超临界CO_2萃取花椒油及微胶囊颗粒制备过程

超临界CO_2萃取花椒油及微胶囊颗粒制备过程
超临界CO_2萃取花椒油及微胶囊颗粒制备过程

超临界萃取的技术原理

一、超临界萃取的技术原理 利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以超临界CO2流体萃取过程是由萃取和分离过程组合而成的。 超临界CO2是指处于临界温度与临界压力(称为临界点)以上状态的一种可压缩的高密度流体,是通常所说的气、液、固三态以外的第四态,其分子间力很小,类似于气体,而密度却很大,接近于液体,因此具有介于气体和液体之间的气液两重性质,同时具有液体较高的溶解性和气体较高的流动性,比普通液体溶剂传质速率高,并且扩散系数介于液体和气体之间,具有较好的渗透性,而且没有相际效应,因此有助于提高萃取效率,并可大幅度节能。 超临界CO2的物理化学性质与在非临界状态的液体和气体有很大的不同。由于密度是溶解能力、粘度是流体阻力、扩散系数是传质速率高低的主要参数,因此超临界CO2的特殊性质决定了超临界CO2萃取技术具有一系列的重要特点。超临界CO2的粘度是液体的百分之一,自扩散系数是液体的100倍,因而具有良好的传质特性,可大大缩短相平衡所需时间,是高效传质的理想介质;具有比液体快得多的溶解溶质的速率,有比气体大得多的对固体物质的溶解和携带能力;具有不同寻常的巨大压缩性,在临界点附件,压力和温度的微小变化会引起CO2的密度发生很大的变化,所以可通过简单的变化体系的温度或压力来调节CO2 的溶解能力,提高萃取的选择性;通过降低体系的压力来分离CO2和所溶解的产品,省去消除溶剂的工序。 在传统的分离方法中,溶剂萃取是利用溶剂和各溶质间的亲和性(表现在溶解度)的差异来实现分离的;蒸馏是利用溶液中各组分的挥发度(蒸汽压)的不同来实现分离的。而超临界CO2萃取则是通过调节CO2的压力和温度来控制溶解度和蒸汽压这2个参数进行分离的,故超临界CO2萃取综合了溶剂萃取和蒸馏的2种功能和特点,进而决定了超临界CO2萃取具有传统普通流体萃取方法所不具有的优势:通过调节压力和温度而方便地改变溶剂的性质,控制其选择性;适当地选择提取条件和溶剂,能在接近常温下操作,对热敏性物质可适用;因粘度小、扩散系数大,提取速度较快;溶质和溶剂的分离彻底而且容易。从它的特性和完整性来看,相当于一个新的单元操作,因此引起了国内外的广泛关注。二、超临界萃取的特点

微胶囊的制备与应用

《胶体与表面化学》课程期末论文 论文题目:微胶囊的制备与应用 班级:08材料科学与工程专业 姓名: 李崴 学号: 20080403B013 课程老师:张萍 完成日期:2011年6月27日

微胶囊的制备与应用 李崴20080403B013 海南大学材料与化工学院材料科学与工程专业,海南海口(570228) 摘要:综述了微胶囊的制备及其应用。重点介绍了化学法(原位聚合法、界面聚合法等)、物理化学法(复合凝聚法、复相乳液法等)、物理法(喷雾干燥法、溶剂蒸发法、静电喷雾法等)等制备微胶囊的常用方法及研究进展,分析了微胶囊的应用研究现状,并对微胶囊技术发展前景进行了展望。 关键词: 微胶囊,制备,应用,展望 0引言 微胶囊技术是利用成膜材料包覆具有分散性的固体物质、液滴或气体而形成微粒的一种技术。通常包覆膜是致密的由天然或合成高分子材料制成,称为壁材(囊壁);被包覆的物质称为芯材(囊芯)。囊芯可以是固体、液体或气体,含固体的微胶囊形状一般与固体相同,含液体或气体的微胶囊的形状一般为球形,大小一般在2~200μm范围内。囊壁的厚度一般在0.15~150μm,0.15μm以下囊壁也可生产。微胶囊由于具有独特的功能特性,已应用到医药、农业、计算机、化学品、食品加工、化妆品等工业中,并具有很好的发展前景。随着科技的发展,许多科研工作者把对微胶囊的研究目光投向纳米微胶囊[1]。 应用微胶囊技术的目的主要有3点:1)改变液体的分散状态,降低其挥发性,克服液体与周围介质材料的热力学不兼容性;2)芯材与周围介质之间或芯材颗粒之间的绝缘;3)采用扩散或者壳体破坏的方法延缓被包裹物质向介质的释放。采用微胶囊技术制得的产品有良好的功能性质和贮存稳定性,使用方便,可以解决传统工艺所不能解决的许多问题。 1制备与研究 微胶囊的制备技术涉及到物理和胶体化学、高分子化学及物理化学、材料化学、分散和干燥技术等学科领域。通常根据性质、囊壁形成的机制和成囊的条件分为物理法、物理化学法、化学法等3大类,其中以凝聚法、界面聚合法、原位聚合法应用最为广泛。

超临界萃取原理

超临界萃取原理 超临界流体萃取是当前国际上最先进的物理分离技术。 常见的临界流体中,由于CO2化学性质稳定,无毒害和无腐蚀性,不易燃和不爆炸,临界状态容易实现,而且其临界温度(31.1℃)接近常温,在食品及医药中香气成分,生理活性物质、酶及蛋白质等热敏物质无破坏作用,因而常用CO2作为作为萃取剂进行超临界萃取。 一、超临界CO2 纯CO2的临界压力是7.3MPa和31.1℃时,此状态CO2被称为超临界CO2。在超临界状态下,CO2流体是一种可压缩的高密度流体,成为性质介于液体和气体之间的单一状态,兼有气液两相的双重特点:它的密度接近液体,粘度是液体的1%,自扩散系数是液体的100倍,因而它既具有与气体相当的高扩散系数和低粘度,又具有与液体相近的密度和对某些物质很强的溶解能力,可以说超临界CO2对某些物质有着特殊的渗透力和溶解能力。 二、超临界CO2萃取过程 超临界CO2密度对对温度和压力变化十分敏感,所以调节正在使用的CO2的压力和密度,就可以通过调节CO2密度来调整该CO2对欲提取物质的溶解能力;对应各压力范围所得到的的萃取物不是单一的,可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,与被萃取物质完全或部分分开,从而达到分离提纯的目的。 三、超临界CO2溶解选择性 超临界状态下的CO2具有选择性溶解,对低分子、弱极性、脂溶性、低沸点的成分如挥发油、烃、酯、内脂、醚、环氧化合物等表现出优异的溶解性,而对具有极性集团(-OH、-COOH等)的化合物,极性基团愈多,就愈难萃取,故多元醇、多元酸及多羟基的芳香物质均难溶于超临界CO2。对于分子量大的化合物,分子量越大,越难萃取,分子量超过500的高分子化合物几乎不溶,因而对这类物质的萃取,就需加大萃取压力或者向有效成分和超临界CO2组成的二元体系中加入具有改变溶质溶解度的第三组成粉(即夹带剂),来改变原来有效成分的溶解度。一般来说,具有很好性能的溶剂,也往往是很好的夹带剂,如甲

