线性代数B卷

线性代数B卷
线性代数B卷

厦门大学网络教育2010-2011学年第二学期

《线性代数》复习题

一、选择题(每小题3分,共18分)

1.设行列式 1

112

223

3

3a b c a b c d a b c =,则111111

2222223

33

333

223223223c b c a b c c b c a b c c b c a b c ++++++=+++( )。 A .2d -; B .d -; C .d ; D .2d 。

2.已知A 为n 阶非零方阵,E 为n 阶单位矩阵,若3

A O =,则( )。 A .A E +不可逆,E A -不可逆;

B .A E -不可逆,A E +可逆;

C .A E +可逆,E A -可逆;

D .A

E +不可逆,E A -可逆。 3.向量1α,2α,3α线性无关,则下列向量组线性相关的是( )。 A .12αα+,23αα+,31αα+; B .1α,12αα+,123ααα++; C .12αα-,23αα-,31αα-; D .12αα+,232αα+,313αα+。

4.若3阶方阵2E A -及E A +,3A E -都不可逆,则A 的特征多项式中常数项为( )。

A .

23; B .2 ; C .23-; D .4

3

。 5.下列命题错误的是( )。 A .相似矩阵有相同的特征多项式; B .1n +个n 维向量必线性相关;

C .矩阵Q 是n 阶正交矩阵的充分必要条件是1

T Q

Q -=;

D .若矩阵A 的秩是r ,并且存在1r -阶子式,则其所有的1r -阶子式全为0。 6.下列命题正确的是( )。

A .若A ,

B 为同阶方阵,且T

A A =,则T

B AB 也是对称阵;

B .若AX AY =,且A O ≠,其中O 为零矩阵,则X Y =;

C .齐次线性方程组AX O =(A 是m n ?矩阵)有唯一解的充分必要条件是()r A m =;

D .设非齐次线性方程组AX b =有无穷多解,则相应的齐次线性方程组AX O =有唯一解。

二、填空题(每小题3分,共18分)

7.设44?矩阵123(,,,)A αγγγ=,123(,,,)B βγγγ=,其中α,β,1γ,2γ,3γ均为四维列向量,且已知行列式||4A =,||1B =,则行列式||A B += 。

8.若12224369A t ??

?

= ? ???

,当t =_______时,()2r A =。

9.1(2103)k

k α=-与2(531)k k α=-+正交,则k = 。

10.已知3阶矩阵A 的特征值为1,1-,2,则矩阵2B A E =+(E 为三阶单位矩阵)的特征值为 。

11.设A 为可逆矩阵,且123246369AB ??

?

= ? ???

,则()r B = 。

12.若A ,B 均可逆,A O D C B ??=

?

??

,则D 可逆,且1

D -= 。 三、计算题(共64分)

13.行列式计算(10分)

求行列式1

21111111

1

1n n

a a D a ++=

+

,其中120n a a a ≠ ,n D 是n 阶行列式,主

对角线上的元素为1i a +,其余元素为1。 14.求解矩阵方程(10分)

设033110123A ?? ?

= ? ?-??

,2AB A B =+,求B 。

15.线性方程组的计算(12分)

设有线性方程组123123123(2)221

2(5)4224(5)1

x x x x x x x x x λλλλ-+-=??

+--=??--+-=--?

,问λ取何值时,此方程组(1)有唯

一解;(2)无解;(3)有无穷多解?并在有无限多解时求其通解。 16.向量组计算(10分)

已知向量组1(1

212)T

α=,2(1031)T α=,3(2101)T α=-,

4(2122)T α=-,5(2243)T α=,试求1α,2α,3α,4α,5α的一个极大

线性无关组,并把其余向量用此极大线性无关组线性表示。

17.设二次型222

12312323(,,)2332(0)f x x x x x x ax x a =+++>可通过正交变换化成标准型222

123

25f y y y =++,求参数a 及使用的正交变换(20分) 说明:(1)先将二次型表示成矩阵形式(2分);(2)求出a 的值(5分);(3)求出对应于特征值的特征向量(6分);(4)将这些特征向量正交单位化(3分);(5)最后写出所作的正交变换(4分)。请按上述五步顺利给出解题过程。

一、选择题(每小题3分,共18分)

1.B 。解:由行列式的性质可知

111111111111

2222222222223

33

33333

33

3

3

223223223c b c a b c c b a a b c c b c a b c c b a a b c d c b c a b c c b a a b c ++++++==-=-+++。 2.C 。解:由于23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+=,因此E A +,E A -均可逆,故选C 。

3.C .解:显然有1223311()1()1()0αααααα-+-+-=,所以12αα-,23αα-,31αα-线性相关,故选C 。

4.A 。解:根据定理5.1知,设0λ是A 的特征值,则必有0||0E A λ-=,于是0E A λ-不可逆,又2E A -及E A +,3A E -都不可逆,那么2E A -,E A --,1

