负反馈放大电路练习题

负反馈放大电路练习题
负反馈放大电路练习题

负反馈放大电路 4 练习题

一、单选题(每题1分)

1.在输入量不变的情况下,若引入反馈后( D ),则说明引入的是负反馈。

A. 输入电阻增大

B. 输出量增大

C. 净输入量增大

D. 净输入量减小

2.需要一个阻抗变换电路,要求输入电阻大,输出电阻小,应选用( A )负反馈。

A. 电压串联

B. 电压并联

C. 电流串联

D. 电流并联

3.为了将输入电流转换成与之成比例的输出电压,应引入深度( B )负反馈。

A. 电压串联

B. 电压并联

C. 电流串联

D. 电流并联

4.放大电路引入负反馈是为了( D )。

A. 提高放大倍数

B. 稳定输出电流

C. 稳定输出电压

D. 改善放大电路的性能

5.构成反馈通路的元器件( D )。

A. 只能是电阻元件

B. 只能是三极管、集成运放等有源器件

C. 只能是无源器件

D. 可以是无源器件,也可以是有源器件

6.欲从信号源获得更大的电流,并稳定输出电流,应在放大电路中引入( D )负反馈。

A. 电压串联

B. 电压并联

C. 电流串联

D. 电流并联

7.理想集成运放具有以下特点:( B )。

A.开环差模增益A u d=∞,差模输入电阻R i d=∞,输出电阻R o=∞

B. 开环差模增益A u d=∞,差模输入电阻R i d=∞,输出电阻R o=0

C. 开环差模增益A u d=0,差模输入电阻R i d=∞,输出电阻R o=∞

D. 开环差模增益A ud=0,差模输入电阻R id=∞,输出电阻R o=0

8.为了增大放大电路的输入电阻,应引入( C )负反馈。

A. 直流

B. 交流电流

C. 交流串联

D. 交流并联

9.要求输入电阻大,输出电压稳定,应选用( A )负反馈。

A. 电压串联

B. 电压并联

C. 电流串联

D. 电流并联

10.为了减小放大电路的输出电阻,应引入( C )负反馈。

A. 直流

B. 交流电流

C. 交流电压

D. 交流并联

11.为了稳定放大倍数,应引入( B )负反馈。

A. 直流

B. 交流

C. 串联

D. 并联

12.欲将方波电压转换成三角波电压,应选用(C )运算电路。

A. 比例

B. 加减

C. 积分

D. 微分

13.为了展宽频带,应引入( B )负反馈。

A. 直流

B. 交流

C. 串联

D. 并联

14.( D )运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均小于零。

A. 同相比例

B. 反向比例

C. 同相求和

D. 反向求和

15.对于放大电路,所谓开环是指( B )。

A. 无信号源

B. 无反馈通路

C. 无电源

D. 无负载

16.为了减小放大电路从信号源索取的电流并增强带负载能力,应引入( A )负反馈。

A. 电压串联

B. 电压并联

C. 电流串联

D. 电流并联

17.负反馈放大电路中,反馈信号( A )。

A. 仅取自输出信号

B. 取自输入信号或输出信号

C. 仅取自输入信号

D. 取自输入信号和输出信号

18.负反馈能抑制(B )。

A. 输入信号所包含的干扰和噪声

B. 反馈环内的干扰和噪声

C. 反馈环外的干扰和噪声

D. 输出信号中的干扰和噪声

19.欲将电压信号转换成与之成比例的电流信号,应在放大电路中引入深度(C)负反馈。

A. 电压串联

B. 电压并联

C. 电流串联

D. 电流并联

20.为了稳定静态工作点,应引入(A )负反馈。

A. 直流

B. 交流

C. 串联

D. 并联

21.集成运放存在失调电压和失调电流,所以在小信号高精度直流放大电路中必须进行( D )。

A. 虚地

B. 虚短

C. 虚断

D. 调零

22.深度负反馈的条件是指( B )。

A. 1+AF<<1

B. 1+AF>>1

C. 1+AF<<0

D. 1+AF>>0

23.交流负反馈是指( B )。

A.只存在于阻容耦合电路中的负反馈

B.交流通路中的负反馈

C.放大正弦波信号时才有的负反馈

D.变压器耦合电路中的负反馈

24.为了抑制温漂,应引入(A )负反馈。

A. 直流

B. 交流

C. 串联

D. 并联

25.深度电流串联负反馈放大器相当于一个( B )。

A. 压控电压源

B. 压控电流源

C. 流控电压源

D. 流控电流源

26.欲将方波电压转换成尖脉冲电压,应选用( D )运算电路。

A. 比例

B. 加减

C. 积分

D. 微分

27.欲对正弦信号产生100倍的线性放大,应选用( A )运算电路。

A. 比例

B. 加减

C. 积分

D. 微分

28.欲将正弦波电压叠加上一个直流量,应选用( B )运算电路。

A. 比例

B. 加减

C. 积分

D. 微分

29.引入( C )反馈,可稳定电路的增益。

A. 电压

B. 电流

C. 负

D. 正

三、填空题(每题1分)

1.理想集成运放的开环差模电压增益为,差模输入电阻为,输出电阻为,共模抑制比为,失调电压、失调电流以及它们的温度系数均为。( ∞、∞、0、∞、0)

2.根据反馈信号在输出端的取样方式不同,可分为反馈和反馈,根据反馈信号和输入信号在输入端的比较方式不同,可分为反馈和反馈。(电压、电流、串联、并联)

3.引入反馈可提高电路的增益,引入反馈可提高电路增益的稳定性。(3.正、负)

4.图示电路中集成运放是理想的,其最大输出电压幅值为±14V。由图可知:电路引入了(填入反馈组态)交流负反馈,电路的输入电阻趋近于,电压放大倍数A u f=u O/u I= 。设u I=1V,则u O= V;

若R1开路,则u O变为V;若R1短路,则u O变为V;若R2开路,则u O变为V;若R2短路,则u O变为V。(

电压串联、∞、11、11、1、14、14、1)

5.负反馈虽然使放大器的增益下降,但能增益的稳定性,通频带,非线性失真,放大器的输入、输出电阻。( 提高、扩展、减小、改变)

6.电压负反馈能稳定输出,电流负反馈能稳定输出。(.电压、电流)

7.反馈主要用于振荡等电路中,反馈主要用于改善放大电路的性能。( 正、负)

8.在深度负反馈放大电路中,基本放大电路的两输入端具有和的特点。( 虚短、虚断)

9.某直流放大电路输入信号电压为1mV,输出电压为1V,加入负反馈后,为达到同样输出时需要的输入信号为10mV,则可知该电路的反馈深度为,反馈系数为。(10、0.009)

10.负反馈放大电路中,若反馈信号取样于输出电压,则引入的是反馈,若反馈信号取样于输出电流,则引入的是反馈;若反馈信号与输入信号以电压方式进行比较,则引入的是反馈,若反馈信号与输入信号以电流方式进行比较,则引入的是反馈。(电压、电流、串联、并联)

