旋流板塔大型设计

旋流板塔大型设计
旋流板塔大型设计

旋流板塔大型化的设计与研究

陈昭宜谢珊李丹

(湖南大学环境工程系,长沙,410082)

[内容摘要]以邯郸热电厂大型机组烟气脱硫为例,分析了旋流板在大型设备中应用的可行性与经济性,论述了旋流板大型化设计的原理与方法。

[关键词]脱硫、旋流板、大型化

一.概述

我国是一个能源结构以燃煤为主的国家。大气污染属煤烟型,烟气中大量的SO2对大气造成了严重的污染,致使我国酸雨逐年加重,酸雨面积不断扩大,其覆盖面积已达国土面积的30%。为了控制大气中SO2的含量应严格控制产生SO2污染的主要来源—电站的SO2的排放。目前,国内对于中小型电站的烟气脱硫已有一些进展,对于大型电站的烟气处理尚处于不成熟阶段。但随着国家将逐渐取缔小型电站,大中型电站的烟气处理成为急待解决的问题。

对于电站烟气处理,国内采用的工艺流程之一是文丘里加旋流板,而国外多采用文丘里加喷淋等。考虑到不同传质机理的脱硫组合效果更佳,笔者提出了文丘里加旋流板加喷淋的设想,该工艺在山西,广西,海南等地的锅炉和小型电站有成功的应用实例。旋流板是我国自行研究成功的一种喷射型塔板,这种板型由于开孔率较大,允许气流高速通过,因此处理能力较大,而压降较小,操作弹性亦较大。同时,它不仅可以脱硫,还起到气体分布均匀的作用。工艺流程中采用旋流板,可以省去一个气体分布均匀装置,还可以提高脱硫除尘效率。但是应用于大型设备的实际工艺流程中,往往因设备的放大,导致了严重失真的尴尬境地,严重影响了脱硫除尘效果。为了使旋流板可以不失真的应用于大型设备,对于旋流板的设计与研究,是一个新的课题,很值得研究。现以邯郸热电厂大型机组烟气脱硫为例,简述一下我们的研究成果。

二.设计条件和设计原则

1.设计条件

邯郸热电厂#11号机组于1998年11月建成投产,装机容量为200MW,锅炉最大蒸发量为670t/h,每台锅炉配置了两台双室器电场干式高压静电除尘器,除尘效率>=99%,现进行第二期改造工程,完成脱硫任务。

烟气经电除尘器除尘后的性能参数:

烟气量 66.5万m3/h

烟气温度 T S=405.5K

烟尘排放浓度 108.8mg/Nm3

SO2排放浓度:1920mg/m3

2.设计原则

每台静电除尘器后设计两套脱硫装置并联

烟气的空塔气速一般为2.4-4.0m/s的范围内,设计中取 3.3m/s.因为气速太大,带液会比较严重;气速太小,塔径将很大,不经济,按 3.3m/s计算,塔径也达到了 5.7米。

对于这种大塔径的设备,其设计参数计算,运行经验都是难以找到的。怎么办?笔者认为前人的成功经验是可以借鉴的。如旋风分离器的通常直径1、2米为好,最大不要超过2米。那么塔径2米为上限。采用“分层法”,即把直径5.7米的塔,以2米直径为一单元,将5.7米的直径分为n个单元,再按照等开孔率,等流速,等距离的原则,使气体流动的降压相等,不走短路,而达到高效除尘脱硫的目的。近似相等的原则:根据叶片长度,先假设内层旋流板盲板直径为500mm,盲板尺寸一般为塔径的1/4左右。内层塔径2000mm,该直径是旋风除尘器设计的允许最大直径,可保证较好脱硫效果,以塔径2000mm为一单元,直径为5700mm的塔径,共需多少层呢?共需层数为2.85层,考虑每层旋流板要设置盲板与溢流堰,所以层数取3层即可达到要求,即除去外层塔壁后,再加设2层筒壁。

随后进行三层塔层的设计计算。为保证烟气的处理效率,气流应能在 5.7米的塔内分布均匀,不走偏流,因此必须保证通过三个塔层的旋流板的压强降相等,为达到此目的在设计中应使三层旋流板的开孔率保持一致,并选择相等的气速。我们称之为“等开孔率原则”和“等速原则”,而气速的大小的选择,前文已论述,在保证夹带液量和气流阻力降较小的条件下,尽可能取较高气速,使设备尽量小,取得最佳的经济效果。为了使通过旋流板的气体与筒壁碰撞时能尽可能的高效、等效,进而使脱硫达到最佳效果,设计过程中取三层的叶片长度近似相等,并以此来作为设计塔层尺寸的基本依据,通过多次试算求出符合要求的塔层总体尺寸,我们称之为“近似等叶片距离原则”。以上三原则,便是本设计的关键与精髓所在,正是基于以上三条原则的设计,才保证了旋流板能在大型脱硫设备中得以高效的应用。

三.计算结果及有关说明

按照上述三个设计原则。参考“旋流板塔”设计有关资料。现将有关设计及主要结果叙述如下:

选择空塔气速3.3m/s。由总气量可求出总塔径为5.7m。取内层塔径为2m,盲板直径为塔径的1/4左右,故取为0.5m,首先粗算应分层数,根据每层塔体“叶片近似相等原则,所以共需(5.7-2)/2+1=2.85,已考虑到溢流堰和盲板的长度,故取3层塔壁,由内到外分别称之为1、2、3层塔。

首先计算第1层塔的尺寸。根据“等流速”原则和“等开孔率”原则,所以存在各层气量之比等于各层流通面积,也等于各层总面积之比。由此可求出第1层气量为 3.69万m3/h,由相关公式:

1、叶片长度计算公式

d x=10√v√r v

式中:

d x—叶片长度 m

r v—气相重度 kg/m3

v—气量 m3

2、流通面积计算公式

A0=A a(sinα-(2?m?ζ)÷(∏(d x+d m)))

A a=∏/4?(d x2- d m2)

式中:

A0—气体流通截面积 m2

α—仰角°

m—叶片数,块

ζ—叶片厚度 mm

3、开孔率计算公式

ψ= A0÷A T

式中:

A0—气体流通截面积 m2

A T—塔截面 m2

4、压降计算公式

ΔP=ε0?F02÷(2?g)+3.6?v?F0+4

式中:

ε0—穿孔阻力系数取1.6

F0—穿孔动能因子 kg0.5/m0.5s

其中 F0 =(v0?√r v)/(3600? A0)

v—溢流口液速

v=2.78?L/A f

其中 L—液量 m3/h

A f—溢流口总面积 cm2

按照上述公式,求出d x=1927mm,考虑到要留出足够的溢流堰宽,故按95%比例缩小,故d x=1830mm,d m=580mm(d x代表叶片外径,d m代表盲板直径,下同)取仰角α=25°,塔板厚度δ=5mm,求得开孔率ε=29.84%,压降Δp=29.59mm水柱,其他参数也均包括在允许的范围内。