3

E A -不可逆,知A 的特征值为2,1-,

13,而A 的特征多项式中常数项的值等于2||3

A -=。 5.D 。解:A .正确,相似矩阵有相同的特征多项式(§5.2性质5)。

B .正确,1n +个n 维向量必线性相关(定理2.5 )。

C .正确,矩阵Q 是n 阶正交矩阵的充分必要条件是1

T Q

Q -=,这是正交矩阵的定义。

D .错误,矩阵A 的秩是r ,若其所有的1r -阶子式全为0,则A 的任何r 阶子式都为0,这与矩阵的秩为r 矛盾(注意矩阵A 的秩是r ,说明其存在一个r 阶非零子式)。

6.A 。解:A .正确,若A ,B 为同阶方阵,且T

A A =,则()()T T T T

T T T B A B B A B B A B

==,

则T

B AB 也是对称矩阵。 B .错误,反例:0102010300000000????????=

??? ???????????,记0100A O ??=≠ ?

??

,但0200X ??

=≠ ??? 0300Y ??

= ???

。注意矩阵乘法不满足消去律,当AX AY =,只有A 可逆时,才有X Y =。 C .错误,齐次线性方程AX O =(A 是m n ?矩阵)有唯一解的充分必要条件是()r A n =。

D .错误,非齐次线性方程组AX b =有无穷多解,则A 的秩小于A 的列秩,即A 的秩小于方程未知数的个数,是相应的齐次线性方程组AX O =有无穷多解的充要条件。

二、填空题(每小题3分,共18分)

7.解:

3123123123|||,2,2||,2,2,2||,2,2,2|2(||||)40A B A B αβγγγαγγγβγγγ+=+=+=+=,2。

8.解:12212212

22436900

336924004A t t t ?????? ? ? ?

= ? ? ? ? ? ?-??????

,又()2r A =,故4t =。 9.因为1α,2α正交,所以12103(1)3(1)0T

k k k αα=--++=,则3

5

k =-

。 10.解:由1

|||2||(1)2|8|

|02

E B E A E E A E A λλλλ--=--=--=-=,可知

1

2

λ-是A 的特征值,于是由A 的特征值1,1-,2可知B 的特征值λ为3,1-,5。

11.解:A 为可逆矩阵,则A 可写成一系列初等矩阵的乘积,AB 由B 左乘A 得到,相当于可通过初等行变换把B 变成AB ,由于初等变换不改变矩阵的秩,故()()r B r AB =,而

()1r AB =,所以()()1r B r AB ==。

12.解:由||||||D A B =且

A 、

B 可逆可知,D 可逆,设矩阵X Y Z W ??

???

,使得

A

O X Y E O C B Z W O E ??????= ? ?

???????,即AX AY E O CX BZ CY BW O E ????=

? ?++????

,则AX E =,故1X A -=;AY O =,则Y O =;CX BZ O +=,故B Z C X =-,11Z B CA --=-;

CY BW E +=,则BW E =,故1

W B -=所以1

1

11

1A O D B CA

B -----??

= ?-??

。 三、计算题(共64分)

13.解:

12

1

2

1

212

1

2

1

2

111(1)11

1(1)111(1)n n n

n n n n

a a a a a a a a a a a a D a a a a a a ++

=

+

1212

121

2

111111111111n n n

n

a a a a a a a a a a a a +

+=+

(将各列分别加到第1列得)

121

2

1212

11111111111111n

i i n n

i i n n

n

i i

n a a a a a a a a a a a a ===+++=++

2

21212

111

1

1111(1)

111

1n n

n n i i

n

a a a a a a a a a a =+

=++

再将第一行乘以1-分别加到其余各行,得

2121211111

1

1

10(1)(1)0

1

n

n

n

n n n i i i

i

a a D a a a a a a a a ===+=+∑∑

14.解:由2AB A B =+,可得(2)A E B A -=。由于

03310023321102010110123001121A E -?????? ? ? ?

-=-=- ? ? ? ? ? ?--??????,

而2

33

21

1020121

A E --=-=≠-,所以2A E -可逆,则1(2)

B A E A -=-。

()2330332,110110121123A E A -?? ?-=- ? ?--??~233033110110011033-?? ?- ? ???~100033010123001110??

?-

? ?

??

因此1

033(2)123110B A E A -??

?=-=- ? ???

15.解:对增广矩阵(,)B A b =作初等行变换把它变为行阶梯形矩阵,有

2221254225420111245100(1)(10)(1)(4)B λλλλλλλλλλλλ----????

? ?=----- ? ? ? ?---------????