11.在深度负反馈放大电路中,净输入信号约为,约等于输入信号。(零、约等于输入信号)

12.反馈放大电路由电路和网络组成。(基本放大、反馈)

13.与未加反馈时相比,如反馈的结果使净输入信号变小,则为,如反馈的结果使净输入信号变大,则为。(负反馈、正反馈)

14.直流负反馈的作用是,交流负反馈的作用是。(稳定静态工作点、提高放大器的动态性能)

15.为提高放大电路的输入电阻,应引入交流反馈,为提高放大电路的输出电阻,应引入交流反馈。(串联负、电流负)

16. 负反馈对输入电阻的影响取决于 端的反馈类型,串联负反馈能够 输入电阻,并联负反馈能够 输入电阻。( 输入、增大、减小)

17. 将 信号的一部分或全部通过某种电路 端的过程称为反馈。( 输出、引回到输入)

18. 负反馈对输出电阻的影响取决于 端的反馈类型,电压负反馈能够 输出电阻,电流负反馈能够 输出电阻。( 输出、减小、增大)

19. 某负反馈放大电路的闭环增益为40dB ,当基本放大器的增益变化10%时,反馈放大器的闭环增益相应变化1%,则电路原来的开环增益为 。(. 60dB)

20. 串联负反馈在信号源内阻 时反馈效果显著;并联负反馈在信号源内阻 时反馈效果显著。(小、大)

21. 对于放大电路,若无反馈网络,称为 放大电路;若存在反馈网络,则称为 放大电路。( 开环(或答:基本)、闭环(或答:反馈))

四、计算分析题(每题1分)

1. 图示电路中运放为理想器件,试求输出电压U O 的值,并估算平衡电阻R P 的阻值。1. V V V R R R R R R R U F O 5.2223

23

252////1

32323-=?+?-=?+?-

=

Ω=+=k R R R R R F P 43.1)////(213

2V

U O +-

2. 图示电路中运放为理想器件,试求:

(1) 电压放大倍数A uf ; 输入电阻R i 。2. (1)由图可知

4

32R R R i i i +=,即

3O

A 4A 2A R u u R u R u -+=-

代入数据可得

A

O 52u u =。

又因为

2

A 1R u R u I -= 可得I A u u 5-=,故

I u u u 26052A O -==

A u f = -260 (2)R i =10k Ω

计算的最后结果数字: (1)A u f = -260

(2)R i =10k Ω

(2)

R 2R 3

3. 设图中各运放均为理

想器件,试写出各电路的电压放大倍数A u f 表达式。

(a )1

2

R R A uf -

= (b )2

12

R R R A uf +=

4. 电路如图所示,试:

(1) 合理连线,接入信号源和反馈,使电路的输入电阻增大,输出电阻

减小;

欲将放大倍数设置为20,则R F 应取多少千欧?4. (1) 应引入电压串联负反馈,如下图所示

图号:4309

(2) 。

,故

因0k

38

20

1

F

1

=

=

+

≈R

R

R

A

uf

(2)

u

o

5.恒流源电路如图所示,已知稳压管工作在稳压状态,试求负载电阻R L中的电流。

5.mA

R

U

R

u

I6.0

2

Z

2

N

L

=

=

=

6.

10

??

?-<->-=-=-=?-=<=?-V

u V

V u V u V u V t dt u u s t V

u O O O O O O O 10610614)(10

101

14122321

5521,否则时,当

D z U z =6V

o

6.

图示电路中,运放为理想器件,其最大输出电压Uom=±14V ,稳压管的稳压值U Z =±6V ,t=0时刻电容C 两端电压u C =0V ,试求开关S 闭合时电压u O 1、u O 2、u O 3的表达式。

U 1=1V

7. 判断图中电路引入了哪些反馈;指出反馈元件,说明是正反馈还是负反馈?是直流反馈还是交流反馈?若为交流反馈请说明反馈类型。7. 瞬时极性法分析电路如图所示,

电压串联负反馈放大电路仿真分析资料报告-模电课设

成绩评定表

课程设计任务书

目录 1. 课程设计的目的与作用 (1) 1.1课程设计的目的 (1) 1.1课程设计的作用 (1) 2设计任务及所用Multisim软件环境介绍 (2) 2.1设计任务 (2) 2.2 Multisim软件环境介绍 (2) 3 电路模型的建立 (4) 4 理论分析及计算 (6) 5 仿真结果分析 (7) 5.1无极间反馈 (7) 5.2加入极间反馈 (10) 6 设计总结和体会 (14) 7 参考文献 (14)

1. 课程设计的目的与作用 1.1课程设计的目的 学习电压串联负反馈电路,掌握电压串联负反馈电路的工作原理。通过对它的学习,对负反馈对放大电路性能的影响有进一步的理解和掌握,学会对其进行静态分析、动态分析等相关运算,利用Multisim软件对电压串联负反馈电路仿真实现。 根据实例电路图和已经给定的原件参数,使用Multisim软件模拟出电压串联负反馈电路课后练习题,并对其进行静态分析,动态分析,显示波形图,计算数据等操作,记录结果和数据;与此同时,更好的应用于以后的学习与工作中,切实对自身能力的提高有所帮助。 1.1课程设计的作用 模拟电子技术课程设计是在“模拟电子技术”课程之后,集中安排的重要实践性教学环节。学生运用所学的知识,动脑又动手,在教师指导下,结合某一专题独立地开展电子电路的设计与实验,培养学生分析、解决实际电路问题的能力。该课程的任务是使学生掌握数字电子技术方面的基本概念、基本原理和基本分析方法,重点培养学生分析问题和解决问题的能力,初步具备电子技术工程人员的素质,并为学习后继课程打好基础。 课程设计师某门课程的总结性教学环节,会死培养学生综合运用本门课程及有关选修课的基本知识去解决某一实际问题的训练,加深课程知识的理解。在真个教计划中,它起着培养学生独立工作能力的重要作用。设计和实验成功的电路可以直接在产品中使用。