然后计算第2层塔的尺寸。根据“叶片长度近似相等”的原则,试取d x2= d m2+1.25,d2= d x2+0.17= d m2+1.42(取第2层溢流堰与第1层相等)。由于第2层塔体是在第1层塔体的基础上建起的,外型上它包括了第1层塔体,故计算中应采用当量直径来进行计算。又利用第1与第2层“开孔率相等”,所以第2层的流通面积S流1与总面积S流2之比也是29.84%,(即为开孔率),S流2=П/4×(d xe2-d me2)×[Sinα-2×m×δ/(П×(d xe+ d me))],下标e表示当量尺寸,S2总=П/4×[(d m2+1.42)2-22],故用试算法可求出d m2=2.34m, d x2=3.59m, d2=3.76m。

然后计算第3层塔的尺寸。根据“叶片长度近似相等”的原则,取d x3=d m3+1.25,d3=d x3+0.2= d m3+1.25+0.2= d m3+1.45(考虑到第3层气量大些,所以溢流堰宽度取大些)。根据“开孔率相等原则”,与第2层的计算方法类似,同样利用当量直径计算,S3总=П/4×[(d m3+1.45)2-3.762],S2流=П/4×(d xe2-d me2)×[Sinα-2×m×δ/(П×(d xe+ d me))],故用试算法可求出d m3=4.045,则d3=4.045+1.25+0.2=5.5m<5.7m,故不符合,原第2层与第3层应重新取值,重新计算。

计算第2层塔的尺寸。调整d x2= d m2+1.35,d2= d x2+0.17= d m2+1.52。再根据开孔率相等列式计算,公式同上,用试算法可得,d m2=2.40m, d x2=3.75m,d2=3.92m 。

再计算第3层塔的尺寸,调整取d x3= d m3+1.28, d3= d m3+1.28+0.2= d m3+1.48(考虑到第3层气量大些,所以,溢流堰宽度取大些)。根据开孔率相等列式计算,公式同上,用试算法可得,d m3=4.22m,d x3=5.5m,d3=5.7m,正好符合塔径5.7m,设计合理。再计算第2层和第3层的压降,也都等于29.59mm水柱。

由于盲板到叶片外端的总宽度,在第1、2、3层分别取得是1.25m,1.35m,和1.28m,不完全相等,但相对误差〈10%,故只能称之为“近似叶片相等原则”。除此原则外,我们还用到了“等气速原则”和“等开孔率原则”,并由以上三原则,设计出了旋流板塔。

查《化学工程设计手册-3》的13,14章节《旋流板塔》,可得具体的设计计算公式,然后由内向外,逐一设计三个塔层。具体设计过程此处从略,仅将计算结果列于下表,且附图于后。

旋流板结构简图

四、讨论与结论

由计算结果可知,完全可以达到预期的要求,从而达到了较高的脱硫效率和气体分布均匀的目的。该设计中的其他装置,还包括淋洒器和除雾器,以及副塔。简单设计过程如下:由于塔径很大,达到了 5.7m,为保证塔内不存在喷淋不到的盲区,从而保证洗涤效果,须设计一组淋洒器,淋洒器的分布位置根据几何布图法来确定。本设计选择冲击式淋洒器,由于冲击式淋洒器的喷洒半径一般为2m,故为保证安全,每个喷洒器的喷洒直径d0可取2.85m, 故可作塔体的内接六边形,并加上设置了中心的一个喷头,共需七个喷头,可满足要求。除雾器和副塔的作用是除去水雾,以使风机运行时不带水。除雾器采用角钢制成的折板除雾器,两角钢间水平距离取50mm,可保证不至于发生堵塞的危险。同时由于塔径太大,为保证角钢的强度要求,故将塔截面分块,将角钢分别安装于各块中。设计流程简图如下:

该设计方案与应用于大型设备的其它方案的优缺点的比较:

1)科学性

该设备与直接采用5.7m的普通旋流板塔的直径相比较:

处理效果明显优于普通旋流板塔。因为 5.7m的普通旋流板的直径远远超过旋风分离器的允许直径——2m,并且运行中还存在着气流分布不均匀的问题,需布设一个气流分布均匀装置,同时,由于叶片过长,水膜不能在叶片上均匀分布,例如,假设水膜直达到叶片的2/3处,外端的1/3部分不能与水接触,由于流道面积越来越宽,因而不能与水膜接触到的气流流量可达1/2强,从而严重影响了脱硫效果,直径2.4m的塔实践已证明了这一观点。

该设备与采用多层旋流板或多层喷淋装置相比较:

处理效果明显强于后者。由笔者的实践经验和理论常识可知,采用不同的传质机理组合的工艺流程,其处理效果要明显优于同种机理组合的工艺流程。

设计中有关尺寸均按已有设计中的最佳尺寸或允许尺寸取值,具有科学性。

2.经济性:

该设备与采用多个2m直径的旋流板相比较:

为了达到相同的处理能力,需设置2m的旋流板塔8个,取流速为3.3m/s,这将大大增加投资费用,增加设备占地面积和运行费用,造成不必要的浪费。

3.实用性

这种放大了的旋流板塔不仅用于电站脱硫工程,而且是一种大型气固液三相传质的好设备,它可应用于化工、冶金等行业,为传质工程增添了新的、大型化的设备类型。

笔者所做的工作仅仅是从理论上论证了旋流板塔在大型处理设备中应用的可行性,还没有经过时间的检验,其操作的可行性和稳定性还有待进一步的考证。由于笔者的水平有限,因此在设计中可能存在的欠妥之处,希望广大读者提出宝贵意见,以便及时改正。

[主要参考资料]

1.郭长生等编辑《化学工程手册》—3、5 化学工业出版社、1989年

2.Howard E.Hesketh 《Air Pollution Controll》 Ann Arbor Science Publisher,Inc ,1979年

