旋量键合图在并联机构动力学建模中的应用

旋量键合图在并联机构动力学建模中的应用
旋量键合图在并联机构动力学建模中的应用

PRIUS混合动力汽车驱动系统键合图建模仿真

第26卷 第1期 2004年1月武 汉 理 工 大 学 学 报JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY V o l.26 No.1 Jan.2004 PRIU S 混合动力汽车驱动系统键合图建模仿真 高海鸥,王仲范,邓亚东 (武汉理工大学汽车工程学院,武汉430070) 摘 要: 在深入研究丰田公司出产的PRI U S 混合动力汽车驱动系统及其各单元的动态关系的基础上,运用键合图原理对该系统进行数学建模,并应用M atlab /Simulink 进行仿真计算和研究。研究表明,所建模型可以较准确地反映P RIU S 的动态特性,并通过发现解决多动力耦合中弹性与柔性耦合影响导致的车速波动,证明使用键合图建模的优越性。 关键词: PRI U S; 混合动力汽车; 驱动系统; 键合图; 仿真; 波动 中图分类号: V 469.72文献标识码: A 文章编号:1671-4431(2004)01-0063-03收稿日期:2003-09-25. 基金项目:教育部课题(02175). 作者简介:高海鸥(1978-),男,硕士生.E -mail :gh o 1978@sina .co m 随着石油资源的日益匮乏,寻找新能源、新技术的要求日益迫切。人们越来越关注代用燃料汽车和电动汽车的开发。使用电动汽车(electric v ehicle 简称EV )可实现无污染,并可利用水电等其它非石油资源,因此,这无疑是解决问题的最有效途径。但由于电池的能量密度与汽油相差上百倍,远未达到人们的要求,专家估计在10年以内纯电动汽车还无法取代燃油发动机汽车。在此情况下,混合动力汽车成为短期内解决排放污染和能源紧缺的有效途径之一。在现代设计方法中,应用计算机技术开展系统建模仿真显得尤为重要,由于混合动力车系统的复杂性,目前国外的一些系统仿真软件无法对汽车系统进行全面、完整的描述。因此,决定使用键合图理论对汽车系统进行仿真[1] 。在深入分析了PRIU S 混合动力汽车驱动系统的基础上,用键合图方法建立系统动态模型,并进行仿真分析。1 PRIUS 混合动力电动汽车驱动模式 日本丰田公司开发的PRIUS 是世界上第一种大批量生产的混合动力汽车。驱动模式如图1所示[2],它采用四缸发动机(4500r /min ,52kW )和2台永磁同步电动机(1040~5600r /min ,33kW )共同驱动。3个图1 PRI U S 混合动力电动汽车驱动系统简图动力源通过行星齿轮系统连接起来构成多能源的 耦合驱动。发动机和行星架相连,齿圈轴和电动机 (主要功能驱动汽车,在能量回收时发电)传动轴相 联并驱动传动轴,太阳轮轴和发电机(主要功能发 电,但起动时驱动)相联。发动机所发出的扭矩可以 通过行星机构传递到驱动轴上驱动汽车,也可以驱 动发电机,其扭矩的分配由动力分配装置控制;发 电机既可以向电池充电,也可以给电动机提供能 量。2 驱动系统键合图模型 根据键合图原理[3],首先建立各个子系统的键合图模型,然后再耦合成系统模型。

多体系统动力学基本理论

第2章多体系统动力学基本理论

本章主要介绍多体系统动力学的基本理论,包括多刚体系统动力学建模、多柔体系统动力学建模、多体系统动力学方程求解及多体系统动力学中的刚性(Stiff)问题。通过本章的学习可以对多体系统动力学的基本理论有较深入的了解,为具体软件的学习打下良好的理论基础。 2.1 多体系统动力学研究状况 多体系统动力学的核心问题是建模和求解问题,其系统研究开始于20世纪60年代。从60年代到80年代,侧重于多刚体系统的研究,主要是研究多刚体系统的自动建模和数值求解;到了80年代中期,多刚体系统动力学的研究已经取得一系列成果,尤其是建模理论趋于成熟,但更稳定、更有效的数值求解方法仍然是研究的热点;80年代之后,多体系统动力学的研究更偏重于多柔体系统动力学,这个领域也正式被称为计算多体系统动力学,它至今仍然是力学研究中最有活力的分支之一,但已经远远地超过一般力学的涵义。 本节将叙述多体系统动力学发展的历史和目前国内外研究的现状。 2.1.1 多体系统动力学研究的发展 机械系统动力学分析与仿真是随着计算机技术的发展而不断成熟的,多体系统动力学是其理论基础。计算机技术自其诞生以来,渗透到了科学计算和工程应用的几乎每一个领域。数值分析技术与传统力学的结合曾在结构力学领域取得了辉煌的成就,出现了以ANSYS、NASTRAN等为代表的应用极为广泛的结构有限元分析软件。计算机技术在机构的静力学分析、运动学分析、动力学分析以及控制系统分析上的应用,则在二十世纪八十年代形成了计算多体系统动力学,并产生了以ADAMS和DADS为代表的动力学分析软件。两者共同构成计算机辅助工程(CAE)技术的重要内容。 多体系统是指由多个物体通过运动副连接的复杂机械系统。多体系统动力学的根本目的是应用计算机技术进行复杂机械系统的动力学分析与仿真。它是在经典力学基础上产生的新学科分支,在经典刚体系统动力学上的基础上,经历了多刚体系统动力学和计算多体系统动力学两个发展阶段,目前已趋于成熟。 多刚体系统动力学是基于经典力学理论的,多体系统中最简单的情况——自由质点和一般简单的情况——少数多个刚体,是经典力学的研究内容。多刚体系统动力学就是为多个刚体组成的复杂系统的运动学和动力学分析建立适宜于计算机程序求解的数学模型,并寻求高效、稳定的数值求解方法。由经典力学逐步发展形成了多刚体系统动力学,在发展过程中形成了各具特色的多个流派。 早在1687年,牛顿就建立起牛顿方程解决了质点的运动学和动力学问题;刚体的概念最早由欧拉于1775年提出,他采用反作用力的概念隔离刚体以描述铰链等约束,并建立了

