实向量内积和正交矩阵

实向量内积和正交矩阵
实向量内积和正交矩阵

实向量内积和正交矩阵

考研数学复习打好基础很重要,线性代数是数学复习的重难点,考生要多加研究。下面凯程考研为大家总结线代部分基础知识点,希望大家稳扎稳打,争取赢得数学高分。

实向量内积

正交矩阵

凯程提示:

复习一般以适应性练习为主,在大量做题的同时,很多同学多半无暇顾及看书,加上前期复习也多半脱离课本,与复习资料为伴。这种只练少看书,甚至不看书的情况,必然会出现知识"盲点"从而留下复习的遗憾:会做的题重复做,使智力降低;不会做的题反复做,使信心受损。所以,一定要协调看书与练习的关系。

在这里,我们建议从练的空隙中腾出时间看书,主要认真看课本,研读《数学考试大纲》。从以往的真题,我们不难发现,许多试题均源于书本,高于书本。通过看教材,再次明确哪些是重点主干知识,就概念的内涵和外延进行横向和纵向比较,突出个性,抓住规律,不留知识盲点。学好数学是一个长期的过程,来不得半点的投机取巧,所以考前突击,临时抱佛脚的做法是不足取的,只有按照自己的计划,踏踏实实的进行准备,才能以不变应万变,只要自己的综合能力提高了,不管考试如何变化,都能取得好的成绩。相信经过有计划的复习,每个考生都可以使自己的综合解题能力有一个质的提高,从而在最后的实考中坦然的面对试题的变化,考出好的成绩。

2016考研复习已经进入暑期强化阶段,正可谓:得暑假者得考研。考生要学会拒绝诱惑,充实利用好这个暑假,为后期的提高及冲刺阶段做足准备。

凯程教育:

凯程考研成立于2005年,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。

凯程考研的宗旨:让学习成为一种习惯;

凯程考研的价值观口号:凯旋归来,前程万里;

信念:让每个学员都有好最好的归宿;

使命:完善全新的教育模式,做中国最专业的考研辅导机构;

激情:永不言弃,乐观向上;

敬业:以专业的态度做非凡的事业;

服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。

如何选择考研辅导班:

在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。

师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择。判断师资力量关键在于综合实力,因为任何一门课程,都不是由一、两个教师包到底的,是一批教师配合的结果。还要深入了解教师的学术背景、资料著述成就、辅导成就等。凯程考研名师云集,李海洋、张鑫教授、方浩教授、卢营教授、孙浩教授等一大批名师在凯程授课。而有的机构只是很普通的老师授课,对知识点把握和命题方向,欠缺火候。

对该专业有辅导历史:必须对该专业深刻理解,才能深入辅导学员考取该校。在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下2015五道口金融学院状元,考取五道口15人,清华经管金融硕士10人,人大金融硕士15个,中财和贸大金融硕士合计20人,北师大教育学7人,会计硕士保录班考取30人,翻译硕士接近20人,中传状元王园璐、郑家威都是来自凯程,法学方面,凯程在人大、北大、贸大、政法、武汉大学、公安大学等院校斩获多个法学和法硕状元,更多专业成绩请查看凯程网站。在凯程官方网站的光荣榜,成功学员经验谈视频特别多,都是凯程战绩的最好证明。对于如此高的成绩,凯程集训营班主任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。最好的办法是直接和凯程老师详细沟通一下就清楚了。

建校历史:机构成立的历史也是一个参考因素,历史越久,积累的人脉资源更多。例如,凯程教育已经成立10年(2005年),一直以来专注于考研,成功率一直遥遥领先,同学们有兴趣可以联系一下他们在线老师或者电话。

有没有实体学校校区:有些机构比较小,就是一个在写字楼里上课,自习,这种环境是不太好的,一个优秀的机构必须是在教学环境,大学校园这样环境。凯程有自己的学习校区,有吃住学一体化教学环境,独立卫浴、空调、暖气齐全,这也是一个考研机构实力的体现。此外,最好还要看一下他们的营业执照。