超临界二氧化碳萃取技术

摘要:介绍了超临界二氧化碳萃取技术的基本原理和特点,简单说明了该技术在香料、医药、食品等工业上的应用。 关键词:超临界二氧化碳萃取分离技术基本原理 前言 超临界流体萃取,又称超临界萃取、压力流体萃取、超临界气体萃取。它是以高压、高密度的超临界状态流体为溶剂,从液体或固体中萃取所需要的组分,然后采用升温、降压或二者兼用和吸收(吸附)等手段将溶剂与所萃取的组分分离。 早在1897年,人们就已经认识到了超临界萃取这一概念。当时发现超临界状态的压缩气体对于固体具有特殊的溶解作用。例如再高于临界点的条件下,金属卤化物可以溶解再在乙醇或四氯化碳中,当压力降低后又可以析出。但直到20世纪60年代,才开始了其工业应用的研究。目前超临界二氧化碳萃取已成为一种新型萃取分离技术,被广泛应用于食品、医药、化工、能源、香精香料的工业的生产部门。 1 超临界萃取的原理 当液体的温度和压力处于它的临界状态。 如图1是纯流体的典型压力—温度图。图中, AT表示气—固平衡的升华曲线,BT表示液— 固平衡的熔融曲线,CT表示气-液平衡的饱 和液体的蒸汽压曲线,点T是气-液-固三相 共存的三相点。按照相率,当纯物的气-液- 固三相共存时,确定系统状态的自由度为零, 即每个纯物质都有自己确定的三相点。将纯物 质沿气-液饱和线升温,当达到图中的C时, 气-液的分界面消失,体系的性质变得均一, 不再分为气体和液体,称点C为临界点。与该点相对应的临界温度和压力分别称 为临界温度T 0和临界压力P 。图中高于临界温度和临界压力的有影阴的区域属 于超临界流体状态。 在这种状态下,它既不完全与一般气相相同,又不是液相,故称为超临界流体。超临界流体有气、液相的特点,它既有与气体相当的高渗透力和低粘度,又兼有液体相近的密度和对物质优良的溶解能力。这种溶解能力能随体系参数的变化而连续的改变,因而可以通过改变体系的温度和压力,方便的调节组分的溶解度和萃取的选择性。利用上述特点,超临界二氧化碳萃取技术主要分为两大类原理流程即恒温降压流程和恒压升温流程。前者萃取相经减压,后者萃取相经升温。

微胶囊的制备方法

1.1 引言 微胶囊技术[1]已被广泛应用于医药、农药、香料、食品、染料等行业或领域微胶囊化过程中,囊壁材料是决定微胶囊性能的关键因素。因此,对于微胶囊囊壁材料的选择至关重要。环境响应型微胶囊对外界环境中离子强度、pH、温度、电场等的变化具有化学阀的作用,能根据环境信息变化自动改变自身状态并做出反应。环境响应型微胶囊对环境的应答是通过聚合物分子链或网链的构象变化实现的,因此,可以通过控制外部环境因素使大分子或凝胶网链呈不同构象状态,进一步调控胶囊壁材[2]的孔径大小,有效调节聚合物微胶囊壁材的渗透性来进行客体分子的控制释放,其释放速率可以通过客体分子穿过聚合物微胶囊壁材的扩散速率进行调节。所以这种环境响应型微胶囊在药物包装领域有着广阔的前景[3]。 微胶囊因其具有长效、高效、靶向、低副作用等优良的控制释放性能,在药物控制释放等领域具有广阔的应用前景。随着微胶囊技术的发展和应用,近年来人们提出了环境感应型微胶囊,通过外界环境的刺激实现药物的智能释放,并日益受到重视和关注由于温度变化不仅自然存在的情况很多,而且很容易靠人工实现,所以迄今国外对温度感应型微胶囊的研究较多,但国内研究相对甚少。温度感应型微胶囊的基材主要是聚N-异丙基丙烯酰胺[4](PNIPAAm)它的水溶液具有温敏性,当温度等于或高于它的最低临界溶解温度(LCST约为32℃)时,它在一个相当宽的浓度范围可以发生相分离;而当温度低于LCST时,沉淀的PNIPAAm 又能迅速溶解[5]。交联的PNIPAAm在32℃左右也有一个较低的临界溶解温度NIPAAm与某些单体或聚合物形成的共聚物以及共聚物的共混物也具有这种特性,这种对环境温度敏感的特性引起了人们很大的兴趣。本文以N-异丙基丙烯酰胺和乙基纤维素[6]的共聚物作为壁材,采用乳液聚合法制备温度感应型微胶囊。 1.2 微胶囊常用的制备方法 1.2.1 界面聚合法 该法制备微胶囊的过程包括:①通过适宜的乳化剂形成油/水乳液或水/油乳液,使被包囊物乳化;②加入反应物以引发聚合,在液滴表面形成聚合物膜; ③微胶囊从油相或水相中分离。在界面反应制备微胶囊时,影响产品性能的重要因素是分散状态。搅拌速度、黏度及乳化剂、稳定剂的种类与用量对微胶囊的粒度分布、囊壁厚度等也有很大影响。作壁材的单体要求均是多官能度的,如多元

微胶囊的制备

第一章温敏性微胶囊的制备 2.1 实验原料与仪器 2.1.1 制备微胶囊实验所使用的原料 温敏微胶囊的制备可分为三个过程,首先是采用ATRP法制备不同比列引发剂EC-Br,然后将大分子引发剂与NIPAAm嵌段共聚物,合成具有温敏性且分子量分布窄、相对分子量可控的嵌段共聚物EC-g-PNIPAAm,最后将嵌段共聚物与艾叶水通过乳液溶剂蒸发法,制备出温敏性胶囊。制备微胶囊实验所使用的原料如下表2.1.1所示 表2.1 实验原料统计

