TEC温控-PID参数自校正调整温控器

TEC温控-PID参数自校正调整温控器
TEC温控-PID参数自校正调整温控器

TEC 温控-PID 参数可自动校正调整温控器

TEC-10A

一 、特性描述

TEC-10A 是一款高功率密度的TEC 温度控制器,额定工作负载5A ,峰值电流可达10A 。此温度控制器可以连接专用调试器来进行参数的调节,参数调节完毕并保存后,撤去调试器,此温度控制器仍可以独立工作。可以通过专用RS232调试线和电脑进行通讯,以进行参数设置和温度监视,以及进行温度程控。

二 、控制器指标

1、输 入:DC12V~13V

2、输 出:-12V 到+12V

3、额定电流:6A

4、控制温度范围:-55°~125°

5、控制器主板尺寸:64mm*40mm

6、定位孔尺寸:M3

图2 TEC 控制主板尺寸及接口定义

三、 接线图

TEC-10A 接线端子为6芯连接器,如下图图3所示。接线时首先连接电源线和DS18B20,并且将GND 端和DS18B20的GND 端接到一起,等到接通电源后,最后接入TEC 。接线时,保证12V 电源线界面大于0.5mm*mm 。

接通电源后,LED1指示灯常亮,LED2指示灯指示当前控制板的工作状态。1.0版本软件为加热时候,LED2亮,制冷时候,LED2灭。1.1版本为当温度控制范围在设定温度的0.625度范围内时亮起,超过这个范围时,LED2熄灭。

图3接线端子连线

DS18B20,常用的温度传感器,具有体积小,硬件开销低,抗干扰能力强,精度高的特点。

注意:正确接线

面对着扁平的那一面,左负右正,一旦接反就会立刻发热,有可能烧毁!同时,接反也是导致该传感器总是显示85℃的原因。

图4 正确接线示意图

四、操作流程

调试TEC控制器,需要将TEC控制器调试器通过排线和主控制板连接,显示屏幕显示如下图图5所示波形。

图5 调试器液晶显示屏

操作步骤:

第一步:温度设置。切换按键“Choose”键,使“#”在SV:xx.xxx的后面;通过“UP”键,向上调节设定温度,通过“DOWN”向下调节设定温度,步进量为0.0625度,但不保存;

第二步:PID参数设置。切换按键“Choose”,使“#”在Pxxx#的后面,按“UP”键或“DOWN”键,可以设置P,依次设置I和D;

第三步:确认设定参数,点击“ENTER”。此时,调试器将参数发送到主控制板,然后存储于主控制板内部。

五、PID参数的设置经验

要想得到精密的温度控制,必须设置好PID的值。要得到快速的温度控制响应,冷端的温度传感器请尽量靠近TEC的冷端。

第一步:输入目标温度,将P和I设为0;

第二步:P从0以5的步进缓缓增加,每次增加,请等待几分钟,以观察当前温度和目标温度的差异,直至得到一个P值,能使当前温度尽可能的接近目标温度并且不产生振荡。0.5度以下的温度差异为佳。

第三步:设定积分相参数I,将I从0开始以1的步进增加,以消除误差。I太小则误差消除慢,温度稳定时间加长,I太大,则容易产生温度振荡,温度不宜稳定。

第四步:一般不使用微分参数D也可以得到精确和快速响应的温度控制,这里D=0.000。如果温度变化比较频繁,可以适当设置D的值,以得到稳定的控制。

六、TEC-10A的使用安装

小制冷功率的应用情况下,TEC稳定平衡

后的工作电流一般比较小,此时TEC-10A 可

以通过自然风冷的方式进行散热,此时仅仅

需要螺柱支撑安装固定即可。对于大功功率

制冷的情况下,TEC常态工作电流也是很大

的情况下,可以通过底部导热的安装方式解

决线路板的热量问题,如右图所示。

贴片型温度探头和直插型温度探头,其中,贴片型温度探头的安装如下图所示:直插型温度探头

贴片型温度探头贴片型温度探头安装

七、 TEC-10A和上位机连接

主控板可以通过接插件直接和电脑的串口连接。接口定义如下图图6所示。

图6 控制板和电脑串口的连接示意图

将GND、TXD、RXD和公头DB9连接器连接,注意连接的对应线号不能有错。连接完毕后,打开电脑控制软件,选择串口号。

图7 上位机软件图

工作顺序为:

1、连接并打开串口;

2、给TEC-10A控制板供电;