分子动力学的模拟过程

分子动力学的模拟过程 分子动力学模拟作为一种应用广泛的模拟计算方法有其自身特定的模拟步骤,程序流程也相对固定。本节主要就分子动力学的模拟步骤和计算程序流程做一些简单介绍。 1. 分子动力学模拟步驟 分子动力学模拟是一种在微观尺度上进行的数值模拟方法。这种方法既可以得到一些使用传统方法,热力学分析法等无法获得的微观信息,又能够将实际实验研究中遇到的不利影响因素回避掉,从而达到实验研宄难以实现的控制条件。 分子动力学模拟的步骤为: (1)选取所要研究的系统并建立适当的模拟模型。 (2)设定模拟区域的边界条件,选取粒子间作用势模型。 (3)设定系统所有粒子的初始位置和初始速度。 (4)计算粒子间的相互作用力和势能,以及各个粒子的位置和速度。 (5)待体系达到平衡,统计获得体系的宏观特性。 分子动力学模拟的主要对象就是将实际物理模型抽象后的物理系统模型。因此,物理建模也是分子动力学模拟的一个重要的环节。而对于分子动力学模拟,主要还是势函数的选取,势函数是分子动力学模拟计算的核心。这是因为分子动力学模拟主要是计算分子间作用力,计算粒子的势能、位置及速度都离不开势函数的作用。系统中粒子初始位置的设定最好与实际模拟模型相符,这样可以使系统尽快达到平衡。另外,粒子的初始速度也最好与实际系统中分子的速度相当,这样可以减少计算机的模拟时间。 要想求解粒子的运动状态就必须把运动方程离散化,离散化的方法有经典Verlet算法、蛙跳算法(Leap-frog)、速度Veriet算法、Gear预估-校正法等。这些算法有其各自的优势,选取时可按照计算要求选择最合适的算法。 统计系统各物理量时,便又涉及到系统是选取了什么系综。只有知道了模拟系统采用的系综才能釆用相对应的统计方法更加准确,有效地进行统计计算,减少信息损失。 2. 分子动力学模拟程序流程 具体到分子动力学模拟程序的具体流程,主要包括: (1)设定和模拟相关的参数。 (2)模拟体系初始化。 (3)计算粒子间的作用力。 (4)求解运动方程。 (5)循环计算,待稳定后输出结果。 分子动力学模拟程序流程图如2.3所示。

分子动力学模拟

分子动力学模拟 分子动力学就是一门结合物理,数学与化学的综合技术。分子动力学就是一套分子模拟方法,该方法主要就是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量与其她宏观性质。 这门技术的发展进程就是: 1980年:恒压条件下的动力学方法(Andersenの方法、Parrinello-Rahman法) 1983年:非平衡态动力学方法(Gillan and Dixon) 1984年:恒温条件下的动力学方法(能势‐フーバーの方法) 1985年:第一原理分子动力学法(→カー?パリネロ法) 1991年:巨正则系综的分子动力学方法(Cagin and Pettit)、 最新的巨正则系综,即为组成系综的系统与一温度为T、化学势为μ的很大的热源、粒子源相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,这种系综称巨正则系综。 进行分子动力学模拟的第一步就是确定起始构型,一个能量较低的起始构型就是进行分子模拟的基础,一般分子的其实构型主要就是来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度就是根据玻尔兹曼分布随机生成,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度就是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之与为零,即保证体系没有平动位移。 由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。 进入生产相之后体系中的分子与分子中的原子开始根据初始速度运动,可以想象其间会发生吸引、排斥乃至碰撞,这时就根据牛顿力学与预先给定的粒子间相互作用势来对各个例子的运动轨迹进行计算,在这个过程中,体系总能量不变,但分子内部势能与动能不断相互转化,从而体系的温度也不断变化,在整个过程中,体系会遍历势能面上的各个点,计算的样本正就是在这个过程中抽取的。 用抽样所得体系的各个状态计算当时体系的势能,进而计算构型积分。 作用势的选择与动力学计算的关系极为密切,选择不同的作用势,体系的势能面会有不同的形状,动力学计算所得的分子运动与分子内部运动的轨迹也会不同,进而影响到抽样的结果与抽样结果的势能计算,在计算宏观体积与微观成分关系的时候主要采用刚球模型的二体势,计算系统能量,熵等关系时早期多采用Lennard-Jones、morse势等双体势模型,对于金属计算,主要采用morse势,但就是由于通过实验拟合的对势容易导致柯西关系,与实验不符,因此在后来的模拟中有人提出采用EAM等多体势模型,或者采用第一性原理计算结果通过一定的物理方法来拟合二体势函数。但就是对于二体势模型,多体势往往缺乏明确的表达式,参量很多,模拟收敛速度很慢,给应用带来很大困难,因此在一般应用中,通过第一性原理计算结果拟合势函数的L-J,morse等势模型的应用仍非常广泛。 分子动力学计算的基本思想就是赋予分子体系初始运动状态之后,利用分子的自然运动在相空间中抽取样本进行统计计算,时间步长就就是抽样的间隔,因而时间步长的选取对动力学模拟非常重要。太长的时间步长会造成分子间的激烈碰撞,体系数据溢出;太短的时间步长会降低模拟过程搜索相空间的能力,因此一般选取的时间步长为体系各个自由度中最短运动周期的十分之一。但就是通常情况下,体系各自由度中运动周期最短的就是各个化学键的振动,而这种运动对计算某些宏观性质并不产生影响,因此就产生了屏蔽分子内部振动或其她无关运动的约束动力学,约束动力学可以有效地增长分子动力学模拟时间步长,提高搜索相空间的能

