生化课后答案

生化课后答案
生化课后答案

第一章

1.生命是生物化学?生物化学研究哪些内容?

生物化学是以生物体为对象,从化学的观点研究生命本质的科学。

它主要是利用化学的理论和方法研究生物体的基本构成物质的结构、性质及其在生命活动过程中的变化规律。

2.维系生物分子结构稳定的次级键有哪些?

a 离子键

b 氢键

c 范德华力

d 疏水相互作用

e 位阻作用

3.为什么说水是生命的基本介质?

a.生物分子的合成需要有水的参与;

b.生物体内有机物的代谢过程也会产生水;

c.在细胞内水是各种有机物质和无机物质的介质;

d.细胞与细胞之间充满水分,血液中也含有大量水分;

ee.水分参与能量的传递;

f.水有润滑作用.

4.细胞中有哪些缓冲系统?

a.碳酸氢盐系统 b.磷酸盐系统 c.蛋白质系统

第二章核酸化学

1.名词解释

增色效应:DNA 由双链变成单链的变性过程会导致溶液紫外光吸收的增加,此现象称为增色效应。

减色效应:在核酸中由于碱基的堆积作用,造成核酸比同浓度游离核苷酸对紫外光的吸收减少。变性核酸在复性后其紫外吸收值降低,这种现象被称为“减色效应”。

DNA 复性:变性 DNA 的两条链通过碱墓配对重新形成双螺旋的过程称为复性

分子杂交(hybridization):不同来源的核酸链( DNA 或 RNA ),根据它们的顺序互补性,在“退火”之后形成双螺旋的过程称为分子杂交。

回文结构( palindrome):所谓回文顺序,就像一个单词、一个词组或一个句子,它们从正方向阅读和反方向阅读,其含义都一样。例如: ROTATOR 和 NURSESRUN 。这个名词被用于描述碱基顺序颠倒重复,因而具有二倍对称的 DNA 段落。

镜像结构:如果颠倒重复发生在同一条链上,则这种顺序叫镜像重复,在同一条链内不具有链内互补顺序,因而不能形成发卡结构和十字架结构。

例如 TTAGCAC CACGATT AATCGTG GTGCTAA

Watson-Crick配对:

Hoogsteen配对:参与Watson-Crick碱基配对的核苷酸碱基还能形成一批额外的氢建,特别是在大沟里的功能基团,如一个质子化的C能和GC碱基对中的G配对,T和 A=T中的A

配对,这些参与在三链DNA中形成氢键的位点叫Hoogsteen位置。这种非Watson-Crick

碱基配对叫Hoogsteen配对,在DNA重组转录等的起始和调控上起重要作用。

DNA双螺旋:是一种核酸的构象,在该构象中,两条反向平行的多核甘酸链相互缠绕形成一个右手的双螺旋结构。

DNA超螺旋:DNA本身的卷曲一般是DNA双`螺旋的弯曲欠旋(负超螺旋)或过旋(正超螺旋)的结果。

核酶(ribozyme):具有催化作用的小RNA分子。

siRNA:small interfering RNA,大约22个核苷酸长的双链RNA能够通过不同途径,以序列特异的方式来高效的沉默含有同源序列的靶RNA分子。

2.从分子大小、细胞定位以及结构和功能上比较DNA和RNA?

DNA分子比RNA大。DNA在细胞核里,RNA在细胞液。结构:DNA是双螺旋 RNA是单链根据种类不同结构也不同。功能:DNA是遗传物质,RNA是更加种类不同,功能也不同!

3.从结构和功能上比较tRNA、rRNA和mRNA?