3、观察曲线设定温度、PID参数。

4、温度设定、PID参数设定通过鼠标点击数字右方的上下按钮调节,可以点击也可以长时间按住快

速调节。设定完毕后,点击Send按钮发送数据到TEC-10A的控制主板上。在绘图区,可以通过鼠标滚轮调节图像大小,也可以通过鼠标右键,选择导出功能,将温度数据输出处理。

八、附录:温度控制通讯格式

1.串口设置:RS23

2.SetSettings("115200,n,8,1")

2.控制模块加电后,会通过串口往外发送数据,输出模块内部存储的数据,包括当前温度、设定温

度、P、I、D,数据类型为int型,数据流为:

设定温度

15.0 6.250 15621

当前温度=0xF0*0.0625=240*0.0625=15.000

设定温度=0xA0*0.0625=100*0.0625=6.250

P=0x96=150 ;I=0x02=2;D=0x01=1;

3. 温度控制板在脱机运行过程中,传输间隔为1S对外传输数据,数据类型为int型,数据流为:

输出比例

6.250 90%

当前温度=0xA0*0.0625=100*0.0625=6.250

输出比例:90%=0x5A%=90%

4.需要通过电脑发送指令控制温度控制板,需要发送的指令如下:

I

代表设定温度=6.25,P=150,I=2,D=1;

常用的PID整定口诀

常用的PID整定口诀 2008年01月07日星期一 22:34 参数整定找最佳,从小到大顺序查。 先是比例后积分,最后再把微分加。 曲线振荡很频繁,比例度盘要放大。 曲线漂浮绕大弯,比例毒盘往小扳。 曲线偏离回复慢,积分时间往下降。 曲线波动周期长,积分时间再加长。 曲线振荡频率快,先把微分降下来。 动差大来波动慢,微分时间应加长。 理想曲线两个波,前高后低四比一。 一看二调多分析,调节质量不会低。 DCS集散控制系统特点 2008年01月13日星期日 21:42 二。集散控制系统(DCS)是一种以微处理器为基础的分散型综合控制系统,DCS 系统综合了计算机技术、网络通讯技术、自动控制技术、冗余及自诊断技术,采用了多层分级的结构,适用现代化生产的控制与管理需求,目前已成为工业过程控制的主流系统。集散控制系统把计算机、仪表和电控技术融合在一起,结合相应的软件,可以实现数据自动采集、处理、工艺画面显示、参数超限报警、设备故障报警和报表打印等功能,并对主要工艺参数形成了历史趋势记录,随时查看,并设置了安全操作级别,既方便了管理,又使系统运行更加安全可靠。其特点有: 1、基于现场总线思想的I/O总线技术 2、先进的冗余技术、带电插拔技术po 3、完备的I/O信号处理 4、基于客户/服务器应用结构 5、WindowsNT平台,以太网,TCP/IP协议 6、OPC服务器提供互连 7、Web浏览器风格,ActiveX控件支持 8、ODBC,OLE技术,实现信息,资源共享 9、高性能的过程控制单元。 10、支持标准现场总线 11、Internet/Intranet应用支持 三、判断题(对的画√,错的画×) 1.UCN网络上允许定义64个非冗余设备,节点地址为1-64。×

关于PID调节及其口诀

关于PID调节及其口诀 经常看到有关PID调节问题书籍,看来看去看不懂他们再说什么。还有一些技术员一提起PID调节,就摇头,搞不懂呀!那么PID调节的实质是什么?通俗的概念是什么?我们通过图1进行分析。 此主题相关图片如下,点击图片看大图: 一个自动控制系统要能很好地完成任务,首先必须工作稳定,同时还必须满足调节过程的质量指标要求。即:系统的响应快慢、稳定性、最大偏差等。很明显,自动控制系统总希望在稳定工作状态下,具有较高的控制质量,我们希望持续时间短、超调量小、摆动次数少。为了保证系统的精度,就要求系统有很高的放大系数,然而放大系数一高,又会造成系统不稳定,甚至系统产生振荡。反之,只考虑调节过程的稳定性,又无法满足精度要求。因此,调节过程中,系统稳定性与精度之间产生了矛盾。 如何解决这个矛盾,可以根据控制系统设计要求和实际情况,在控制系统中插入“校正网络”,矛盾就可以得到较好解决。这种“校正网络”,有很多方法完成,其中就有PID方法。 简单的讲,PID“校正网络”是由比例积分PI和比例微分PD"元件组"成的。为了说明问题,这里简单介绍一下比例积分PI和比例微分PD。 微分: 从电学原理我们知道,见图2,当脉冲信号通过RC电路时,电容两端电压不能突变,电流超前电压90°,输入电压通过电阻R向电容充电,电流在t1时刻瞬间达到最大值,电阻两端电压Usc此刻也达到最大值。随着电容两端电压不断升高,充电电流逐渐减小,电阻两端电压Usc也逐渐降低,最后为0,形成一个锯齿波电压。这种电路称为微分电路,由于它对阶跃输入信号前沿“反应”激烈,其性质有加速作用。 积分:

我们再来看图3,脉冲信号出现时,通过电阻R向电容充电,电容两端电压不能突变,电流在t1时刻瞬间达到最大值,电阻两端电压此刻也达到最大值。电容两端电压Usc随着时间t不断升高,充电电流逐渐减小,最后为0,电容两端电压Usc也达到最大值,形成一个对数曲线。这种电路称为积分电路,由于它对阶跃输入信号前沿“反应”迟缓,其性质是“阻尼”缓冲作用。 此主题相关图片如下,点击图片看大图: 插入校正网络的情况 现在我们首先讨论自动控制系统引入比例积分PI的情况,见图4。曲线PI(1)对阶跃信号的响应特性曲线,当t=0时,PI的输出电压很小,(由比例系数决定)当t>0时,输出电压按积分特性线性上升,系统放大系数Ue线性增大。这就是说,当系统输入端出现大的误差时,控制输出电压不会立即变得很大,而是随着时间的推移和系统误差不断地减小,PI的输出电压不断增加,既,系统放大系数Ue不断线性增大。我们称这种特性为系统阻尼。决定阻尼系数因素是PI比例系数和积分时间常数。要不断提高控制系统的质量,就要不断改变PI比例系数和积分时间常数。 此主题相关图片如下,点击图片看大图: 我们再讨论控制系统引入比例微分PD的情况,见图4。曲线PD(2)对输入信号的响应特性曲线,当t=0时,PD使系统放大系数Ue骤增。这就是说,当系统输入端出现误差时,控制输出电压会立即变大。我们称这种特性为加速作用。可以看出,过强

速度环等PID调节-西门子ABB

西门子S7-300系列PLC的PID功能块的应用经验 1、可以在软件中进行自动整定; 2、自动整定的PID参数可能对于系统来说不是最好的,就需要手动凭经验来进行整定。P 参数过小,达到动态平衡的时间就会太长;P参数过大,就容易产生超调。 PID功能块在梯形图(程序)中应当注意的问题: 1、最好采用PID向导生成PID功能块; 2、我要说一个最简单的也是最容易被人忽视的问题,那就是:PID功能块的使能控制只能采用SM0.0或任何1个存储器的常开触点并联该存储器的常闭触点这样的永不断开的触点!笔者在以前的一个工程调试中就遇到这样的问题:PID功能块有时间动作正常,有时间动作不正常,而且不正常时发现PID功能块都没问题(PID参数正确、使能正确),就是没有输出。最后查了好久,突然意识到可能是使能的问题——我在使能端串联了启动/停止控制的保持继电器,我把它改为SM0.0以后,一切正常! 同时也明白了PID功能块有时间动作正常,有时间动作不正常的原因:有时在灌入程序后保持继电器处于动作的状态才不会出现问题,一旦停止了设备就会出现问题——PID功能块使能一旦断开,工作就不会正常! 把这个给大家说说,以免出现同样失误。 下面是PID控制器参数整定的一般方法: PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类: 一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。 二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。 现在一般采用的是临界比例法。利用该方法进行 PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。 PID参数的设定:是靠经验及工艺的熟悉,参考测量值跟踪与设定值曲线,从而调整P\I\D 的大小。 比例I/微分D=2,具体值可根据仪表定,再调整比例带P,P过头,到达稳定的时间长,P 太短,会震荡,永远也打不到设定要求。 PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照: 温度T:P=20~60%,T=180~600s,D=3-180s; 压力P: P=30~70%,T=24~180s; 液位L: P=20~80%,T=60~300s; 流量L: P=40~100%,T=6~60s。

PID算法的通俗讲解及调节口诀

PID 调节口诀 1. PID 常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分,最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理想曲线两个波,前高后低4比1,一看二调多分析,调节质量不会低 2.PID 控制器参数的工程整定, 各种调节系统中P.I.D 参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180压力P: P=30~70%,T=24~180s, 液位L: P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。3.PID 控制的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID 控制,又称PID 调节。PID 控制器问世至今已有近70 年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID 控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。比例(P)控制比 例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。 当仅有比例控制时系统输出存在稳态误差(Steady-state error )。积分(I) 控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error )。为了消除稳态误差,在控制器中必须引入"积分项"。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。微分(D)控制在 微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因