键图建模与仿真

键图建模与仿真 基于Web的键合图法MEMS系统级多能量域仿真 平台 姓名董正荣 学号2016412059 专业机械设计及理论 学院机械科学与工程学院 教师陈延礼

基于Web的键合图法MEMS系统级多能量域仿真 平台 1引言 键合图法是一种基于功率流图形化表达的系统动力学仿真方法,它提供了一种统一处理多种能量范畴工程动特性问题的途径。 在MEMS动态系统仿真中,普遍存在大量的多种能量域相互作用以及模型非线性问题,这一直是困扰设计人员的一大难题。目前,进行MEMS系统级仿真的主要方法有等效电路法、混合信号硬件描述语言法(VHDL-ASM)等。等效电路法将系统中元件的各种动态参数与电路中的电流、电压等信号相对应。采用这种方法易于分析系统的动力学特性,但所得到的分析模型完全不能反映MEMS系统的结构特征,且整个建模过程不直观,此外,对于复杂的MEMS 系统很难建立其等效电路。混合硬件描述语言法(VHDL-ASM)由硬件描述语言(VHDL)发展而来。优点在于其模型可复用技术使得HDL库可以在建模与仿真过程中直接调用,同时VHDL的广泛使用也使得这一方法成为当前MEMS 系统级仿真中常用的一种方法。 键合图法则基于能量变量统一表达的思想,并借助能量守恒原理统一描述各种能量域中的能量变量之间的关系。与其它方法相比,键合图法更适合用于建立MEMS多能量域动态系统仿真模型。 2仿真平台的框架及实现 键合图系统动特性仿真方法键合图采用四种物理量,即势(e)、流(f)、动量(p)、变位(q)来统一表达工程问题中各种能量域的动态变量。这四种动态变量高度概括了各种能量域内普遍存在的物理量,在具体的能量域内(如:机械能、电能、热能、光能等)必然存在相应的物理量与这四种动态变量相对应。键合图模型由功率键、激活键和基本元件集{0-节点、1-节点、转换器TF、换能器GY、源元件(Se、Sf)、阻性元件R、容性元件C、感性元件I、受控元件(MTF、MGY、KSe、KSf)、非线性元件(NR、NC、NI)等}组成。键合图的每个功率键上都具有势和流两种变量。对应不同的工程问题,这些符号具有不同的物理意义。如在电路系统Se代表电压源、Sf代表电流源,而在力学系统中力源用Se表示,速度源用Sf表示。统一符号表达各种能量变量将有利于诸如MEMS系统这一类的多能量域工程体系的统一建模。

多体动力学软件和有限元软件的区别(优.选)