功能:mRNA :功能是翻译。 tRNA:功能是运输。 rRNA:功能是作为mRNA的支架,使mRNA分子在其上展开,实现蛋白质的合成。

结构:mRNA原核和真核特征不相同:原核生物特征有半衰期短,而且由多顺反子形式存在以AUG为起始密码子。真核生物一般为单顺反子,5端帽子,3端尾巴rRNA有大小亚基。tRNA有三叶草结构

4.DNA双螺旋结构模型的要点有哪些?此模型如何能解释Chargaff?

a,两条反向平行的多聚核苷酸链沿一个假设的中心轴右旋相互盘绕而形成。

b,磷酸和脱氧核糖单位作为不变的骨架组成位于外侧,作为可变成分的碱基位于内侧,链间碱基按A—T,G—C配对(碱基配对原则,Chargaff定律)

c,螺旋直径2nm,相邻碱基平面垂直距离0.34nm,螺旋结构每隔10个碱基对(base pair, bp)重复一次,间隔为3.4nm d,DNA双螺旋结构十分稳定

5.原核生物和真核生物的mRNA的结构有哪些区别?

①原核生物mRNA常以多顺反子的形式存在。真核生物mRNA一般以单顺反子的形式存在。

②原核生物mRNA的转录与翻译一般是偶联的,真核生物转录的mRNA前体则需经转录后加工,加工为成熟的mRNA与蛋白质结合生成信息体后才开始工作。

③原核生物mRNA半寿期很短,一般为几分钟,最长只有数小时(RNA噬菌体中的RNA除外)。真核生物mRNA的半寿期较长,如胚胎中的mRNA可达数日。

④原核与真核生物mRNA的结构特点也不同。

7.从两种不同细菌提起DNA样品,其腺嘌呤核苷酸残基分别占其碱基总数的32%和17%,计算这两种不同来源DNA四种脱氧核苷酸残基相对百分组成,两种细菌中有一种是从温泉(64°C)种分离出来的,该细菌DNA具有何种碱基组成?为什么?

第三章蛋白质化学

1.名词解释

蛋白质一级结构:多肽链中,氨基酸的排列顺序,其主要化学键为肽键(peptide bond)。蛋白质的二级结构:指蛋白质中某一段肽链主链C原子的空间排布

蛋白质的三级结构:指整条肽链中全部氨基酸残基的相对空间位置,也就是整条肽链所有原子在三维空间的排布顺序。

蛋白质的四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用称为蛋白质的四级结构。

超二级结构:在蛋白质分子中,由二级结构间组合的结构层次称为超二级结构。

结构域:在蛋白质的三级结构内的独立折叠单元。结构域通常都是几个超二级结构单元的组合。

必需氨基酸:动物及人体内不能合成,必需由食物中供给的氨基酸称为必需氨基酸。

稀有氨基酸:动物和人体内能够合成,不需从外界供给的氨基酸称为非必需氨基酸

半必需氨基酸:体内虽能合成,但合成的量不足以满足特殊生理状态下的需要

氨基酸残基:肽链中的每一个氨基酸,由于相互连接失去一分子水,与原氨基酸比较,分子稍有残缺,通常把肤链中的每一个氨基酸单位称为氨基酸残基

酰胺平面:由于肽键具有部分双键的性质,因而不能自由旋转;使得肽键所连接的六个原子同处于一个平面上,这个平面被称为肽平面或酰胺平面

α-碳原子的二面角:多肤链中,α-C - N 和α-C - C 键都是单键,可以自由旋转。其中α-C - N 键旋转的角度通常用φ表示;α-C - C 键旋转的角度一般用ψ表示

肽单元:参与组成蛋白质的6个原子位于同一平面,叫肽单元。它是蛋白质构想的基本结构单位。

等电点:使分子处于兼性分子状态,在电场中不迁移(分子的静电荷为零)的pH值

5.蛋白质的构想可以是无限的吗?为什么?

不可以,多肽链真正能够存在的构想为数很有限,因为在a和b的某些取值时,主链上的原子之间后主链上的原子与侧链R基团之间会发生空间相撞,也就是说这时非键合原子不符合标准接触距离!

6.在下述条件下计算含有45个氨基酸残基肽链的长度(以nm为单位)

(1)70%为a螺旋,10%为平行式B折叠,20%为线性。(2)全部为a螺旋。

a,(45*70%/3.6)*0.54+(45*10%/2-1)*0.132+(45*20%-1)0.132=

b,(45/3.6)*0.54nm=

7.已知:(1)卵清蛋白pI为4.6;(2)B乳球蛋白pI为5.2;(3)糜蛋白酶原pI

为9.1.问在PH5.2时上述蛋白质在电场中向阳极移动、向阴极移动还是不移动?

a.由于pI《PH,所以PH提供OH根,所以卵清蛋白中的氢离子被中和掉显阴性,所以向阳极移动 b.同理,不移动 c.向阴极移动

8.什么叫蛋白质的变性?哪些因素可以引起变性?蛋白质变性后有何性质和结构上的改变?蛋白质的变性有何实际应用?