(1)当1λ≠且10λ≠时,()()3r A r B ==,方程组有唯一解。 (2)当10λ=时,()2r A =,()3r B =,方程组无解。 (3)当1λ=时,()()1r A r B ==,方程组有无限个解, 这时,

244212210000000000000000r B --????

? ?= ? ? ? ?????

由此便得通解

123221x x x =-++(3x 可任意取值)

12123221100010x x c c x -???????? ? ? ? ?=++ ? ? ? ? ? ? ? ?????????

,(12,c c R ∈)。

16.解: 将向量1α,2α,3α,4α,5α看成一个矩阵的列向量组,得矩阵

1122220112130242

112

3A ?? ?-

?= ?- ???

对矩阵A 仅施以初等行变换,把A 化为阶梯形矩阵

11222112221001

1025320132101011022420088000110013210011000

00

0A ?????? ? ? ?---------

? ? ? ? ? ?---- ? ? ?----??????

因此向量组1α,2α,3α是向量组1α,2α,3α,4α,5α的一个极大线性无关组,且

4123αααα=-+,51230αααα=++?。

17.解:(1)二次型222

12312313(,,)2332T f x x x x x x ax x X AX =+++=,其中

2000303A a a ?? ?= ? ???,123x X x x ??

?= ? ???

由题意知A 的特征值为11λ=,22λ=,35λ=。将11λ=代入,得

22(2)(69)0(0)E A a a λλλλ-=--+-=>,

得2a =,于是200032023A ??

?

= ? ???

(3)下面求特征向量:当11λ=时,解得方程组()A E X O -=的基础解系为1011η??

?

= ? ?-??。

当22λ=时,解方程组(2)A E X O -=,可得线性方程组的基础解系为2100η?? ?

= ? ???。

当35λ=时,解方程组(5)A E X O -=,可得线性方程组的基础解系为3011η?? ?

= ? ???

容易看出1η,2η,3η两两正交。 (4)下面将1η,2η,3η单位化

111011ηαη???==??-?,222100ηαη?? ?== ? ???

,333011ηαη??

?

==??

?

。 (5)取(

)123010,,00

Q ααα??

? ? ==

?

。令X QY =, 其中所作的正交线性变换为X QY =,即

12321323,,

.x y y x y x y y ?=-???=???=??

(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。每小题 5 分,共 25 分) 1 3 1 1.若0 5 x 0 ,则__________。 1 2 2 x1 x2 x3 0 2.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。 x1x2x30 3.已知矩阵 A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。 4.已知矩阵A 为 3 3的矩阵,且| A| 3,则| 2A|。 5.n阶方阵A满足A23A E 0 ,则A1。 二、选择题(每小题 5 分,共 25 分) 6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?() A. 4 0 B. 4 4 C. 0 t 4 4 1 t 5 t D. t 2 5 5 5 5 1 4 2 1 2 3 7.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值() 0 4 3 0 0 5 A.3 B.-2 C.5 D.-5 8 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是() A. A0 B. A 1 0 C.r (A) n D.A 的行向量组线性相关 9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为() 1

x y 2 z 4 A. 3 1 2 x y 2 z 4 C. 3 1 2 x y 2 z 4 B. 3 2 2 x y 2 z 4 D. 3 2 2 10 3 1 .已知矩阵 A , 其特征值为( ) 5 1 A. 1 2, 2 4 B. C. 1 2, 2 4 D. 三、解答题 (每小题 10 分,共 50 分) 1 1 2, 2, 2 2 4 4 1 1 0 0 2 1 3 4 0 2 1 3 0 1 1 0 11.设B , C 0 2 1 且 矩 阵 满足关系式 0 0 1 1 0 0 1 0 0 0 2 T X (C B) E ,求 。 a 1 1 2 2 12. 问 a 取何值时,下列向量组线性相关? 1 1 1 , 2 a , 3 。 2 1 2 1 a 2 2 x 1 x 2 x 3 3 13. 为何值时,线性方程组 x 1 x 2 x 3 2 有唯一解,无解和有无穷多解?当方 x 1 x 2 x 3 2 程组有无穷多解时求其通解。 1 2 1 3 14.设 1 4 , 2 9 , 3 0 , 4 10 . 求此向量组的秩和一个极大无关 1 1 3 7 0 3 1 7 组,并将其余向量用该极大无关组线性表示。 15. 证明:若 A 是 n 阶方阵,且 AA A1, 证明 A I 0 。其中 I 为单位矩阵 I , 2

线性代数试题与答案

2011-2012-2线性代数46学时期末试卷(A) 考试方式:闭卷 考试时间: 一、单项选择题(每小题 3分,共15分) 1.设A 为m n ?矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。 (A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222 123123 (,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型. (A ) 1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥. 4.初等矩阵(A ); (A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,, ,n ααα线性无关,则(C ) A. 12231,,,n n αααααα-+++必线性无关; B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关; C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关; D. 以上都不对。 二、填空题(每小题3分,共15分) 6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t 7.设矩阵020003400A ?? ? = ? ??? ,则1A -=