有限元软件与多体动力学软件 数值分析技术与传统力学的结合在结构力学领域取得了辉煌的成就,出现了以ANSYS 、NASTRAN 等为代表的应用极为广泛的结构有限元分析软件。计算机技术在机构的静力学分析、运动学分析、动力学分析以及控制系统分析上的应用,则在二十世纪八十年代形成了计算多体系统动力学,并产生了以ADAMS 和DADS 为代表的动力学分析软件。两者共同构成计算机辅助工程(CAE )技术的重要内容。 商业通用软件的广泛应用给我们工程师带来了极大的便利,很多时候我们不需要精通工程问题中的力学原理,依然可以通过商业软件来解决问题,不过理论基础的缺失还是会给我们带来不少的困扰。随着动力有限元与柔性多体系统分析方法的成熟,有时候正确区分两者并不是很容易。 机械领域应用比较广泛的有两类软件,一类是有限元软件,代表的有:ANSYS, NASTRAN, ABAQUS, LS-DYNA, Dytran 等;另一类是多体动力学软件,代表的有ADAMS, Recurdyn , Simpack 等。在使用时,如何选用这两类软件并不难,但是如果深究这两类软件根本区别并不容易。例如,有限元软件可以分析静力学问题,也可以分析“动力学”问题,这里的“动力学”与多体动力学软件里面的动力学一样吗?有限元软件在分析动力学问题时,可以模拟物体的运动,它与多体动力学软件中模拟物体运动相同吗?多体动力学软件也可以分析柔性体的应力、应变等,这与有限元软件分析等价吗? 1 有限元软件 有限单元法是一种数学方法,不仅可以计算力学问题,还可以计算声学,热,磁等多种问题,我们这里只探讨有限元法在机械领域的应用。 计算结构应力、应变等的力学基础是弹性力学,弹性力学亦称为弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而为工程结构或构件的强度、刚度设计提供理论依据和计算方法。也就是说用有限元软件分析力学问题时,是用有限元法计算依据弹性力学列出的方程。 考虑下面这个问题,在()0t , 时间内给一个结构施加一个随时间变化的载荷()P t ,我们希望得到结构的应力分布,在刚刚施加载荷的时候,结构中的应力会有波动,应力场是变化的,但很久以后,应力场趋于稳定。 如果我们想得到载荷施加很久以后,稳定的应力场分布,那么应该用静力学分析方法分析

分子动力学模拟方法概述(精)

《装备制造技术》 2007年第 10期 收稿日期 :2007-08-21 作者简介 :申海兰 , 24岁 , 女 , 河北人 , 在读研究生 , 研究方向为微机电系统。 分子动力学模拟方法概述 申海兰 , 赵靖松 (西安电子科技大学机电工程学院 , 陕西西安 710071 摘要 :介绍了分子动力学模拟的基本原理及常用的原子间相互作用势 , 如Lennard-Jones 势 ; 论述了几种常用的有限差分算法 , 如 Verlet 算法 ; 说明了分子动力学模拟的几种系综及感兴趣的宏观统计量的提取。关键词 :分子动力学模拟 ; 原子间相互作用势 ; 有限差分算法 ; 系综中图分类号 :O3 文献标识码 :A 文章编号 :1672-545X(200710-0029-02 从统计物理学中衍生出来的分子动力学模拟方法 (molec- ular dynamics simulation , M DS , 实践证明是一种描述纳米科技 研究对象的有效方法 , 得到越来越广泛的重视。所谓分子动力学模拟 , 是指对于原子核和电子所构成的多体系统 , 用计算机模拟原子核的运动过程 , 从而计算系统的结构和性质 , 其中每一个原子核被视为在全部其他原子核和电子所提供的经验势场作用下按牛顿定律运动 [1]。它被认为是本世纪以来除理论分析和实验观察之外的第三种科学研究手段 , 称之为“计算机实验” 手段 [2], 在物理学、化学、生物学和材料科学等许多领域中得到广泛地应用。

根据模拟对象的不同 , 将它分为平衡态分子动力学模拟 (EM DS (和非平衡态分子动力学模拟 (NEM DS 。其中 , EM DS 是分子动力学模拟的基础 ; NEM DS 适用于非线性响应系统的模拟 [3]。下面主要介绍 EM DS 。 1分子动力学方法的基本原理 计算中根据以下基本假设 [4]: (1 所有粒子的运动都遵循经典牛顿力学规律。 (2 粒子之间的相互作用满足叠加原理。 显然这两条忽略了量子效应和多体作用 , 与真实物理系统存在一定差别 , 仍然属于近似计算。 假设 N 为模拟系统的原子数 , 第 i 个原子的质量为 m i , 位置坐标向量为 r i , 速度为 v i =r ? i , 加速度为 a i =r ?? i , 受到的作用力为 F i , 原子 i 与原子 j 之间距离为 r ij =r i -r j , 原子 j 对原子 i 的作用力为 f ij , 原子 i 和原子 j 相互作用势能为 ! (r ij , 系统总的势能为 U (r 1, r 2, K r N = N i =1! j ≠ i ! " (r ij , 所有的物理量都是随时 间变化的 , 即 A=A (t , 控制方程如下 : m i r ?? i =F i =j ≠ i

直动式溢流阀的键合图建模与仿真分析

直动式溢流阀的键合图建模与仿真分析 溢流阀一种压力控制阀,在液压设备中主要起定压溢流作用,稳压作用,系统卸荷作用和安全保护作用。系统正常工作时,阀门关闭,只有负载超过规定的极限(系统压力超过调定压力)时开启溢流,进行过载保护,使系统压力不再增加。将直动式溢流阀并联在液压缸的两腔,手动调节溢流压力,可以当做模拟负载器。 1 液压系统及动态过程 任何一个液压元件总是在某一定的液压系统中工作的。在绘制功率键合图,进行动态分析时,总是针对某一具体动态过程进行研究的。 本研究的直动式溢流阀调压系统的液压原理图如图1所示。在图中所示情况下,液压泵的供油经电磁阀流回油箱,当电磁阀突然通电关闭时,直动式溢流阀由原来的关闭状态到打开溢流,直到系统达到新的静平衡状态的瞬态响应过程。 图1 直动式溢流阀调压系统的液压原理图 在上图中,因重点研究的是溢流阀,因此对溢流阀本身的影响特性的因素考虑的多一点,其他不必要的可忽略不计。为了便于分析,需要画出直动式溢流阀的的结构简图,该结构简图及其与系统其他部分的关系如图2。 图2 所研究系统的结构简图