答案:a.许多理化因素能破坏pro分子三维结构中的氢键及其它弱键,导致pro活性丧失的现象。

b.1)物理因素:加热、激烈振荡、超声波、χ-射线、紫外线等;

2)化学因素:A 酸碱破坏盐键;B 乙醇、丙酮等有机溶剂进入pr间隙与之形成氢键,破坏pr分子内各弱键;C 脲溶液、盐酸胍及某些去垢剂(SDS)可破坏氢键,暴露巯基,强化酸碱的破坏作用。

c.性质改变:1)溶解度降低;2)二、三级结构破坏,但肽键未破坏,故其组成和分子量不变;3)化学反应基团增加;4)失去螺旋结构,对称性下降,结晶能力丧失;

5)对蛋白酶水解敏感性增加;6)生物活性降低或全部丧失。结构:1)分子内部结构改变:次级键破坏;2)分子表面结构改变:疏水基团暴露。主要标志:生物功能的丧失。

d.鸡蛋、肉类等经加温后蛋白质变性,熟了可以吃。细菌、病毒加温,加酸、加重金属(汞)因蛋白质变性而灭活(灭菌、消毒、)。用于蛋白质的沉淀。从血液中提分离、提纯激素,制药。蛋白质分子结合重金属而解毒。蛋白质分子与某些金属结合出现显色反应,如双缩脲反应可测定含量

9.试解释蛋白质的盐溶和盐析机制?

盐溶:在蛋白质水溶液中,加入少量的中性盐[即稀浓度],如硫酸铵、硫酸钠、氯化钠等,会增加蛋白质分子表面的电荷,增强蛋白质分子与水分子的作用,从而使蛋白质在水溶液中的溶解度增大。盐析:破坏了蛋白质在水中存在的两个因素(水化层和电荷),从而使蛋白质沉淀.

10.蛋白质的两性解离、沉淀特性有何作用?

两性解离:用电泳的方法根据两性解离特性分离提纯蛋白质

沉淀特性:用沉淀的方法根据沉淀特性分离提纯蛋白质

第四章酶

1.酶的活性中心:指在一级结构上可能相距甚远,甚至位于不同肽链上的少数几个氨基酸残基或这些残基上的基团通过肽链的盘绕折叠而在三维结构上相互靠近,形成一个能与底物结合并催化其形成产物的位于酶蛋白表面的特化的空间区域。对需要辅酶的酶来说,辅酶分子或其上的某一部分结构常是活性中心的组成部分。

酶原激活:某些酶先以无活性的酶原形式合成及分泌,然后在到达作用部位时由另外的物质作用,使其失去部分肽段从而形成或暴露活性中心形成有活性的酶分子的过程。如胃蛋白酶原是无活性的,它在胃液中经胃酸的作用或有活性的胃蛋白酶的作用变成有活性的胃蛋白酶分子。

别构效应:调节物(或效应物)与别构酶酶分子的别构中心结合后,诱导出或稳定住酶分子的某种构象,使酶活性中心对底物的结合与催化作用受到影响,从而调节酶的反

应速度及代谢过程,此效应称为酶的别构效应。

辅酶和辅基:大多数情况下,可通过透析或其他物理方法从全酶中除去,与酶蛋白结合松弛的辅助因子叫辅酶。以共价键和酶蛋白牢固结合,不易用透析等方法除去的辅助因子叫辅基。二者的区别只在于与酶蛋白结合的牢固程度不同,无严格绝对的界限。

酶的活力单位( U ):酶活力的度量单位。 1961 年国际酶学委员会规定: 1 个酶活力单位是指特定条件下,在 lmin 内能转化 1 μ mol 底物的酶量,特定条件:温度 25 ℃,其他条件采用最适,另外也存在人们普通采用的其他酶活力单位。

同工酶:指催化同一种化学反应,而其酶蛋白本身的分子结构组成及理化性质有所不同的一组酶。

共价调节酶:由于其他的酶对某一酶的结构进行共价修饰而使其在活性形式与非活性(或高活性与低活性)形式之间相互转变,这种调节酶即为共价调节酶。

2,酶作为生物催化剂与非酶催化剂有何异同点?