3.郝吉明、马广大等编著《大气污染控制工程》高等教育出版社,1989年

试验设计与分析

试验方案:根据试验目的和要求所拟进行比较的一组试验处理的总称。 试验因素:在试验中所研究的影响试验指标的某一项目称为因素 单因素试验:探索某一个因素对试验指标作用的试验 多因素试验:探索多个因素对试验指标作用的试验 (试验)处理:事先设计好的实施在试验单元上的具体项目,即试验中具体比较的项目称为实验处理 处理组合:不同因素不同水平的组合。 试验指标:用于衡量试验效果的指示性状。 因素水平:实验因素所处的某种特定状态或数量等级称为因素水平 显著水平:用来判断是否属于小概率事件的概率值称为显著水平,及拒绝零假设的概率,通常取0.05或0.01 参数:用来描述总体的特征值称为参数 随机化:试验处理的分配和各个试验进行的次序都是随机确定的,这个原理称为随机化 试验单元:在试验中能够施以不同处理的最小的材料单元 接受域:一个假设总体的概率分布中,可能接受假设时所能取的一切可能值所在的范围,即接受H0的区间试验效应:试验因素对试验指标所起的增加或减少的作用。 简单效应:在同一因素内两种水平间试验指标的相差。 平均效应:一个因素内各简单效应的平均数。也称主要效应,简称主效。 交互作用效应:两个因素简单效应间的平均差异。简称互作。 对照:试验方案中包括有对照水平或处理,简称对照。(试验当中所设计的比较标准的处理) 唯一差异原则:指在试验中进行比较的各个处理,其间的差别仅在于不同的试验因素或不同的水平,其余所有的条件都应完全一致。 (试验)误差:测量值与真实值之间的差异称为试验误差。 随机误差:由随机或偶然因素造成的试验结果与处理真值之间的差异称为偶然性误差或随机误差。 系统误差:由固定原因一起的试验结果与处理真值之间的差异称为系统误差。 错失误差:实验中由于试验人员粗心大意所发生的差错称为错失误差 精确度:试验中同一性状的重复观察值彼此接近的程度。(即试验误差的大小) 准确度:试验中某一性状的观察值与其理论值真值的接近程度。 固定模型:仅考察参试处理均值差异或主效应差异的单因素等重复试验的模型 试验控制:为了提高试验的准确度和精确度,必须使所有试验单元或区组内的试验单元的试验条件一致,叫试验控制 局部控制:将整个试验空间分为若干个各自相对均与的局部,每一个局部叫一个区组,所有局部构成区组因素,在每一个区组内随机排列一套试验的所有处理,它等价于一个重复 边际效应:小区两边或两端的植株,因占较大空间而表现的差异。 生长竞争:相邻小区种植不同品种或施用不同肥料时,由于株高、分蘖力或生长期的不同,通常有一行或更多行受到影响。 总体:具有共同性质的个体所组成的集团。 样本:从总体中随机抽取一些个体进行观察得到的总体变量称为样本 小概率事件不可能性原理:概率很小的事件,在一次试验中几乎不可能发生或可认为不可能发生。 接受区域:指一个假设总体的概率分布中,可能接受假设时所能取的一切可能值所在的范围,即接受H0的区间 一尾测验:备择假设只有一种可能性,假设检验只有一个否定区域,这类测验叫一尾测验。 两尾测验:指概率分布下,显著水平按左边和右边两尾的概率的和进行检验假设检验有两个否定区 第一类错误:指不同总体的参数间本来没有差异,而测验结果认为有差异,这种错误称为第一类错误(否定本来正确的无效假设) 第二类错误:指参数间本来有差异,而测验结果认为参数间无差异,这种错误称为第二类错误。(接受了本来错误的无效假设) 置信度:保证区间能覆盖参数的概率。 置信区间:在一定概率保证下,能够覆盖参数的一个估计范围。 1.Fisher试验设计的三个基本原理:设置突变,随机化,局部控制 2.数据资料变异度的表示方法:变异系数,极差,方差,标准差 3.统计假设检验的一般步骤为:提出统计假设,确定显著水平的统计区间,计算μ值或t值,统计推断 4.在直线回归分析中,检验回归关系是否显著的方法有:相关系数,回归方程,直线回归方程进行方差分析 5.常用的随机排列试验设计有:完全随机,随机区组试验,拉丁方试验,裂区和条区试验 6.实验因素对试验指标所起的增加或减少作用称为试验效应 7.进行田间试验时设置重复的主要作用是降低误差

旋流板塔方案

xxxx工程有限公司 方 案 书 2015年4月12日

目录 一、旋流板塔 (2) 二、主要工作原理及技术特点 (2) 三、主要除尘机理 (3) 四、主要材料防腐防损设计 (4) 五、工艺优化解决湿法结垢问题 (4) 六、添加脱水副塔解决脱水问题 (5) 七、公司简介 (6)

旋流板板塔方案 一、旋流板塔 旋流板塔除尘脱硫一体化装置,简称旋流板塔,是一种喷射型塔板洗涤器,关键部件为旋流塔板。塔板叶片如固定的风车叶片,气流通过叶片时产生旋转和离心运动,吸收液通过中间盲板均匀分配到个叶片,形成薄液层,与旋转向上的气流形成旋转和离心的效果,喷成细小液滴,甩向塔壁后。液滴受重力作用集流到集液槽,并通过降液管流到下一塔板的盲板区。具有一定风压、风速的待处理气流从塔的底部进,上部出。吸收液从塔的上部进,下部出。气流与吸收液在塔内作相对运动,并在旋流塔板的结构部位形成很大表面积的水膜,从而大大提高了吸收作用。每一层的吸收液经旋流离心作用掉入边缘的收集槽,再经导流管进入下一层塔板,进行下一层的吸收作用。 我公司选用运用湿法一体化脱硫除尘的旋流板除尘器,依据多年生产经验进行的多次技术改进,不断改善其脱硫除尘效率,解决多个湿式脱硫除尘常见技术难题,在高效性、经济性、实用性等方面有显著突破,我厂生产的旋流板除尘器脱硫效率可达90%以上,除尘效率在95%以上,效率接近电除尘、布袋除尘等传统高效除尘器。 在设计上突出旋流塔板脱硫除尘技术高效、低阻的传质特性,结合最成熟的湿法脱硫工艺,大大提高脱硫效率,已成功应用于120t/h燃煤大中型锅炉脱硫除尘项目。 二、主要工作原理及技术特点 旋流板塔通常为圆柱塔体,塔内装有旋流塔板。工作时,烟气由塔底向上流动,由于切向进塔,尤其是塔板叶片的导向作用而使烟气旋转上升,使在塔板上将逐板下流的液体喷成雾滴,使气液间有很大的接触面积;液滴被气流带动旋转,产生的离心力强化气夜间的接触,最后甩到塔壁上沿壁下流到下一层塔板上,再次被气流雾化而进行气液接触。如上所述,液体在与气体充分接触后又能有效的分离---避免雾沫夹带,其气液负荷比常用塔板大一倍以上。又因塔板上液层薄,开孔率大而使压降较低,达同样效果时的压降约低一半,因此,综合性能优于常用塔板。循环液由除尘器外部循环水管进入内壁,由雾化喷头在旋流上形成均匀