2.1.2 制备微胶囊实验所使用的仪器 制备温敏性微胶囊所使用的原料如下表2.2所示: 表2.2 实验仪器

2.2 温敏聚合物的合成与表针 2.2.1 大分子引发剂的合成 乙基纤维素大分子引发剂EC-Br的合成过程如图 2.1,将乙基纤维素(EC 11.60g)溶于四氢呋喃(90ml)中,加入三乙胺(20.8ml),使其溶解,搅拌均匀。将2-溴异丁酰溴(3.27ml)溶于THF(60ml)中,在冰水浴的条件下,缓慢滴加到EC/THF 溶液中。待2-溴异丁酰溴滴加完毕后,于室温下继续反应24小时。然后静置过夜,使盐沉于瓶底。倒出上层清液,旋转蒸发浓缩后,滴加到二次水中沉淀,得到白色絮状的沉淀。再用THF溶解,反复在二次水水中沉淀三次。产物置真空烘箱中于45℃下干燥12小时得到乙基纤维素大分子引发EC-Br。在本次实验过程中通过调节乙基纤维素上羟基与2-溴异丁酰溴的摩尔比来制得不同取代度的大分子引发剂,如图2.1所示。 图2.1 乙基纤维素大分子引发剂的合成过程 2.3 测试与表征 2.3.1 傅立叶变换红外光谱(FTIR) 采用美国热电—尼高力仪器公司生产的Nicolet 380型傅立叶变换红外光谱仪对产物进行测试。样品为粉末,经KBr压片制样,观察波长为400~4000 cm-1。

微胶囊技术的应用及其发展_刘永霞

收稿日期:2002-11-22 第一作者简介:刘永霞(1973-),女,硕士研究生。 微胶囊技术的应用及其发展 刘永霞,于才渊 (大连理工大学化工学院工程研究室,辽宁大连 116012) 摘 要:微胶囊化方法是功能性材料制备中一项重要的应用技术,近年来受到普遍关注。本文中详细地介绍了几种重要的胶囊制备方法及其在食品、渔业、医药和生物化工领域的应用实例,指出了该技术的发展前景。关键词:微胶囊;纳米微胶囊;功能材料中图分类号:T B34 文献标识码:A 文章编号:1008-5548(2003)03-0036-05 Application and Recent Progress of Microencapsulation Technology LIU Yong -xia ,Y U Cai -yuan (School of Chemical Engineering ,Dalian University of Technology ,Dal ian 116012,China ) A bstract :M icroencapsulation is an impor tant techmology of the production of functio nal powders ,and in recent y ears more and mo re attentin is paid to it .Several impo rtant microencapsula tio n technologies and applications in the field of food ,fish industiy ,medicine ,biochemical engineering ,et al .are introduced ,and the prog ress of microencapsulation technolog y is also pointed out .Key words :microcapsule ;nano -microcapsule ;functional materi -als 微胶囊技术是指利用成膜材料将固体、液体或气体囊于其中,形成直径几十微米至上千微米的微小容器的技术[1]。微小容器被称为微胶囊,器壁被称为壁材或壳材,而其内部包覆的物质则称为芯材 或囊芯。含固体的微胶囊形状一般与固体相同,含液体或气体的微胶囊的形状一般为球形。 从不同的角度出发,微胶囊有多种分类方法:从芯材来看,分为单核和复核微胶囊;从壁材结构来分,可分为单层膜和多层膜微胶囊;从壁材的组成来看,分为无机膜和有机膜微胶囊;从透过性来讲,又 分为不透和半透微胶囊,半透微胶囊通常也称为缓释微胶囊。 微胶囊具有保护物质免受环境的影响,降低毒 性,掩蔽不良味道,控制核心释放,延长存储期,改变物态便于携带和运输,改变物性使不能相容的成分均匀混合,易于降解等功能[2~4] 。这些功能使微胶囊技术成为工业领域中有效的商品化方法。美国的NRC 公司利用微胶囊技术于1954年研制成第一代无碳复写纸微胶囊[5~6],并投放市场,从此,微胶囊技术得到突飞猛进的发展。 1 微胶囊技术简介 微胶囊技术从20世纪30年代发展至今已有 60多年的历史。随着新材料的不断出现,到目前为止,微胶囊化的方法已将近200种[7],但还没有一套系统的分类方法。目前人们大致上将其分为:物理法、物理化学法和物理机械法[8] 。微胶囊化方法选择的依据主要是生产要求的粒子平均粒径、芯材及壁材的物理化学特性、微胶囊的应用场合、控制释放的机理、工业生产的规模及生产成本等。本文主要介绍其中的锐孔-凝固浴法、凝聚相分离法、喷雾干燥法和流化床喷涂法。之所以介绍这几种方法,主要是因为它们都适用于工业大规模生产。 锐孔-凝固浴法:是指将喷嘴喷出的微粒通过 多联化而后形成微胶囊。该法是Mabbs 于1940年和Rabbool 于1950年提出的[9]。此法一般是以可熔(溶)性高聚物作原料包覆囊芯,而在凝固浴中(水或溶液)固化形成微胶囊,固化过程可能是化学反应,也可能是物理过程。它采用的成膜材料多为褐藻酸钠、聚乙烯醇、明胶、蜡和硬化油脂等。由于在凝固浴中发生固化反应,一般进行得很快,因此含有囊芯的聚合物壁膜在到达凝固浴之前预先形成,这就需要锐孔装置(滴管是其中最简单的一种)。图1为该法流程图。 此项技术的关键除芯壁材的配比外,是否在凝固浴中加入搅拌也是相当重要的,如王显伦[9]在制 第9卷第3期2003年6月 中 国 粉 体 技 术 China Powder Science and Technology Vol .9No .3June 2003 DOI :10.13732/j .issn .1008-5548.2003.03.011