(1)酶作为生物催化剂和一般催化剂相比,在许多方面是相同的,如用量少而催化效率高。和一般催化剂一样,酶仅能改变化学反应的速度,并不能改变化学反应的平衡点,酶在反应前后本身不发生变化,所以在细胞中相对含量很低的酶在短时间内能催化大量的底物发生变化,体现酶催化的高效性。酶可降低反应的活化能(activation energy),但不改变反应过程中自由能的变化(△G),因而使反应速度加快,缩短反应到达平衡的时间,但不改变平衡常数(equilibrium constant)。

(2)然而酶是生物大分子,具有其自身的特性:(1)酶催化的高效性:酶的催化作用可使反应速率提高10^6~10^12倍,比普通催化剂效能至少高几倍以上。(2)酶催化剂的高度专一性:包括反应专一性、底物专一性、手性专一性、几何专一性等,即一种酶只能作用于某一类或某一种特定的物质。如糖苷键、酯键、肽键等都能被酸碱催化而水解,但水解这些化学键的酶却各不相同,分别为相应的糖苷酶、酯酶和肽酶,即它们分别被具有专一性的酶作用才能水解。(3)酶催化的反应条件温和:酶促反应一般在pH=5~8的水溶液中进行,反应温度范围为20~40℃

3,影响酶促反应速度的因素有哪些?

答案:a.酶浓度的影响 b.底物浓度的影响 c.温度的影响 d.酸碱度的影响 e.激活剂的影响 f.抑制剂的影响

4.米氏方程的实际意义和用途是什么?

答案:①米氏方程是根据中间产物学说推导出酶促反应中的 [S] 与 v 关系的数学式,它反应了 [S] 与 v 之间的定量关系,可以根据其中的 Km 对酶进行一系列研究(参阅上题),另外将米氏方程的 1/v 对 1/[S] 作图,可直接从图中求出 Vmax 及 Km;将米氏方程变为( v - Vmax )=- vKm 时,与( x-a )( y+b)=K 的典型双曲线方程一致,因此公式推导和实验得到的 [S] 对 v 的曲线完全相同,给中间复合物理论一个有力的证据。②局限性:米氏方程假定形成一个中间复合物因而其动力学只适合单底物反应,对实际存在的多底物、多产物的酶促反应均不适用;对体内的多酶体系催化的反应过程也不能很好解释;在一些变构酶催化的反应中表现出的协同效应也与米氏方程表示的 [S] 与 v 的关系不大相符。

5.何谓米氏常数,它的意义是什么?

答案:①米氏常数( Km 值)是酶促反应动力学中间产物理论中的一个常数,即 Km =( K 2 + K 3 )/K 1 。因此 Km 可看作是 ES 形成和解离趋势的代表。在特殊情况下, Km 在数值上等于酶促反应速度达到 Vmax/2 时的 [S] ,单位 mol/L 。 Km 值在 K3<

② Km 的意义:米氏方程:,当v=Vmax/2时,Km=[S] ;Km是酶的特征常数,其大小反映了酶与底物的亲和力。

6.磺胺类药物的作用机理

答案:细菌不能直接利用其生长环境中的叶酸,而是利用环境中的对氨苯甲酸(PABA)和二氢喋啶、谷氨酸在菌体内的二氢叶酸合成酶催化下合成二氢叶酸。二氢叶酸在二氢叶酸还原酶的作用下形成四氢叶酸,四氢叶酸作为一碳单位转移酶的辅酶,参与核酸前体物(嘌呤、嘧啶)的合成。而核酸是细菌生长繁殖所必须的成分。磺胺药的化学结构与PABA类似,能与PABA竞争二氢叶酸合成酶,影响了二氢叶酸的合成,因而使细菌生长和繁殖受到抑制。7.有机磷农药的毒性机理?

