不定积分求解方法及技巧小汇总

不定积分求解方法及技巧小汇总
不定积分求解方法及技巧小汇总

不定积分求解方法及技巧小汇总

摘要:总结不定积分基本定义,性质和公式,求不定积分的几种基本方法和技巧,列举个别典型例子,运用技巧解题。

一.不定积分的概念与性质

定义1如果F(x)是区间I上的可导函数,并且对任意的x∈I,有F’(x)=f(x)dx则称F(x)是f(x)在区间I上的一个原函数。

定理1(原函数存在定理)如果函数f(x)在区间I上连续,那么f(x)在区间I上一定有原

函数,即存在可导函数F(x),使得F(x)=f(x)(x∈I)

简单的说就是,连续函数一定有原函数

定理2设F(x)是f(x)在区间I上的一个原函数,则

(1)F(x)+C也是f(x)在区间I上的原函数,其中C是任意函数;

(2)f(x)在I上的任意两个原函数之间只相差一个常数。

定义2设F(x)是f(x)在区间I上的一个原函数,那么f(x)的全体原函数F(x)+C称为f(x)在区间I上的不定积分,记为?f(x)d(x),即?f(x)d(x)=F(x)+C

其中记号?称为积分号,f(x)称为被积函数,f(x)d(x)称为被积表达式,x称为积分变量,C称为积分常数。

性质1设函数f(x)和g(x)存在原函数,则?[f(x)±g(x)]dx=?f(x)dx±?g(x)dx.

性质2设函数f(x)存在原函数,k为非零常数,则?kf(x)dx=k?f(x)dx.

二.换元积分法的定理

如果不定积分?g(x)dx不容易直接求出,但被积函数可分解为g(x)=f[?(x)] ?’(x). 做变量代换u=?(x),并注意到?‘(x)dx=d?(x),则可将变量x的积分转化成变量u的积

分,于是有?g(x)dx=?f[?(x)] ?’(x)dx=?f(u)du.

如果?f(u)du可以积出,则不定积分?g(x)dx的计算问题就解决了,这就是第一类换

元法。第一类换元法就是将复合函数的微分法反过来用来求不定积分。

定理1 设F(u)是f(u)的一个原函数,u=?(x)可导,则有换元公式

?f[?(x)] ?’(x)dx=?f(u)du=F(u)+C=F[?(x)]+C.

第一类换元法是通过变量代换u=?(x),将积分

?

f[?(x) ?’(x)dx 化为

?

f(u)du.但

有些积分需要用到形如x=?(t)的变量代换,将积分?

f(x)dx 化为

?

f[?(t)] ?’(t).

在求出后一积分之后,再以x=?(t)的反函数t=?1

-(X)带回去,这就是第二类换元法。

?

f(x)dx={

?

f[?(t)] ?’(t)dt})(1X t -=?.

为了保证上式成立,除被积函数应存在原函数之外,还应有原函数t=?1

-(x )存在的条

件,给出下面的定理。

定理2 设x=?(t)是单调,可导的函数,并且?‘(t )≠0.又设f[?(t)] ?’(t)具

有原函数F (t ),则?f(x)dx=?f[?(t)] ?’(t)dt=F(t)+C=F[?

1

-(x)]+C

其中?

1

-(x )是x=?(t )的反函数。

三.常用积分公式 1 基本积分公式 (1)

?kdx=kx+C(k 是常数); (2)

?

x u

dx=1

u x 1

u +++C(u ≠-1);

(3)

?x dx =ln x +C ; (4)?2

x 1dx +=arctanx+C; (5)

?2

x

1dx -=arcsinx+C; (6)

?cosxdx=sinx+C;

(7) ?sinxdx=-cosx+C ; (8)

?x

2cos dx =?sec 2

xdx=tanx+C; (9)

?x

dx 2

sin =?csc 2

xdx=-cotx+C; (10) ?secxtanxdx=secx+C; (11) ?cscxcotxdx=-cscx+C; (12) ?e x dx= e x

+C; (13) ?a x

dx= e x

+C; (14) ?shxdx=chx+C; (15) ?chxdx=shx+C. (16) ?tanxdx=-ln cosx +C; (17)

?

cotxdx=ln sinx +C; (18)

?

secxdx=ln tanx secx ++C;

(19)cscxdx=ln x cot cscx -+C; (20)

?

2

2x a dx +=a

x x ln a 1+-a

+C;

(21)

?22x a dx -=arcsin

a

x

+C; (22) ?2

2x a dx +=ln(x+22a x ++C;

(23)

?

2

2a x dx -=ln 22a x x -+

+C.

2.凑微分基本类型

四.解不定积分的基本方法

四.求不定积分的方法及技巧小汇总~

1.利用基本公式。(这就不多说了~)

2.第一类换元法。(凑微分)

设f(μ)具有原函数F(μ)。则

C x F x d x f dx x x f +==???)]([)()]([)(')]([?????

其中)(x ?可微。

用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2: 例1:?

+-+dx x x x

x )

1(ln )1ln(

【解】)

1(1

111)'ln )1(ln(+-

=-+=

-+x x x x x x C x x x x d x x dx x x x x +-+-=-+-+-=+-+??2

)ln )1(ln(2

1)ln )1(ln()ln )1(ln()1(ln )1ln(例2:?