线性代数期末考试试卷答案合集

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号填“√”,错误的在括号填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 £ s £ n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示

线性代数试卷(本)

系 班 学号 姓名 《线性代数》课终考试试卷 适用层次本科考试方式闭卷答卷时间120分钟 一、填空题(每题3分,共30分) 1. 设 000110 1=x x x ,则________=x 。 2. n 阶行列式满足846=-T D D ,则________=D 。 3. ________201132100 2=??? ? ??--+???? ??--。 4. 排列654213的逆序数________)654213(N 。 5. 设A 为3阶方阵,5=A ,则________2=T A 。 6. ________)(=T ABC 7. 设0=AB ,且方阵A 可逆,则________=B 。 8. ________102010001132214131=??? ? ? ??-????? ??。 9. 两个对称矩阵A 与B 的乘积仍为对称阵的充要条件是___。 10. 若O E A A A =+++23,则______1=-A 。 二.计算(每题7分,共42分) 1.1 1 3 1213 12-- 2. a b b a a b a b a 0000000 000000 3.求1 50232130 3140422----- 第一行元素余子式之和。

4.设????? ??=321212221A ,??? ?? ??-=121024114B ,求A B AB T -。 5.设??? ?? ??--=01122 0111A ,求1-A 。 6.解矩阵方程??? ? ??-=???? ??--13423523X 。 三. 解线性方程组(每题10分,共20分) 1. 用基础解系解下列线性方程组 ??? ??-=+-+=-+-=+-+2 534 4 3 231 24321 43214321x x x x x x x x x x x x 2.讨论a ,b 为何值时,下列方程组(1)无解;(2)有唯一解并求出解;(3)有无穷多组解并求出一般解(10分): ??? ??=+-=++=++4 2 3 4 321 321321x bx x x bx x x x ax 四.证明题(8分) 若A 是反对称矩阵,试证2A 是对称 矩阵。

线性代数试题及答案。。

第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ? ? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2η1+1 2 η2是Ax=b的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b的一个解 9.设n阶方阵A不可逆,则必有()

线性代数期末考试试题

《线性代数》重点题 一. 单项选择题 1.设A 为3阶方阵,数 = 3,|A | =2,则 | A | =( ). A .54; B .-54; C .6; D .-6. 解. .54227)3(33-=?-=-==A A A λλ 所以填: B. 2、设A 为n 阶方阵,λ为实数,则|λA |=( ) A 、λ|A |; B 、|λ||A |; C 、λn |A |; D 、|λ|n |A |. 解. |λA |=λn |A |.所以填: C. 3.设矩阵()1,2,12A B ?? ==- ??? 则AB =( ). 解. ().24121,221???? ??--=-???? ??=AB 所以填: D. A. 0; B. ()2,2-; C. 22?? ?-??; D. 2142-?? ?-?? . 4、123,,a a a 是3维列向量,矩阵123(,,)A a a a =.若|A |=4,则|-2A |=( ). A 、-32; B 、-4; C 、4; D 、32. 解. |-2A |=(-2)3A =-8?4=-32. 所以填: D. 5.以下结论正确的是( ). A .一个零向量一定线性无关; B .一个非零向量一定线性相关; C .含有零向量的向量组一定线性相关; D .不含零向量的向量组一定线性无关. 解. A .一个零向量一定线性无关;不对,应该是线性相关. B .一个非零向量一定线性相关;不对,应该是线性无关. C .含有零向量的向量组一定线性相关;对. D .不含零向量的向量组一定线性无关. 不对, 应该是:不能判断. 所以填: C. 6、 1234(1,1,0,0),(0,0,1,1),(1,0,1,0),(1,1,1,1),αααα====设则它的极 大无关组为( ) A 、 12,; αα B 、 123,, ;ααα C 、 124,, ;ααα D 、1234,, ,αααα

线性代数期末考试试卷答案合集

线性代数期末考试试卷 答案合集 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032=--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。 ( )

三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2 分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 12-n ③ 12+n ④ 4 2. n 维向量组 s ααα,, , 21(3 s n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④ s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关 4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。 ① 若A ,B 均可逆,则B A +可逆 ② 若A ,B 均可逆,则 A B 可逆 ③ 若B A +可逆,则 B A -可逆 ④ 若B A +可逆, 则 A ,B 均可逆 5. 若4321νννν,,,是线性方程组0=X A 的基础解系,则4321νννν+++是0=X A 的( ) ① 解向量 ② 基础解系 ③ 通解 ④ A 的行向量 四、计算题 ( 每小题9分,共63分) 1. 计算行列式 x a b c d a x b c d a b x c d a b c x d ++++。