旋流板塔方案

旋流板塔方案 Prepared on 24 November 2020

xxxx工程有限公司 方 案 书 2015年4月12日

目录

旋流板板塔方案 一、旋流板塔 旋流板塔除尘脱硫一体化装置,简称旋流板塔,是一种喷射型塔板洗涤器,关键部件为旋流塔板。塔板叶片如固定的风车叶片,气流通过叶片时产生旋转和离心运动,吸收液通过中间盲板均匀分配到个叶片,形成薄液层,与旋转向上的气流形成旋转和离心的效果,喷成细小液滴,甩向塔壁后。液滴受重力作用集流到集液槽,并通过降液管流到下一塔板的盲板区。具有一定风压、风速的待处理气流从塔的底部进,上部出。吸收液从塔的上部进,下部出。气流与吸收液在塔内作相对运动,并在旋流塔板的结构部位形成很大表面积的水膜,从而大大提高了吸收作用。每一层的吸收液经旋流离心作用掉入边缘的收集槽,再经导流管进入下一层塔板,进行下一层的吸收作用。 我公司选用运用湿法一体化脱硫除尘的旋流板除尘器,依据多年生产经验进行的多次技术改进,不断改善其脱硫除尘效率,解决多个湿式脱硫除尘常见技术难题,在高效性、经济性、实用性等方面有显着突破,我厂生产的旋流板除尘器脱硫效率可达90%以上,除尘效率在95%以上,效率接近电除尘、布袋除尘等传统高效除尘器。 在设计上突出旋流塔板脱硫除尘技术高效、低阻的传质特性,结合最成熟的湿法脱硫工艺,大大提高脱硫效率,已成功应用于120t/h燃煤大中型锅炉脱硫除尘项目。 二、主要工作原理及技术特点 旋流板塔通常为圆柱塔体,塔内装有旋流塔板。工作时,烟气由塔底向上流动,由于切向进塔,尤其是塔板叶片的导向作用而使烟气旋转上升,使在塔

试验设计及数据分析第一次作业习题答案

习题答案 1.设用三种方法测定某溶液时,得到三组数据,其平均值如下: 试求它们的加权平均值。 解:根据数据的绝对误差计算权重: 因为 所以 2.试解释为什么不宜用量程较大的仪表来测量数值较小的物理量。 答:因为用量程较大的仪表来测量数值较小的物理量时,所产生的相对误差较大。如 3.测得某种奶制品中蛋白质的含量为,试求其相对误差。 解: 4.在测定菠萝中维生素C含量的测试中,测得每100g菠萝中含有维生素C,已知测量的相对误差为%,试求每100g菠萝中含有维生素C的质量范围。 解:,所以 所以m的范围为 或依据公式 5.今欲测量大约8kPa(表压)的空气压力,试验仪表用1)级,量程的弹簧管式压力表;2)标尺分度为1mm的U型管水银柱压差计;3)标尺分度为1mm的U形管水柱压差计。 求最大绝对误差和相对误差。 解:1)压力表的精度为级,量程为, 则

2)1mm汞柱代表的大气压为, 所以 3)1mm 水柱代表的大气压:,其中,通常取 则 6.在用发酵法生产赖氨酸的过程中,对产酸率(%)作6次评定。样本测定值为,,,,,,求该组数据的算术平均值、几何平均值、调和平均值、标准差s 、标准差、样本方差、总体方差、算术平均误差和极差。 解: 数据计算公式计算结果算术平均值 几何平均值 调和平均值 或 标准样本差 总体标准差 样本方差 总体方差 算术平均误差 极差 7.A与B 两人用同一种分析方法测定金属钠中的铁,测得铁含量()分别为:

分析人员A:,,,,,,,,, 分析人员B:,,,,,,,,, 试问A与B两人测定铁的精密度是否有显著性差异?() 解:依题意,检验A与B两人测定铁的精密度是否有显著性差异,采用F双侧检验。根据试验值计算出两种方法的方差以及F值: 根据显著性水平,,查F分布表得, 。所以,A与B两人测定铁的方差没有显著差异,即两人测定铁的精密度没有显著性差异。 分析人员A分析人员B 8 8 10 104 6 68 4 6 6 88 F-检验双样本方差分析 分析人员A分析人员B 平均 方差 观测值1010 df99 F P(F<=f) 单尾0. F 单尾临界 8.用新旧两种工艺冶炼某种金属材料,分别从两种冶炼工艺生产的产品中抽样,测定产品中的杂质含量(%),结果如下: 旧工艺(1):,,,,,,,,,,,,; 新工艺(2):,,,,,,,, 试问新冶炼工艺是否比旧工艺生产更稳定,并检验两种工艺之间是否存在系统误差?() 解:工艺的稳定性可用精密度来表征,而精密度可由极差、标准差或方差等表征,这里依据

旋流板塔大型设计

旋流板塔大型设计 全国化工热工设计技术中心站年会论文集 59 旋流板塔大型化的设计与研究 陈昭宜谢珊李丹 ,湖南大学环境工程系~长沙~410082, [内容摘要] 以邯郸热电厂大型机组烟气脱硫为例,分析了旋流板在大型设备中应用的可行性与经济性,论述了旋流板大型化设计的原理与方法。 [关键词] 脱硫、旋流板、大型化 一.概述 我国是一个能源结构以燃煤为主的国家。大气污染属煤烟型,烟气中大量的SO 对大2气造成了严重的污染,致使我国酸雨逐年加重,酸雨面积不断扩大,其覆盖面积已达国土面积的30%。为了控制大气中SO的含量应严格控制产生SO污染的主要来源—电站的22 SO的排放。目前,国内对于中小型电站的烟气脱硫已有一些进展,对于大型电站的烟气2 处理尚处于不成熟阶段。但随着国家将逐渐取缔小型电站,大中型电站的烟气处理成为急待解决的问题。 对于电站烟气处理,国内采用的工艺流程之一是文丘里加旋流板,而国外多采用文丘里加喷淋等。考虑到不同传质机理的脱硫组合效果更佳,笔者提出了文丘里加旋流板加喷淋的设想,该工艺在山西,广西,海南等地的锅炉和小型电站有成功的应用实例。旋流板是我国自行研究成功的一种喷射型塔板,这种板型由于开孔率较大,允许气流高速通过,因此处理能力较大,而压降较小,操作弹性亦较大。同时,它不仅可以脱硫,还起到气体分布均匀的作用。工艺流程中采用旋流板,可以