放大电路练习题及答案

一、填空题 1.射极输出器的主要特点是电压放大倍数小于而接近于1, 输入电阻高 、 输出电阻低 。 2.三极管的偏置情况为 发射结正向偏置,集电结反向偏置 时,三极管处于饱和状态。 3.射极输出器可以用作多级放大器的输入级,是因为射极输出器的 输入电阻高 。 4.射极输出器可以用作多级放大器的输出级,是因为射极输出器的 输出电阻低 。 5.常用的静态工作点稳定的电路为 分压式偏置放大 电路。 6.为使电压放大电路中的三极管能正常工作,必须选择合适的 静态工作点 。 7.三极管放大电路静态分析就是要计算静态工作点,即计算 I B 、 I C 、 U CE 三个值。 8.共集放大电路(射极输出器)的 集电极 极是输入、输出回路公共端。 9.共集放大电路(射极输出器)是因为信号从 发射极 极输出而得名。() 10.射极输出器又称为电压跟随器,是因为其电压放大倍数 电压放大倍数接近于1 。 11.画放大电路的直流通路时,电路中的电容应 断开 。 12.画放大电路的交流通路时,电路中的电容应 短路 。 13.若静态工作点选得过高,容易产生 饱和 失真。 14.若静态工作点选得过低,容易产生 截止 失真。 15.放大电路有交流信号时的状态称为 动态 。 16.当 输入信号为零 时,放大电路的工作状态称为静态。 17.当 输入信号不为零 时,放大电路的工作状态称为动态。 18.放大电路的静态分析方法有 估算法 、 图解法 。 19.放大电路的动态分析方法有 微变等效电路法 、 图解法 。 20.放大电路输出信号的能量来自 直流电源 。 二、选择题 1、在图示电路中,已知U C C =12V ,晶体管的 =100,' b R =100k Ω。当i U =0V 时,测 得U B E =0.7V ,若要基极电流I B =20μA ,则R W 为 k Ω。A A. 465 B. 565 C.400 D.300 2.在图示电路中,已知U C C =12V ,晶体管的=100,若测得I B =20μA ,U C E =6V ,则 R c = k Ω。A A.3 B.4 C.6 D.300

实验5 负反馈放大电路2013.doc

一、实验目的 1.研究负反馈对放大电路性能的影响。 2.掌握负反馈放大电路性能的测试方法。 二、实验仪器 1.双踪示波器。 2.音频信号发生器。 3.数字万用表。 三、预习要求 1.认真阅读实验内容要求,估计待测量内容的变化趋势。 2.图3.1电路中晶体管β值为40,计算该放大电路开环和闭环电压放大倍数。四、实验内容 1.负反馈放大电路开环和闭环放大倍数的测试 (1)开环电路 图3.1反馈放大电路 ①按图接线,RF先不接入。 ②输入端接入Vi=1mV, f=1KHz的正弦波(注意:输入1mV信号采用输入端衰减法见实验二)。调整接线和参数使输出不失真且无振荡(参考实验二方法)。 ③按表3.1要求进行测量并填表。 ④根据实测值计算开环放大倍数和输出电阻ro。 (2) 闭环电路 ①接通Rf按(一)的要求调整电路。 ②按表3.1要求测量并填表,计算Avf。 ③根据实测结果,验证Avf≈土1/F。

2.负反馈对失真的改善作用 (1)将图3.1电路开环,逐步加大Vi 的幅度,使输出信号出现失真(注意不要过份失真)记录失真波形幅度。 (2)将电路闭环,观察输出情况,并适当增加Vi 幅度,使输出幅度接近开环时失真波形幅度。 (3)若RF=3K 不变,但RF 接入1V1的基极,会出现什么情况?实验验证之。 出现截止失真! (4)画出上述各步实验的波形图。 3.测放大电路频率特性 (1)将图3.1电路先开环,选择Vi 适当幅度( 频率为 1KHz)使输出信号在示波器上有满幅正弦波显示; (2)保持输入信号幅度不变逐步增加频率,直到波形减小为原来的70%,此时,信号频率即为放大电路fH 。 ‘ (3)条件同上,但逐渐减小频率,测得fL 。 (4)将电路闭环,重复1~3步骤,并将结果填入表3.2。 表3.2

负反馈电路实验报告

负反馈放大器 一.实验目的 加深理解放大电路中引入负反馈的方法和负反馈对放大器各项指标的影响。 二.实验原理 负反馈在电子电路中的作用:改善放大器的动态指标,如稳定放大倍数,改变输入输出电阻,减小非线性失真和展宽通频带,但同时也会使放大器的放大倍数降低。 负反馈的几种状态:电压串联,电压并联,电流串联,电流并联。 本实验以电压串联为例,分析负反馈对放大器指标的影响。 1.下图为带有电压串联负反馈的两极阻容耦合放大器电路,在电路中通过Rr把输出电压Uo引回到输入端,家在晶体管T1的发射极上,在发射极电阻Rf1上形成反馈电压Uf。主要性能指标如下: (1)闭环电压放大倍数Ar=Av/1+AvFv ,Av为开环放大倍数。

图1为带有电压串联负反馈的两极阻容耦合放大器 (2)反馈系数Fv=RF1/Rf+RF1 (3)输入电阻R1f=(1+AvFv)Rf Rf 为基本放大器的输入电阻 (4)输出电阻Rof=Ro/(1+AvoFv) Ro 为基本放大器的输出电阻Avo为基本放大器Rl=∞时的电压放大倍数。2.本实验还需测量放大器的动态参数,即去掉图1的反馈作用,得到基本放大器电路如下图2 图2基本放大器 三.实验设备与器件 模拟实验箱,函数信号发生器,双踪示波器,交流伏安表,数字万用表。 四.实验内容 1.静态工作点的测量 条件:Ucc=12V,Ui=0V用直流电压表测第一级,第二级的静态工作点。

Us(V) UE(V) Uc(V) Ic(mA) 第一 级 2.81 2.14 7.33 2.00 第二 级 2.72 2.05 7.35 2.00 表3—1 2.测量基本放大器的各项性能指标 实验将图2改接,即把Rf断开后风别并在RF1和RL 上。 测量中频电压放大倍数Av,输入输出电阻Ri和Ro。(1)条件;f=1KH,Us=5mV的正弦信号,用示波器监视输出波形,在输出波形不失真的情况下用交流毫伏表测量Us,Ui,UL计入3—2表 基本放大器Us(mV) Ui(m V) UL(V ) Uo(V) Av Rf(K Ω) Ro(K Ω) 5.0 0.5 0.25 0.48 500 1.11 2.208 负反馈放大器Us(mV) Ui(m V) UL(V ) Uo(V) Avf Rif(K Ω) Rof(K Ω) 5.0 2.3 0.14 0.20 87 8.52 1.028 表3—2 (2)保持Us不变,,断开负载电阻RL,测量空载时的输出电压Uo计入3—2表

模拟电子-多级负反馈放大器的研究

多级负反馈放大器的研究 一.实验目的 (1)掌握用仿真软件研究多级负反馈放大电路。 (2)学习集成运算放大器的应用,掌握多级集成运算放大器的工作特点。 (3)研究负反馈对放大器性能的影响,掌握负反馈放大器性能指标的测试方法。 1)测试开环和闭环的电压放大倍数、输入电阻、输出电阻、反馈网络的电压反馈系数和通频带; 2)比较电压放大倍数、输入电阻、输出电阻和通频带在开环和闭环时的差别; 3)观察负反馈对非线性失真的改善。 二.实验原理 1.基本概念 在电子电路中,将输出量的一部分或全部通过一定的电路形式作用到输入回路,用来影响其他输入量的措施称为反馈。 若反馈的结果使净输入量减小,则称之为负反馈;反之,称之为正反馈。 实验电路如下图所示,该放大电路有两级运放构成的反向比例器组成,在末级的输出端引入了反馈网络Cf,Rf2,和Rf1,构成了交流电压串联负反馈电路。 2.放大器的基本参数 1)开环参数 将反馈支路的A点与P点断开,与B点相连,便可得到开环时的放大电路。由此可测出开环时放大电路的电压放大倍数Av、输入电阻Ro、反馈网路的电压反馈系数Fv和通频带BW,即