PID参数调节设定常用口诀

PID参数调节设定常用口诀 来源:作者:时间:2008-07-27 标签:PID参数调节设定口诀 PID控制简介:PID就是比例微积分调节,具体你可以参照自动控制课程里有详细介绍!正作用与反作用在温控里就是当正作用时是加热,反作用是制冷控制。 目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控控制系统包括控制器﹑传感器﹑变送器﹑执行机构﹑输入输出接口。控制器的输出经过输出接口﹑执行机构﹐加到被控系统上﹔控制系统的被控量﹐经过传感器﹐变送器﹐通过输入接口送到控制器。不同的控制系统﹐其传感器﹑变送器﹑执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。可编程控制器(PLC)是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。还有可以实现PID 控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。 1、闭环控制系统 闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈( Negative Feedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。闭环控制系统的例子很多。比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出各种正确的动作。如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统。另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。 2、开环控制系统 开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。 3、阶跃响应

PID算法的通俗讲解及调节口诀

PID调节口诀 1. PID常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分, 最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度 盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理 想曲线两个波,前高后低4比1,一看二调多分析,调节质量不会低 2.PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可 参照:温度T: P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s, 液位L: P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。 3.PID控制 的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称 PID调节。PID控制器问世至今已有近 70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制 的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学 模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经 验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一 个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用 PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统 的误差,利用比例、积分、微分计算出控制量进行控制的。比例(P)控制比 例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一 个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态 误差的或简称有差系统(System with Steady-state Error)。为了消除稳态误差,在控制器中必须引入"积分项"。积分项对误差取决于时间的积分,随着时间 的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例 +积分(PI)控制器,可以使系统在进入稳态后无稳态误差。微分(D)控制在 微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因

pid的设置

PID整定口诀: 参数整定找最佳, 从小到大顺序查。 先是比例后积分, 最后再把微分加。 P就是比例,就是输入偏差乘以一个系数; I就是积分,就是对输入偏差进行积分运算; D就是微分,对输入偏差进行微分运算。 都说微分作用能够超前调节。可是微分作用到底是怎样超前调节的?一些人会忽略这个问题。合理搭配微分增益和微分时间,会起到让你起初意想不到的效果。 比例积分微分三个作用各有各的特点。这个必须要区分清楚。温习一下: 比例作用:输出与输入曲线相似。 积分作用:输入有偏差输出才变化。 微分作用:输入有抖动输出才变化,且会猛变化. 彻底搞清楚PID的特征曲线分析后,我们再把PID组合起来进行分析。大家作了这么久的枯燥分析,越来越接近实质性的分析了。 比例积分作用,就是在被调量波动的时候,纯比例和纯积分作用的叠加,简单的叠加。 普通的维护工程师最容易犯的毛病,就是难以区分波动曲线中,哪些因素是比例作用造成的,哪些因素是积分作用造成的。要练就辨别的功夫,咱还是要费些枯燥的时间,辨认些图吧。友情提示:这么枯燥的看图说话,可能是最后一个了。胜利在望啊朋友们。 如图4,定值有阶跃扰动时,比例作用使输出曲线Tout同时有一个阶跃扰动,同时积分作用使Tout开始继续增大。

t2时刻后,被调量响应Tout开始增大。此时比例作用因△e减小而使Tout开始降低(如图中点划线Tout(δ)所示);但是前文说了积分作用与△e的趋势无关,与△e的正负有关,积分作用因△e还在负向,故继续使Tout增大,只是速率有所减缓。比例作用和积分作用的叠加,决定了Tout的实际走向,如图Tout(δi)所示。 只要比例作用不是无穷大,或是积分作用不为零,从t2时刻开始,总要有一段时间是积分作用强于比例作用,使得Tout继续升高。然后持平(t3时刻),然后降低。 在被调量升到顶峰的t5时刻,同理,比例作用使Tout也达到顶点(负向),而积分作用使得最终Tout的顶点向后延时(t6时刻)。 从上面的分析可以看出:判断t6时刻的先后,或者说t6距离t5的时间,是判断积分作用强弱的标准。 一般来说,积分作用往往被初学者过度重视。因为积分作用造成的超调往往被误读为比例作用的不当。 而对于一个很有经验的整定高手来说,在一些特殊情况况下,积分作用往往又被过度漠视。因为按照常理,有经验的人往往充分理解积分作用对静态偏差的作用,可是对于积分作用特殊情况下的灵活运用,却反而不容易变通。 可是孤立分析问题这个提法,是不似有点新鲜?怎样才算孤立看待问题? 我们首先要把复杂的问题简单化,简单化有利于思路清晰。那么怎样孤立简化呢?