省去一个气体分布均匀装置,还可以提高脱硫除尘效率。但是应用于大型设备的实际工艺流程中,往往因设备的放大,导致了严重失真的尴尬境地,严重影响了脱硫除尘效果。为了使旋流板可以不失真的应用于大型设备,对于旋流板的设计与研究,是一个新的课题,很值得研究。现以邯郸热电厂大型机组烟气脱硫为例,简述一下我们的研究成果。 二.设计条件和设计原则 1.设计条件 邯郸热电厂#11号机组于1998年11月建成投产,装机容量为200MW,锅炉最 大蒸发量为670t/h,每台锅炉配置了两台双室器电场干式高压静电除尘器,除尘效率>=99%,现进行第二期改造工程,完成脱硫任务。 烟气经电除尘器除尘后的性能参数: 3 烟气量 66.5万m/h 60 全国化工热工设计技术中心站年会论文集 烟气温度 T=405.5K S 3 烟尘排放浓度 108.8mg/Nm 3 SO排放浓度:1920mg/m 2 2.设计原则 每台静电除尘器后设计两套脱硫装置并联 烟气的空塔气速一般为2.4-4.0m/s的范围内,设计中取3.3m/s.因为气速太大,带液会比较严重;气速太小,塔径将很大,不经济,按3.3m/s计算,塔径也达到了5.7米。 对于这种大塔径的设备,其设计参数计算,运行经验都是难以找到的。怎么办,笔者认为前人的成功经验是可以借鉴的。如旋风分离器的通常直径1、2米为好,最大不要超过2米。那么塔径2米为上限。采用“分层法”,即把直径5.7米的

旋流板塔大型设计上课讲义

旋流板塔大型设计

旋流板塔大型化的设计与研究 陈昭宜谢珊李丹 (湖南大学环境工程系,长沙,410082) [内容摘要]以邯郸热电厂大型机组烟气脱硫为例,分析了旋流板在大型设备中应用的可行性与经济性,论述了旋流板大型化设计的原理与方法。 [关键词]脱硫、旋流板、大型化 一.概述 我国是一个能源结构以燃煤为主的国家。大气污染属煤烟型,烟气中大量的SO2对大气造成了严重的污染,致使我国酸雨逐年加重,酸雨面积不断扩大,其覆盖面积已达国土面积的30%。为了控制大气中SO2的含量应严格控制产生SO2污染的主要来源—电站的的排放。目前,国内对于中小型电站的烟气脱硫已有一些进展,对于大型电站的烟气 SO 2 处理尚处于不成熟阶段。但随着国家将逐渐取缔小型电站,大中型电站的烟气处理成为急待解决的问题。 对于电站烟气处理,国内采用的工艺流程之一是文丘里加旋流板,而国外多采用文丘里加喷淋等。考虑到不同传质机理的脱硫组合效果更佳,笔者提出了文丘里加旋流板加喷淋的设想,该工艺在山西,广西,海南等地的锅炉和小型电站有成功的应用实例。旋流板是我国自行研究成功的一种喷射型塔板,这种板型由于开孔率较大,允许气流高速通过,因此处理能力较大,而压降较小,操作弹性亦较大。同时,它不仅可以脱硫,还起到气体分布均匀的作用。工艺流程中采用旋流板,可以省去一个气体分布均匀装置,还可以提高脱硫除尘效率。但是应用于大型设备的实际工艺流程中,往往因设备的放大,导致了严重失真的尴尬境地,严重影响了脱硫除尘效果。为了使旋流板可以不失真的应用于大型设备,对于旋流板的设计与研究,是一个新的课题,很值得研究。现以邯郸热电厂大型机组烟气脱硫为例,简述一下我们的研究成果。 二.设计条件和设计原则 1.设计条件 邯郸热电厂#11号机组于1998年11月建成投产,装机容量为200MW,锅炉最大蒸发量为670t/h,每台锅炉配置了两台双室器电场干式高压静电除尘器,除尘效率>=99%,现进行第二期改造工程,完成脱硫任务。 烟气经电除尘器除尘后的性能参数: 烟气量 66.5万m3/h =405.5K 烟气温度 T S

旋流板塔说明知识讲解

旋流板塔说明

旋流板除尘脱硫设备设计说明书 一、旋流板塔 旋流板塔1974年首次用于碳铵干燥尾气回收以来,已广泛用于中小氮肥厂的半水煤气脱硫(H2S)塔,饱和热水塔,除尘、冷却、冷凝塔等,也用于环保行业脱除烟气和废气中的飞灰、NO x、SO2、H2S及铅汞蒸汽等,取得了很大的经济效益和社会效益,获得1978年全国科学大会奖和1984年国家发明奖。至90年代,在国家自然科学基金和省自然科学基金的资助下,对旋流塔板上的气液运动,传质效率进行了深入的研究,又获得了化工部1983年科技进步二等奖,国家教委1996年科技进步三等奖。 自80年代后期开始,旋流板塔开始用于烟气的脱硫除尘研究,在实验室和小型锅炉的工业化实验中,重点在除尘,脱硫,除雾和脱硫剂及工程性问题进行了研究。旋流板塔脱硫技术作为一种实用可靠的脱硫除尘技术,具有投资和运行费用低,占地面积小,管理和维护方便等特点,现已推广用于火电,热电,冶金等行业的烟气脱硫除尘和其他工业废气治理。 我公司选用运用湿法一体化脱硫除尘的旋流板麻石除尘器,依据多年生产经验进行的多次技术改进,不断改善其脱硫除尘效率,解决多个湿式脱硫除尘常见技术难题,在高效性、经济性、实用性等方面有显著突破,我厂生产的旋流板除尘器脱硫效率可达90%以上,除尘效率在98%以上,其中高配置不锈钢旋流板麻石除尘器除尘效率可达99.5%以上,在大型锅炉及煤窑等工业废气的处理上、在0.1μm到300μm粒径范围内能有效除尘,效率接近电除尘、布袋除尘等传统高效除尘器。

在设计上突出旋流塔板脱硫除尘技术高效、低阻的传质特性,结合最成熟 的湿法脱硫工艺,大大提高脱硫效率,已成功应用于120t/h燃煤大中型锅炉脱 硫除尘项目。 二、主要工作原理及技术特点 旋流板塔通常为圆柱塔体,塔内装有旋流塔板。工作时,烟气由塔底向上 流动,由于切向进塔,尤其是塔板叶片的导向作用而使烟气旋转上升,使在塔 板上将逐板下流的液体喷成雾滴,使气液间有很大的接触面积;液滴被气流带动 旋转,产生的离心力强化气夜间的接触,最后甩到塔壁上沿壁下流到下一层塔 板上,再次被气流雾化而进行气液接触。如上所述,液体在与气体充分接触后 又能有效的分离---避免雾沫夹带,其气液负荷比常用塔板大一倍以上。又因塔 板上液层薄,开孔率大而使压降较低,达同样效果时的压降约低一半,因此, 综合性能优于常用塔板。循环液由除尘器外部循环水管进入内壁,由雾化喷头 在旋流上形成均匀分布的雾滴与烟气充分接触,形成极大的相际接触界面,与SO 充分反应形成可溶性酸式盐或沉淀(根据所选脱硫剂而不同),同时较大的2 尘粒在离心力作用下被除去,较小的尘粒受到雾滴的碰撞与拦截,以及受到多 次的布朗扩散等作用而凝聚成较大的尘粒而被甩至塔壁,下流经过清灰口排入 沉灰池。 被碱性液体吸收由于塔内提供了良好的气液接触条件,气体中的SO 2 (脱硫)的效果好;旋流板塔同时具有很好的除尘性能,气体中的尘粒在旋流 塔板上被水雾粘附而除去,此外,尘粒及雾滴受离心力甩到塔壁后,亦使之被 粘附而除去,从而使气流带出塔的尘粒和雾滴很少。旋流板塔主要技术特点: 1. 占地面积小,投资少;