+dx x x x 2

)ln (ln 1

【解】x x x ln 1)'ln (+=

C x x x x x dx dx x x x +-==++??ln 1

)ln (ln )1(ln 122

3.第二类换元法:

设)(t x ?=是单调、可导的函数,并且)(')]([.0)('t t f t ???又设≠具有原函数,则有换元公式

??=dt t t f dx f )(')]([x)(??

第二类换元法主要是针对多种形式的无理根式。常见的变换形式需要熟记会

用。主要有以下几种:

acht

x t a x t a x a x asht x t a x t a x a x t

a x t a x x a ===-===+==-;;:;;:;:csc sec )3(cot tan )2(cos sin )1(222222

也奏效。

,有时倒代换当被积函数含有::t

x c bx ax x t d

cx b

ax d cx b ax t

b ax b ax m n n

n

n 1

)6()5()4(2=++?=++++=++

4.分部积分法.

公式:??-=νμμννμd d

分部积分法采用迂回的技巧,规避难点,挑容易积分的部分先做,最终完成不定积分。具体选取νμ、时,通常基于以下两点考虑: (1)降低多项式部分的系数 (2)简化被积函数的类型 举两个例子吧~! 例3:dx x

x x ?

-?2

31arccos

【解】观察被积函数,选取变换x t arccos =,则

=-=-=-???

tdt t dt t t t

t dx x x x 332

3cos )sin (sin cos 1arccos

C x x x x x C t t t t t t d t t t t dt t t t t t t t td t d t t +-+---=+---=

-+-=---=-=-????arccos 1)2(3

1

3291cos 91

cos 32sin sin 31cos )1sin 31

(sin sin 31)sin sin 31

(sin sin 31)sin sin 31(sin )1(sin 22333233332

例4:?xdx 2arcsin 【解】

?

?--=dx

x x x x x xdx 2

2

211arcsin 2sin arcsin

C

x x x x x dx x

x x x x x x xd x x +--+=----+=-+??2arcsin 12arcsin 121arcsin 12arcsin 1arcsin 2arcsin 22

222

上面的例3,降低了多项式系数;例4,简化了被积函数的类型。

有时,分部积分会产生循环,最终也可求得不定积分。 在??-=νμμννμd d 中,νμ、的选取有下面简单的规律:

选取的函数不能改变。

,会出现循环,注意,,,νμββνμνμνμ)3(sin ,cos )3()(arcsin ,arctan ,ln )2(cos ,sin ,)()1(x

x e x P x x x ax ax e x P ax

m ax m ======

将以上规律化成一个图就是:

但是,当x x arcsin ln ==νμ,时,是无法求解的。 对于(3)情况,有两个通用公式:

C

bx b bx a b a e dx bx e I C

bx b bx a b a e dx bx e I ax ax

ax

ax

+++=?=+-+=?=??)sin cos (cos )cos sin (sin 2

222

21

5.几种特殊类型函数的积分。

(1)有理函数的积分

有理函数

)()(x Q x P 先化为多项式和真分式)()(*x Q x P 之和,再把)

()

(*x Q x P 分解为若干个部分分式之和。(对各部分分式的处理可能会比较复杂。出现?

+=n

n x a dx

I )(22时,记得用递推公式:12

1222)

1(23

2))(1(2----++-=

n n n I n a n a x n a x I ) 例5:dx x x x x x ?+--+2

23246)

1(2

4 【解】=++-++=+--+223222346223246)1(24)1()1(24x x x x x x x x x x x x 2

2322)1(2

41++-

+x x x x x

2

22

242

224222322

2)1(12)1(24)1(24)1ln(211x dx x x x xdx x x x dx x x x C

x dx x x =++=++=++++=+????μ C x x C d d d ++-=+-+=+-=

+-+=++???)

1(1111))1(11()1()1()1(12222

2222

222μμμμμμμμμμμμμμ

故不定积分求得。

(2)三角函数有理式的积分

万能公式:?????

?????

?

+-=

+=2tan 12tan 1cos 2tan 12

tan 2sin 22

2x x

x x x x 化为有理函数可用变换2

tan )cos ,(sin )cos ,(sin x t dx x x Q x x P =?的积分,但由于计算较烦,应尽量避免。

对于只含有tanx (或cotx )的分式,必化成

x

x

x x sin cos cos sin 或。再用待定系数 x

b x a x b x a B x b x a A sin cos )

sin'cos'()sin cos (++++来做。

(3)简单无理函数的积分

一般用第二类换元法中的那些变换形式。

像一些简单的,应灵活运用。如:同时出现x x +1和时,可令t x 2tan =;同时出现x x -1和时,可令t x 2sin =;同时出现x x arcsin 12和-时,可令x=sint ;同时出现x x arccos 12和-时,可令x=cost 等等。

学习完不定积分,觉得这部分内容对我们思维的灵活性要求很大,应该加大习题量,达到见多识广的效果,做完习题注意总结,以及类似题目的整理。熟记三角函数公式,不定积分基本公式,掌握各种求积分的方法。