在建立数学模型时,所考虑的的影响因素主要有:溢流阀本身的弹簧柔度C 弹、阀芯质量I 阀 、阀口液阻R 阀 、阻尼孔液阻R 孔 ,及阀芯底部控制油压力p 控 。 此外,系统其他部分考虑的因素有:泵的泄露液阻R 泄 、管道(主要是软管)液 容C 管及模拟负载的节流阀液阻R 节 。 2 功率键合图 按照键合图理论,描述一个系统主要使用容性元件C、阻性元件R、惯性元件I、流源S f、力源Se、转换器TF。将这些基本元件按照功率流程连接起来,构成系统的键合图,如图3。 图3 功率键合图 图中带箭头的直线表示功率键,箭头表示功率流向。每一根功率键上有表示构成功率的两个变量,一般用力变量e和流变量f表示,但在传递不同类型能量的系统中,力变量和流变量各有其不同的物理变量。每根键上的变量都有脚标,以示区别。 图中功率流程是从左向右的。第一个结点是0结点,表示定量泵供给的具有确定流量q1的流源Sf,在同一压力下有5个分支功率从容腔流出,其中有4个是受作用元控制的,即控制泵泄漏量q3的泄露液阻R 泄 、控制管道中油液压缩 所补充的流量q2的液容C 管、控制供给负载流量q4的节流阀液阻R 节 以及控制 溢流量q5的溢流阀阀口液阻R 阀 ,另一个分支功率是用于控制阀芯运动的P6.q6。 第二个结点是1结点,表示功率流p6.q6在同一流量下又分成两个功率流,其一 是受阻尼孔液阻R 孔 控制,具有压力损失p7,相应的功率损失为p7.q7,另一支液压功率流p8.q8,经变换器TF转换成机械功率F9.v9,作用在阀芯底部来控制阀芯运动。最后一个结点为1结点,功率流F9.v9在同一运动速度下,其力变量F 经3个分支功率流,分别用于克服弹簧的预压紧力F10、弹簧继续受压产生的弹性力F11、以及用于克服惯性力F12以产生阀芯的加速度a12 。

多体系统动力学综述

1. 绝对节点坐标法 传统有限元方法建立的单元为非等参数单元,其使用节点处的位移梯度来描述物体的无限小的转动,但在物体发生大变形时,节点处的位移梯度已不能准确描述物体的转动变形,从而极大影响到计算的精度。 Shabana [1]提出了绝对节点坐标法(Absolute nodal coordinate formulation, ANCF ),其理论基础主要是有限元和连续介质力学理论。该方法将物体的单元节点坐标定义在全局坐标系下,使用节点处的斜率(slope)矢量作为节点坐标而不是节点处的无限小转动[2],不需要另外计算刚体位移与柔性变形之间的耦合,能较精确地计算大变形的多体系统动力学问题。其最终推导出的多体系统的微分代数方程组(DAEs )中,质量矩阵是一个常数矩阵,但刚度矩阵将是一个非线性的时间函数。 1.1梁单元的绝对节点坐标法 Shabana 首先推导出一维梁单元的绝对节点坐标法模型[1][3]。在这种模型中,梁单元用中性轴来简化,如图1所示,其上面任意一点P 在全局坐标系下的坐标表达为: 23101232320123r =Se r a a x a x a x r b b x b x b x ??+++??==????+++???? 图1 其中,x 为沿轴线的单元局部坐标,[]0,x l ∈,l 为梁单元初始长度;S 为单元形函数;e 为含有8个单元节点坐标的广义坐标矢量。 123456781102205162e []|,|,|,|, T x x x l x l e e e e e e e e e r e r e r e r ========= 1 2 1 2 304078,,,x x x l x l r r r r e e e e x x x x ====????====????