线性代数试题和答案(精选版)

线性代数习题和答案 第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2 η1+ 1 2 η2是Ax=b的一个解

线性代数试卷A

信阳师范学院普通本科学生专业课期终考试试卷 经济与管理学院 专业2010级本科 2011—2012学年度第一学期《高等数学C(Ⅲ)》试卷(A ) 试卷说明: 1、试卷满分100分,共X 页,4个大题, 120分钟完成试卷; 2、钢笔或圆珠笔直接答在试题中(除题目有特殊规定外); 3、答卷前将密封线内的项目填写清楚。 一、选择题(每小题2分,共20分) 1.齐次线性方程组??? ??=X +X +X =X -X +X =X +X -X 0 002321 321321λλ 有非零解,则λ必须满足( ) A. λ≠﹣1 且λ≠4 B. λ=﹣1 C. λ=4 D. λ=﹣1或λ=4 2.已知A 、B 均为n 阶矩阵,且A ≠0,AB=0,下列结论必然正确的是( ) A. B=0 B. (A+B )2=A 2+B 2 C. A-B )2=A 2-BA+B 2 D. (A-B)(A+B )=A 2-B 2 3.已知B 为可逆矩阵,则[ ] {}T T B 1 1) (--=( ) A. B B. T B C. 1 -B D. T B )(1- 4.设有两个向量组(Ⅰ):,,,321ααα 和(Ⅱ).,,,4321αααα则下列各结论中正确的是( ) A. 如果(Ⅰ)线性无关,则(Ⅱ)线性无关 B. 如果(Ⅰ)线性关,则(Ⅱ)线性相关 C. 如果(Ⅱ)线性无关,则(Ⅰ)线性相关 第一页(共六页) D. 如果(Ⅱ)线性相关,则(Ⅰ)线性相关 5. 设方阵A 的行列式|A|=0,则A 中( ) A.必有一列元素为0 B. 必有两列元素对应成比例 C.必有一列向量是其余列向量的线性组合 D.任一列向量是其余列向量的线性组合 6.设向量组A:r ααα,,2,1Λ可以由向量组B:s βββ,,,21Λ线性表示,则( ) A. 当r <s 时,向量组B 必线性相关 B. 当r >s 时,向量组B 必线性相关 C. 当r <s 时,向量组A 必线性相关 D. 当r >s 时,向量组A 必线性相关 7.设n 阶方阵A 的伴随矩阵为*A ,且|A|=a ≠0,则||* A =( ) A. α B.a 1 C. 1 -n a D. n a 8.设A ,B 均为n 阶矩阵,并A~B ,则下述结论中不正确的是( ) A. A 与B 有形同的特征值和特征向量 B. |A|=|B| C. r(A)=r(B) D. 1-A =1-B 9.设矩阵A=??? ? ? ??--21110 2113 ,则A 的对应于特征值λ=2的一个特征向量α=( ) A. ??? ? ? ??101 B. ??? ? ? ??-101 C. ??? ? ? ??011 D. ???? ? ??110 10.已知矩阵A 相似于对角阵Λ,其中Λ=??? ? ? ??300020001,则下列各矩阵中的可逆矩阵是( ) A. I+A B. I-A C. 2I-A D. 3I-A 第二页(共六页)

线性代数试卷及答案

《 线性代数A 》试题(A 卷) 试卷类别:闭卷 考试时间:120分钟 考试科目:线性代数 考试时间: 学号: 姓名: 题号 一 二 三 四 五 六 七 总 分 得分 阅卷人 一.单项选择题(每小题3分,共30分) 1.设A 经过初等行变换变为B ,则( ).(下面的(),()r A r B 分别表示矩阵,A B 的秩)。 () A ()()r A r B <; () B ()()r A r B =; ()C ()()r A r B >; () D 无法判定()r A 与()r B 之间的关系。 2.设A 为 (2)n n ≥阶方阵且||0A =,则( )。 () A A 中有一行元素全为零; () B A 有两行(列)元素对应成比例; () C A 中必有一行为其余行的线性组合; () D A 的任一行为其余行的线性组合。 3. 设,A B 是n 阶矩阵(2n ≥), AB O =,则下列结论一定正确的是: ( ) () ;A A O B O ==或 ()AX B B 的每个行向量都是齐次线性方程组=O 的解. ();C BA O = ()()().D R A R B n +≤ 4.下列不是n 维向量组12,,...,s ααα线性无关的充分必要条件是( ) () A 存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++≠;

