性材料把所需屏蔽的区域包围起来,使屏蔽体内外的“场”相互隔离。 屏蔽作为电磁兼容控制的重要手段,可以有效的抑制电磁干扰。电磁干扰能量通过传导性耦合和辐射性耦合来进行传输。为满足电磁兼容性要求,对传导性耦合需采用滤波技术,即采用EMI 滤波器件加以抑制;对辐射性耦合则需采用屏蔽技术加以抑制。目前的各种电子设备,尤其是军用电子设备,通常都采用屏蔽技术解决电磁兼容中的问题。 屏蔽按其机理可分为电场屏蔽,磁场屏蔽和电磁屏蔽。 电场屏蔽 电场的屏蔽是为了抑制寄生电容耦合(电场耦合) , 隔离静电或电场干扰。 寄生电容耦合: 由于产品内的各种元件和导线都具有一定电位, 高电位导线相对的低电位导线有电场存在, 也即两导线之间形成了寄生电容耦合。通常把造成影响的高电位叫感应源, 而被影响的低电位叫受感器。实际上凡是能幅射电磁能量并影响其它电路工作的都称为感应源(或干扰源),而受到外界电磁干扰的电路都称为受感器。

静电防护的方法:建立完善的屏蔽结构,带有接地的金属屏蔽壳体可将放电电流释放到地;内部电路如果要与金属外壳相连时,要用单点接地,防止放电电流流过内部电路;在电缆入口处增加保护器件;在印制板入口处增加保护环(环与接地端相连)。 磁场屏蔽 磁场屏蔽是抑制噪声源和敏感设备之间由于磁场耦合所产生的干扰。磁场屏蔽主要是依赖高导磁材料所具有的低磁阻对磁通起到分路的作用,使得屏蔽体内部的磁场大大减弱。如图8-14所示 图4磁场的被动屏蔽 图8-14 磁场屏蔽 射频磁屏蔽是利用良导体在入射高频磁场作用下产生涡流,并由 涡流的反磁通抑制入射磁场。常用屏蔽材料有铝、铜及铜镀银等。 电磁屏蔽 电磁屏蔽是解决电磁兼容问题的重要手段之一,大部分电磁兼容问题都可以通过电磁屏蔽来解决。用电磁屏蔽的方法来解决电磁干扰问题的最大好处是不会影响电路的正常工作,因此不需对电路做任何修改。

电磁屏蔽技术基础知识

Thalez Group 电磁屏蔽技术基础知识

目录 1.电磁屏蔽的目的 2.区分不同的电磁波 3.度量屏蔽性能的物理量——屏蔽效能 4.屏蔽材料的屏蔽效能估算 5.影响屏蔽材料的屏蔽效能的因素 6.实用屏蔽体设计的关键 7.孔洞电磁泄漏的估算 8.减少缝隙电磁泄漏的措施 9.电磁密封衬垫的原理 10.电磁密封衬垫的选用 11.常用电磁密封衬垫的比较 12.电磁密封衬垫使用的注意事项 13.电磁密封衬垫的电化学腐蚀问题 14.与衬垫性能相关的其它环境问题 15.截止波导管的概念与应用 16.截止波导管的注意事项与设计步骤 17.面板上的显示器件的处理 18.面板上的操作器件的处理 19.通风口的处理 20.线路板的局部屏蔽 21.屏蔽胶带的作用和使用方法