2)闭环参数:通过开环时放大电路的电压放大倍数Av、输入电阻Ri、输入电阻Ro、反馈网络的电压反馈系数Fv和上下限频率,可以计算求得多级负反馈放大电路的闭环电压放大倍数Avf、输入电阻Rif、输出电阻Rof和通频带BWf的理论值,即 负反馈放大电路的闭环特性的实际测量值为:

上述所得结果与开环测试时由式(2.5-3)所计算的理论值近似相等,否则应找出原因后重新测量。 在进行上述测试时,应保证各点信号波形与输入信号为同频率且不知真的正弦波,否则应找出原因,排除故障后再进行测量 三.实验内容 (1)实验电路图如下所示: (2)调节J1,使开关A端与B端相连,测试电路的开环基本特性。 1)将信号发生器输出调为1kHz、20mv(峰峰值)正弦波,然后接入放大器的输入端,得到网络(未接入负载时)的波特图,如下图所示。

负反馈放大电路实验报告

负反馈放大电路实验报告

3)闭环电压放大倍数为10s o sf -≈=U U A u 。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R 模拟信号源的内阻;R f 为反馈电阻,取值为100 kΩ。 图1 电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中R g3选择910kΩ,R g1、R g2应大于100kΩ;C 1~C 3容量为10μF ,C e 容量为47μF 。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f ,见图2,理由详见“五 附录-2”。 图2 两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。 3.3k ?

(3)实验方法与步骤 1)两级放大电路的调试 a. 电路图:(具体参数已标明) ? b. 静态工作点的调试 实验方法: 用数字万用表进行测量相应的静态工作点,基本的直流电路原理。 第一级电路:调整电阻参数, 4.2 s R k ≈Ω,使得静态工作点满足:I DQ约为2mA,U GDQ < - 4V。记录并计算电路参数及静态工作点的相关数据(I DQ,U GSQ,U A,U S、U GDQ)。 实验中,静态工作点调整,实际4 s R k =Ω

第二级电路:通过调节R b2,2 40b R k ≈Ω,使得静态工作点满足:I CQ 约为2mA ,U CEQ = 2~3V 。记录电路参数及静态工作点的相关数据(I CQ ,U CEQ )。 实验中,静态工作点调整,实际2 41b R k =Ω c. 动态参数的调试 输入正弦信号U s ,幅度为10mV ,频率为10kHz ,测量并记录电路的电压放大倍数 s o11U U A u = 、s o U U A u =、输入电阻R i 和输出电阻R o 。 电压放大倍数:(直接用示波器测量输入输出电压幅值) o1 U s U o U 1 u A 输入电阻: 测试电路:

负反馈放大电路实验报告

实验二 由分立元件构成的负反馈放大电路 一、实验目的 1.了解N 沟道结型场效应管的特性和工作原理; 2.熟悉两级放大电路的设计和调试方法; 3.理解负反馈对放大电路性能的影响。 二、实验任务 设计和实现一个由N 沟道结型场效应管和NPN 型晶体管组成的两级负反馈放大电路。结型场效应管的型号是2N5486,晶体管的型号是9011。 三、实验内容 1. 基本要求:利用两级放大电路构成电压并联负反馈放大电路。 (1)静态和动态参数要求 1)放大电路的静态电流I DQ 和I CQ 均约为2mA ;结型场效应管的管压降U GDQ < - 4V ,晶体管的管压降U CEQ = 2~3V ; 2)开环时,两级放大电路的输入电阻要大于90kΩ,以反馈电阻作为负载时的电压放大倍数的数值 ≥ 120; 3)闭环电压放大倍数为10s o sf -≈=U U A u 。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R 模拟信号源的内阻;R f 为反馈电阻,取值为100 kΩ。 图1 电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中R g3选择910kΩ,R g1、R g2应大于100kΩ;C 1~C 3容量为10μF ,C e 容量为47μF 。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f ,见图2,理由详见“五 附录-2”。 图2 两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。 3.3k ?

(3)实验方法与步骤 1)两级放大电路的调试 a. 电路图:(具体参数已标明) ? b. 静态工作点的调试 实验方法: 用数字万用表进行测量相应的静态工作点,基本的直流电路原理。 第一级电路:调整电阻参数, 4.2s R k ≈Ω,使得静态工作点满足:I DQ 约为2mA ,U GDQ < - 4V 。记录并计算电路参数及静态工作点的相关数据(I DQ ,U GSQ ,U A ,U S 、U GDQ )。 实验中,静态工作点调整,实际4s R k =Ω 第二级电路:通过调节R b2,240b R k ≈Ω,使得静态工作点满足:I CQ 约为2mA ,U CEQ = 2~3V 。记录电路参数及静态工作点的相关数据(I CQ ,U CEQ )。 实验中,静态工作点调整,实际241b R k =Ω c. 动态参数的调试 输入正弦信号U s ,幅度为10mV ,频率为10kHz ,测量并记录电路的电压放大倍数 s o11U U A u =、s o U U A u =、输入电阻R i 和输出电阻R o 。 o1U s U o U 1u A

模电实验报告 七 负反馈放大电路

模电实验报告 实验七 负反馈放大电路 姓名: 学号: 班级: 院系: 指导老师: 2016年

目录 实验目的: (2) 实验器件与仪器: (2) 实验原理: (2) 实验内容: (4) 实验总结: (5) 实验:负反馈放大电路 实验目的: 1.进一步了解负反馈放大器性能的影响。 2.进一步掌握放大器性能指标的测量方法。 实验器件与仪器: 1. 实验原理: 放大器中采用负反馈,在降低放大倍数的同时,可以使放大器的某些性能大大改善。所谓负反馈,就是以某种方式从输出端取出信号,再以一定方式加到输入回路中。若所加入的信号极性与原输入信号极

性相反,则是负反馈。 根据取出信号极性与加入到输入回路的方式不同,反馈可分为四类:串联电压反馈、串联电流反馈、并联电压反馈与并联电流反馈。如图3-1所示。 从网络方框图来看,反馈的这四种分类使得基本放大网络与反馈网络的联接在输入、输出端互不相同。 从实际电路来看,反馈信号若直接加到输入端,是并联反馈,否则是串联反馈,反馈信号若直接取自输出电压,是电压反馈,否则是电流反馈。 1.负反馈时输入、输出阻抗的影响 负反馈对输入、输出阻抗的影响比较复杂,不同的反馈形式,对阻抗的影响也不一样,一般而言,凡是并联负反馈,其输入阻抗降低;凡是串联负反馈,其输入阻抗升高;设主网络的输入电阻为R i ,则串联负反馈的输入电阻为 R if =(1+FA V )R i 设主网络的输入电阻为R o ,电压负反馈放大器的输出电阻为 R of = F A R V O +1 可见,电压串联负反馈放大器的输入电阻增大(1+A V F )倍,而输出电阻则下降到1/(1+A V F )倍。 2.负反馈放大倍数和稳定度 负反馈使放大器的净输入信号有所减小,因而使放大器增益下降,但却改善了放大性能,提高了它的稳定性。 反馈放大倍数为 A vf = F A A V V +1(A v 为开环放大倍数) 反馈放大倍数稳定度与无反馈放大器放大倍数稳定度有如下关系: Vf Vf A A ?= V V A A ?? F A V +11 式中?A V f/A V f 称负反馈放大器放大倍数的稳定度。V V A A /?称无反