旋流板塔技术

旋流板塔技术的发展 旋流板塔是浙江大学谭天恩教授为首的研究小组开发的、曾获国家发明奖的一种高效通用型传质设备(专利号,具有气液流通量大、压降低、操作弹性宽、除尘效率高、不易堵、效率稳定等优点,其综合性能优于目前国内外普遍使用的其它脱硫塔。 旋流板塔自1974年首次用于衢州化工公司碳铵干燥尾气回收氨以来,已广泛用作中小氮肥厂的半水煤气脱硫(H2S)塔、饱和热水塔,除尘、冷却、冷凝塔等,也用于环保行业脱除烟气和废气中的飞灰、SO2、NOx、H2S及铅、汞蒸汽等,取得了巨大的环境效益和社会效益,获得1978年全国科学大会奖和1984年国家发明奖。至90年代,在国家自然科学基金和省自然科学基金(各二次)的资助下,以谭天恩教授为首的研究小组又对旋流塔板上的气液运动、传质效率、放大效应等进行了深入的研究,并获得化工部1993年科技进步二等奖、国家教委1996年科技进步三等奖、1999年浙江省环境保护科技进步二等奖。 从80年代前期开始,旋流板塔开始用于小型锅炉的烟气脱硫研究,在实验室的基础上对同时脱硫、除尘、除雾相关的工程性问题进行了深入研究。旋流板塔石灰/石灰石法、以及双碱法、电石渣和废碱液脱硫技术作为实用可靠的脱硫除尘技术,具有投资和运行费用低、操作弹性大、管理和维护方便等特点,现已逐渐推广应用于电力、化工、矿冶、轻工等行业的烟气脱硫除尘和其它工业废气治理。在“九五”期间,浙江大学环境工程研究所承接了国家“九五”重点科技攻关项目,对旋流板塔脱硫除尘一体化技术进行了工艺优化、设备结构优化、防腐耐磨材料、成套化、系列化等方面的研究在工业应用上获得了巨大的成功,并于2000年12月通过国家环保总局召开的国家“九五”重点科技攻关项目“旋流板塔湿法烟气脱硫除尘技术与装备研究”成果鉴定会,鉴定委员会一致认为:“该技术与装备达到国际先进水平,建议国家有关部门大力支持和加快该成果的推广和应用”。 旋流板塔工作原理 旋流板塔为圆柱形塔体,塔内根据需要装设各种不同类型的旋流塔板。工作时,烟气由塔底切向进塔,在塔板叶片的导向作用下使烟气旋转上升,并在塔板上将逐板下流的液体喷成雾滴,增大气液间的接触面积;液滴被气流带动旋转,产生的离心力强化气液间的接触,并被甩到塔壁上,然后沿塔壁流下,通过溢流装置到下一层塔板上,再次被气流雾化而进行气液接触。所以,即使在同等液气比的状态下,随着塔内塔板数的增加,其脱硫除尘效率将不断提高;同时,液体在与气体充分接触后又能有效地利用离心力作用进行气液分离——避免了雾沫夹带现象,其气液负荷比常用塔板大一倍以上。又因塔板上液层薄、开孔率大而使压降较低,达同样效果时的压降比常用塔板约一半,因此,综合性能优于常用塔板。 由于塔内提供了良好的气液接触条件,气体中的SO2被碱性液体吸收(脱硫)的效果好;气体中的尘粒也易被水雾粘附而除去,此外,尘粒及雾滴受离心力甩到塔壁后,亦使之被粘附而除去,从而使气流带出塔的尘粒和雾滴很少。旋流板塔上部装有组合除雾装置,减少塔出口烟气带水的危害。

试验设计与分析

试验设计与分析简介 课程号: 课程名称:试验设计与分析英文名称:Experimental Design and Analysis 周学时:3-0学分:3 预修要求:概率统计 内容简介: 《试验设计与分析》是数理统计的一个重要分支,它是介绍如何利用各种试验设计方法,有针对性的对若干个体进行处理,以获取具有说服力的数据;同时通过对试验结果的统计分析,对所考虑的问题作出推断的一门学科。它在生物医学、农业生产和质量控制等领域都得到了广泛的应用。统计分析可以利用SAS 统计软件实现。 选用教材或参考书: 试验的设计与分析王万中茆诗松编华东师范大学出版社1997年5月出版 试验设计与分析陈魁编清华大学出版社1996年8月出版

《试验设计与分析》教学大纲 一、课程的教学目的和基本要求 教学目的:通过本课程的学习,让学生懂得如何将各种试验设计思想与分析方法应用于实践,对所考虑的统计问题给出合理的推断。 基本要求:要求学生掌握全因子试验设计、拉丁方设计、正交设计、回归设计、平衡不完全区组设计和最优设计等常用设计的思想,熟悉各种试验设计的模型与统计分析方法。 二、相关教学环节 对各种试验设计方法,提供相应的实际题目,利用SAS统计软件进行统计分析。 三、课程主要内容及学时数的分配 每周3学时,共3×16=48学时 (I)全因子试验设计(10学时) 1.固定效应单因子试验模型及统计分析2学时 2.随机效应单因子试验模型及统计分析2学时 3.可加效应多因子试验模型及统计分析2学时 4.交互效应多因子试验模型及统计分析2学时 5.多因子随机效应模型与混合模型的统计分析2学时 (II)拉丁方设计与正交拉丁方设计(5学时) 1.拉丁方设计及其统计模型1学时 2.统计分析2学时 3.希腊—拉丁方设计2学时 (III)正交设计(7学时) 1.正交表的构造1学时 2.正交试验设计2学时 3.正交试验设计的直观分析2学时 4.正交试验设计的方差分析2学时 (IV)回归设计(13学时) 1.正交回归设计2学时 2.用正交表构造线性回归的正交设计2学时 3.用单纯形法构造线性回归的正交设计2学时 4.旋转回归设计2学时 5.二次回归的旋转设计3学时 6.二次响应曲面分析2学时 (V)不完全区组设计(9学时) 1.平衡不完全区组设计2学时 2.平衡不完全区组设计的区组内分析2学时 3.平衡不完全区组设计的区组间分析2学时 4.部分平衡不完全区组设计2学时 5.尤登方设计1学时 (VI)最优设计(3学时) 1.设计的概念1学时