答案:a。有机磷农药中毒的主要机理是抑制胆碱酯酶的活性。有机磷与胆碱酯酶结合,形成磷酰化胆碱酯酶,使胆碱酯酶失去催化乙酰胆碱水解作用,积聚的乙酰胆碱对胆碱有神经有两种作用:a.毒蕈碱样作用 b.烟碱样作用

b。有机磷化合物(包括有机磷杀虫剂)的作用机制,除上述酶抑制学说外,尚有:有机磷直接作用于胆碱能受体;直接损害神经元,造成中枢神经细胞死亡;抑制神经病靶酯酶,造成退行性多神经病等。

8.请分析下列现象的生化机理:“酵母汁将蔗糖变成酒精称为乙醇发酵;酵母汁经透析或加热至50°C,失去发酵能力,而透析的酵母汁与加热的酵母汁混合后又具有发酵能力”。答案:蔗糖加水等于葡萄糖和果糖,葡萄糖+2Pi+2ADP+2氢正=2乙醇+2ATP+2水+2二氧化碳透析过程:除去了全部的酵母;加热:是一种可逆变性,酵母暂时失去了活性。混合:又恢复了原来温度,变性蛋白质恢复了正常活性。

第七章糖类代谢

回补反应:酶催化的补充柠檬酸循环中间代谢物的供给的反应,例如由丙酮酸羧化生成草酰乙酸的反应。

葡萄糖异生作用:即是由非糖前体物质合成葡萄糖的过程。

3.糖酵解中的调节酶有哪几个?有哪些因素调节?

酶:a.己糖激酶,b.磷酸果糖激酶,c.丙酮酸激酶;因素:a.本身反应

b.多种变构效应物的影响

c.高浓度的ATP

4.什么是乙醛酸循环?其有什么生物意义?

乙醛酸循环:在异柠檬酸裂解酶的催化下,异柠檬酸被直接分解为乙醛酸,乙醛酸又在乙酰辅酶A参与下,由苹果酸合成酶催化生成苹果酸,苹果酸再氧化脱氢生成草酰乙酸的过程生物意义:除了提供能量和中间产物外,更重要的是它使萌发的种子将储存的三酰甘油通过乙酰CoA转变为葡萄糖。

第八章生物氧化和能量转换

1.名称解释

生物氧化:物质在生物体内氧化分解并释放出能量的过程称为生物氧化

氧化磷酸化:在线粒体中,底物分子脱下的氢原子经递氢体系传递给氧,在此过程中释放能量使ADP磷酸化生成ATP,这种能量的生成方式就称为氧化磷酸化

呼吸链:代谢物脱下的成对氢原子(2H)通过多种酶和辅酶所催化的连锁反应逐步传递,最终与氧结合生成水。

解偶联剂:一种使电子传递与ADP磷酸化之间的紧密偶联关系解除的化合物,例如2,4-二硝基苯酚。

磷氧比:每消耗一摩尔氧原子所消耗的无机磷原子的摩尔数称为P/O 比值。

能荷:能荷是细胞中高能磷酸键状态的一种数量上的衡量

2.呼吸链中各成员排列顺序是根据什么原则确定的?

答案:①标准氧化还原电位②拆开和重组③特异抑制剂阻断④还原状态呼吸链缓慢给氧

3.化学渗透假说的主要内容是什么?

①电子传递从NADH开始,复合物Ⅰ将还原型的NADH氧化,释放出的两个电子和一个H+质子被NADH脱氢酶上的黄素单核苷酸(FMN)接受,同时从基质中摄取一个H+ 将FMN还原成FMNH2,NADH被氧化成NAD+重新进入TCA循环;

②FMNH2 将一对H+质子传递到膜间隙,同时将一对电子经铁硫蛋白(FeS)传递给Q池中的两个辅酶Q;

③两个辅酶Q得到电子后从基质中摄取两个H+被还原成两个半醌(QH);