负反馈放大电路实验报告

实验二由分立元件构成的负反馈放大电路 一、实验目的 1?了解N沟道结型场效应管的特性和工作原理; 2?熟悉两级放大电路的设计和调试方法; 3?理解负反馈对放大电路性能的影响。 二、实验任务 设计和实现一个由N沟道结型场效应管和NPN型晶体管组成的两级负反馈放大电路。结型场效应管的型号是2N5486,晶体管的型号是9011。 三、实验内容 1.基本要求:利用两级放大电路构成电压并联负反馈放大电路。 (1)静态和动态参数要求 1)放大电路的静态电流I DQ和I CQ均约为2mA结型场效应管的管压降U G DQ< - 4V ,晶体管的管压降U C EQ= 2?3V; 2)开环时,两级放大电路的输入电阻要大于90k Q,以反馈电阻作为负载时的电压放大倍数的数值 >120 ; 3)闭环电压放大倍数为A usf二U°,.U s、-10。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R模拟信号源的内阻;R为反馈电阻, 取值为100 k Q o Rt 图1电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中%选择910k Q, R1、R2应大于100k Q; G?G容量为10疔,C e容量为47犷。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R,见图2,理由详见五附录一2”。 i㈡ R T 井肘成大电谿 图2两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。

(3)实验方法与步骤 1)两级放大电路的调试 a. 电路图:(具体参数已标明) b. 静态工作点的调试 实验方法: 用数字万用表进行测量相应的静态工作点,基本的直流电路原理。 第一级电路:调整电阻参数, R^^4.2kQ ,使得静态工作点满足:I D 哟为2mA U G DQ < -4V 。记录并计算电路参数及静态工作点的相关数据( I DQ , U G SQ LA ,U S 、U G D Q 。 实验中,静态工作点调整,实际 -4k '1 第二级电路:通过调节 氐,&2 : 40^ 1 ,使得静态工作点满足:I CQ 约为2mA U C EQ = 2? 3V 。记录电路参数及静态工作点的相关数据( | CQ L C EQ )。 实验中,静态工作点调整,实际 R b ^41k 11 c. 动态参数的调试 输入正弦信号 U S ,幅度为 10mV 频率为10kHz ,测量并记录电路的电压放大倍数 A1 =U °1 -U s 、A =U o.. U s 、输入电阻R 和输出电阻R °o XSC1 Rf1 100k| ?

集成运算放大器练习题及答案

第十章 练习题 1. 集成运算放大器是: 答 ( ) (a) 直接耦合多级放大器 (b) 阻容耦合多级放大器 (c) 变压器耦合多级放大器 2. 集成运算放大器的共模抑制比越大, 表示该组件: 答 ( ) (a) 差模信号放大倍数越大; (b) 带负载能力越强; (c) 抑制零点漂移的能力越强 3. 电路如图10-1所示,R F2 引入的反馈为 : 答 ( ) (a) 串联电压负反馈 (b) 并联电压负反馈 (c) 串联电流负反馈 (d) 正反馈 图10-1 4. 比例运算电路如图10-2所示,该电路的输出电阻为: 答 ( ) (a) R F (b) R 1+R F (c) 零 图10-2 5. 电路如图10-3所示,能够实现u u O i =- 运算关系的电路是: 答 ( ) (a) 图1 (b) 图2 (c) 图3 图10-3 6. 电路如图10-4所示,则该电路为: 答 ( )

(a)加法运算电路; (b)反相积分运算电路; (c) 同相比例运算电路 图10-4 7. 电路如图10-5所示,该电路为: 答 ( ) (a) 加法运算电路 (b) 减法运算电路 (c) 比例运算电路 O u i 1 u i2 图10-5 8. 电路如图10-6所示,该电路为: 答 ( ) (a) 加法运算电路 (b) 减法运算电路 (c) 比例运算电路 u O u i 1u i2 图10-6 9. 电路如图10-7所示,该电路为: 答 ( ) (a)比例运算电路 (b) 比例—积分运算电路 (c) 微分运算电路 O u 图10-7 10. 电路如图10-8所示 ,输入电压u I V =1,电阻R R 1210==k Ω, 电位器R P 的阻值为20k Ω 。 试求:(1) 当R P 滑动点滑动到A 点时,u O =? (2) 当R P 滑动点滑动到B 点时,u O =? (3) 当R P 滑动点滑动到C 点(R P 的中点)时 , u O =?

模电实验七负反馈放大电路实验报告

实验七负反馈放大电路 一、班级:姓名:学号:实验目的 1. 加深对负反馈放大电路的认识。 2.加深理解放大电路中引入负反馈的方法。 3. 加深理解负反馈对放大电路各项性能指标的影响。 二、实验仪器及器件 仪器及器件名称型号数量 +12V直流稳压电源DP8321 函数信号发生器DG41021 示波器MSO2000A1 数字万用表DM30581 晶体三极管90132 电阻器若干 电容器若干三、实验原理 图7-1为带有负反馈的两级阻容耦合放大电路。 图7-1 负反馈放大电路 1、闭环电压增益

V V V VF F A 1A A += i O V V V A = ——基本放大器(无反馈)的电压增益,即开环电压增益。 1+A V F V ——反馈深度,它的大小决定了负反馈对放大电路性能改善的程度。 2、反馈系数 F1 f F1 V R R R F += 3、输入电阻 R if = (1+A V F V )R i R i ——基本放大器的输入电阻 4、输出电阻 V VO O Of F A 1R R += R o ——基本放大器的输出电阻 A vo ——基本放大器∞=L R 时的电压增益 图7-2 四、 实验内容及实验步骤

1、测量静态工作点 按图7-1连接实验电路,取V CC=+12V,V i0,用直流电压表分别测量第一级、第二级的静态工作点,记入表7-1。 表7-1 2、测试基本放大电路的各项性能指标 将实验电路图按图7-2改接开环状态,即把R f断开后分别并在R F1和R L上,其它连线不动。 1) 测量中频电压增益A V,输入电阻R i和输出电阻R o。 ①以f=1KHz,V S约5mV正弦信号输入放大器,用示波器监视输出波形v o,在v o不失真的情况下,用交流毫伏表测量V S,V i,V L,记入表7-2。 表7-2 ②保持V S不变,断开负载电阻R L (注意,R f不要断开),测量空载时的输出电压V o,记入表7-2。 2)测量通频带 接上R L,保持1)中的V S不变,然后增加和减小输入信号的频率,找出上、下限频率f H和f L,记入表7-3。 3、测试负反馈放大器的各项性能指标 将实验电路恢复为图7-1的负反馈放大电路。适当加大V S(约10mV),在输出波形不失真的条件下,测量负反馈放大器的A Vf、R if和R of,记入表7-2;测量f Hf和f Lf,记入表7-3。 表7-3