PID控制附口诀

PID控制附口诀 PID控制简介 目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控制系统包括控制器﹑传感器﹑变送器﹑执行机构﹑输入输出接口。控制器的输出经过输出接口﹑执行机构﹐加到被控系统上﹔控制系统的被控量﹐经过传感器﹐变送器﹐通过输入接口送到控制器。不同的控制系统﹐其传感器﹑变送器﹑执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。可编程控制器(PLC) 是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。还有可以实现PID控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。 1、开环控制系统 开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。 2、闭环控制系统 闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈( Negative Feedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。闭环控制系统的例子很多。比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出各种正确的动作。如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统。另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。 3、阶跃响应 阶跃响应是指将一个阶跃输入(step function)加到系统上时,系统的输出。稳态误差是指系统的响应进入稳态后﹐系统的期望输出与实际输出之差。控制系统的性能可以用稳、准、快三个字来描述。稳是指系统的稳定性(st ability),一个系统要能正常工作,首先必须是稳定的,从阶跃响应上看应该是收敛的﹔准是指控制系统的准确性、控制精度,通常用稳态误差来(Steady-sta te error)描述,它表示系统输出稳态值与期望值之差﹔快是指控制系统响应的快速性,通常用上升时间来定量描述。 4、PID控制的原理和特点

PID调节的详细说明

1. PID调试步骤没有一种控制算法比PID调节规律更有效、更方便的了。现在一些时髦点的调节器基本源自PID。甚至可以这样说:PID调节器是其它控制调节算法的吗。为什么PID应用如此广泛、又长久不衰?因为PID解决了自动控制理论所要解决的最基本问题,既系统的稳定性、快速性和准确性。调节PID的参数,可实现在系统稳定的前提下,兼顾系统的带载能力和抗扰能力,同时,在PID调节器中引入积分项,系统增加了一个零积点,使之成为一阶或一阶以上的系统,这样系统阶跃响应的稳态误差就为零。由于自动控制系统被控对象的千差万别,PID的参数也必须随之变化,以满足系统的性能要求。这就给使用者带来相当的麻烦,特别是对初学者。下面简单介绍一下调试PID参数的一般步骤:1.负反馈自动控制理论也被称为负反馈控制理论。首先检查系统接线,确定系统的反馈为负反馈。例如电机调速系统,输入信号为正,要求电机正转时,反馈信号也为正(PID算法时,误差=输入-反馈),同时电机转速越高,反馈信号越大。其余系统同此方法。2.PID调试一般原则 a.在输出不振荡时,增大比例增益P。 b.在输出不振荡时,减小积分时间常数Ti。 c.在输出不振荡时,增大微分时间常数Td。3.一般步骤 a.确定比例增益P 确定比例增益P 时,首先去掉PID的积分项和微分项,一般是令Ti=0、Td=0(具体见PID的参数设定说明),使PID为纯比例调节。输入设定为系统允许的最大值的60%~70%,由0逐渐加大比例增益P,直至系统出现振荡;再反过来,从此时的比例增益P逐渐减小,直至系统振

荡消失,记录此时的比例增益P,设定PID的比例增益P为当前值的60%~70%。比例增益P调试完成。 b.确定积分时间常数Ti 比例增益P确定后,设定一个较大的积分时间常数Ti的初值,然后逐渐减小Ti,直至系统出现振荡,之后在反过来,逐渐加大Ti,直至系统振荡消失。记录此时的Ti,设定PID的积分时间常数Ti为当前值的150%~180%。积分时间常数Ti调试完成。 c.确定积分时间常数Td 积分时间常数Td一般不用设定,为0即可。若要设定,与确定P和Ti的方法相同,取不振荡时的30%。 d.系统空载、带载联调,再对PID参数进行微调,直至满足要求。 2.PID控制简介目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控制系统包括控制器﹑传感器﹑变送器﹑执行机构﹑输入输出接口。控制器的输出经过输出接口﹑执行机构﹐加到被控系统上﹔控制系统的被控量﹐经过传感器﹐变送器﹐通过输入接口送到控制器。不同的控制系统﹐其传感器﹑变送器﹑执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校