() B 不存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++= 12(),,...,s C ααα的秩等于s ; 12(),,...,s D ααα中任意一个向量都不能用其余向量线性表示 5.设n 阶矩阵(3)n ≥1...1................1a a a a a a A a a a ?? ? ? ?= ? ? ???,若矩阵A 的秩为1n -,则a 必为( )。 ()A 1; () B 11n -; () C 1-; () D 11 n -. 6.四阶行列式 1 1 2 2334 4 0000 000 a b a b b a b a 的值等于( )。 ()A 12341234a a a a b b b b -; ()B 12341234a a a a b b b b +; () C 12123434()()a a b b a a b b --; () D 23231414()()a a b b a a b b --. 7.设A 为四阶矩阵且A b =,则A 的伴随矩阵* A 的行列式为( )。 ()A b ; () B 2b ; () C 3b ; () D 4b 8.设A 为n 阶矩阵满足23n A A I O ++=,n I 为n 阶单位矩阵,则1 A -=( ) () n A I ; ()3n B A I +; ()3n C A I --; ()D 3n A I + 9.设A ,B 是两个相似的矩阵,则下列结论不正确的是( )。 ()A A 与B 的秩相同; ()B A 与B 的特征值相同; () C A 与B 的特征矩阵相同; () D A 与B 的行列式相同;

同济大学线性代数期末试卷全套试卷(1至4套)

《线性代数》期终试卷1 ( 2学时) 本试卷共七大题 一、填空题(本大题共7个小题,满分25分): 1.(4分)设阶实对称矩阵的特征值为, , , 的属于的特征向量是 , 则的属于的两个线性无关的特征向量是 (); 2.(4分)设阶矩阵的特征值为,,,, 其中是的伴随 矩阵, 则的行列式(); 3.(4分)设, , 则 (); 4.(4分)已知维列向量组所生成的向量空间为,则的维数dim(); 5.(3分)二次型经过正交变换可化为 标准型,则();

6.(3分)行列式中的系数是(); 7.(3分) 元非齐次线性方程组的系数矩阵的秩为, 已知是它的个 解向量, 其中, , 则该方程组的通解是 ()。 二、计算行列 式: (满分10分) 三、设, , 求。 (满分10分) 四、取何值时, 线性方程组无解或有解?有解时求出所有解(用向量形式表示)。

(满分15分) 五、设向量组线性无关, 问: 常数满足什么条件时, 向量组 , , 也线性无关。 (满分10分) 六、已知二次型, (1)写出二次型的矩阵表达式; (2)求一个正交变换,把化为标准形, 并写该标准型; (3)是什么类型的二次曲面? (满分15分) 七、证明题(本大题共2个小题,满分15分): 1.(7分)设向量组线性无关, 向量能由线性表示, 向量 不能由线性表示 . 证明: 向量组也线性无关。 2. (8分)设是矩阵, 是矩阵, 证明: 时, 齐次线性方程组 必有非零解。

《线性代数》期终试卷2 ( 2学时) 本试卷共八大题 一、是非题(判别下列命题是否正确,正确的在括号内打√,错误的在括号内打×;每小题2 分,满分20 分): 1. 若阶方阵的秩,则其伴随阵 。() 2.若矩阵和矩阵满足,则 。() 3.实对称阵与对角阵相似:,这里必须是正交 阵。() 4.初等矩阵都是可逆阵,并且其逆阵都是它们本 身。() 5.若阶方阵满足,则对任意维列向量,均有 。()

线性代数试卷及答案

考试科目: 线性代数 考试类型:(闭卷) 考试时间: 120 分钟 学号 姓名 年级专业 一. 选择题(本大题共5小题,每小题3分,共15分)在每小题的选项中,只有一项符合要求,把所选项前的字母填在题中括号内 1.设n B A 均为,阶方阵,则必有( D ) (A) B A B A +=+ (B) BA AB = (C) 111)(---+=+B A B A (D) BA AB = 2. 已知,A B 均为n 阶实对称矩阵,且都正定,那么AB 一定是( C ) (A) 对称矩阵 (B) 正定矩阵 (C) 可逆矩阵 (D) 正交矩阵 3.设矩阵142242A ab a 2 1?? ? =2 + ? ? + ?? 的秩为2,则( C ) (A) 0,0a b == (B) 0,0a b =≠ (C) 0,0a b ≠= (D) 0,0a b ≠≠ 4.设A 为3阶矩阵,*A 为A 的伴随矩阵,A 的行列式|A |=2,则2*-A =( A ) 5. 设 (),ij n n A a ?=且A 的行列式A =0, 但A 中某元素kl a 的代数余子式 0,kl A ≠ 则齐次线性方程组0AX =的基础解系中解向量个数是( A ) 二、填空题(本大题共5小题,每小题4分,满分20分) 6. 设四阶行列式D 的第四列元素分别为1,0,2,3且他们对应的余子式分别为2,3,1,2-,则D=______2_______. 7. 向量[1,4,0,2α=与 [2,2,1,3]β=-的距离和内积分别为_________和___0____. 8. 设向量组(1,0,1),(2,,1),T T k ==-αβ(1,1,4)=--T γ线性相关,则k =___1___. (A) 52- (B) 32- (C) 32 (D) 52 (A) 1 (B) k (C) l (D) n

线性代数期末考试试题含答案

线性代数期末考试试题含 答案 The final edition was revised on December 14th, 2020.