模电实验报告负反馈放大电路

实验三负反馈放大电路 一、实验目的 1、研究负反馈对放大器放大倍数的影响。 2、了解负反馈对放大器通频带和非线性失真的改善。 3、进一步掌握多级放大电路静态工作点的调试方法。 二、实验仪器 1、双踪示波器 2、信号发生器 3、万用表 三、预习要求 1、认真阅读实验内容要求,估计待测量内容的变化趋势。 2、图3-1电路中晶体管β值为120.计算该放大器开环和闭环电压放大倍数。 3、放大器频率特性测量方法。 说明:计算开环电压放大倍数时,要考虑反馈网络对放大器的负载效应。对于第一级电路,该负载效应相当于C F、R F与1R6并联,由于1R6≤Rf,所以C F、R F 的作用可以略去。对于第二季电路,该负载效应相当于C F、R F与1R6串联后作用在输出端,由于1R6≤Rf,所以近似看成第二级内部负载C F、R F。 4、在图3-1电路中,计算级间反馈系数F。 四、实验内容 1、连接实验线路 如图3-1所示,将线连好。放大电路输出端接Rp4,1C6(后面称为R F)两端,构成负反馈电路。

2、调整静态工作点 方法同实验二。将实验数据填入表3-1中。 表3-1 3、负反馈放大器开环和闭环放大倍数的测试 (1)开环电路 ○1按图接线,R F先不接入。 ○2输入端接如Ui=1mV,f=1kHZ的正弦波。调整接线和参数使输出不是真且无震荡。 ○3按表3-2要求进行测量并填表。 ○4根据实测值计算开环放大倍数和输出电阻R0。 (2)闭环电路 ○1接通R F,按(1)的要求调整电路。 ○2调节Rp4=3KΩ,按表3-2要求测量并填表,计算A uf和输出电阻R0。 ○3改变Rp4大小,重复上述实验步骤。 ○4根据实测值验证A uf≈1/F。讨论负反馈电路的带负载能力。

负反馈放大电路的设计和仿真

负反馈放大电路的设计和仿真 一、实验目的 1、掌握阻容耦合放大电路的静态工作点的调试方法。 2、掌握多级放大电路的电压放大倍数、输入电阻、输出电阻的测试方法。 3、掌握负反馈对电路的影响 二、实验要求 1、设计一阻容耦合两级电压放大电路,要求信号源频率10kHz(幅度1mv) ,负载电阻1kΩ,电压增益大于100。 2、给电路引入电压串联负反馈,并分别测试负反馈接入前后电路放大倍数、输入、输出电阻和频率特性。改变输入信号幅度,观察负反馈对电路非线性失真的影响。 三、实验原理图 原理图中的滑动变组曲均为100k 图2.01 反馈接入前

图2.02 反馈接入后 四、实验过程 1、反馈接入前 (1)放大倍数: 77.703 109.893 707.078 v mV A uV == (2)输入电阻: 707.078 7.484 94.475 i uV R k nA ==Ω (3)输出电阻: 707.080 4.934 143.311 o uV R k nA ==Ω (4)频率特性:f L=326.5512Hz,f H=525.3266kHz 图2.03 频率特性曲线(5)三极管参数的测量 ①1 β与1be r的测量

111864.20800214.94.02151c b I u I u β= == 111 4.1295 6.8547602.4295be be b V m r k I n ?===Ω? 图2.04 前级输入特性曲线 ②2β与2be r 的测量 222890.64300215.54.13287c b I u I u β= == 222 4.8465 6.7131721.9498be be b V m r k I n ?===Ω? 图2.05 后级输入特性曲线

放大电路中的负反馈解读

第四章放大电路中的负反馈习题 4.1 判断图4-24所示各电路中有无反馈?是直流反馈还是交流反馈?哪些构成了级间反馈?哪些构成了本级反馈? 4.1解答: (a)R e1:本级直流反馈 R e2:本级交直流反馈 R f,C f:级间交流反馈(因为直流 信号被C f隔直) (b)Re:本级直流反馈 R b:本级直流反馈(因为交流信号被C2 短路到地) (c)R R e2 :本级交直流反馈 R e3:本级直流反馈(因为交流被C3短路) R f:级间交直流反馈 (d)R1,R2,R3为级间交直流反馈 R3:本级交直流反馈

4-1解答续: (e)R2,R4:本级交直流反馈 R L,R6:为级间交直流反馈 (f)R e :本级直流反馈(∵交流信号被C e短路)R1, R2 :本级直流反馈(∵交流信号被C短路到地) (g)R1, R2 :级间交直流反馈 (h)(i) R e2 :本级直流反馈 R e1, R e3 :级间交流反馈 (ii)R f1, R b :级间交直流反馈 R f2, R e1 :级间交直流反馈

4.2指出图4-24所示各电路中反馈的类型和极性,并在图中标出瞬时极性以及反馈电压或反馈电流。 (a)解答:R f,C f引入电压并联交流负反馈 瞬间极性如图示:∵I b↓=I i-I f↑故为负反馈 (b)解答,R b引入电压并联直流负反馈,瞬时极性如图示 ∵I b↓=I i-I f↑故为负反馈 (C)解答:R f, R e1 :引入电压串联交流正反馈(∵直流被C2隔直),瞬时极性如图示:U be=U i+U f, U f与U i极性相同,故为正反馈 (d)解答:R1,R2引入电压串联交直流正反馈,瞬时极性如图示: U ' i=U i+U f, U f与U i极性相同,故为正反馈 (e)解答:R L,R6 引入电流串联交直流负反馈,(即ΔU i=(U+-U i)↓)(即同相端与反相端电位差下降,∴为负反馈) (f)解答:R1,R e 引电容并联直流负反馈(交流被C短路到地)瞬时极性为图示(因I b↓=I i-I f ↑)I f上升,I b下降 (g)解答:R1,R2引入电压并联交直流负反馈 瞬时极性如图示:∵I b↓=I i-I f↑ (h)(i)解答:R b , R f1引入电压并联交直流负反馈 瞬时极性为图示∵I b↓=I i-I f↑故为负反馈 (ii)解答:R f2, R e1引入电流串联交直流负反馈 瞬时极性为图示∵U be↓=U i-U f2↑= U i-U e1↑(U e1上升,U be下降) ∴为负反馈