PID调节顺口溜图解

PID调节顺口溜图解 经常在看到PID调节顺口溜,但就是无法理解,请问能解释一下,作好是有图解。 问题补充: 曲线振荡很频繁,比例系数要放大 曲线漂浮绕大湾,比例系数往小扳 曲线偏离回复慢,积分时间往下降 曲线波动周期长,积分时间再加长 曲线振荡频率快,先把微分降下来 动差大来波动慢。微分时间应加长 理想曲线两个波,前高后低4比1 最佳答案 PID调节顺口溜是人们在实践中总结的参数整定的大致方向,但实际的PID调节中需要不断的调整和完善,从而找到最佳的控制点。PID控制器就是根据系统的误差,利用比例(P)、积分(I)、微分(D)计算出控制量来进行控制。 在PID控制器的参数设定中,PID算法涵盖了动态控制过程中的过去、现在、将来的主要信息。其中比例P代表了

当前的信息,起纠正偏差的作用,使过程反应迅速,但系统输出存在稳态误差; 微分(D)在信号变化时有超前控制作用,代表将来的信息。在过程开始时强迫过程进行,过程结束时减少超调,克服震荡,提高系统稳定性,加快系统的过渡过程。 积分(I)代表了过去积累的信息,它能消除静差,改善系统的动态特性。 曲线振荡很频繁,比例系数要放大:说明当前的输出的调节量小,系统输出存在稳态误差,需要加大比例系数,从而成比例地响应输入的变化量 曲线漂浮绕大湾,比例系数往小扳:说明调节过冲,比例的作用是过程迅速响应输入的变化,如果P过大,很容易产生比较大的超调,必须适当减少比例系数; 曲线偏离回复慢,积分时间往下降:由于积分是为了消除稳态误差,随着积分时间的增大,积分项会增大,即是积分项很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大,使稳态误差进一步减小。如果控制输出回复慢,说明稳态误差比较小,需要适当减少积分时间曲线波动周期长,积分时间再加长:积分控制是对输入量对时间的积累,如果曲线波动周期长,说明系统存在较大的稳态误差,需要适当增加积分时间,进一步减少稳态误差。 曲线振荡频率快,先把微分降下来:由于微分控制的输

PID整定方法与口诀

3.PID参数整定 (1)采样周期T符合工程准则。 (2)K p / K i / K d调试:试凑法(先比例,后积分,再微分);扩充临界比例度法;扩充响应曲线法 临界比例度法 一个调节系统,在阶跃干扰作用下,出现既不发散也不衰减的等幅震荡过程,此过程成为等幅振荡过程,如下图所示。此时PID调节器的比例度为临界比例度δk,被调参数的工作周期为为临界周期Tk。 临界比例度法整定PID参数步骤 临界比例度法整定PID参数具体操作如下: 1、被控系统稳定后,把PID调节器的积分时间放到最大,微分时间放到零(相当于切除了积分和微分作用,只使用比例作用)。 2、通过外界干扰或使PID调节器设定值作一阶跃变化,观察由此而引起的测量值振荡。 3、从大到小逐步把PID调节器的比例度减小,看测量值振荡的变化是发散的还是衰减的,如是衰减的则应把比例度继续减小;如是发散的则应把比例度放大。 4、连续重复2和3步骤,直至测量值按恒定幅度和周期发生振荡,即持续4-5次等幅振荡为止。此时的比例度示值就是临界比例度δk。 5、从振荡波形图来看,来回振荡1次的时间就是临界周期Tk,即从振荡波的第一个波的顶点到第二个波的顶点的时间。如果有条件用记录仪,就比较好观察了,即可看振荡波幅值,还可看测量值输出曲线的峰-峰距离,把该测量值除以记录纸的走纸速度,就可计算出临界周期Tk;如果是DCS控制或使用无纸记录仪,在趋势记录曲线中可直接得出Tk。 临界比例度法PID参数整定经验公式

6、将计算所得的调节器参数输入调节器后再次运行调节系统,观察过程变化情况。多数情况下系统均能稳定运行状态,如果还未达到理想控制状态,进需要对参数微调即可。 衰减曲线法 衰减曲线法整定调节器参数通常会按照4:1和10:1两种衰减方式进行,两种方法操作步骤相同,但分别适用于不同工况的调节器参数整定。 4:1衰减曲线法整定调节器参数 纯比例度作用下的自动调节系统,在比例度逐渐减小时,出现4:1衰减振荡过程,此时比例度为4:1衰减比例度δs,两个相邻同向波峰之间的距离为4:1衰减操作周期TS,如下图所示 4:1衰减曲线法整定PID参数步骤 4:1衰减曲线法整定PID参数具体操作如下: 1、在闭合的控制系统中,将PID调节器变为纯比例作用,比例度放在较大的数值上。 2、系统达到稳定后,通过外界干扰或使PID调节器设定值作一阶跃变化,观察记录曲线的衰减比。 3、从大到小改变比例度,直至出现4:1衰减比为止,记下此时的比例度δs(叫4:1衰减比例度)并从曲线上得出衰减周期Ts(在4∶1曲线中为峰-峰时间)。对有些控制对象,控制过程进行较快,难以从记录曲线上找出衰减比。这时只要被控量波动2次就能达到稳定状态,可近似认为是4:1的衰减过程,其波动1次时间为Ts。 4、得到了衰减比例度Ps和衰减周期Ts后,就可根据表中的经验公式求出