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( )

(完整版)线性代数试卷及答案详解

《线性代数A 》试题(A 卷) 试卷类别:闭卷考试时间:120分钟考试科目:线性代数考试时间:学号:姓名:

《线性代数A》参考答案(A卷)一、单项选择题(每小题3分,共30分) 二、填空题(每小题3分,共18分)

1、 256; 2、 132465798?? ? --- ? ???; 3、112 2 112 21122 000?? ?- ? ?-?? ; 4、 ; 5、 4; 6、 2 。 三. 解:因为矩阵A 的行列式不为零,则A 可逆,因此1X A B -=.为了求1A B -,可利用下列初等行变换的方法: 2312112 01012 010******* 12101 141103311033102321102721 002781 002780 11410 101440 10144001103001103001103---?????? ? ? ? -??→-??→-- ? ? ? ? ? ?--? ?? ?? ?-?????? ? ? ? ??→--??→-??→-- ? ? ? ? ? ??????? ―――――(6分) 所以1 278144103X A B -?? ?==-- ? ??? .―――――(8分) 四.解:对向量组12345,,,,ααααα作如下的初等行变换可得: 12345111 4 3111431132102262(,,,,)21355011313156702262ααααα--???? ? ? ----- ? ? = → ? ? --- ? ? ? ?---???? 11 1 431 2 12011310 1131000000 0000000000 0000--???? ? ? ---- ? ? →→ ? ? ? ? ? ?? ???――――(5分) 从而12345,,,,ααααα的一个极大线性无关组为12,αα,故秩 12345{,,,,}ααααα=2(8分)

线性代数期末考试试题(含答案)

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( ) (A )任意r 个列向量线性无关

历年自考线性代数试题真题及答案分析解答

全国2010年度4月高等教育自学考试线性代数(经管类)试题答案 一、单项选择题(本大题共10小题,每小题2分,共20分) 1.已知2阶行列式m b b a a =2 1 21, n c c b b =2 1 21,则 =++2 21 121c a c a b b ( B ) A .n m - B .m n - C .n m + D .)(n m +- m n n m c c b b a a b b c a c a b b -=+-=+ = ++2 1 212 1 212 21 121. 2.设A , B , C 均为n 阶方阵,BA AB =,CA AC =,则=ABC ( D ) A .ACB B .CAB C .CBA D .BCA BCA CA B AC B C BA C AB ABC =====)()()()(. 3.设A 为3阶方阵,B 为4阶方阵,且1||=A ,2||-=B ,则行列式||||A B 之值为( A ) A .8- B .2- C .2 D .8 8||)2(|2|||||3-=-=-=A A A B . 4.????? ??=3332 312322 21131211a a a a a a a a a A ,????? ??=3332 312322 211312 11333a a a a a a a a a B ,????? ??=100030001P ,??? ? ? ??=100013001Q ,则=B ( B ) A .PA B .AP C .QA D .AQ ????? ??=3332312322 211312 11a a a a a a a a a AP ????? ??100030001B a a a a a a a a a =??? ? ? ??=3332312322 211312 11333. 5.已知A 是一个43?矩阵,下列命题中正确的是( C ) A .若矩阵A 中所有3阶子式都为0,则秩(A )=2 B .若A 中存在2阶子式不为0,则秩(A )=2 C .若秩(A )=2,则A 中所有3阶子式都为0 D .若秩(A )=2,则A 中所有2阶子式都不为0 6.下列命题中错误..的是( C ) A .只含有1个零向量的向量组线性相关 B .由3个2维向量组成的向量组线性相关

线性代数试题及答案。。

第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一 个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1。设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B。-(m+n) C。 n-m D。 m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于( ) A。 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3。设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A*中位于(1,2)的元素是( ) A。–6 B。 6 C. 2 D. –2 4。设A是方阵,如有矩阵关系式AB=AC,则必有() A。A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B。 2 C. 3 D. 4 6。设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则( ) A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C。有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2—β2)+…+λs(αs—β s)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λs αs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中( ) A.所有r—1阶子式都不为0 B.所有r—1阶子式全为0 C。至少有一个r阶子式不等于0 D。所有r阶子式都不为0 8。设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是( ) A。η1+η2是Ax=0的一个解B。1 2 η1+ 1 2 η2是Ax=b的一个解