负反馈放大电路的设计与仿真proteus

负反馈放大电路的设计与仿真 一、实验元件 2N2222A三极管(2个)、1mV 10KHz 正弦电压源、12V直流电压源、10uF电容(5个)、5.1KΩ1%负反馈电阻、3.0KΩ5%集电极电阻(2个)、1.50KΩ1%电阻、1.40KΩ1%电阻、1.00KΩ1%负载电阻、100Ω1%电阻、20.0KΩ1%基极电阻(2个)、10.0KΩ1%基极电阻(2个)、开关、万用表、示波器等。 二、实验原理 由于电容对直流量的电抗为无穷大,因而阻容耦合放大电路各级之间的直流通路各不相通,各级的静态工作点相互独立,本次实验采用了实验一的数据,所以可不必重新调节静态工作点。在实验电路中引入电压串联负反馈,将引回的反馈量与输入量相减,从而调整电路的净输入量与输出量,改变电压放大倍数、输入电阻与输出电阻。 参数选择:为了使反馈达到深度负反馈,实验中选取了5.1KΩ的负反馈电阻,同时为了不会在引入负反馈后出现交流短路的现象,将Re1分为两个部分Re11(100)和Re12(1.4KΩ)。根据实验要求,设计的两级阻容耦合放大电路如图1: 图1 两级阻容耦合放大电路原理图 三、电路频率特性测试 1、未引入电压串联负反馈前的电路频率特性

将电路中的开关J1打开,则此时电路为未引入电压串联负反馈的情况,对电路进行频率仿真,得到如图2的电路频率特性图。 图2 未引入负反馈的频率特性曲线和通频带指针读数 根据上限频率和下限频率的定义——当放大倍数下降到中频的0.707倍对应的频率时,即将读数指针移到幅度为中频的0.707倍处,如图2,读出指针的示数,即下限频率 f L=761.6815 Hz, 上限频率f H=348.2346 KHz, 因此通频带为(348.2346×—761.6815) Hz。 调节信号源的幅度,当信号源幅度为1mV时,输出波形不失真,如图3: 图3 信号源幅度为1mV时的不失真输出波形 继续调节信号源的幅度,当信号源幅度为2mV时,输出波形出现了较为明显的失真,如图4:

放大电路练习题和答案解析

一、填空题 1.射极输出器的主要特点是电压放大倍数小于而接近于1,输入电阻高、输出电阻低。 2.三极管的偏置情况为发射结正向偏置,集电结反向偏置时,三极管处于饱和状态。 3.射极输出器可以用作多级放大器的输入级,是因为射极输出器的输入电阻高。 4.射极输出器可以用作多级放大器的输出级,是因为射极输出器的输出电阻低。 5.常用的静态工作点稳定的电路为分压式偏置放大 电路。 6.为使电压放大电路中的三极管能正常工作,必须选择合适的静态工作点。 7.三极管放大电路静态分析就是要计算静态工作点,即计算、、三个值。 8.共集放大电路(射极输出器)的集电极极是输入、输出回路公共端。 : 9.共集放大电路(射极输出器)是因为信号从发射极极输出而得名。() 10.射极输出器又称为电压跟随器,是因为其电压放大倍数电压放大倍数接近于1 。 11.画放大电路的直流通路时,电路中的电容应断开。

12.画放大电路的交流通路时,电路中的电容应短路。 13.若静态工作点选得过高,容易产生饱和失真。 14.若静态工作点选得过低,容易产生截止失真。 15.放大电路有交流信号时的状态称为动态。 16.当输入信号为零时,放大电路的工作状态称为静态。 17.当输入信号不为零时,放大电路的工作状态称为动态。 18.放大电路的静态分析方法有估算法、图解 法。 ( 19.放大电路的动态分析方法有微变等效电路法、图解法。 20.放大电路输出信号的能量来自直流电源。 二、选择题 1、在图示电路中,已知=12V,晶体管的=100,' R=100k b Ω。当 U=0V时,测得=,若要基极电流=20μA,则为kΩ。 i A A. 465 B. 565 2.在图示电路中,已知=12V,晶体管的=100,若测得=

实验5负反馈放大电路

图 5.1反馈放大电路 实验五 负反馈放大电路 一、实验目的 1.研究负反馈对放大电路性能的影响。 2.掌握负反馈放大电路性能的测试方法。 二、实验仪器 1.双踪示波器。 2.函数信号发生器。 3.数字万用表、指针万用表。 三、预习要求 1.认真阅读实验内容要求,估计待测量内容的变化趋势。 2.图5.1电路中晶体管β值为40,计算该放大电路开环和闭环电压放大倍数。 四、实验内容 1.负反馈放大电路开环和闭环放大倍数的测试 (1)准备工作 检查导线、仪器仪表探头、元器件好坏。函数信号发生器产生幅度100mV,频率1KHz 的正弦波,预接入到A 点。 示波器设置:Y1通道交流耦合、刻度50mV/格;Y2通道交流耦合、刻度1~2V/格;X 轴500微秒/格;同步触发Y2通道。Y1通道观测A 点(V A 衰减100倍为V i ),Y2通 道观测V O 。 (2)开环电路( Y2刻度设为1V/格) ①按图接线,R F 先不接入。 ②输入端V i =lmV (V A =100mV )、f=lKHz 的正弦波(注意:V A 衰减100倍为V i )。如果有需要,调整参数使输出信号波形不失真且无振荡。 ③按表5.1要求进行测量并填表。Y 1、Y 2均读取峰峰值V PP ,Y2通道的峰峰值即V 0。 ④根据实测值计算开环放大倍数和输出电阻r 0。 (3)闭环电路 (Y2刻度设为10mV/格) ①接入R F ,按(2)的要求调整电路。 ②按表5.1要求测量并填表,计算A vf 。 ③根据实测结果,验证A vF ≈F 1。 表5.1 R L (K Ω) V i (mV) V 0(mV) A V 开环增益/(A v f )闭环增益 开环 ∞ 1 1K5 1 闭环 ∞ 1 1K5 1 2.测量开环和闭环时的输入和输出电阻 断开图5.1中R 2,R 3串联680K 的可调电位器1R P 后再接入到V 1的基极,函数信号发生器输出10mV,1KHz 的正弦波到A 点。示波器Y1、Y2通道分别观测V A (V i )、V o ,Y1的刻度为5mV/格,Y2的刻度根据输出信号的幅度设置,开环时刻度值大,闭环时刻度值小。调节电位器1R P 使Vo 波形无明显失真即可。 按照实验一的方法分别测量开环和闭环时的输入和输出电阻 |?