电磁波是电磁能量传播的主要方式,高频电路工作时,会向外辐射电磁波,对邻近的其它设备产生干扰。另一方面,空间的各种电磁波也会感应到电路中,对电路造成干扰。电磁屏蔽的作用是切断电磁波的传播途径,从而消除干扰。在解决电磁干扰问题的诸多手段中,电磁屏蔽是最基本和有效的。用电磁屏蔽的方法来解决电磁干扰问题的最大好处是不会影响电路的正常工作,因此不需要对电路做任何修改。 一.电磁屏蔽的目的 同一个屏蔽体对于不同性质的电磁波,其屏蔽性能不同。因此,在考虑电磁屏蔽性能时,要对电磁波的种类有基本认识。电磁波有很多分类的方法,但是在设计屏蔽时,将电磁波按照其波阻抗分为电场波、磁场波和平面波。 电磁波的波阻抗ZW 定义为: 电磁波中的电场分量E与磁场分量H的比值: ZW = E / H 电磁波的波阻抗与电磁波的辐射源性质、观测点到辐射源的距离以及电磁波所处的传播介质有关。 距离辐射源较近时,波阻抗取决于辐射源特性。若辐射源为大电流、低电压(辐射源的阻抗较低),则产生的电磁波的波阻抗小于377,称为磁场波。若辐射源为高电压、小电流(辐射源的阻抗较高),则产生的电磁波的波阻抗大于377,称为电场波。 距离辐射源较远时,波阻抗仅与电场波传播介质有关,其数值等于介质的特性阻抗,空气为377Ω。电场波的波阻抗随着传播距离的增加降低,磁场波的波阻抗随着传播距离的增加升高。 注意: 近场区和远场区的分界面随频率不同而不同,不是一个定数,这在分析问题时要注意。例如,在考虑机箱屏蔽时,机箱相对于线路板上的高速时钟信号而言,可能处于远场区,而对于开关电源较低的工作频率而言,可能处于近场区。在近场区设计屏蔽时,要分别电场屏蔽和磁场屏蔽。 二. 区分不同的电磁波

方舱电磁屏蔽处理工艺

方舱电磁屏蔽处理工艺 摘要本文就方舱电磁屏蔽处理方面有关舱体拼装、门安装、屏蔽固定窗、壁盒(通风壁盒、电源或信号壁盒)安装、空调安装、暖风机安装、过舱导体等方面施工方法、工艺参数及工艺质量要求进行了说明;并归纳了一般屏蔽方舱的“屏蔽处理工序及检验流程图”。 关键词屏蔽方舱屏蔽材料缝隙处理质量检验 一前言 电磁屏蔽方舱是一种用来有效屏蔽电磁干扰和电磁脉冲的方舱,确保舱内作战功能设备不被电磁干扰和破坏,破坏使其发挥正常的作战功能;当然也能屏蔽舱内电子电气设备发出的电磁信号,使敌方的电磁信号探测装置无法侦察和探测己方的军用设备及其位置。方舱电磁屏蔽处理的根本目的是确保屏蔽方舱的电气连续性,主要着手点是缝隙处理,包括组舱缝隙、门(窗、壁盒)等孔口与舱壁间的缝隙及贯穿舱体导体等。 二设备、工具及辅助材料 CO2气体保护焊机氩弧焊机压缩空气电钻或风钻手提 磨光机拉铆枪钻头毫欧表小板刷毛笔

导电保护液(胶)0#砂布180#砂纸丙酮白细纱手套 三施工工艺 舱体拼装 1 在舱体拼装时,在其角部用弯角件将组成舱体的板片进行焊装(见图1)。钢骨架进行CO2气体保护焊,铝骨架进行氩弧焊(TIG 或MIG)。焊接前应去除板片方管和弯角件上的油污、氧化膜。为保证舱体的电气连续性,焊接应尽量采用连续焊。如采用断续焊,当连接面长度L≤50时用连续焊;当连接面长度大于50小于300时用断续焊,焊缝长度应≥50,焊缝间距≤200,且两端必须焊接;当连接面长度大于300断续焊时,焊缝长度≥50,焊缝间距≤300,且两端必须焊接。对材料厚度小于6mm的构件,应采用完全穿透焊接。 当舱体的电磁屏蔽效能SE≥40db时,舱体各片壁板外蒙板之间需用整条铝板条、角顶处(三片壁板交汇处)用铝罩(专用件)进行连焊。焊前应清除铝板条、铝罩及外蒙板上的油污、氧化膜,且使铝板条、铝罩与外蒙板接触处平整,有良好的导电接触面及焊接工艺性。焊接应采用连续焊,焊后应对焊缝进行修整及清理,且在所有焊缝处粘贴屏蔽胶带(铜箔)进行电磁密封(见图1、图2)。 如果舱体角部处需布暗线,应将线缆布设整齐、扎制、固定;应将导线用隔热材料进行包裹,以防焊接电连接板时烧伤导线(见图3)。 舱体内壁角接处(包括隔道壁与顶、底、侧相连处),用角型铝压条连接。连接前需将内蒙板及铝压条间相接触处的油污、油漆和氧