a1,a2,a3是规范正交向量组,

竭诚为您提供优质文档/双击可除a1,a2,a3是规范正交向量组, 篇一:第三讲向量组 第三讲向量组 --------------------------------------------------- 向量作为工具可以描述空间中的点、矩阵中的行或列、线性方程组中的方程等等。研究向量的线性运算[加法与数乘]、向量组线性相关性、向量组的秩[矩阵秩]与最大无关组、等价向量组等概念可以解决线性方程组的理论。 向量组是线性代数的重难点之一,概念多,内容抽象,推理逻辑性强,描述要求准确,与矩阵、方程组相互交织,可以相互转换。例如,向量组秩、最大无关组是线性方程组解的判定、结构定理的理论基础;向量组的秩和相应矩阵秩一致,是向量组与矩阵结合点,反映了向量组和矩阵的本质。 向量组主要分三大部分: ■线性表示与线性相关性:向量的线性组合和线性表示;向量组的线性表示与等价向量组;向量组的线性相关性; ■向量组的秩:向量组的最大无关组与秩的概念、性质

及求法,向量组秩与矩阵秩关系;秩与线性相关性的关系; ■向量空间:向量空间及其基、维数;向量在基下的坐标;两基间的过渡矩阵;基的规范正交化: 正交阵及其性质。 教材:第四,第五章第1节。 ----------------------------------------------------------------------------------------- 一、主要内容 1、向量及其线性运算 ----概念 ------------------------------------------ (1)n个数组成的有序数组称为n维向量;写成一行的称为行向量,写成一列的称为列向量;若干个同维行(列)向量的集合称为向量组; (2)设有向量a(a1,a2,,an),b(b1,b2,,bn),实数kR,则下列运算 ka(ka1,ka2,,kan),ab(a1b1,a2b2,,anbn), 称为向量的线性运算; (3)设有向量组a1,a2,,an和向量b,若存在常数 k1,k2,,kn,使得有 bk1a1k2a2knan,

向量正交化

Gram-Schmidt 正交化方法 正射影 设欧式空间V 中向量s ααα ,,21线性无关,令 ;11αβ= 11 11 22,,ββββααβ-=; (1) 22 2231111333,,,,ββββ αββββααβ-- =; (11) 11 22221111,,,,,,--------=s s s s s s s s s ββββαββββαββββααβ . 则s βββ,,,21 均非零向量,且两两正交.再令,1 i i i ββγ= s i ,.2,1 = 则},,,{21s γγγ 为规范正交组. 将(1)重新写成i i i i i i t t βββα+++=--11,11, , s i ,,2,1 = 其中k k k i ik t βββα,,= ,,,,2,1s i = .1,,2,1-=i k {}, ,,2,1,s j i ∈? 有 ∑∑-=-=++= 1 1 1 1 ,,j k j k jk i k i k ik j i t t ββββαα()???? ? ?? ? ?? ??? ????????? ? ? =-001,000,000,0,,0,1,,,1112222111,21 j j j i i i i t t t t t t ββββββ 令??????? ? ? ?=---10 001001011,2,2,11,1,121 s s s s s s t t t t t t T

则 T T s s s s s s s s s s s s s s ??????? ? ??=????? ? ?? ? ?-----ββββββββααααααααααααααααααααααα,0 00 0,0000,0 000,,,,,,,,,,,,,1 12211/2 1 1211122 21 212111 上式左端的实方阵是s ααα,,,21 的格兰母矩阵,记为:()s G ααα,,,21 ,上式右端中 间 的 对 角 阵 是 s βββ,,,21 的Gram 矩阵.即 有:()()T G T G s s βββααα,,,,,,21/21 = 因此()()s s s s G G βββββββββααα,,,,,,det ,,,det 22112121 == 注意:对任意一个向量组,无论它是线性相关,还是线性无关,它总有Gram 矩阵(或者事先给出定义). 例1 设s ααα,,,21 欧式空间V 中向量,则 (1)()?≠0,,,det 21s G ααα s ααα,,,21 线性无关; (2)()?=0,,,det 21s G ααα s ααα,,,21 线性相关. 证明:只证(2) )?设s ααα,,,21 线性相关,则存在一个向量,不妨设为1α,可由其余向量线性 表示: s s k k ααα++= 221给s 阶的行列式()s G ααα,,,det 21 的第i 行乘数()i k -加到 第1行,s i ,,3,2 =得 ( )s s s s s s i s i i s s i i i s i i i s k k k G αααααααααααααααααααααααααα,,,,,,,,,,,,,,,det 21 22 21 22 12 2 212 1 1121 ∑∑∑===---= 0= )?法一:由上页证明推理过程立即得证。 法二:当()0,,,det 21=s G ααα 时,()s G ααα,,,21 的行向量组线性相关,因此存在不全为零的实数12,,,s k k k ,使