实验3 负反馈放大电路

实验3 负反馈放大电路 一、实验目的 1. 研究负反馈对放大器性能的影响。 2. 掌握负反馈放大器性能的测试方法。 3. 巩固示波器、信号发生器、交流毫伏表等常用电子仪器的使用方法。 二、实验仪器 1. 模拟电路实验仪。 2. 双踪示波器。 3. 交流毫伏表。 4. 信号发生器。 5. 多功能计数器。 6. 数字万用表。 三、预习要求 l. 认真阅读实验内容,图3.1电路中晶体管β值为120,计算该放大器开环和闭环电压放大倍数。 说明:计算开环电压放大倍数时,要考虑反馈网络对放大器的负载效应。对于第一级电路该负载效应相当于C F、R F与lR7并联,由于lR7≤R F,所以C F、R F的作用可略去。对于第二级电路该负载效应相当于C F、R F与lR7串联后作用在输出端,由于lR7≤R F,所以近似看成第二级接有内部负载C F、R F。

2. 计算如图 3.1所示电路的级间反馈系数F。 图3.1 负反馈放大电路

3. 熟悉放大器频率特性测量方法。 1. 算 U in =100mV 、f=1kHz ,在实验箱上加衰减电阻,出电阻r o 。 输出电阻r o 的计算公式如下:四、实验内容 负反馈放大器开环和闭环放大倍数的测试(1)开环电压放大倍数和输出电阻的测量与计① 按图接线,R F 先不接入。 ② 输入端接入正弦波信号源,使V i =1mV ,调整接线和工作点使输出信号不失真且无振荡。 ③ 按表3.1要求进行测量并填表。 ④ 根据实测值计算开环放大倍数和输L OL O o R )1V V ( r ?= 式中:U o 是输出空载时的输出电压,U oL 是接入负载R L 时的输出电压。 l )的要求调整电路。 系数),讨论负反馈电路的带负载能力表3.1 R L (K ?)V i (mV )(mV )A V (A Vf ) r o (2)闭环电路 ① 接通R F ,按(② 按表3.1要求测量并填表,计算A vf 。③ 根据实测结果,验证A vf ≈1/F (F 为反馈。 V o ∞ 1 开环 1 K5 1 ∞ 1 闭环 1 K5 1

放大电路中的负反馈

放大电路中的负反馈 放大电路是主要的电子电路类型,为了确保放大电路能够正常工作,提供稳定的增益、良好的线性,以及其他的一些特殊目的,一般实用的放大电路都加上了负反馈的网络。 在各种系统的控制分析中,电路中的负反馈研究应该是最为深入和细致的了,详细的内容请参阅“电子技术”或“电路分析”专业教科书,本文仅仅是想通过对放大电路中反馈的简单介绍,阐述系统中反馈控制的基本原理。 1、为什么要在电路中设置反馈 半导体技术发展到今天,为电子电路的设计提供了极大的施展空间。现在要设计或制作一个高性能的放大器,在如何提高放大倍数方面已经不是问题,最普通的集成电路运算放大器(LM324,其内部包含了4个相同的独立放大器,价格在1元左右,如下图),其开环电压放大倍数也可以做到几十万倍(80dB~140dB)之高,对于一般的要求来说,这几乎就是无限大的放大倍数了。 然而,在多数的应用中,都要求电路的放大倍数是一个固定不变的有限值。所谓固定不变是指:当工作环境的温度变化;电路输入、输出连接状态发生改变;器件因常时间工作性能老化;因故障更换了主要半导体器件之后,等等的内在的和外部的干扰因素下,放大器的放大倍数都维持在设定值不会变化。这个稳定增益(放大倍数)的要求,其实才是现代电子电路设计的难点,而在电路中使用负反馈技术,是解决这个难题的主要方法。 此外,电路中的负反馈还能解决以下问题: 提高输入阻抗,降低输出阻抗(提高负载能力),优化频率响应,稳定静态工作点,减少线性失真等等,本文不做叙述。 2、电路中最主要的两种负反馈应用示例 ①反相交流放大器 电路见附图。此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。电路无需调试。放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。 放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。负号表示输出信号与输入信号相位相反。按图中所给数值,Av=-10。此电路输入电阻为Ri。一般情况下先取Ri 与信号源内阻相等,然后根据要求的放大倍数在选定Rf。Co和Ci为耦合电容。 ②同相交流放大器 电路见附图。同相交流放大器的特点是输入阻抗高。其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。R4的阻值范围为几千欧姆到几十千欧姆。以上两种基本的反馈放大器,共同点是都具有反馈,而且从输出端取出的反馈信号经过反馈网络后,都加到了运算放大器的负输入端,反馈信号的作用是抵消了输入信号,因此称为负反馈;另一个共同点是,经过分析计算发现,两种放大电路由于反馈网络的加入,使得放大器的放大倍数(增益)的大小,只由反馈网络的电阻参数值决定(Av=-Rf/Ri;Av=1+Rf/R4),只要这几个电阻的阻值是稳定的放大倍数就不会变化,而要确保电阻的阻值始终稳定在规定的范围内,是比较容易做到的。 3、电路中反馈的基本模型概括 4、电路中反馈的类型及其作用: 直流反馈:反馈只对直流分量起作用,反馈元件只能传递直流信号;目的:稳定静态工作点。

放大电路练习题及答案(完整资料).doc

【最新整理,下载后即可编辑】 一、填空题 1.射极输出器的主要特点是电压放大倍数小于而接近于1,输入电阻高、输出电阻低。 2.三极管的偏置情况为发射结正向偏置,集电结反向偏置时,三极管处于饱和状态。 3.射极输出器可以用作多级放大器的输入级,是因为射极输出器的输入电阻高。 4.射极输出器可以用作多级放大器的输出级,是因为射极输出器的输出电阻低。 5.常用的静态工作点稳定的电路为分压式偏置放大电路。 6.为使电压放大电路中的三极管能正常工作,必须选择合适的静态工作点。 7.三极管放大电路静态分析就是要计算静态工作点,即计算I B 、I 、U CE三个值。 C .共集放大电路(射极输出器)的集电极极是输入、输出回路公共端。 9.共集放大电路(射极输出器)是因为信号从发射极极输出而得名。() 10.射极输出器又称为电压跟随器,是因为其电压放大倍数电压放大倍数接近于1 。 11.画放大电路的直流通路时,电路中的电容应断开。 12.画放大电路的交流通路时,电路中的电容应短路。 13.若静态工作点选得过高,容易产生饱和失真。 14.若静态工作点选得过低,容易产生截止失真。 15.放大电路有交流信号时的状态称为动态。 16.当输入信号为零时,放大电路的工作状态称为静态。 17.当输入信号不为零时,放大电路的工作状态称为动态。 18.放大电路的静态分析方法有估算法、图解 法。

19.放大电路的动态分析方法有微变等效电路法、图解法。 20.放大电路输出信号的能量来自直流电源。 二、选择题 1、在图示电路中,已知U CC=12V,晶体管的β=100,' R= b 100kΩ。当 U=0V时,测得U BE=0.7V,若要基极电流I B=20μA,i 则R W为kΩ。A A. 465 B. 565 C.400 D.300 2.在图示电路中,已知U CC=12V,晶体管的β=100,若测得I =20μA,U CE=6V,则R c=kΩ。A B A.3 B.4 C.6 D.300 3、在图示电路中,已知U CC=12V,晶体管的β=100,' R= B 100kΩ。当 U=0V时,测得U BE=0.6V,基极电流I B=20μA,当i 测得输入电压有效值 U=5mV时,输出电压有效值'o U=0.6V,则 i 电压放大倍数 A=。A u A. -120 B.1 C.-1 D. 120

相关文档
最新文档