分子动力学模拟

分子动力学模拟 分子动力学是一门结合物理,数学和化学的综合技术。分子动力学是一套分子模拟方法,该方法主要是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量和其他宏观性质。 这门技术的发展进程是: 1980年:恒压条件下的动力学方法(Andersenの方法、Parrinello-Rahman法) 1983年:非平衡态动力学方法(Gillan and Dixon) 1984年:恒温条件下的动力学方法(能势‐フーバーの方法) 1985年:第一原理分子动力学法(→カー?パリネロ法) 1991年:巨正则系综的分子动力学方法(Cagin and Pettit). 最新的巨正则系综,即为组成系综的系统与一温度为T、化学势为μ的很大的热源、粒子源相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,这种系综称巨正则系综。 进行分子动力学模拟的第一步是确定起始构型,一个能量较低的起始构型是进行分子模拟的基础,一般分子的其实构型主要是来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度是根据玻尔兹曼分布随机生成,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之和为零,即保证体系没有平动位移。 由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。 进入生产相之后体系中的分子和分子中的原子开始根据初始速度运动,可以想象其间会发生吸引、排斥乃至碰撞,这时就根据牛顿力学和预先给定的粒子间相互作用势来对各个例子的运动轨迹进行计算,在这个过程中,体系总能量不变,但分子内部势能和动能不断相互转化,从而体系的温度也不断变化,在整个过程中,体系会遍历势能面上的各个点,计算的样本正是在这个过程中抽取的。 用抽样所得体系的各个状态计算当时体系的势能,进而计算构型积分。 作用势的选择与动力学计算的关系极为密切,选择不同的作用势,体系的势能面会有不同的形状,动力学计算所得的分子运动和分子内部运动的轨迹也会不同,进而影响到抽样的结果和抽样结果的势能计算,在计算宏观体积和微观成分关系的时候主要采用刚球模型的二体势,计算系统能量,熵等关系时早期多采用Lennard-Jones、morse势等双体势模型,对于金属计算,主要采用morse势,但是由于通过实验拟合的对势容易导致柯西关系,与实验不符,因此在后来的模拟中有人提出采用EAM等多体势模型,或者采用第一性原理计算结果通过一定的物理方法来拟合二体势函数。但是对于二体势模型,多体势往往缺乏明确的表达式,参量很多,模拟收敛速度很慢,给应用带来很大困难,因此在一般应用中,通过第一性原理计算结果拟合势函数的L-J,morse等势模型的应用仍非常广泛。 分子动力学计算的基本思想是赋予分子体系初始运动状态之后,利用分子的自然运动在相空间中抽取样本进行统计计算,时间步长就是抽样的间隔,因而时间步长的选取对动力学模拟非常重要。太长的时间步长会造成分子间的激烈碰撞,体系数据溢出;太短的时间步长会降低模拟过程搜索相空间的能力,因此一般选取的时间步长为体系各个自由度中最短运动周期的十分之一。但是通常情况下,体系各自由度中运动周期最短的是各个化学键的振动,而这种运动对计算某些宏观性质并不产生影响,因此就产生了屏蔽分子内部振动或其他无关运动的约束动力学,约束动力学可以有效地增长分子动力学模拟时间步长,提高搜索相空间的能

分子动力学模拟-经验谈

分子动力学攻略 此文为dddc_redsnow发表于biolover上的关于分子动力学的系列原创文章,相当经典与精彩,特此将系列文章整合,一起转载,望学习动力学的新手们共同学习,提高进步,在此特向dddc_redsnow本人表示感谢。 动力学系列之一(gromacs,重发) 在老何的鼓励下,发一下我的gromacs上手手册(我带人时用的,基本半天可以学会gromcas) ###################################################### # Process protein files step by step # ###################################################### pdb2gmx -f 2th_cap.pdb -o 2th_cap.gro -p 2th_cap.top -ignh -ter nedit 2th_cap.top editconf -f 2th_cap.gro -o 2th_cap_box.gro -d 1.5 genbox -cp 2th_cap_box.gro -cs -p 2th_cap.top -o 2th_cap_water.gro make_ndx -f 2th_cap_water.gro -o 2th_cap.ndx genpr -f 2th_cap_water.gro -n 2th_cap.ndx -o 2th_cap_All.itp genpr -f 2th_cap_water.gro -n 2th_cap.ndx -o 2th_cap_M.itp genpr -f 2th_cap_water.gro -n 2th_cap.ndx -o 2th_cap_C.itp nedit Flavo.itp grompp -f em.mdp -c 2th_cap_water.gro -p 2th_cap.top -o prepare.tpr genion -s prepare.tpr -o 2th_cap_water_ion.gro -np 1 -pq 1 ##################################################### # Minimize step by step # # 1. minimization fixing whole protein # # 2. minimization fixing maincharin of protein # # 3. minimization fixing Ca of protein # # 4. minimization without fix # ##################################################### grompp -np 4 -f em.mdp -c 2th_cap_water_ion.gro -p 2th_cap.top -o minimize_water.tpr mpirun -np 4 mdrun -nice 0 -s minimize_water.tpr -o minimize_water.trr -c minimize_water.gro -e minimize_water.edr -g minimize_water.log & grompp -np 4 -f em.mdp -c minimize_water.gro -p 2th_cap.top -o minimize_sidechain.tpr mpirun -np 4 mdrun -nice 0 -s minimize_sidechain.tpr -o minimize_sidechain.trr -c minimize_sidechain.gro -e minimize_sidechain.edr -g minimize_sidechain.log & grompp -np 4 -f em.mdp -c minimize_sidechain.gro -p 2th_cap.top -o minimize_sidechain_ex.tpr mpirun -np 4 mdrun -nice 0 -s minimize_sidechain_ex.tpr -o minimize_sidechain_ex.trr -c minimize_sidechain_ex.gro -e minimize_sidechain_ex.edr minimize_sidechain_ex.log & grompp -np 4 -f em.mdp -c minimize_sidechain_ex.gro -p 2th_cap.top -o minimize_all.tpr mpirun -np 4 mdrun -nice 0 -s minimize_all.tpr -o minimize_all.trr -c minimize_all.gro -e minimize_allx.edr -g minimize_all.log&