不定积分求解方法及技巧小汇总

不定积分求解方法及技巧小汇总 摘要:总结不定积分基本定义,性质和公式,求不定积分的几种基本方法和技巧,列举个别典型例子,运用技巧解题。 一?不定积分的概念与性质 定义1如果F (x)是区间I上的可导函数,并且对任意的x I,有F'(x)=f(x)dx则称F (x)是f(x)在区间I上的一个原函数。 定理1 (原函数存在定理)如果函数f(x)在区间I上连续,那么f(x)在区间I上一定有原函数,即存在可导函数 F (x),使得F (x) =f(x) (x I) 简单的说就是,连续函数一定有原函数 定理2设F (x)是f(x)在区间I上的一个原函数,贝U (1) F (x) +C也是f(x)在区间I上的原函数,其中C是任意函数; (2)f(x)在I上的任意两个原函数之间只相差一个常数。 定义2 设F (x)是f(x)在区间I上的一个原函数,那么f(x)的全体原函数 F (x) +C称 为f(x)在区间I上的不定积分,记为f(x)d(x),即f(x)d(x)=F(x)+C 其中记号称为积分号,f(x)称为被积函数,f(x)d(x)称为被积表达式,x称为积分 变量,C称为积分常数。 性质1设函数f(x)和g(x)存在原函数,则[f(x) g(x)]dx= f(x)dx g(x)dx. 性质2 设函数f(x)存在原函数,k为非零常数,贝U kf(x)dx=k f(x)dx. 二.换元积分法的定理 如果不定积分g(x)dx不容易直接求出,但被积函数可分解为g(x)=f[ (x)] ( (x).做变量代换u= (x),并注意到’(x) dx=d (x),则可将变量x的积分转化成变量u的积分,于是有 g(x)dx= f[ (x)] ( (x)dx= f(u)du. 如果f(u)du 可以积出,则不定积分g(x)dx的计算问题就解决了,这就是第一类换元法。第一类换元法就是将复合函数的微分法反过来用来求不定积分。

不定积分知识点总结

不定积分知识点总结 不定积分 1、原函数存在定理 定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F (x),使对任一x∈l都有F' (x) =f(x);简单的说连续函数一定有原函数。 分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 定积分 1、定积分解决的典型问题 (1)曲边梯形的面积(2 )变速直线运动的路程 2、函数可积的充分条件 定理设f(x)在区间[a上]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。 定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积 3、定积分的若干重要性质 性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx 推论| ∫abf(x)dx|≤∫ab|f(x)|dx 性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m ( b-a ) ≤∫abf(x)≤dx≤M ( b-a ),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。 性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在点ξ。使下式成立:∫abf(x)dx=f(ξ)( b-a )。 4、关于广义积分 设函数f(x)在区刚[a,b]上除点c ( a 定积分的应用 求平面图形的面积(曲线围成的面积) 直角坐标系下(含参数与不含参数) 极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式 S=R2θ/2)

一道非常难的不定积分题目的解法

求∫arcsinx * arccosx dx的不定积分 解题思路:反复运用换元,将arcsinx 换成sinx的形式,将arccox 换成cosx的形式,最终简化题目的难度! 解题过程:第一步换元:将arccosx=t (xε[0,1],tε[0,π/2]),从而得出cost=x.将∫arcsinxarccosx dx换成∫t arcsin(cost) d(cost)。接下来怎么解呢? 先看看∫arcsinx dx=arcsinx *x- ∫xd(arcsinx) 从而简化题目的难度!那么你是否会产生一个想法,上面那条题目是否可以转化呢! 于是∫t* arcsin(cost)* d(cost)= ∫ td(arcsin(cost)cost+sint)= t(arcsin(cost)cost+sint)- ∫(arcsin(cost)cost+sint)dt 从而求∫ arcsin(cost)cost dt 第二步换元:将arcsin(cost)=p ,从而 sinp=cost,t=arccos(sinp).最终∫arcsin(cost)cost dt=∫psinp d(arccos(sinp))= ∫p sinp *(-1/√ 1-(sinp)^2)*cosp dp=∫p sinp*(-1/cosp)*cosp dp=-∫psinp dp=∫p dcosp=pcosp-∫cosp dp=pcosp-sinp+c 第三步:总结出答案,表示成x的形式。 ∫arcsin(cost)cost dt= arcsin(cost)(√ 1-cos^t)-cost+c

∫(arcsin(cost)cost+sint)dt= arcsin(cost)(√ 1-cos^t)-cost-cost+c= arcsin(cost)(√ 1-cos^t)-2cost+c ∫arcsinxarccosx dx=arcsinx(√1-x^2)-2x+c 这条题目很难,但是换元转化的思想很重要!!! 淮师 3/25/2010

2018考研高数重点复习定积分与不定积分定理总结

2018考研高数重点复习定积分与不定积 分定理总结 在暑期完成第一轮基础考点的复习之后,9月份开始需要对考研数学所考的定理定义进行必要的汇总。本文为同学们整理了高数部分的定积分与不定积分定理定义汇总。 ?不定积分 1、原函数存在定理 ●定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x ∈I都有F’(x)=f(x);简单的说连续函数一定有原函数。 ●分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 ?定积分 1、定积分解决的典型问题 (1)曲边梯形的面积(2)变速直线运动的路程 2、函数可积的充分条件 ●定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。 ●定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。 3、定积分的若干重要性质 ●性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 ●推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx。