关于旋流板塔的详细信息

关于旋流板塔的详细信息 旋流板塔除尘脱硫一体化装置,简称旋流板塔,是一种喷射型塔板洗涤器。 主要机制是尘粒与液滴的惯性碰撞,离心分离和液膜粘附等。这种塔板由于开孔率较大,允许高速气流通过,因此负荷较高,处理能力较大,压降较低,操作弹性较大。其气液接触时间较短,适合于气相扩散控制的过程,如气液直接接触传热、快速反应吸收等。因此脱硫过程中所用的脱硫剂应该是快速反应吸收型的,不适合用碳酸钙等反应速度较慢的脱硫剂。 在烟道入口处设计初级喷淋装置,当烟气经进口烟道,与布置在进口烟道段的喷淋形成的水雾进行传质换热,得到初步降温和去除部分二氧化硫,切向进入吸收塔。烟气在吸收塔内通过旋流气动装置的加速和旋流,烟尘与经过雾化的吸收液发生碰撞、附着、凝聚、离心分离等综合性的作用,被甩到塔壁,随塔壁水膜流向塔底。旋流板喷淋塔除尘效率可以达到98.5%以上。通过旋流气动装置的设置,使烟气在同样高度的筒体内旋转次数增加、通过的路径增长,气相紊动剧烈,烟气与吸收液在时间和空间上得到充分的碰撞、接触、溶解、吸收。 苏州工业园区新欣环保设备厂坐落在蓬勃发展的中国苏州工业园区,是一家以环保设备设计、生产、安装为一体的专业公司。 业务范围:废气处理设备、水处理设备及各类化工防腐设备 主要产品有:直立逆流式洗涤塔、横卧交叉流式洗涤塔、活性炭吸

附塔、加药系统、4-72型塑料离心通风机;塑料贮罐、食用水箱、负压罐、真空计量罐、高位槽、真空过滤器、水喷射真空机组、电镀设备、栏板机以及FRP防腐设备;

公司拥有经验丰富的技术人员先进加工设备;公司为多家环保公司提供产品,足迹涉及苏州园区、新区、市区、跨省至上海、云南、山东、江西、辽宁、广东等。工程质量受到了一致好评。 我们的宗旨是“高质量是企业追求的目标,技术创新、提高是企业的保障,至善至美的服务是企业的承诺。” 我们将一如既往的为客户提供优质高效的服务。 选择我们,就是选择放心! 我们真诚的期待着与你的合作! 欢迎您的下载,资料仅供参考!

型式试验例行试验设计验证DV和产品验证之间的区别完整版

型式试验例行试验设计验证D V和产品验证之 间的区别 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

型式试验即是为了产品能否满足技术规范的全部要求所进行的实验。它是新产品鉴定中必不可少的一个环节。只有通过型式试验,该产品才能正式投入生产,然而,对产品认证来说,一般不对在设计的新产品进行认证。为了达到认证目的而进行的型式试验,是对一个或多个具有代表性的样品利用试验手段进行合格性评定。型式试验的依据是产品标准。试验所需样品的数量由论证机构确定,试验样品从制造厂的最终产品中随机抽取。试验在被认可的独立检验机构进行,对个别特殊的检验项目,如果检验机构缺少所需的检验设备,可在独立检验机构或认证机构的监督下使用制造厂的检验设备进行。 例行实验指常规的测试项目,一般为100%测试,适用于批量生产的产品验证。 以下是一般适用于新产品检讨或型式试验。 可靠性实验包括老化试验或寿命试验。 老化实验指寿命试验评估所作的老化测试。 环境实验是验证产品环境适应能力的测试,比如高低温储存,高温动作,高温高湿试验等。 DV是一份比较全面的试验报告,他从设计验证开始。 举例:类似模流分析之类的验证。 PV是产品已经成型后的一些试验验证,不会去考虑什么模流分析,只会从产品使用失效方面进行相关的测试。 实际DV已经包含了PV,有些公司不作PV直接用DV代替。 PV所作试验项目可以比DV少,因为设计验证试验DV已经可把产品的性能及潜在问题体现出来了,所以这次会做的很全面,很彻底,而作为过程验证试验的PV,只是对这个过程生产的产品的性能的验证,而潜在不良早在DV就解决了。

旋流板塔说明

旋流板除尘脱硫设备设计说明书 一、旋流板塔 旋流板塔1974年首次用于碳铵干燥尾气回收以来,已广泛用于中小氮肥厂的半水煤气脱硫(H 2 S)塔,饱和热水塔,除尘、冷却、冷凝塔等,也用于环保行 业脱除烟气和废气中的飞灰、NO x 、SO 2 、H 2 S及铅汞蒸汽等,取得了很大的经济 效益和社会效益,获得1978年全国科学大会奖和1984年国家发明奖。至90年代,在国家自然科学基金和省自然科学基金的资助下,对旋流塔板上的气液运动,传质效率进行了深入的研究,又获得了化工部1983年科技进步二等奖,国家教委1996年科技进步三等奖。 自80年代后期开始,旋流板塔开始用于烟气的脱硫除尘研究,在实验室和小型锅炉的工业化实验中,重点在除尘,脱硫,除雾和脱硫剂及工程性问题进行了研究。旋流板塔脱硫技术作为一种实用可靠的脱硫除尘技术,具有投资和运行费用低,占地面积小,管理和维护方便等特点,现已推广用于火电,热电,冶金等行业的烟气脱硫除尘和其他工业废气治理。 我公司选用运用湿法一体化脱硫除尘的旋流板麻石除尘器,依据多年生产经验进行的多次技术改进,不断改善其脱硫除尘效率,解决多个湿式脱硫除尘常见技术难题,在高效性、经济性、实用性等方面有显著突破,我厂生产的旋流板除尘器脱硫效率可达90%以上,除尘效率在98%以上,其中高配置不锈钢旋流板麻石除尘器除尘效率可达99.5%以上,在大型锅炉及煤窑等工业废气的处理上、在0.1μm到300μm粒径范围内能有效除尘,效率接近电除尘、布袋除尘等传统高效除尘器。 在设计上突出旋流塔板脱硫除尘技术高效、低阻的传质特性,结合最成熟的湿法脱硫工艺,大大提高脱硫效率,已成功应用于120t/h燃煤大中型锅炉脱硫除尘项目。 二、主要工作原理及技术特点 旋流板塔通常为圆柱塔体,塔内装有旋流塔板。工作时,烟气由塔底向上流动,由于切向进塔,尤其是塔板叶片的导向作用而使烟气旋转上升,使在塔板上将逐板下流的液体喷成雾滴,使气液间有很大的接触面积;液滴被气流带动旋转,