线性代数模拟试题(4套)

模拟试题一 一、判断题:(正确:√,错误:×)(每小题2分,共10分) 1、若B A ,为n 阶方阵,则 B A B A +=+. ……………………( ) 2、可逆方阵A 的转置矩阵T A 必可逆. ……………………………( ) 3、n 元非齐次线性方程组b Ax =有解的充分必要条件n A R =)(.…( ) 4、A 为正交矩阵的充分必要条件1-=A A T .…………………………( ) 5、设A 是n 阶方阵,且0=A ,则矩阵A 中必有一列向量是其余列向量的线性组合. …………………………………………………………( ) 二、填空题:(每空2分,共20分) 1、,A B 为 3 阶方阵,如果 ||3,||2A B ==,那么 1|2|AB -= . 2、行列式中元素ij a 的余子式和代数余子式,ij ij M A 的关系是 . 3、在5阶行列式中,项5541243213a a a a a 所带的正负号是 . 4、已知()?? ?? ? ??-==256, 102B A 则=AB . 5、若? ?? ? ??--=1225A ,则=-1 A . 6、设矩阵??? ? ? ??--2100013011080101是4元非齐次线性方程组b Ax =的增广矩阵,则 b Ax =的通解为 . 7、()B A R + ()()B R A R +. 8、若*A 是A 的伴随矩阵,则=*AA . 9、设=A ??? ? ? ??-50021011 1t ,则当t 时,A 的行向量组线性无关. 10、方阵A 的特征值为λ,方阵E A A B 342+-=,则B 的特征值为 . 三、计算:(每小题8分,共16分)

线性代数期末考试试卷

本科生2010——2011学年第 一 学期《线性代数》课程期末考试试卷(B 卷) 草 稿 区 专业: 年级: 学号: 姓名: 成绩: 一 、选择题(本题共 28 分,每小题 4 分) 1.设n 阶方阵A 为实对称矩阵,则下列哪种说法是错误的 ( B ) (A) A 的特征值为实数; (B) A 相似于一个对角阵; (C) A 合同于一个对角阵; (D) A 的所有特征向量两两正交。 2.设n 维列向量组)(,,21n m m <ααα 线性无关,则n 维列向量组m βββ ,,21线性无关的充要条件是 ( D ) (A)向量组m ααα ,,21可由向量组m βββ ,,21线性表示; (B) 向量组m βββ ,,21可由向量组m ααα ,,21线性表示; (C) 矩阵),,(21m ααα 与矩阵),,(21m βββ 等价; (D) 向量组m ααα ,,21与向量组m βββ ,,21等价。 3.设n 阶方阵A 的伴随矩阵为*A ,则 ( C ) (A) *A 为可逆矩阵; (B) 若0||=A ,则0||*=A ; (C) 若2)(*-=n A r ,则2)(=A r ; (D) 若0||≠=d A ,则d A 1||*= 。 4.设A 为n 阶非零方阵,E 为n 阶单位矩阵,30A =则 ( ) (A)()E A -不可逆,()E A +不可逆; (B) ()E A -不可逆,()E A +可逆; (C) ()E A -可逆,()E A +可逆; (D) ()E A -可逆,()E A +不可逆. 第 1页,共 6 页

5.实数二次型T f X AX =为正定二次型的充分必要条件是 ( ) (A) 负惯性指数全为零; (B) ||0A >; (C) 对于任意的0X ≠,都有0f >; (D) 存在n 阶矩阵U ,使得T A U U =. 6.设12,λλ为A 的不同特征值,对应特征向量为12,αα,则112,()A ααα+线性无关的充要条件为 ( ) (A)10λ≠; (B) 20λ≠; (C) 10λ=; (D) 20λ=. 7.设211100121,010112000A B --???? ? ? =--= ? ? ? ?--???? ,则 ( ) (A) A 与B 合同,但不相似;(B) A 与B 相似,但不合同; (C) A 与B 既合同又相似; (D) A 与B 既不合同也不相似. 二 、填空题(本题共 24分,每小题 4 分) 1.二次型2221231231213(,,)22f x x x x x x x x tx x =++++是正定的,则t 的取值范围是 . 2.设01000 01000010 000A ?? ? ? = ? ? ?? ,则3A 的秩3()r A 为 . 3.设三阶矩阵A 的特征值为,2,3λ,若|2|48A =-,则λ= . 4.设向量123(1,2,1,0),(1,1,0,2),(2,1,1,)T T T a ααα=-==,若123,,ααα构成的向量组的秩为2, 则a = . 5.设3阶矩阵123(,,)A ααα=,123123123(,24,39)B ααααααααα=++++++,且已知||1A =,则||B = . 第 2页,共 6 页

相关文档
最新文档