●推论|∫abf(x)dx|≤∫ab|f(x)|dx。 ●性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m(b-a)≤∫abf(x)dx ≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。 ●性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点ξ,使下式成立:∫abf(x)dx=f(ξ)(b-a)。 4、关于广义积分 设函数f(x)在区间[a,b]上除点c(a ?定积分的应用 1、求平面图形的面积(曲线围成的面积) ●直角坐标系下(含参数与不含参数) ●极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式S=R2θ/2) ●旋转体体积(由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成)(且体积V=∫abπ[f(x)]2dx,其中f(x)指曲线的方程) ●平行截面面积为已知的立体体积(V=∫abA(x)dx,其中A(x)为截面面积) ●功、水压力、引力 ●函数的平均值(平均值y=1/(b-a)*∫abf(x)dx)

不定积分解题方法及技巧总结

不定积分解题方法及技巧总 结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

? 不定积分解题方法总结 摘要:在微分学中,不定积分是定积分、二重积分等的基础,学好不定积分十分重要。然而在学习过程中发现不定积分不像微分那样直观和“有章可循”。本文论述了笔者在学习过程中对不定积分解题方法的归纳和总结。 关键词:不定积分;总结;解题方法 不定积分看似形式多样,变幻莫测,但并不是毫无解题规律可言。本文所总结的是一般规律,并非所有相似题型都适用,具体情况仍需要具体分析。 1.利用基本公式。(这就不多说了~) 2.第一类换元法。(凑微分) 设f(μ)具有原函数F(μ)。则 C x F x d x f dx x x f +==???)]([)()]([)(')]([????? 其中)(x ?可微。 用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2: 例1:? +-+dx x x x x ) 1(ln )1ln( 【解】) 1(1111)'ln )1(ln(+-=-+= -+x x x x x x C x x x x d x x dx x x x x +-+-=-+-+-=+-+??2)ln )1(ln(2 1)ln )1(ln()ln )1(ln()1(ln )1ln(例2:? +dx x x x 2 ) ln (ln 1 【解】x x x ln 1)'ln (+= C x x x x x dx dx x x x +-==++??ln 1 )ln (ln )1(ln 122 3.第二类换元法:

不定积分的常用求法(定稿)[1]

郑州大学毕业论文 题目:不定积分的常用求法 指导老师:任国彪职称:讲师 学生姓名:王嘉朋学号:20082100428 专业:数学与应用数学(金融数学方向) 院系:数学系 完成时间:2012年5月25日 2012年5月25日

摘要 微积分是微分学与积分学的简称,微积分的创立是数学史上最重要的事情之一。不定积分的相关知识是微积分中重要的知识,掌握不定积分的求法是学好微积分的前提。另外,不定积分的求法和定积分的求法有一定的相关性,在求面积以及质量中也有一定的应用。但是不定积分的计算是数学分析中的难点之一。求不定积分的方法灵活多样,本文介绍了微分学的来源,创立以及发展历史。并且基于自己对不定积分的理解,通过实例对不定积分的求法进行了总结。 关键字:微积分,微分学,积分学,不定积分,求解方法。 Abstract: Calculus is short for differential calculus and integral calculus and its foundation is one of the most important events in math history. Relevant knowledge in indefinite integral is very significant in calculus learning. Grasping solutions to indefinite integral is the premise of leaning calculus well. Besides, there is correlation between solutions to indefinite integral and definite integral. Indefinite integral can be applied in obtaining area and mass. However,calculating indefinite integral is one of the most hardest parts in math analysis. A variety of methods can be used in seeking indefinite integral. This paper introduced the origin of calculus, founding and developing history. Besides, through some examples based on understanding of indefinite integral,this paper also summarized solutions to indefinite integral. Keywords: calculus; differential calculus; integral calculus; solutions

不定积分技巧总结

不定积分技巧总结 作者:蔡浩然 题记题记::不定积分不定积分,,是一元函数积分学的基础是一元函数积分学的基础,,题型极多题型极多,,几乎是每一道题就一种题型。乍一看感觉思路很乱,很难把握其中的规律一道题就一种题型。乍一看感觉思路很乱,很难把握其中的规律,,结果是一做题就凭感觉乱闯结果是一做题就凭感觉乱闯,,运气好运气好,,有时可以闯出来有时可以闯出来,,有很多时候是闯不出来候是闯不出来,,或者碰到了庞大的计算量便到此为止了或者碰到了庞大的计算量便到此为止了。。为了在求不定积分时有一个确切简单的思路,我在此作以如下总结。首先,除了那些基本积分公式,还要熟记推广公式的有: ? ???????→????????+??? ?????→+→+∫∫∫x c a ac x c a d x c a ac dx x c a c dx c ax arctan 11 111111222即??? ? ????→ +∫x c a ac dx c ax arctan 1 1 2 【相乘开根作分母,前比后,开根作系数】 另外,[] x x x x dx tan sec ln tan sec 21 sec 3 ++=∫最好也可以记下来最好也可以记下来,,因为经常要用到因为经常要用到,,并且也不难记并且也不难记, ,括号里面是x sec 的原函数和导数之和。 一、一、三角函数篇 三角函数篇原则是:尽量凑微分,避免万能代换。