PID调节的详细原则

PID详细调试说明 1.负反馈 自动控制理论也被称为负反馈控制理论。首先检查系统接线,确定系统的 反馈为负反馈。(PID算法时,误差=输入-反馈),2.PID调试一般原则 a.在输出不振荡时,增大比例增益P。 b.在输出不振荡时,减小积分时间常数Ti。 c.在输出不振荡时,增大微分时间常数Td。 3.一般步骤 a.确定比例增益P 确定比例增益P 时,首先去掉PID的积分项和微分项,一般是令Ti=1800、Td=0,使PID为纯比例调节。b.确定积分时间常数Ti 比例增益P确定后,设定一个较大的积分时间常数Ti 的初值,然后逐渐减小Ti,直至系统出现振荡,之后在反过来,逐渐加大Ti,直至系统振荡消失。记录此时的Ti,设定PID的积分时间常数Ti为当前值的150%~180%。积分时间常数Ti调试完成。 c.确定微分时间常数Td 积分时间常数Td一般不用设定,为0即可。若要设定,与确定 P和Ti的方法相同,取不振荡时的30%。

d.系统空载、带载联调,再对PID参数进行微调,直至满足要求。PID控制器参数的工程整定,各种调节系统中PID参数经验数据以下可参照: 温度T: P="20"~60%,T=180~600s,D=3-180s 压力P: P="30"~70%,T=24~180s, 液位L: P="20"~80%,T=60~300s, 流量L: P="40"~100%,T=6~60s。 PID常用口诀: 参数整定找最佳,从小到大顺序查 先是比例后积分,最后再把微分加 曲线振荡很频繁,比例度盘要放大 曲线漂浮绕大湾,比例度盘往小扳 曲线偏离回复慢,积分时间往下降 曲线波动周期长,积分时间再加长 曲线振荡频率快,先把微分降下来 动差大来波动慢。微分时间应加长 理想曲线两个波,前高后低4比1 一看二调多分析,调节质量不会低 洁能电PID调节参数: 比例带P: 260 积分时间T:300S 分离时间:100 微分时间D:微分增益5S 时间0 手动慢变化率:百分之0、50

PID基础知识、调节口诀及经验

PID基础知识、调节口诀及经验(摘) PID就是比例微积分调节,具体你可以参照自动控制课程里有详细介绍!正作用与反作用在温控里就是当正作用时是加热,反作用是制冷控制。 PID控制简介 目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控控制系统包括控制器﹑传感器﹑变送器﹑执行机构﹑输入输出接口。控制器的输出经过输出接口﹑执行机构﹐加到被控系统上﹔控制系统的被控量﹐经过传感器﹐变送器﹐通过输入接口送到控制器。不同的控制系统﹐其传感器﹑变送器﹑执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID 控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID 控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。可编程控制器(PLC)是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。还有可以实现PID 控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。 1、开环控制系统 开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。 2、闭环控制系统 闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈( Negative Feedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。闭环控制系统的例子很多。比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出各种正确的动作。如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统。另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。 3、阶跃响应 阶跃响应是指将一个阶跃输入(step function)加到系统上时,系统的输出。稳态误差是指系统的响应进入稳态后﹐系统的期望输出与实际输出之差。控制系统的性能可以用稳、准、快三个字来描述。稳是指系统的稳定性(stability),一个系统要能正常工作,首先必须是稳定的,从阶跃响应上看应该是收敛的﹔准是指控制系统的准确性、控制精度,通常用稳态误差来(Steady-state error) 描述,它表示系统输出稳态值与期望值之差﹔快是指控制系统响应的快速性,通常用上升时间来定量描述。 4、PID控制的原理和特点