电磁屏蔽原理及应用

电磁屏蔽的原理及应用 摘要:阐述了电磁屏蔽材料的屏蔽原理。介绍了电磁屏蔽材料的发展现状,其中较为详细地介绍了表层导电型屏蔽材料以及填充复合型屏蔽材料。 关键词:电磁屏蔽,危害,屏蔽原理,研究现状 AbStraCt The harms of electromagnetic radiation to electric equipment, fuel, animals and human were intoduced, andthe mechanism of electromagnetic shielding materials and its development was summarized. Key words electromagnetic radiation, shielding, harm, mechanism, development 近几十年来,随着各种电器的普及,电子计算机、通讯卫星、高压输电网和一些医用设备等的广泛应用,由此带来的电磁辐射污染也越来越严重。为此,必须进行电磁屏蔽。 1、电磁屏蔽原理 电磁屏蔽,实际上是为了限制从屏蔽材料的一侧空间向另一侧空间传递电磁能量。电磁波传播到达屏蔽材料表面时,通常有3种不同机理进行衰减:一是在入射表面的反射衰减;二是未被反射而进入屏蔽体的电磁波被材料吸收的衰减;三是在屏蔽体部的多次反射衰减。电磁波通过屏蔽材料的总屏蔽效果可按下式计算: SE=R+A+B (1) 式中:SE为电磁屏蔽效果,dB; R为表面单次反射衰减;A为吸收衰减;B为部多次

反射衰减(只在A<15dB情况下才有意义)。 一般来说,电屏蔽材料衰减的是高阻抗的电场,屏蔽作用主要由表面反射R 来决定,吸收衰减A则不是主要的。所以,电屏蔽可以用比较薄的金属材料制作;而磁屏蔽体的衰减主要由吸收衰减A决定,反射衰减R不是主要的。根据电磁学的有关知识,可分别得出A, R, B的计算公式: (2) A与电磁波的类型(电场或磁场)无关,只要电磁波通过屏蔽材料就有吸收,它与材料厚度成线性增加,并与材料的电导率及磁导率有关。 反射衰减R不仅与材料的表面阻抗有关,同时也与辐射源的类型及屏蔽体到辐射源的距离有关。对于远场源(平面波辐射源): (3) 对于近场源: 磁场: (4) 电场 (5) 金属屏蔽材料一般都比较薄,A也比较小,通常考虑部多次反射衰减B。在此情况下,部多次反射衰减B。在此情况下,部反射甚至可以发生多次, 形成多次反射。用“多次反射修正项”B来表示这种衰减。 对于近场源:

结构件电磁兼容设计规范电磁屏蔽设计

结构件电磁兼容设计规范 1、概述: 本规范规定了结构件电磁兼容设计(主要是屏蔽和接地)的设计指标、设计原则和具体设计方法。 本规范适应于结构设计人员进行结构件的电磁兼容设计,目的是规范机电协调中电磁兼容方面的内容,指导结构设计人员正确地选择方案和进行详细设计。下列标准包含的条文,通过在本标准中引用而构成本标准的条文。在标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GJB 1046《舰船搭接、接地、屏蔽、滤波及电缆的电磁兼容性要求和方法》 GJB 1210《接地、搭接和屏蔽设计的实施》 GJB/Z 25《电子设备和设施的接地搭接和屏蔽设计指南》 MIL-HDBK-419 《电子设备和设施的接地搭接和屏蔽》 IEC 61587-3 (草案)《第三部分: IEC 60917-... 和 IEC 60297-... 系列机箱、机柜和插箱屏蔽性能试验》 《结构件分类描述优化方案及图号缩写规则》 术语本规范中的专业术语符合 IEC50-161 《电磁兼容性术语》的规定。 2、设计程序要求 对于有EMC 要求的项目的开发程序,在遵守部门现有的结构造型设计流程基础上,提出以下特殊的要求: 所有需要考虑屏蔽的A 类项目以及产品定位为海外市场的所有项目,必须通过EMC 方案评审后才能进行详细的设计; 对于 C 级以上屏蔽等级(具体级别划分见 5.1)要求的项目,方案评审时必 须提交详细的 EMC 设计方案(包括屏蔽体的详细结构和具体处理措 施); 对于 C 级以上屏蔽等级的项目,样机评审时必须提交屏蔽效能测试报告;除通用结构件(例如 19" 标准机柜)外,如果样机的屏蔽效能测试结果达不到设计 134 指标的要求,只要整机(产品)的EMC 测试中相应指标符合要求,结构件 可以不要求再作优化。 3、屏蔽效能等级 3.1、屏蔽效能等级的划分 一般结构件的屏蔽效能分为以下六个等级,各级屏蔽效能指标规定如 下: E级: 30-230 MHz 20 dB;230-1000 MHz 10 dB D 级:30-230 MHz 30 dB;230-1000 MHz 20 dB C级: 30-230 MHz 40 dB;230-1000 MHz 30 dB B 级:30-230 MHz 50 dB;230-1000 MHz 40 dB A 级:30-230 MHz 60 dB;230-1000 MHz 50 dB T级:比A级高10dB或者以上,和/或对低频磁场、1GHz以上平面波屏蔽效能有特殊需求。 屏蔽效能等级由高至低分别为:T 级 A 级 B 级 C 级 D 级 E级。一