1.11.1、 、正余弦型1.1.11.1.1、分母二次带常数,分子不含一次项型 、分母二次带常数,分子不含一次项型∫ +dx x A 2 sin 1 或 dx x A x ∫ +2 2 sin cos 右式可通过变形,分离常数化为左式。而 ()→++→+→+∫∫∫ A x A x d dx x x A x dx x A 2 2222tan 1tan tan sec sec sin 1()C x A A A A +??? ?????++→ tan 1arctan 11 1.1.21.1.2、分母一次带常数,分子常数型 、分母一次带常数,分子常数型∫∫ ??→+dx x A x A dx x A 2 2sin sin sin 1()∫∫+?+?→dx x A x d dx x A A 2 222cos 1cos sin 特别的,当 1 =A 时,原式就可化为 ∫∫+→dx x x d dx x A 2 2cos cos cos 1.1.31.1.3、分母一次无常数,分子常数型 、分母一次无常数,分子常数型

求定积分的四种方法

定积分的四种求法 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例题分析定积分计算的几种常用方法. 一、定义法 例1 用定义法求2 30x dx ?的值. 分析:用定义法求积分可分四步:分割,以曲代直,作和,求极限. 解:(1)分割:把区间[0,2] 分成n 等分,则△x =2n . (2)近似代替:△3 2()i i i S f x x n ξ??=?=? ??? (3)求和:33111222n n n i i i i i i S x n n n ===???????≈?=? ? ? ???????∑∑∑. (4)取极限:S=3332242lim n n n n n n →∞????????+++?? ? ? ????????? ?? =4 43332244221lim 12lim[(1)]4n n n n n n n →∞→∞??+++=?+? ? =224(21)lim n n n n →∞++==4. ∴2 30x dx ?=4.. 评注:本题运用微积分的基本定理法来求非常简单.一般地,其它方法计算定积分比较困难时,用定义法,应注意其四个步骤中的关键环节是求和,体现的思想方法是先分后合,以直代曲. 二、微积分基本定理法 例2 求定积分2 21(21)x x dx ++?的值. 分析:可先求出原函数,再利用微积分基本定理求解.

解:函数y =2 21x x ++的一个原函数是y =3 23x x x ++. 所以.2 2 1(21)x x dx ++?=3221()|3x x x ++=81421133????++-++ ? ?????=193. 评注:运用微积分基本定理计算定积分的关键是找到被积函数的原 函数. 三、几何意义法 例3 求定积分1 1dx -?的值. 分析:利用定积分的意义是指曲边梯 形的 面积,只要作出图形就可求出. 解:1 1dx -?表示圆x 2+y 2=1在第一、 二象限的上半圆的面积. 因为2S π= 半圆,又在x 轴上方. 所以1 1)d x -?=2 π. 评注:利用定积分的几何意义解题,被积函数图形易画,面积较易求出. 四、性质法 例4 求下列定积分: ⑴44tan xdx π π-?;⑵22sin 1 x x dx x ππ-+?. 分析:对于⑴用微积分的基本定理可以解决,而⑵的原函数很难找到,几乎不能解决.若运用奇偶函数在对称区间的积分性质,则能迎刃而解. 解:由被积函数tan x 及22sin 1 x x x +是奇函 数,所以在对称区间的积分值均为零.

常见不定积分的求解方法

常见不定积分的求解方法的讨论 马征 指导老师:封新学 摘要介绍不定积分的性质,分析常见不定积分的各种求解方法:直接积分法、第一类换元法(凑微法)、第二类换元法、分部积分法,并结合实际例题加以讨论,以便于在解不定积分时能快速选择最佳的解题方法。 关键词不定积分直接积分法第一类换元法(凑微法)第二类换元法分部积分法。 The discussion of common indefinite integral method of calculating Ma Zheng Abstract there are four solutions of indefinite integration in this discourse: direct integration; exchangeable integration; parcel integration. It discussed the feasibility which these ways in the solution of integration, and it is helpful to solve indefinite integration quickly. Key words Indefinite integration,exchangeable integration, parcel integration.

0引言 不定积分是《高等数学》中的一个重要内容,它是定积分、广义 积分、狭积分、重积分、曲线积分以及各种有关积分的函数的基础, 要解决以上问题,不定积分的问题必须解决,而不定积分的基础就是 常见不定积分的解法。不定积分的解法不像微分运算时有一定的法 则,它要根据不同题型的特点采用不同的解法,积分运算比起微分运 算来,不仅技巧性更强,而且也已证明,有许多初等函数是“积不出 来”的,就是说这些函数的原函数不能用初等函数来表示,例如 ?-x k dx 22sin 1(其中10<