简单有效的PID调节方法

简单有效的PID调节方法 简单有效的PID调节方法 PID是工业生产中最常用的一种控制方式,PID调节仪表也是工业控制中最常用的仪表之一,PID 适用于需要进行高精度测量控制的系统,可根据被控对象自动演算出最佳PID控制参数。 PID参数自整定控制仪可选择外给定(或阀位)控制功能。可取代伺服放大器直接驱动执行机构(如阀门等)。PID外给定(或阀位)控制仪可自动跟随外部给定值(或阀位 反馈值)进行控制输出(模拟量控制输出或继电器正转、反转控制输出)。可实现自动/手动无扰动切换。手动切换至自动时,采用逼近法积算,以实现 手动/自动的平稳切换。PID外给定(或阀位)控制仪可同时显示测量信号及阀位反馈信号。 PID光柱显示控制仪集数字仪表与模拟仪表于一体,可对测量值及控制目标值进行数字量显示(双LED数码显示),并同时对测量值及控制目标值进行相对模拟量显示(双光柱显示), 显示方式为双LED数码显示+双光柱模拟量显示,使测量值的显示更为清晰直观。PID参数自整定控制仪可随意改变仪表的输入信号类型。采用最新无跳线技术,只需设定仪表内部参数,即可将仪表从一种输入信号改为另一种输入信号。 PID参数自整定控制仪可选择带有一路模拟量控制输出(或开关量控制输出、继电器和可控硅正转、反转控制)及一路模拟量变送输出,可适用于各种测量控制场合。PID参数自整定控制仪支持多机通讯,具有多种标准串行双向通讯功能,可选择多种通讯方式,如RS-232、RS-485、RS-42等,通讯波特率300~9600bps 仪表内部参数自由设定。可与各种带串行输入输出的设备( 如电脑、可编程控制器、PLC 等)进行通讯,构成管理系统。 1.PID常用口诀: 参数整定找最佳,从小到大顺序查 先是比例后积分,最后再把微分加 曲线振荡很频繁,比例度盘要放大 曲线漂浮绕大湾,比例度盘往小扳 曲线偏离回复慢,积分时间往下降 曲线波动周期长,积分时间再加长 曲线振荡频率快,先把微分降下来 动差大来波动慢。微分时间应加长 理想曲线两个波,前高后低4比1 一看二调多分析,调节质量不会低 2.PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照: 温度T: P=20~60%,T=180~600s,D=3-180s 压力P: P=30~70%,T=24~180s, 液位L: P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。 3.PID控制的原理和特点 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID 控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳

pid常用口诀

PID常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分,最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理想曲线两个波,前高后低4比1。 PID控制算法: 关键的参数Kc(Gain,增益),Ti(积分时间常数),Td(微分时间常数),Ts(采样时间),在S7-200中PID功能是通过PID指令功能块实现。通过定时(按照采样时间)执行PID功能块,按照PID 运算规律,根据当时的给定、反馈、比例-积分-微分数据,计算出控制量。也就说这些参数是通过PLC的功能块实现的. 一般的控制就在OB35里调用FB58就行了,只需要输入设定值,输出值和过程值的地址就行了。还有在DB58里设置一下。 1、PID是经典控制(使用年代久远) 2、PID是误差控制() 对液压泵转速进行控制除PLC外还要: 1、变频器-作为电机驱动; 2、差动变压器-作为输出反馈。 PID怎么对误差控制,听我细细道来: 所谓“误差”就是命令与输出的差值。比如你希望控制液压泵转速为1500转(“命令电 压”=6V),而事实上控制液压泵转速只有1000转(“输出电压”=4V),则误差: e=500转(对应电压2V)。如果泵实际转速为2000转,则误差e=-500转(注意正负号)。 该误差值送到PID控制器,作为PID控制器的输入。PID控制器的输出为:误差乘比例系数Kp+Ki*误差积分+Kd*误差微分。 Kp*e + Ki*∫edt + Kd*(de/dt)(式中的t为时间,即对时间积分、微分) 上式为三项求和(希望你能看懂),PID结果后送入电机变频器或驱动器。 从上式看出,如果没有误差,即e=0,则Kp*e=0;Kd*(de/dt)=0;而Ki*∫edt 不一定为0。三项之和不一定为0。 总之,如果“误差”存在,PID就会对变频器作调整,直到误差=0

PID常用口诀总结

电子知识 PID(169) 1.PID常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分,最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理想曲线两个波,前高后低4比1,一看二调多分析,调节质量不会低 2.PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照: 温度T: P=20~60%,T=180~600s,D=3-180s 压力P: P=30~70%,T=24~180s, 液位L: P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。 3.PID控制的原理和特点 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID 控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

比例(P)控制 比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。 积分(I)控制 在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。 微分(D)控制 在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动

相关主题
相关文档
最新文档