常见的电磁屏蔽材料有哪些

常见的电磁屏蔽材料有哪些? 电磁屏蔽即利用屏蔽材料阻隔或衰减被屏蔽区域与外界的电磁能量传播。电磁屏蔽的作用原理是利用屏蔽体对电磁能流的反射、吸收和引导作用,其与屏蔽结构表面和屏蔽体内部感生的电荷、电流与极化现象密切相关。屏蔽按其原理分为电场屏蔽(静电屏蔽和交变电场屏蔽)、磁场屏蔽(低频磁场和高频磁场屏蔽)和电磁场屏蔽(电磁波的屏蔽)。通常所说的电磁屏蔽是指后一种,即对电场和磁场同时加以屏蔽。 屏蔽效果的好坏用屏蔽效~g(SE,Shielding effectiveness)来评价,它表现了屏蔽体对电磁波的衰减程度。屏蔽效能定义为屏蔽前后该点电磁场强度的比值,即:SE=2OIg(Eo/Es)或SH=2Olg(HdHs)式中:、分别为屏蔽前该点的电场强度与磁场强度,、分别为屏蔽后该点的电场强度与磁场强度。对屏蔽效果的评价是根据屏蔽效能的大小度量的。 按照屏蔽作用原理,屏蔽体对屏蔽效能的贡献分为3部分:(1)屏蔽体表面因阻抗失配引起的反射损耗;(2)电磁波在屏蔽材料内部传输时,电磁能量被吸收引起传输损耗或吸收损耗;(3)电磁波在屏蔽材料内壁面之间多次反射引起的多次反射损耗。由此可以得到影响材料屏蔽效能的3个基本因素,即材料的电导率、磁导率及材料厚度。这也是屏蔽材料研究本身所必须关注的问题和突破口。当然,对于电磁屏蔽体结构,其屏蔽效能还与结构、形状、气密性等有关,对于具体问题,还需要考虑被屏蔽的电磁波频率、场源性质等。○1□a 常见的屏蔽材料

电屏蔽指的是对电场(E场)的屏蔽,它通常可选用的屏蔽材料种类比较多,如下: 1一、导电弹性体衬料(导电橡胶) 每种导电橡胶都是由硅酮、硅酮氟化物、EPDM或者碳氟化物-硅氟化物等粘合剂及纯银、镀银铜、镀银铝、镀银镍、镀银玻璃、镀银铅或炭颗粒等导电填料组成。 由于这些材料含有银,包装和存储条件应与其他含银元件相似,它们应当存储在塑料板中,例如聚酯或者聚乙烯,远离含硫材料。标准形状有:实体O形条、空心O形条、实体D形条、空心D形条、U行条、矩形条、中空矩形条、中空P形条、通道条以及模制导电橡胶成形件、模制的D-形圈/O-形圈、各种法兰、I/O衬垫。 特点:在20M-20GHz的范围内可达90 dB-120dB,纯银颗粒的甚至可达到120dB以上。能起到屏蔽和环境密封的作用,安装方便,适用于通讯、医疗、军品、航空等场合。 二、EMI导电泡棉衬料 导电泡棉是把导电编制套缠绕在采用聚氨基甲酸乙脂或EPDM构成的泡绵芯上,导电编制套通常是由镀银镍尼龙、铝泊或者Monel丝(镍铜合金)Ferrex(镀锡包铜钢丝)组成,有良好的导电性。符合阻燃等级(UL94-V0),具有好的 弹性和柔韧性等机械性能。导电泡棉衬垫具有良好的屏蔽性能,遇到电波时,则会根据其物体的性质而进行反射、吸收、提供极佳的屏蔽效果。并且具有极高的性价比,是目前最新的、也是应用最广的

相关文档
最新文档