不定积分解法总结

不定积分解题方法总结 摘要:在微分学中,已知函数求它的导数或微分是需要解决的基本问题。而在实际应用中,很多情况需要使用微分法的逆运算——积分。不定积分是定积分、二重积分等的基础,学好不定积分十分重要。然而在学习过程中发现不定积分不像微分那样直观和“有章可循”。本文论述了笔者在学习过程中对不定积分解题方法的归纳和总结。 关键词:不定积分;总结;解题方法 不定积分看似形式多样,变幻莫测,但并不是毫无解题规律可言。本文所总结的是一般规律,并非所有相似题型都适用,具体情况仍需要具体分析。希望本文能起到抛砖引玉的作用,为读者在学习不定积分时提供思路。文中如有错误之处,望读者批评指正。 1 换元积分法 换元积分法分为第一换元法(凑微分法)、第二换元法两种基本方法。而在解题过程中我们更加关注的是如何换元,一种好的换元方法会让题目的解答变得简便。 1.当出现 22x a ±,22a x -形式时,一般使用t a x sin ?=,t a x sec ?=, t a x tan ?=三种代换形式。 C x a x x a dx C t t t t a x x a dx +++=+++==+? ??222 22 2 ln tan sec ln sec tan 2.当根号内出现单项式或多项式时一般用t 代去根号。 C x x x C t t t tdt t t tdt t x t dx x ++-=++-=--==???sin 2cos 2sin 2cos 2) cos cos (2sin 2sin 但当根号内出现高次幂时可能保留根号, c x dt t dt t t dt t t t dt t t t t x x x dx +- =--=--=--=??? ? ??-?-? = --? ????66 12 12 5 12 6 212 12arcsin 6 1 11 6 1 111 11 1 11 1 3.当被积函数只有形式简单的三角函数时考虑使用万能代换法。 使用万能代换2 tan x t =,

不定积分的解题方法与技巧

不定积分的解题方法与技巧-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

一. 直接积分法(公式法) 利用不定积分的运算性质和基本积分公式直接求出不定积分 二. 第一类换元法 1.当遇到形如? ++c bx ax dx 2 的不定积分,可分为以下三种情况: (1)当0>?时,可将原式化为()()21x x x x --, 其中,21,x x 为c bx ax ++2的两个解,则原不定积分为: ()()()()()?? ? ?? ?------=--??? 221112211 x x x x d x x x x d x x x x x x dx ()C x x x x x x +---= 2 1 12ln 1 (2)当0=?时,可利用完全平方公式,化成() () ? --2 k x k x d 。然后根据基本积分 公式即可解决。 (3)当0

求不定积分的方法及技巧小汇总

求不定积分的方法及技巧小汇总~ 1.利用基本公式。(这就不多说了~) 2.第一类换元法。(凑微分) 设f(μ)具有原函数F(μ)。则 C x F x d x f dx x x f +==???)]([)()]([)(')]([????? 其中)(x ?可微。 用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2: 例1:? +-+dx x x x x ) 1(ln )1ln( 【解】) 1(1111)'ln )1(ln(+-=-+= -+x x x x x x C x x x x d x x dx x x x x +-+-=-+-+-=+-+??2 )ln )1(ln(2 1)ln )1(ln()ln )1(ln()1(ln )1ln(例2:? +dx x x x 2 )ln (ln 1 【解】x x x ln 1)'ln (+= C x x x x x dx dx x x x +-==++??ln 1 )ln (ln )1(ln 122 3.第二类换元法: 设)(t x ?=是单调、可导的函数,并且)(')]([.0)('t t f t ???又设≠具有原函数,则有换元公式 ??=dt t t f dx f )(')]([x)(?? 第二类换元法主要是针对多种形式的无理根式。常见的变换形式需要熟记会 用。主要有以下几种: acht x t a x t a x a x asht x t a x t a x a x t a x t a x x a ===-===+==-;;:;;:;:csc sec )3(cot tan )2(cos sin )1(222222

不定积分总结

不定积分

一、原函数 定义1 如果对任一I x ∈,都有 )()(x f x F =' 或 dx x f x dF )()(= 则称)(x F 为)(x f 在区间I 上的原函数。 例如:x x cos )(sin =',即x sin 是x cos 的原函数。 2 211)1ln([x x x +='++,即)1ln(2x x ++是 2 11x +的原函数。 原函数存在定理:如果函数)(x f 在区间I 上连续,则)(x f 在区间I 上一定有原函数,即存在区间I 上的可导函数)(x F ,使得对任一I x ∈,有)()(x f x F ='。 注1:如果)(x f 有一个原函数,则)(x f 就有无穷多个原函数。 设)(x F 是)(x f 的原函数,则)(])([x f C x F ='+,即C x F +)(也为)(x f 的原函数,其中C 为任意常数。 注2:如果)(x F 与)(x G 都为)(x f 在区间I 上的原函数,则)(x F 与)(x G 之差为常数,即C x G x F =-)()((C 为常数) 注3:如果)(x F 为)(x f 在区间I 上的一个原函数,则C x F +)((C 为任意常数)可表达)(x f 的任意一个原函数。 二、不定积分 定义2 在区间I 上,)(x f 的带有任意常数项的原函数,成为)(x f 在区间I 上的不定积分,记为?dx x f )(。 如果)(x F 为)(x f 的一个原函数,则 C x F dx x f +=?)()(,(C 为任意常数)