键合图论文:圆柱齿轮传动非线性动力学键合图建模研究

键合图论文:圆柱齿轮传动非线性动力学键合图建模研究 【中文摘要】键合图方法提供了一种统一处理多种能量范畴的工程系统的动态分析方法,可以用来模拟多输入、多输出系统,线性和非线性系统,键合图中的状态变量均为物理变量,可深入地描述系统内部状态的变化过程。但是键合图法的不足是对机械系统中的非线性参数,如摩擦、间隙等因素建模时不是很方便。针对键合图建模方法的不足,本文的主要工作包括:(1)通过对摩擦力运动特性的分析,引入功率结型结构,建立了能够全面反映摩擦力动态特性的通用键合图模型,该模型不仅能够反映摩擦力在静摩擦状态和动摩擦状态下的运动特性,而且还可以反映摩擦力的耗能特性。(2)对典型的间隙接触动力学进行了分析,根据相对位移与间隙的关系,把接触力划分为三个状态,建立了间隙接触的通用键合图模型,采用20-sim仿真软件对所建立的模型进行了仿真分析,仿真结果与实际情况相符,验证了模型的正确性。(3)以齿轮系统为研究对象,分别建立了齿面摩擦的键合图模型、间隙和时变刚度的键合图模型以及静态传递误差的键合图模型,在此基础上,建立了包含齿面摩擦、间隙、时变刚度和静态传递误差等非线性因素的齿轮传动系统非线性键合图模型,并运用20-sim和Matlab仿真软件对模型进行了对比仿真研究,结果验证了模型的正确性。(4)采用实验的方法测到了一对实验齿轮的静态传递误差和动态传递误差曲线,并将动态传递误差与采用本文建立的齿轮键合图模型计算得到的传递误差曲线进行了对比,两者的啮合频率基本一致,但

是幅值有一定的误差,基本验证了本文建立的齿轮系统键合图模型的 正确性。 【英文摘要】Bond graph provides a multiple energy domain coupling analytical method, which can be used to simulate the multiple input and multiple output systems, linear and nonlinear systems. The state variables of bond graph are physical variables that can be in-depth described the process of state changes within the system. But it is hard to use bond graph model to express a micro mechanical system parameters, such as friction and clearance. In order to solve these problems, this paper has completed the following research work.(1) On the base of theory analysis, this paper established a common bond graph model that could reflect the dynamic characteristics of friction through introducing the concept of switched power junction. This model not only could comprehensive reflect the characteristics of friction both in the static state and in the dynamic motion, but also reflect the consume energy characteristics of friction.(2) According to the relationship between relative displacement and clearance, the contact force along the meshing line is divided into three statuses, and then presented the bond graph model of contact with clearance.20-sim is employed to studying the modeling.(3) Taking a gear system

分子动力学模拟讲解

分子动力学模拟 一,软件: NAMD:https://www.360docs.net/doc/e44981136.html,/Research/namd/免费注册之后进行免费下载, 只需要下载解压不需要安装 VMD:https://www.360docs.net/doc/e44981136.html,/Research/vmd/免费,分子可视化和辅助分析软 件 二,分子动力学模拟需要的数据文件包括: (1)蛋白质的PDB文件,此文件只记录原子空间位置,能够从RCSB管理的PDB数据库(https://www.360docs.net/doc/e44981136.html,/pdb/)下载。 (2)PSF文件,此文件负责储存蛋白质的结构信息,记录蛋白质原子之间的成键情况。用户需要根据自己要求生成该文件。 (3)力场参数文件。此文件是分子动力学模拟的核心。CHAYMM,X-PLOR,AMBER和GROMACS 是经常用到的四种力场。NAMD能够利用上述每一种力场执行分子动力学模拟。 (4)配置文件(configuration file)。此文件作用是告知NAMD分子动力学模拟的各种参数,例如PDB和PSF两个文件保存的位置,模拟结果储存在哪里,体系的温度是多少等等。此文件也是要用户根据需求自己生成。同一配置的电脑,蛋白质分子大小不同,模拟运行的时间也不同,通常大蛋白质需要较长的时间。 三.以蛋白质1L63为例给出操作说明。 在PDB数据库下载蛋白质1L63. 建立文件夹1L63,其中包括以下几个文件,其中.conf文件需要修改,下面第4步会讲到。 以下生成PSF文件: 1.单击VMD,file-New Molecule-打开Molecule File Browser对话框,单击Browse按钮,在文件浏览器中找到文件夹1L63,在此文件夹中选择1L63.pdb,单击Load按钮载入1L63.pdb 2.除去pdb文件中带有的水分子 单击Extension-TK Console,弹出VMD Tk Console窗口。 首先用cd命令改变当前目录到1L63文件夹下,然后输入下列命令: set L63[atomselect top protein] $L63writepdb L63p.pdb 这样,1L63文件夹下就生成了文件L63P.pdb。这一PDB文件仅包含蛋白质,不包含水分子。 3.生成psf文件。 注意,这里仅讲全自动的psf文件生成器,描述如下: 选择Extensions-Modeling-Automatic PSF Builder菜单项,点击左上角的Options,选择Add solvation box,和Add neutralizing ions,点击右下角的I’m feeling lucky按钮,