二氧化碳超临界萃取技术

超临界CO2萃取装置 该装置主要由萃取釜、分离釜、精镏柱、CO2高压泵、副泵、制冷系统、CO2贮罐、换热系统、净化系统、流量计、温度、压力控制(保护)系统等组成。 超临界CO2萃取装置的主要技术指标 萃取釜:0.5L、1L、2L、5L/50Mpa;10L、24L/40Mpa;50-200L/32Mpa,固态两用。配水夹套循环加热,温度可调。 分离釜:0.3-10L/30Mpa;50-100L/16-22Mpa。配水夹套循环加热,温度可调。 精镏柱:内径ф25×2-3m/30Mpa;ф35×2-3m/30Mpa;ф48×4-6m/30Mpa;ф78×4-6m/30Mpa,根据工艺要求可分4节、6节、8节梯度控温;柱内根据工艺要求由用户选相关填料。 CO2高压泵:20L/40Mpa·h双柱塞,50L/50Mpa·h双柱塞调频,400L/40Mpa·h三柱塞调频,800L/40Mpa·h三柱塞调频,泵头带冷却系统。 携带剂泵:用于萃取过程中,夹带溶剂来改变CO2极性,扩大应用范围。 制冷系统:配半封式、全封式压缩机,制冷量满足工艺要求。 换热及温度的控制系统:根据工艺要求,萃取釜、分离釜、精镏柱分别配置换热和温控系统,温度控制-85℃水循环、室温-150℃油循环,温度控制数显双屏控制水浴温度,测试CO2流体温度,控温±1℃ 压力控制(保护):高压泵出口配电接点压力表,设定工作压力,超压自动保护停泵。高压泵、萃取釜、分离釜、精镏柱,根据最高工作压力,分别配安全阀,超压自动泄压保护。萃取釜出口配背压阀系统,压力稳定,易于调整,压控制精度(动态)±0.1Mpa 流量显示:金属转子流量计,数显远传,分别显示瞬时流量和累积流量 管路:接触流体的容器、阀门、管件、管线均采用不锈钢制作。 其他:电源三相四线制380V/50Hz,CO2食品级≥99.5,用户自备 超临界CO2萃取装置的基本流程 1、CO2→萃取釜→分离Ⅰ→分离Ⅱ→回路; 2、CO2→萃取釜→分离Ⅰ→分离Ⅱ→精镏柱→回路; 3、CO2→萃取釜→精镏柱→分离Ⅰ→分离Ⅱ→回路; 4、CO2→萃取釜→分离Ⅰ→精镏柱→分离Ⅱ→回路。 超临界CO2萃取装置的特点

超临界流体技术原理及其应用

“超临界流体技术原理及其应用” 院选课读书报告 (2012~2013下学期) 题目:SC—CO2流体技术基本原理及其应用前景系专业名称: 学生姓名: 学号: 指导教师:

SC—CO2流体技术基本原理及其应用前景 摘要 超临界流体是指物质处于极其临界的温度和压强下形成的一种新的流体,它的性质介于液体和气体之间,并且兼具二者的有点。现研究较多的流体包括:二氧化碳等。超临界二氧化碳是一种液态的二氧化碳,在一定的条件,如果达到临界点或者以上,会形成一种新的状态,兼顾气态和液态的部分性质,而且拥有新的性质。超临界二氧化碳萃取技术是一种新型分离技术,超临界CO2萃取是采用CO2作为溶剂,在超临界状态下的CO2流体密度和介电常数较大,对物质溶解度很大,并随压力和温度的变化而急剧变化,因此,不仅对某些物质的溶解度有选择性,且溶剂和萃取物非常容易分离。超临界CO2萃取特别适用于脂溶性,高沸点,热敏性物质的提取,同时也适用于不同组分的精细分离,即超临界精镏。超流体流体应用前景目前应用十分的广泛,目前已应用于食品工业、化妆品香料工业、医药工业、化工工业等方面,超临界流体应用将越来越广泛于各个行业的发展。 关键词:“超临界流体,超临界二氧化碳,超临界二氧化碳萃取,超临界流体应用前景” 一、SC—CO2流体技术基本原理 (一)SC—CO2超流体技术的基本原理概述 超临界流体(SCF)是指处于临界温度和压强的情况下,它的物理性质介于液体和气体之间。⑴这种流体同时据有气态和液态的特点,它既具有与液体相近的密度和其优良的溶解性。溶质在某溶剂中的溶解度与溶剂的密度相关,溶质在超临界流体中的溶解度也与其类似。因此,通过改变超临界流体的压强和温度,改变其密度,便可以溶解许多不同类型的物质。 超临界流体萃取分离过程是利用超临界流体的溶解力和其密度的关系,即利用压强和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,其拥有

实验.微囊的制备

实验九微型胶囊的制备 一、实验目的 1.掌握复凝聚法制备微型胶囊的工艺及影响微囊形成的因素。 2.通过实验进一步理解复凝聚法制备微型胶囊的原理。 二、实验指导 微型胶囊(简称微囊)系利用天然、半合成高分子材料(通称囊材)将固体或液体药物(通称囊心物)包裹而成的微小胶囊。它的直径一般为5~400μm。 微囊的制备方法很多,可分为物理化学法,化学法以及物理机械法。可按囊心物、囊材的性质、设备和微囊的大小等选用适宜的制备方法。在实验室中制备微囊常选用物理化学法中的凝聚法。凝聚法又分为单凝聚法和复凝聚法。后者常用明胶、阿拉伯胶为囊材。制备微囊的机理如下:明胶为蛋白质,在水溶液中,分子链上含有-NH2和-COOH及其相应解离基团-NH3+与-COO-,但含有-NH+3与-COO-离子多少,受介质pH值的影响,当pH值低于明胶的等电点时,-NH+3数目多于-COO-,溶液荷正电;当溶液pH高于明胶等电时,-COO-数目多于-NH+3,溶液荷负电。明胶溶液在pH4.0左右时,其正电荷最多。阿拉伯胶为多聚糖,在水溶液中,分子链上含有-COOH和-COO-,具有负电荷。因此在明胶与阿拉伯胶混合的水溶液中,调节pH约为4.0时,明胶和阿拉伯胶因荷电相反而中和形成复合物,其溶解度降低,自体系中凝聚成囊析出。再加入固化剂甲醛,甲醛与明胶产生胺醛缩合反应,明胶分子交联成网状结构,保持微囊的形状,成为不可逆的微囊;加2%NaOH调节介质pH8~9,有利于胺醛缩合反应进行完全,其反应表示如下: R-NH2+ H2N-R + HCHO pH8-9 R-NH-CH2-HN-R + H2O 三、实验内容 1.复凝聚法制备液体石蜡微囊 处方:

超临界流体萃取原理及其特点

超临界流体萃取技术 超临界流体概念 任何物质,随着温度、压力的变化,都会相应的呈现为固态、液态和气态这三种状态,称为物质的三态。三态之间互相转化的温度和压力值叫做三相点,每种分子量不太大的稳定的物质都具有一个固有的临界点,严格意义上,临界点由临界温度、临界压力、临界密度构成。在临界温度以上,无论怎样加压,气态物质绝不会被液化。当温度和压力超过了临界点时,该物质就进入了超临界状态,超临界状态下的物质既非气体又非液体的状态,叫做超临界流体[11],SCF是气体和液体状态以外的第三流体。 超临界流体萃取原理及其特点 所谓超临界流体萃取[12],是指利用超临界条件下的流体作为萃取剂,从液体或固体中萃取出特定成分,以达到某种分离目的。SCF的密度对温度和压力的变化很敏感,而其溶解能力在一定压力范围内与其密度成比例,因此可以通过控制温度和压力来改变物质在SCF中的溶解度,特别是在临界点附近,温度和压力的微小变化可导致溶质溶解度发生几个数量级的突变,这就是SFE的依据。 与其它常规分离方法相比,SFE具有以下特点[13]: 1) 通过调节温度和压力可全部或选择性地提取有效成分或脱除有害物质; 可在较低温度和无氧环境下操作,分离、精制热敏 2)选择适宜的溶剂如CO 2 性物质和易氧化物质; 3)临界流体具有良好的渗透性和溶解性,能从固体或粘稠的原料中快速提 取有效成分; 4)降低超临界相的密度,很容易使溶剂从产品中分离,无溶剂污染,且回 收溶剂无相变过程,能耗低; 5)兼有蒸馏和萃取双重功能,可用于有机物的分离、精制。 SFE存在的不足有[14]: 1) 高压下萃取,相平衡较复杂,物性数据缺乏; 2) 高压装置与高压操作,投资费用高,安全要求亦高; 3) 超临界流体中溶质浓度相对还是较低,故需大量溶剂循环; 4) 超临界流体萃取过程固体物料居多,连续化生产较困难。 超临界流体的选择

微胶囊技术及其应用

微胶囊技术及其应用 摘要:微胶囊是一门新兴的工艺技术,目前获得了广泛的关注,对微胶囊的开发技术和应用微胶囊技术都在不断发展。本文从微胶囊化的方法及其在食品行业各个领域的应用出发,简要介绍了现在微胶囊技术的发展情况及其使用价值,为更好的了解和认识微胶囊技术打下了铺垫。 关键词:微胶囊技术、食品行业、展望 人们对微胶囊的研究大约始于20世纪30年代,当时的美国人D.E.Wurster用物理方法制备了微胶囊,此后微胶囊技术不断发展[1],应用范围也从最初的无碳复写纸扩展到医药、食品领域、农药、饲料、涂料、油墨、粘合剂、化妆品、洗涤剂、光感材料、纺织等行业等[2]。目前对微胶囊技术的研究在不断的发展,从微胶囊化的方法到微胶囊的各种应用都是国内外科学家关注的问题,特别是近年来随着人们对食品要求的不断提高,微胶囊技术成为食品行业一项极为重要和广泛应用的技术,本文立足与微胶囊技术在食品行业几个领域的应用,说明微胶囊技术在食品行业的最新应用进展,在一定程度上说明微胶囊技术在食品行业的发展展望,为更深刻的认识微胶囊技术提供了理论依据。 1 微胶囊的方法 微胶囊化技术是指利用天然或者合成高分子材料,将分散的固体、液体、或者气体包裹起来,形成具有半透性或者密封胶囊的微小粒子的技术包裹的过程即为胶囊化,形成的微小粒子成为微胶囊,其大小一般为5~ 200微米不等,形状多样,取决于原料的制备方法,通常把构成微胶囊外壳的材料成为“壁材”或“包衣”,把包在微胶囊内部的物质称为“囊心”或“芯材”[3]。一般可以将微胶囊化方法大致分为三类,即化学法、物理法和物理化学法[4]。其中物理法是用物理和机械原理的方法制备微胶囊具有成本低、易于推广、有利于大规模连续生产等有点,在商业领域特别是药品、食品工业经常利用这种方法来制备微胶囊可以分为,喷雾干燥、喷雾凝冻、空气悬浮、真空蒸发沉积、静电结合、多空离心等[5];化学法主要是利用单体小分子发生聚合反应生成高分子成膜材料将囊心包覆,许多合成高分子的聚合反应都可以运用到微胶囊制备上,化学法包括,界面聚合、原位聚合、分子包裹、辐射包囊,目前通常使用的方法是界面聚合和原位聚合[6];物理化学方法是应用物理化学原理制备微胶囊的技术有,水相分离油相分离、囊心交换、挤压、锐孔、粉末床、溶化分散[7]。 近年来人们不断研究尝试新的微胶囊制备方法,樊振江等以环糊精为壁材,用超声波法制备花椒精油胶囊[8],此外也有人在以阿明胶-阿拉伯胶壁材的复合凝聚法制备番茄红素微

微胶囊的制作工艺流程

微胶囊的制作工艺流程 1.材料和方法 1.1 材料与试剂 经过醇提和醇沉的红枣提取物;阿拉伯树胶、糊精、淀粉、乳糖、微晶纤维素、无水乙醇、氢氧化钠、亚硝酸钠、硝酸铝、乙醇等,均为国产分析纯。 1.2制备工艺 以阿拉伯胶和糊精的混合物(1:1)作为壁材,以提取物,淀粉,乳糖和微晶纤维素的混合物为芯材,采用喷雾干燥工艺,制备降血脂微胶囊,制备的工艺流程见图1-1,工艺要点分别为: 芯材溶液制备:提取物和辅料(淀粉,乳糖,微晶纤维素;52:24:24) 壁材溶液制备:称取一定量的阿拉伯胶和糊精(1:1),再加入一定量的水,使其溶胀、分散,制成壁材溶液。 混合:按照一定的壁材/芯材比(2:1,1:1)及一定的壁材浓度(1:50,w/v)要求,将芯材溶液加入到壁材溶液中,搅拌、混匀。 喷雾干燥:用喷雾干燥机,按如图的工艺条件喷雾干燥。 1.3降血脂微胶囊理化性质的测定 (1)结构观察及粒径的测定 (2)水分测定 (3)比容的测定 (4)溶解度的测定