x y o )(x F y = C x F y +=)( 三、不定积分的几何意义 不定积分的几何意义如图5—1所示: 图 5—1 设)(x F 是)(x f 的一个原函数,则)(x F y =在平面上表示一条曲线,称它为 )(x f 的一条积分曲线.于是)(x f 的不定积分表示一族积分曲线,它们是由) (x f 的某一条积分曲线沿着y 轴方向作任意平行移动而产生的所有积分曲线组成的.显然,族中的每一条积分曲线在具有同一横坐标x 的点处有互相平行的切线,其斜率都等于)(x f . 在求原函数的具体问题中,往往先求出原函数的一般表达式C x F y +=)(,再从中确定一个满足条件 00)(y x y = (称为初始条件)的原函数)(x y y =.从几何上讲,就是从积分曲线族中找出一条通过点),(00y x 的积分曲线. 四、不定积分的性质(线性性质) [()()]()()f x g x dx f x dx g x dx ±=±??? ()() kf x dx k f x dx =??k ( 为非零常数)

不定积分求解方法毕业论文设计

不定积分求解方法毕业论文设计

学号 14121401576 Hunan Institute of Science and Technology 本科毕业论文 题目:关于不定积分解题思路的探讨 作者何宇届别2017 系别数学学院专业数学与应用数学 指导教师罗德仁职称讲师 完成时间2017年5月

关于不定积分解题思路的探讨 On the resolving idea of indefinite integral 专业:数学与应用数学 作者:何宇 指导老师:罗德仁 湖南理工学院数学学院 二○一七年五月岳阳

摘要 不定积分是求定积分的基础, 在一元微积分学中占有重要地位. 学好不定积分, 对于导数和微分学中其他相关知识的巩固很有帮助. 求解不定积分常用的方法主要有: 基本公式法, 换元积分法, 分部积分法, 有理函数的积分法. 如何快速找到解题的突破口, 灵活使用各类方法是关键. 我们从被积函数的特点出发, 从易到难, 对不定积分进行多角度的观察和分析, 比较各类积分法, 发现和总结规律, 提高不定积分解题能力. 关键词: 不定积分; 基本公式法; 换元积分法; 分部积分法; 有理函数的积分法

Abstract Indefinite integral is the foundation of definite integral, i t occupies an important position in unitary differential calculus. Grasp the solving methods of indefinite integral is helping to derivative and other relevant knowledge. S everal methods of solving i ndefinite integral are f requently used, such as basic formula method, change the variable, integration by parts, primitives of rational functions. What matters is how to quickly find the ideas of subject and flexibly use various method. We observed and analysised the indefinite integral multi-angle, on the characteristics of integrand, from simple to difficult, compare various methods, sum up the laws, improve solving ability of the indefinite integral problem . Keywords:indefinite integral; basic formula method; change the variable; integration by parts;integration by parts primitives of rational functions

常用求导积分公式及不定积分基本方法

常用求导积分公式及不定积分基本方法 This model paper was revised by LINDA on December 15, 2012.

一、基本求导公式 1. ()1x x μμμ-'= ()ln 1x x '= 2. (sin )cos x x '= (cos )sin x x '=- 3. 2(tan )sec x x '= 2(cot )csc x x '=- 4. (sec )tan sec x x x '= (csc )cot csc x x x '=- 5. ()ln x x a a a '=,()x x e e '= 6. () 2arctan 11x x '+= ()arcsin x '= () 2arccot 11x x '+=- ()arccos x '= 二、基本积分公式 1. 1d (111)x x x C μμμμ+=+ =-/ +?, 1ln ||+dx x C x =? 2. d ln x x a a x C a =+?,d x x e x e C =+? 3. sin d cos x x x C =-+?, cos d sin x x x C =+? 4. 2sec d tan x x x C =+? 2csc d cot x x x C =-+? 5. tan d ln |cos |x x x C =-+? cot d ln |sin |x x x C =+?

6. sec d ln |sec tan |x x x x C =++? csc d ln |csc cot |x x x x C =-+? 7. 2 1d arctan 1x x C x =++? arcsin x x C =+ 2211d arctan x x C a x a a =++? arcsin x x C a =+ 8. ln x x C =+ ( ln x x C =++ 9. 221 1d ln 2x a x C a x a x a -=+-+? 三、常用三角函数关系 1. 倍角公式 21cos 2sin 2x x -= 21cos 2cos 2x x += 2. 正余切与正余割 正割 1 sec cos x x = 22sec 1tan x x =+ 余割 1csc sin x x = 2 2csc 1cot x x =+ 四、常用凑微分类型 1. 1 1 ()d d ()ln ()()()f x x f x f x C f x f x '==+??;