旋流板塔

旋流板塔除尘脱硫一体化装置,简称旋流板除尘器,是一种喷射型塔板洗涤器,关键部件为旋流塔板。塔板叶片如固定的风车叶片,气流通过叶片时产生旋转和离心运动,吸收液通过中间盲板均匀分配到个叶片,形成薄液层,与旋转向上的气流形成旋转和离心的效果,喷成细小液滴,甩向塔壁后。 液滴受重力作用集流到集液槽,并通过降液管流到下一塔板的盲板区。具有一定风压、风速的待处理气流从塔的底部进,上部出。吸收液从塔的上部进,下部出。气流与吸收液在塔内作相对运动,并在旋流塔板的结构部位形成很大表面积的水膜,从而大大提高了吸收作用。 每一层的吸收液经旋流离心作用掉入边缘的收集槽,再经导流管进入下一层塔板,进行下一层的吸收作用。主要机制是尘粒与液滴的惯性碰撞,离心分离和液膜粘附等。这种塔板由于开孔率较大,允许高速气流通过,因此负荷较高,处理能力较大,压降较低,操作弹性较大。其气液接触时间较短,适合于气相扩散控制的过程,如气液直接接触传热、快速反应吸收等。因此脱硫过程中所用的脱

硫剂应该是快速反应吸收型的,不适合用碳酸钙等反应速度较慢的脱硫剂。 在烟道入口处设计初级喷淋装置,当烟气经进口烟道,与布置在进口烟道段的喷淋形成的水雾进行传质换热,得到初步降温和去除部分二氧化硫,切向进入吸收塔。烟气在吸收塔内通过旋流气动装置的加速和旋流,烟尘与经过雾化的吸收液发生碰撞、附着、凝聚、离心分离等综合性的作用,被甩到塔壁,随塔壁水膜流向塔底。旋流板喷淋塔除尘效率可以达到98.5%以上。通过旋流气动装置的设置,使烟气在同样高度的筒体内旋转次数增加、通过的路径增长,气相紊动剧烈,烟气与吸收液在时间和空间上得到充分的碰撞、接触、溶解、吸收。 旋流板湿式除尘器工作原理除尘器为圆柱形本体,内装有旋流板。本除尘器共有4种除尘原理。 一、自激除尘。当烟气进入除尘器口腔后,冲击水的表面,从而使一些水被分散开,随着水被分散开的过程,开始用水收集粉尘。 二、离心沉降除尘。经过机构扩散,气体流速减小,为凝结核凝聚成粒径较

旋流板塔大型设计

旋流板塔大型化的设计与研究 陈昭宜谢珊李丹 (湖南大学环境工程系,长沙,410082) [内容摘要]以邯郸热电厂大型机组烟气脱硫为例,分析了旋流板在大型设备中应用的可行性与经济性,论述了旋流板大型化设计的原理与方法。 [关键词]脱硫、旋流板、大型化 一.概述 我国是一个能源结构以燃煤为主的国家。大气污染属煤烟型,烟气中大量的SO2对大气造成了严重的污染,致使我国酸雨逐年加重,酸雨面积不断扩大,其覆盖面积已达国土面积的30%。为了控制大气中SO2的含量应严格控制产生SO2污染的主要来源—电站的SO2的排放。目前,国内对于中小型电站的烟气脱硫已有一些进展,对于大型电站的烟气处理尚处于不成熟阶段。但随着国家将逐渐取缔小型电站,大中型电站的烟气处理成为急待解决的问题。 对于电站烟气处理,国内采用的工艺流程之一是文丘里加旋流板,而国外多采用文丘里加喷淋等。考虑到不同传质机理的脱硫组合效果更佳,笔者提出了文丘里加旋流板加喷淋的设想,该工艺在山西,广西,海南等地的锅炉和小型电站有成功的应用实例。旋流板是我国自行研究成功的一种喷射型塔板,这种板型由于开孔率较大,允许气流高速通过,因此处理能力较大,而压降较小,操作弹性亦较大。同时,它不仅可以脱硫,还起到气体分布均匀的作用。工艺流程中采用旋流板,可以省去一个气体分布均匀装置,还可以提高脱硫除尘效率。但是应用于大型设备的实际工艺流程中,往往因设备的放大,导致了严重失真的尴尬境地,严重影响了脱硫除尘效果。为了使旋流板可以不失真的应用于大型设备,对于旋流板的设计与研究,是一个新的课题,很值得研究。现以邯郸热电厂大型机组烟气脱硫为例,简述一下我们的研究成果。 二.设计条件和设计原则 1.设计条件 邯郸热电厂#11号机组于1998年11月建成投产,装机容量为200MW,锅炉最大蒸发量为670t/h,每台锅炉配置了两台双室器电场干式高压静电除尘器,除尘效率>=99%,现进行第二期改造工程,完成脱硫任务。 烟气经电除尘器除尘后的性能参数: 烟气量 66.5万m3/h 烟气温度 T S=405.5K

试验设计与分析

播种机深施肥试验设计与分析目前在现在社会生产中,机械代替人工成为一种趋势,在农业生产中也不例外,例如施肥作业是将种子生长发育所需的肥料施入土壤中,种子对肥料的吸收效率与以下几个因素有很大相关性,如:播种深度;种、肥横向间距;种、肥垂直间距;底肥深度等。人工施肥,增加工时且作业条件恶劣。采用专门作业机械实现深施肥料,既省时又省力。深施肥播种机能够实现将作物后续生长所需的肥料在播种时随种肥同时施入土壤中,播种机的优良与否直接对生产造成影响。 本次正交试验设计,在施肥量一定的情况下,找出播种深度、种肥间距和底肥深度的参数值,对玉米综合苗情指数的影响规律,将此参数反馈到深施肥玉米播种机的设计中,提高了深施肥玉米播种机的工作性能。 本试验采用四因素四水平,如表1 所示。其中,因素A 代表播种深度;因素B代表种、肥横向间距;因素C代表种、肥垂直间距;因素D 代表底肥深度。 表1因素水平表

素四水平,故选定正交表安排试验,进行16 次试验处理。 在玉米生长发育期进行查苗、测根茎处苗的直径、观察苗的颜色、抽穗情况以及收获后玉米穗粒质重等情况汇总,根据农学专家提供的各项权重值经加权平均计算得出相对应的16 种试验指标值分别为: 2.1, 3.8, 4.6,3.0,3.4,2.5, 5.7,5.5,3.2,4.8,5.3,5.8,3.5,4.2,4.1,3.9。 采用MINITAB14软件对上述例题进行分析: 第一步: 第二步:

第三步: 第四步:

第五步:点击”因子”键得: 第六步:将D因素的水平4变成水平3得 第七步:“确定”之后回到第四步的页面,然后再“确定”,得

相关文档
最新文档