1.4微胶囊化前后的稳定性研究 (1)PH值对微胶囊化前后的稳定性影响 (2)自然光对微胶囊化前后的稳定性影响 (3)空气中的氧气对微胶囊化前后的稳定性影响 (4)温度对微胶囊化前后的稳定性影响 (5)金属离子对微胶囊化前后的稳定性影响 (6)氧化剂对微胶囊化前后的稳定性影响 (7)还原剂对微胶囊化前后的稳定性影响 (8)防腐剂对微胶囊化前后的稳定性影响 (9)食品原料对微胶囊化前后的稳定性影响 1.5降血脂微胶囊质量指标评价 (1)感官评价 (2)理化指标评价 (3)动物实验 1.6微胶囊在模拟肠液中释放效果的检测 按照确定的最佳工艺条件,检测经模拟胃液处理3 h 后的微胶囊在模拟肠液中的释放情况。 药品质量/g 药品质量/g 阿拉伯树胶微晶纤维素 糊精淀粉 乳糖维素

微胶囊技术在食品中的应用

微胶囊技术在食品中的应用 食品科学与工程0801 曾奎杰 微胶囊技术是一项用途广泛而又发展迅速的新技术。在食品、化工、医药、生物技术等许多领域中已得到成功的应用,尤其在食品工业,许多于技术障碍而得不到开发的产品,通过微胶囊技术得以实现,使得传统产品的品质得到大大的提高,由于飞此项技术川以改变物质形态、保护敏感成分、隔离活胜物质、降低挥发胜、使不相溶成分混合并降低某些化学添加剂的毒性等,为食品工业高新技术的开发展现了良好前景。 一、微胶囊技术的基本概念和发展概况 1 微胶囊技术的基本概念 微胶囊技术是指利用天然或合成高分子材料,将分散的固体、液体,甚至是气体物质包裹起来,形成具有半透性或密封囊膜的微小粒子的技术。包裹的过程即为微胶囊化,形成的微小粒子称为微胶囊。微胶囊化后川以实现许多目的:改养被包裹物质的物理性质(颜色、外观、表观密度、溶解胜);使物质免受环境的影响,提高物质的稳定胜;屏蔽味道和气味;降低物质毒胜;将不相容的物质隔离;根据需要控制物质的释放等 微胶囊化技术将被包埋物作为芯材,外面聚合物为壁壳的微容器或包装体。微胶囊的大小为5 一200um,囊壁的厚度一般在。2um至几微米内,在特定的条件下,囊壁所包埋的组分川以在控制的速率下释放。在食品工业中,为了获得特殊的胶囊化产品,关键就是要选择好具有该特性的壁材。目前在食品工业中最常用的壁材为植物胶、阿拉伯胶、海藻酸纳、卡拉胶、琼脂等,其次是淀粉及其衍生物,如各种类型的糊精、低聚糖。此外还有蛋白质类、油脂类等。在微胶囊化技术中,根据不同芯材的要求,选择适当的壁材,以达到改变物态、体积和质量,控制释放和降低物质挥发胜,隔离活胜成份以及保护敏感物质等功能 二、微胶囊技术在食品工业中的作用 微胶囊技术应用于飞食品工业,使许多传统的工艺过程得到简化,同时也使许多用通常技术手段儿法解决的问题得到了解决,极大的推动了食品工业由低级初加工向高级深加工产业的转变。目前,利用微胶囊技术已开发出了许多微胶囊化食品,如粉末油脂、粉末酒、胶囊饮料、固体饮料等,风味剂(风味油、香辛料、调味品)、天然色素、营养强化剂(维生素、氨基酸、矿物质)、甜味剂、酸味剂、防腐剂及抗氧化剂等微胶囊化食品添加剂也已大量应用于生产中。概括起来,微胶囊技术应用于食品工业川以起到以下作用。 1、改变物料的状态 能将液态、气态或半固态物料固态化,如粉末香精、粉末油脂、固体饮料等,以提高其溶解性、流动性和贮藏稳定性,容易与其他原料混合均匀,便于深加工加工处理,也便于使用、运输和保存。 2、保护敏感成分 以防止某些不稳定的食品辅料挥发、氧化、变质,提高敏感性物质对环境因素的耐受力,确保营养成分不损失,特殊功能不丧失。例如,应用于飞肉类香精和海鲜香精的美拉德反应产物是一种很重要的呈味物质,这种物质以液态形式存在时极不稳定,制成了微胶囊产品后,稳定性得以提高,应用起来更加力便、广

超临界萃取技术+

超临界萃取技术 超临界流体是指物质处于其临界温度和临界压力之上的状态。超临界流体兼有气、液两重性的特点,它既有与气体相当的高渗透能量和低的黏度,又具有与液体相近的密度和对物质优良的溶解能力。应用超临界流体可以从原料中提取有用的成分或脱除有害成分,从而达到所需要的分离目的。超临界萃取工艺已成为食品工业的先进技术,特别是天然食品的加工,如植物原料中各种香料、色素的提取。在可作为超临界流体的各种物质中,CO2最适合于食品工业生产,它价廉、易得、萃取功能强、无毒、不会产生环境污染、可在低温下萃取,食品产品质量明显优于传统方法所得。在温度超过31.1℃,压力超过7.38MPa的领域,二氧化碳就成为超临界流体,此时,其密度接近液体,扩散系数和黏性接近气体。 超临界萃取工艺可应用于咖啡豆脱咖啡因,烟草脱尼古丁,奶油脱胆固醇,啤酒花有效成分、天然香精香料以及色素的提取。已经产业化的有啤酒花的萃取、咖啡豆和红茶脱咖啡因、天然香料提取精油等领域。将原料装入萃取罐,起动升压泵,调成超临界压力,并用热交换器调成超临界温度,在萃取罐内溶解萃取成分后,超临界流体在恒温下减压,通过降低密度失去溶解力,在分离罐内分离出溶质和流体。此时,分离出来的流体二氧化碳用冷却器转变成液体,再度使用,或者放入大气。