线性代数第六章向量空间及向量的正交性讲义

一、n 维向量的定义及运算 一、n 维向量的定义及运算二、向量空间 二、向量空间第一节向量空间 第二节向量的正交性

一、向量空间及其维数和基 一、向量空间及其维数和基 二、向量在基下的坐标 二、向量在基下的坐标

例1 设V 是一些n 维实向量的组成的非空集合,如果V 关 于向量的加法与数乘封闭(线性运算封闭),即 (1) ?a , b ∈V , 有a +b ∈V . (2) ?a ∈V , k ∈R , 有k a ∈V . 则称V 是一个实向量空间. 一、向量空间及其维数和基 定义1全体n 维向量的集合{(x 1, x 2, …, x n )T | x i ∈R ,i=1, 2, …, n }是一个向量空间,记为R n . 特别的 n = 1 时全体实数R 是一个向量空间; n = 3 时全体三维向量{(x 1, x 2, x 3)T |x i ∈R ,i= 1, 2, 3 } 是一个向量 空间,记为R 3. n = 2 时全体平面中的向量{(x 1, x 2 )T | x i ∈R ,i=1, 2} 是一个向量空 间,记为R 2. 注:向量空间中必含有零向量。

例3 例2而W = {(a 1, a 2, …, a n )T |}01∑==n i i a 是一向量空间. }1|),,,{(1 21∑==…=n i i T n a a a a S 不是一向量空间, 因为它关于加法与数乘均不封闭,也不含零向量.仅含一个n 维零向量0=(0, 0, …, 0)T 的集合{0}构成一 个向量空间,称为零空间.除零空间之外的所有向量空间均称为非零空间。 设V 是一个向量空间,W V , W ≠?. 如果W 关于向量的加法与数乘也封闭,则称W 是V 的子空间. 定义2若W V ,并且V W , 则称两个向量空间相等,记为W=V. ???

施密特正交化)

施密特正交化 在中,如果上的一组向量能够张成一个,那么这一组向量就称为这个子空间的一个基。Gram-Schmidt正交化提供了一种方法,能够通过这一子空间上的一个基得出子空间的一个,并可进一步求出对应的。 这种正交化方法以和命名,然而比他们更早的(Laplace)和(Cauchy)已经发现了这一方法。在李群分解中,这种方法被推广为()。 在数值计算中,Gram-Schmidt正交化是的,计算中累积的舍入误差会使最终结果的正交性变得很差。因此在实际应用中通常使用或进行正交化。 记法 ?:为n的内积空间 ?:中的元素,可以是向量、,等等 ?:与的 ?:、……张成的 ?:在上的 基本思想 图1v在V2上投影,构造V3上的正交基β Gram-Schmidt正交化的基本想法,是利用投影原理在已有正交基的基础上构造一个新的正交基。 设。V k是V n上的k维子空间,其标准正交基为,且v不在V k上。由投影原理知,v与其在V k上的投影之差 是正交于子空间V k的,亦即β正交于V k的正交基ηi。因此只要将β单位化,即 那么{η 1,...,η k+1 }就是V k在v上扩展的子空间span{v,η 1 ,...,η k }的标准正交 基。

根据上述分析,对于向量组{v 1,...,v m }张成的空间V n,只要从其中一个向量(不 妨设为v 1)所张成的一维子空间span{v 1 }开始(注意到{v 1 }就是span{v 1 }的正交 基),重复上述扩展构造正交基的过程,就能够得到V n的一组正交基。这就是Gram-Schmidt正交化。 算法 首先需要确定扩展正交基的顺序,不妨设为。Gram-Schmidt正交化的过程如下: 这样就得到上的一组正交基,以及相应的标准正交基。 例 考察如下R n中向量的,欧氏空间上内积的定义为=b T a: 下面作Gram-Schmidt正交化,以得到一组正交向量: 下面验证向量β1与β2的正交性: 将这些向量单位化: 于是{η1,η2}就是span{v1,v2}的一组标准正交基。 不同的形式 随着内积空间上内积的定义以及构成内积空间的元素的不同,Gram-Schmidt正交化也表现出不同的形式。 例如,在实向量空间上,内积定义为: 在复向量空间上,内积定义为:

第五节振型向量正交性

第五节振型向量正交性 对多自由度系统振动问题的分析与两自由度系统没有本质上的区别。只是由于自由度上的增多导致数学上计算变得复杂多了。因此,在研究多自由度系统振动问题时,应找出一种便于分析的方法,这就是模态分析法(振型叠加法)。为此,首先讨论有关耦合与解耦的方法。 一、耦合与解耦(教材6.7和6.8) 举例说明什么是耦合与解耦。 D y 如图所示是一刚性杆AD,用刚度分别为 1 k和 2 k的弹簧支承与A、D两端。

(1) 取质心C 点的垂直位移C y 和刚性杆绕C 点的转角θ为广义坐标。则刚性杆在振动中任一瞬时的受力如图所示。由几何关系,得 12112212D A C A C D C D A l y l y y y y l l l y y l y y l l θ θ θ+?=?=-+?? ?? ? =+-??=?+? 由牛顿运动定律,的系统的振动微分方程为 121122 C A D A D my k y k y J k y l k y l θ=--?? =-? (a ) 式中m 是刚性杆AD 的质量,J 是刚性杆AD 绕质心C 的转动惯量。整理式(a ),得 ()()()()12221122 221111220 C C C my k k y k l k l J k l k l y k l k l θθθ+++-=???+-++=?? (b ) 写成矩阵的形式 12221122221111220000C C y k k k l k l y m J k l k l k l k l θθ+-???????? ??+=??????????-+????? ????? (c ) 在上式中,质量矩阵是一个对角矩阵,反映在方程组中,就是两个微分方程的第一个方程仅包含一个广义坐标的二阶导数(加速度)C y ,第二个方程仅包含另一个广义坐标的二阶导数θ,这种加速度(惯性力)之间没有耦合的情况,称之为惯性解耦。 刚度矩阵是非对角矩阵,反映在

第一讲正交向量组及施密特正交法

第一讲 Ⅰ 授课题目: §5.1 预备知识:向量的内积 Ⅱ 教学目的与要求: 1.了解向量的内积及正交向量组的概念; 1.了解把线性无关的向量组正交规范化的施密特(Smidt)方法; 2.了解正交矩阵概念及性质。 Ⅲ 教学重点与难点: 重点:正交向量组及正交矩阵 难点:施密特正交化方法 Ⅳ 讲授内容: 一、向量的内积 前面曾介绍过向量的线性运算,但在许多实际问题中,还需要考虑向量的长度等方面的度量性质.在此,作为解析几何中向量的数量积的推广,引进向量的内积运算. 定义1 设有n 维向量 ??????? ??=n x x x x 21,?????? ? ??=n y y y y 21, 令 []n x y x y x y x +++= 2211,, []y x ,称为向量x 与y 的内积. 内积是向量的一种运算,用矩阵记号表示,当x 与y 都是列向量时,有 []y x y x T =,. 内积具有下列性质(其中z y x ,,为n 维向量,λ为实数): ① [][]x y y x ,,=; ② [][]y x y x ,,λλ=; ③ [][][]z x y x z y x ,,,+=+.

例1 设有两个四维向量??????? ??-=5121α,???? ?? ? ??--=56 03β.求[]βα,及[]αα,. 解 []3425603,-=--+-=βα []3125141,=+++=αα n 维向量的内积是数量积的一种推广,但n 维向量没有3维向量那样直观的长度和夹 角的概念,因此只能按数量积的直角坐标计算公式来推广.并且反过来,利用内积来定义 n 维向量的长度和夹角: 定义2 令x = []2 2221,n x x x x x ++= ,则x 称为n 维向量x 的长度(或范数). 向量的长度具有下列性质: ① 非负性 当0≠x 时,0>x ,当0=x 时,0=x ; ② 齐次性 x x λλ=; ③ 三角不等式 y x y x +≤+. 向量的内积满足施瓦兹不等式 [][][]y y x x y x ,,,2 ?≤ 由此可得 [] 1 ,≤y x y x (当0y ≠x 时) 于是有下面的定义: 当0≠x ,0≠y 时, [] y ,arccos x y x =θ 称为n 维向量的夹角. 二、正交向量组 当[]0,=y x 时,称向量x 与y 正交.显然,若0=x ,则x 与任意向量都正交. 两两正交的非零向量组称为正交向量组. 定理 1 若n 维向量r ααα ,,21是一组两两正交的非零向量组,则r ααα ,,21线性无关. 证明 设有r λλλ ,,21使 02211=+++r r αλαλαλ ,

相关文档
最新文档