不定积分解题方法及技巧总结

? 不定积分解题方法总结 摘要:在微分学中,不定积分是定积分、二重积分等的基础,学好不定积分十分重要。然而在学习过程中发现不定积分不像微分那样直观和“有章可循”。本文论述了笔者在学习过程中对不定积分解题方法的归纳和总结。 关键词:不定积分;总结;解题方法 不定积分看似形式多样,变幻莫测,但并不是毫无解题规律可言。本文所总结的是一般规律,并非所有相似题型都适用,具体情况仍需要具体分析。 1.利用基本公式。(这就不多说了~) 2.第一类换元法。(凑微分) 设f(μ)具有原函数F(μ)。则 C x F x d x f dx x x f +==???)]([)()]([)(')]([????? 其中)(x ?可微。 用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2: 例1:? +-+dx x x x x ) 1(ln )1ln( 【解】) 1(1 111)'ln )1(ln(+- =-+= -+x x x x x x C x x x x d x x dx x x x x +-+-=-+-+-=+-+??2 )ln )1(ln(2 1)ln )1(ln()ln )1(ln()1(ln )1ln(例2:? +dx x x x 2 )ln (ln 1 【解】x x x ln 1)'ln (+= C x x x x x dx dx x x x +-==++??ln 1 )ln (ln )1(ln 122 3.第二类换元法: 设)(t x ?=是单调、可导的函数,并且)(')]([.0)('t t f t ???又设≠具有原函数,则有换元公式 ??=dt t t f dx f )(')]([x)(??

不定积分知识点总结

不定积分知识点总结 不定积分知识点总结 不定积分 1、原函数存在定理 定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F (x),使对任一x∈l都有F'(x)=f(x);简单的说连续函数一定有原函数。 分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 定积分 1、定积分解决的典型问题 (1)曲边梯形的面积(2 )变速直线运动的路程 2、函数可积的充分条件 定理设f(x)在区间[a上]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。 定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积

3、定积分的若干重要性质 性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx 推论|∫abf(x)dx|≤∫ab|f(x)|dx 性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m (b-a )≤∫abf(x)≤dx≤M (b-a ),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。 性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在点ξ。使下式成立:∫abf(x)dx=f(ξ)(b-a )。 4、关于广义积分 设函数f(x)在区刚[a,b]上除点c (a

不定积分知识点总结

三一文库(https://www.360docs.net/doc/e32210840.html,)/总结 〔不定积分知识点总结〕 引导语:不定积分一直是很多人都掌握不好的一个知识点,那么不定积分要怎么学好呢?接下来是小编为你带来收集整理的不定积分知识点总结,欢迎阅读! ▲不定积分 1、原函数存在定理 定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F (x),使对任一x∈l都有F (x) =f(x);简单的说连续函数一定有原函数。 分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数 的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数 的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 ▲定积分 1、定积分解决的典型问题

(1)曲边梯形的面积(2 )变速直线运动的路程 2、函数可积的充分条件 定理设f(x)在区间[a上]上连续,则f(x)在区间[a,b]上可积,即连续=可积。 定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积 3、定积分的若干重要性质 性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx 推论| ∫abf(x)dx|≤∫ab|f(x)|dx 性质设及分别是函数f(x)在区间[a,b]上的最大值和最小值,则 ( b-a ) ≤∫abf(x)≤dx≤ ( b-a ),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分 值的大致范围。 性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在点ξ。使下式成立:∫abf(x)dx=f(ξ)( b-a )。 4、关于广义积分 设函数f(x)在区刚[a,b]上除点 ( ab )外连续,而在点的邻域内无界,如果两个广义积分∫af(x)dx与∫bf(x)dx 都收敛,则定义∫af(x)dx=∫bf(x)dx ,否则 (只要其中一

不定积分求解方法

探讨不定积分的解题方法 班级学号 20124111 2012411151 洁珊 摘要 在数学分析中,不定积分占有非常重要的地位,是高等数学教学的难点和重点.具有很高的灵活性,可以开拓学生的思路,培养学生灵活的思维能力,同时还存在一题多解的方法使学生能过做到举一反三、触类旁通的教学效果。 为了正确使用各种积分方法求解不定积分,我们必须掌握它的概念和性质以及积分的基本公式,才能够在以后的解题中做题自如,进行同类迁移。 研究不定积分要重在提高自己的逻辑思维能力、科学分析能力、运用数学语言能力、联想运算能力以及应用能力。求解不定积分的过程对学生的科学思维和文化素质的培养所起的作用极为明显。 求解不定积分的方法主要有直接积分法(即直接利用积分公式求解)、换元积分法(第一换元积分法、第二换元积分法)、分部积分法。关键词 不定积分、直接积分法、换元积分法、分部积分法、分解积分法。前言 正如假发有逆运算减法,乘法有其逆运算除法一样,微分法也有它的逆运算——积分法。我们已经知道微分法的基本问题是研究如何从已知函数求出它的导函数,相反:求一个未知函数使其导函数恰好是某

一已知函数。提出这个逆问题,首先是因为它出现在许多实际问题之 中,如:已知速度求路程;已知加速度求速度;已知曲线上每一点处 的,求曲线方程等等这些都是积分在生活中的应用,特别是在物理学 中的应用,变力做功,质点做变速直线运动的路程以及引力问题。所 以掌握不定积分的求法,在我们的数学物理科学研究工作中显得尤为 重要。 标题一、直接积分法 我们已经知道积分法是微分的逆运算,即直接积分法就是利用最基本 的积分公式求解积分。要掌握这一方法首先就应该熟记,并懂得灵活 运用。 下面的基本积分表就必须掌握 1.0dx c =? 2adx ax c =+? 3. ()1 0,01 a a x x dx c a x a +=+≠>+? 4()1ln ||0dx x c x x =+≠? 5.x x e e c =+? 6.(0,1)ln x x a a dx c a a x =+>≠?

相关文档
最新文档