一、超临界流体萃取技术原理 有机物的密度和介电常数均随压力增高而上升,其密度随温度升高而下降,特别是在临界点附近压力和温度的微小变化都会引起气体密度的很大变化。在超临界流体中物质的溶解度在恒温下随压力升高而增加,而在恒压下溶解度随温度升高而下降,这一性质有利于从物质中提取某些易溶解的成分。而超临界流体的高流动性和高扩散能力,则有助于溶解的各成分之间的分离,并能加速溶解平衡,提高萃取效率。随着超临界萃取研究领域的不断拓宽,超临界萃取的工艺及设备不断革新,现在的分离技术已由过去的单一分离器发展为多级串联分离器,由同一原料可以生产不同等级的产品。超临界流体技术工艺流程图如图4-1所示。 图4-1 超临界流体技术工艺流程图 选择萃取剂的原则是,在保证特定产品要求的前提下,尽量选择较低 的临界温度和压力、化学性质稳定、惰性、安全、来源广、价格低的萃取剂为好。在食品工业中多采用CO2为萃取剂。 原料经除杂质、粉碎或压片后,装入萃取器,流体CO2由CO2储罐供给,然后通过贮存器经过高压泵至理想压力,并经加热器至特定温度,使其在通过萃取器之前处于超临界状态。超临界CO2由下而上流经萃取器,原料的可溶成分进入超临界CO2相,经调节压力和温度,使超临界CO2的密度降低,可选择性地使萃取物在分离器中分离出来。含脂产品在低压下不溶于CO2,沉淀于分离器的底部。萃取液由第一分离器经减压后流入第二分离器,含油产品在更低的压力下不溶于CO2,沉淀于分离器的底部。CO2经第二分离器后,回收循环使用或排放掉。降压通过半自动压力阀调节,温度通

微胶囊技术在食品中的应用

微胶囊技术在食品中的应用 食品科学与工程 0801 曾奎杰 微胶囊技术是一项用途广泛而又发展迅速的新技术。在食品、化工、医药、 生物技术等许多领域中已得到成功的应用, 尤其在食品工业, 许多于技术障碍而 得不到开发的产品, 通过微胶囊技术得以实现, 使得传统产品的品质得到大大的 提高,由于飞此项技术川以改变物质形态、保护敏感成分、隔离活胜物质、降低 挥发胜、使不相溶成分混合并降低某些化学添加剂的毒性等, 术的开发展现了良好前景。 一、微胶囊技术的基本概 念和发展概况 1 微胶囊技术的基本概念 微胶囊技术是指利用天然或合 成高分子材料, 将分散的固体、 物质包裹起来, 形成具有半透性或密封囊膜的微小粒子的技术。 微胶囊化, 形成的微小粒子称为微胶囊。 微胶囊化后川以实现许多目 的: 包裹物质的物理性质(颜色、外观、表观密度、溶解胜);使物质免受环境的影 响,提高物质的稳定胜; 屏蔽味道和气味; 降低物质毒 胜; 将不相容的物质隔离; 根据需要控制物质的释放等 微胶囊化技术 将被包埋物作为芯材, 外面聚合物为壁壳的微容器或包装体。 微胶 囊的大小为5 一 200um 囊壁的厚度一般在。2um 至几微米内,在特定的条件下, 囊壁所包埋的组分川以在控制的速率下释放。 在食品工业中, 为了获得特殊的胶 囊化产品, 关键就是要选择好具有该特性的壁材。 目前在食品工业中最常用的壁 材为植物胶、阿拉伯胶、海藻酸纳、卡拉胶、琼脂等,其次是淀粉及其衍生物, 如各种类型的糊精、 低聚糖。此外还有蛋白质类、 油脂类等。 在微胶囊化技术中, 根据不同芯材的要求,选择适当的壁材,以达到改变物态、体积和质量,控制释 放和降低物质挥发胜,隔离活胜成份以及保护敏感物质等功能 二、微胶囊技术在食品工业中的作用 微胶囊技术应用于飞食品工业, 使许多传统的工艺过程得到简化, 同时也使许多 用通常技术手段儿法解决的问题得到了解决, 极大的推动了食品工业由低级初加 工向高级深加工产业的转变。 目前,利用微胶囊技术已开发出了许多微胶囊化食 品,如粉末油脂、粉末酒、胶囊饮料、固体饮料等,风味剂(风味油、香辛料、 调味 品)、天然色素、营养强化剂(维生素、氨基酸、矿物质)、甜味剂、酸味 剂、防腐剂及抗氧化剂等微胶囊化食品添加剂也已大量应用于生产中。 微胶囊技术应用于食品工业川以起到以下作用。 1 、改变物料的状态 能将液态、气态或半固态物料固态化, 以提高其溶解性、 流动性和贮藏稳定性, 加工 处理,也便于使用、运输和保存。 2 、保护敏感成分 以防止某些不稳定的食品 辅料挥发、 素的耐受力,确保营养成分不损失,特殊功能不 丧失。例如,应用于飞肉类香精 和海鲜香精的美拉德反应产物是一种很重要的呈味物质, 这种物质以液态形式存 在时极不稳定,制成了微胶囊产品后,稳定性得以提高,应用起来更加力便、广 泛。 3 、控制芯材释放 微胶囊产品与通过预先设计的溶解和释放机理, 在最适时问以最适速率释放 心材物质。为食品工业高新技 液体,甚至是气体 包裹的过程即为 改养被 概括起来, 如粉末香精、 粉末油脂、 容易与其他原料混合均匀, 固体饮料等, 便于深加工 氧化、变质,提高敏感性物质对环境因

微胶囊技术

微胶囊技术简介与实例 目录 微胶囊技术简介与实例 (1) 微胶囊技术概述 (1) 微胶囊及微胶囊技术概述 (1) 常规微胶囊的制备方法 (2) 三类特殊结构微胶囊简介 (4) 人工器官微胶囊 (5) 微胶囊在纺织品和医药中的应用 (7) 微胶囊技术概述 本章旨在对微胶囊的基本概念进行介绍。对其微胶囊的各种制备原理及做一个涵盖面较全、概括性强的简介。最后,对三种结构特殊的微胶囊(人工器官微胶囊、脂质体胶囊、纳米粒)进行简介。 微胶囊及微胶囊技术概述 微胶囊是利用天然或合成的高分子材料对固体、液体或气体进行包封的、粒径为5~1000um的中空微囊(特别的,纳米微胶囊的平均粒径为200~300nm)。微胶囊一般由一层薄膜和囊芯物质组成。组成薄膜的材料称为囊材,组成囊芯的材料称为芯材。囊材可以是天然物(如蜂蜡、氢化植物油衍生物、壳聚糖、乳清蛋白、纤维素等),也可以是合成物(如聚酯、聚氨酯、聚赖氨酸、聚乙二醇等)。芯材的种类更加多样,按物质的状态分类,可以是液体、固体、气体,甚至可以是固、液混合物。理论上可以将需要被包覆和保护的各种微小物质封存在囊壳内部(如精油、芳香剂、抗菌药物、金属粒子、酶、活细胞等等)。 将芯材包封在囊材的过程,即制备微胶囊的过程称为微囊化。微囊化技术的主要特点是:改变活性物质的理化性质(相态、溶解度等);保护物质免受环境条件的影响;屏蔽味道、颜色和气味;降低物质的毒性;控制释放活性物质等。经微胶囊化的芯材局域靶向性和控释性,可以根据需要在恰当的时间和恰当的位置以一定的速率对芯材进行释放。如:经过微胶囊化的抗凝血药物,可生物降解的载药纳米粒借助导管给药系统,可将其输送到局部血管,并缓慢释放所携带的药物,可望有效防治血管再狭窄。 由于微胶囊技术的特点,带来了许多好处。比如说,可以极大程度地保留了具有生物活性功能的物质;使液体转变为固体,便于加工;提高药物的生物利用率,减少药物用量,降低毒副作用等等。