凸轮机构的键合图建模与仿真

价值工程 0引言 凸轮机构的轮廓线的形状是按照从动件的运动规律来设计的,对于几乎任意要求的从动件的运动规律,都可以毫无困难地设计出凸轮轮廓线来实现。但凸轮轮廓曲线形状的任意性导致其键合图模型存在微分因果关系和非线性结型结构,本文主要讨论了任意轮廓形状凸轮机构的键合图建模与仿真问题。 1凸轮机构键合图模型 图1所示的凸轮-从动副中,Bβ定义为凸轮,Bα为从动件。根据凸轮-从动副的约束条件[1]建立其运动方程为: r D α -r D β =rα+ρP α +sα-(rβ+ρQ β +sβ) =0(1) τβ×τα=0(2) 对式(1)、(2)求导可得速度约束方程: 觶r D α -觶r D β =觶r α +觸I Aα(ρα′P+sα′)觶准 α +Aατα′觶θ α -觶rβ-觸I Aβ(ρβ′Q+sβ′)觶准 β -Aβτβ′觶θ β =0(3) 凸轮机构的键合图建模与仿真 Modeling and Simulation of Cam Mechanism Bond Graph 吴建华Wu Jianhua (黑龙江省畜牧机械化研究所,齐齐哈尔161005) (Heilongjiang Institute of Animal Husbandry Mechanization,Qiqihar161005,China) 摘要:阐述了运用键合图法建立凸轮机构模型的一般方法。推导出了含考虑混合因果关系的便于计算机自动生成的系统状态方程的统一公式,克服了微分因果关系及非线性结型结构给系统自动建模与仿真所带来的代数困难。该方法特别适合于多能域并存系统一体化建模与仿真,通过实例说明本文方法的有效性。 Abstract:The article illustrates the general method of modeling cam mechanism by using bond graph method,derives the general formula considering mixed causality of system state equation which is convenient to automatic generation by computer,which overcomes the difficulties of modeling and simulation brought by the differential causality and nonlinear junction structure.The method especially adapts to the modeling and simulation of multi-energy gap coexist system integration,and its effectiveness is proved by examples. 关键词:键合图;凸轮机构;建模与仿真 Key words:bond graph;cam mechanism;modelling and simulation 中图分类号:TH122文献标识码:A文章编号:1006-4311(2012)02-0030-02 —— —— —— —— —— —— —— —— —— —— —— — 作者简介:吴建华(1977-),女,黑龙江海伦人,工学硕士,讲师。 上就决定了零件加工后的形状,因此设计刀具的运行轨迹是至关重要的,刀具轨迹常称为刀具路径。 MasterCAM的CAM功能强大,生成的刀具路径技术很丰富。系统提供了包括多种曲面粗加工功能、曲面精加工功能、曲面修整加工功能以及一些提高曲面加工效率的方法。 此外,MasterCAM的任务管理器(Operations Manager)可以把同一加工任务的各项操作集中在一起。管理器的界面很简练,清晰地列出了与当前任务相关的各个方面,如零件的几何模型、加工使用的刀具以及加工参数等。在管理器内,很容易生成刀具路径,编辑、校验刀具路径也很方便。在不同的工序之间很容易拷贝和粘贴加工参数、刀具路径、刀具定义。 4产品制造—— —生成数控加工程序,并模拟加工 为了能直观的观察加工个过程、判断刀具轨迹和加工结果的正误,MasterCAM中设置了一个功能齐全的模拟器,可以再屏幕上就预见到“实际”的加工过程,非常有真实感。 设置好刀具加工路径后,可以通过masterCAM系统提供的Backplot(刀具模拟)和Verify(实体切削校验)零件进行加工模拟,观察切削加工,从而可以在不进行试切的情况检测工艺参数的设置是否合理,零件在数控实际加工中是否存在干涉,设备的运行动作是否正确,实际零件是否符合设计要求;同时在数控模拟加工中,系统会给出有关加工过程的报告。 当模拟完成,各方面都比较满意时,系统就可同时产生NCI文件了。NCI文件记录了刀具轨迹的数据和辅助加工的一些数据,它是一个数据文件。要得到具体的数控程序,需要进行后置处理。 MasterCAM系统本身提供了百余种后置处理PST程序。对于不同的数控设备,其数控系统可能不尽相同,选用的后置处理程序也就有所不同。对于具体的数控设备,应选用对应的后置处理程序。后置处理就是将零件的NCI文件翻译成具体的数控程序。点选Select All Post,出现Post processing界面,钩选Save NC file,钩选Edit,单击“OK”生成数程序,然后通过"MasterCAM"的通信端口传输至数控机床即可进行加工,实现计算机辅助制造(CAM)。 参考文献: [1]刘瑞新主编.MasterCAM应用教程[M].北京:机械工业出版社,2002. [2]谭雪松等.举一反三—Mastercam数控加工实战训练.北京:人民邮电出版社,2005. [3]孙祖和编著.MasterCAM设计和制造范例解析[M].北京:机械工业出版社,2004. [4]严烈,陈秀华.Mastercam9实例教程.北京:冶金工业出版社,2003. [5]何满才.三维造型设计—Mastercam9.0实例详解.北京:人民邮电出版社,2003. [6]王睿.Mastercam9实用教程.北京:人民邮电出版社, 2003.·30·

相关文档
最新文档