超临界萃取技术

超临界萃取技术 魏小东 2012110663 化学工程学院化学工艺专业 2012级12班 摘要:回顾了超临界萃取的发展历程,简要介绍了此技术的基本原理、流程技术、研究概况、影响因素、存在问题,并对超临界萃取技术今后的研究方向做了简单概述。 关键词:超临界萃取;现状;应用 0 引言 超临界萃取技术( Supercritical fluid extraction,简称SCFE) 是一种高效的新型分离技术。与传统的萃取方法如减压蒸馏、水蒸汽蒸馏和溶剂萃取等相比,其工艺简单、选择性好、产品纯度高,而且产品不残留有害物质污染环境,符合当今寻找和开发节能环保的“绿色化学技术”的潮流。 从1869 爱尔兰物理学家Thomas Andrews 在《论物质气态与液态的连续性》一文中提出物质的临界点、临界温度及临界压强的相关概念以来人们对相变的研究已有近150 年的历史,但对超临界流体的研究和工业应用却是近几十年的事。 20 世纪40 年代国外就有学者开展了针对超临界流体的相关研究工作; 70 年代初联邦德国率先将超临界萃取技术应用到工业生产中,并取得显著的经济效益和社会效益; 80 年代以来发达国家在SCFE 方面的研究投入了大量的人力物力,在许多领域取得了一系列进展。以日本为例,1984 年到1991 年 3 月统计显示,日本公布有关超临界流体萃取的公开特许专利共438 件,除1987 年外,基本趋势是逐年递增。SCFE 作为一种共性技术,正逐渐渗透到有关材料、生物技术、环境污染控制等高新技术领域,并被认为是一种“绿色、可持续发展技术”,其理论及应用研究受到越来越多的重视,在化工、医药、石油、食品、香料、香精、化妆品、环保、生物工程等行业均得到了不同程度的应用。我国对SCFE 的研究是最近十几年的事,因此我国在这方面的研究与国际相比还有很大差距。[1] 1 超临界萃取技术概述 1.1 超临界流体特性简介 汽液平衡相图中物质气液平衡线在一定的温度或压强下是呈水平变化的,

超临界流体萃取原理及其特点

第二章 文献综述 2.1超临界流体萃取技术 2.1.1超临界流体概念 任何物质,随着温度、压力的变化,都会相应的呈现为固态、液态和气态这三种状态,称为物质的三态。三态之间互相转化的温度和压力值叫做三相点,每种分子量不太大的稳定的物质都具有一个固有的临界点,严格意义上,临界点由临界温度、临界压力、临界密度构成。在临界温度以上,无论怎样加压,气态物质绝不会被液化。当温度和压力超过了临界点时,该物质就进入了超临界状态,超临界状态下的物质既非气体又非液体的状态,叫做超临界流体[11],SCF是气体和液体状态以外的第三流体。 2.1.2 超临界流体萃取原理及其特点 所谓超临界流体萃取[12],是指利用超临界条件下的流体作为萃取剂,从液体或固体中萃取出特定成分,以达到某种分离目的。SCF的密度对温度和压力的变化很敏感,而其溶解能力在一定压力范围内与其密度成比例,因此可以通过控制温度和压力来改变物质在SCF中的溶解度,特别是在临界点附近,温度和压力的微小变化可导致溶质溶解度发生几个数量级的突变,这就是SFE的依据。 与其它常规分离方法相比,SFE具有以下特点[13]: 1) 通过调节温度和压力可全部或选择性地提取有效成分或脱除有害物质; 2) 选择适宜的溶剂如CO2可在较低温度和无氧环境下操作,分 离、精制热敏性物质和易氧化物质; 3) 临界流体具有良好的渗透性和溶解性,能从固体或粘稠的原料 中快速提取有效成分;

4) 降低超临界相的密度,很容易使溶剂从产品中分离,无溶剂污 染,且回收溶剂无相变过程,能耗低; 5) 兼有蒸馏和萃取双重功能,可用于有机物的分离、精制。 SFE存在的不足有[14]: 1) 高压下萃取,相平衡较复杂,物性数据缺乏; 2) 高压装置与高压操作,投资费用高,安全要求亦高; 3) 超临界流体中溶质浓度相对还是较低,故需大量溶剂循环; 4) 超临界流体萃取过程固体物料居多,连续化生产较困难。 2.1.3 超临界流体的选择 可用作SFE的溶剂很多,不同的溶剂其临界性质各不相同,而不同的萃取过程要求采用不同的溶剂。可用作超临界萃取剂的流体主要有乙烷、乙烯、丙稀、二氧化碳等。采用SFE技术提取天然物质,CO2是人们首选的溶剂,因为CO2作为一种溶剂,具有如下的主要优点[15]: 1) CO2与大多数的有机化合物具有良好的互溶性,而CO2液体与萃出 物相比,具有更大的挥发度,从而使萃取剂与萃出物的分离更容 易; 2) 选择性好,超临界CO2对低分子量的脂肪烃,低极性的亲脂性化合 物,如酯、醚、内脂等表现出优异的溶解性能; 3) 临界温度(31.1℃)低,汽化焓低,更适合于工业化生产; 4) 临界压力(7.38MPa)低,较易达到; 5) 化学惰性,无燃烧爆炸危险,无毒性,无腐蚀性,对设备不构 成侵蚀,不会对产品及环境造成污染;且价格便宜,较高纯度 的CO2容易获得; 6) 在萃取体系中,高浓度的CO2对产品具有杀菌、防氧化的作 用。 2.1.4 超临界CO2萃取技术的国外研究进展 早在100多年前英国的Thomas Andrews[16]就发现超临界现象。1879年Hannay[17]等人发现了SCF与液体一样,可以用来溶解高沸点的固体物

相关文档
最新文档