④醌在内膜中通过扩散进行穿膜循环(醌循环),两个半醌各从细胞色素b获得一个电子,并从基质中再摄取两个H+ 质子,形成两个全醌(QH2);⑤当全醌扩散到内膜外侧时,便把两个电子传递给细胞色素c1,并向膜间隙释放一对H+ 质子,本身又被氧化成半醌;

⑥当半醌扩散到接近细胞色素b时,将携带的另两个电子传递给细胞色素b,并又向膜间隙释放一对H+,细胞色素b的一对电子又回到醌循环;

⑦细胞色素c1将接受的两个电子经细胞色素c和细胞色素氧化酶传递给氧,将氧还原成H2O; ⑧一对电子经呼吸链传递到氧时,共将基质中3对H+ 泵到膜间隙,从而使膜间隙的H+ 浓度高于基质,因而在内膜的两侧形成了电化学梯度。这种电化学梯度可驱动H+ 通过ATP 合酶复合物进入基质,每通过2个H+ 可产生1个ATP。

4.呼吸链有哪几种类型?其多样性有什么生理意义?

答案:⑴NADH氧化呼吸链NADH →复合体Ⅰ→Q →复合体Ⅲ

→Cyt c →复合体Ⅳ→O2 ⑵琥珀酸氧化呼吸链琥珀酸→复合体Ⅱ

→Q →复合体Ⅲ→Cyt c →复合体Ⅳ→O2 生理意义:呼吸链可将有机物氧化释放的能量来合成ATP,提供中间产物。

第九章脂类物质的合成与分解

1.柠檬酸穿梭:是指线粒体内的乙酰CoA与草酰乙酸缩合生成柠檬酸,然后经内膜上的三羧酸载体运至胞液中,在柠檬酸裂解酶的催化下,需消耗ATP将柠檬酸裂解回草酰乙酸和乙酰CoA,后者就可以用于脂肪酸合成,而草酰乙酸经还原后再氧化脱羧成丙酮酸,丙酮酸经内膜载体运回线粒体,丙酮酸在丙酮酸羧化酶作用下重新生成草酰乙酸,这样就可以又一次参与转运乙酰CoA的循环。

2.简述脂肪降解产物甘油如何彻底氧化?

答案:甘油+甘油激酶催化(消耗1个ATP)=3-磷酸甘油,3-磷酸甘油+磷酸甘油脱氢酶=磷酸二羟丙酮,磷酸二羟丙酮既可转变为3-磷酸甘油醛,既可进入糖酵解途径生成丙酮酸然后经三羧酸循环彻底氧化分解供能

3.脂肪降解产物甘油如何进行糖异生作用?

答案:甘油变成磷酸二羟丙酮,然后磷酸二羟丙酮变成甘油醛-3-磷酸,再两者一起变1,6-二磷酸果糖吧,

5.脂肪酸从头合成需要哪些原料及能源物质?它们分别来自哪些代谢途径?

答:(1)脂肪酸合成的原料:乙酰CoA

主要来源于:a,糖代谢→丙酮酸→乙酰CoA(线粒体)b,脂肪酸β-氧化→乙酰CoA(线粒体)c,氨基酸氧化分解→乙酰CoA 注:线粒体中乙酰CoA转入胞液,须“ 柠檬酸穿梭”

(2)合成的还原力:NADPH(主要来自PPP途径)(3)有两个酶系统参与:

(3)乙酰CoA羧化酶:催化乙酰CoA的活化,形成丙二酸单酰CoA;

脂肪酸合成酶复合体:催化以丙二酸单酰辅酶A为原料合成软脂酸。

6.计算一分子软脂酸经B氧化作用后彻底分解为CO2和和H2O时,生成ATP的分子数,写出详细过程?

软脂酸+ ATP + 7NAD+ + 8CoASH + 7FAD + 7H2O→8乙酰CoA + 7FADH2 + 7NADH + 7H+ +AMP +PPi

λ 1分子乙酰CoA进入三羧酸循环彻底氧化共生成10分子ATP,因此8个乙

酰CoA生成8×10=80分子ATP。

λ 7FADH2:7×1.5=10.5分子ATP

λ 7NADH2:7×2.5=17.5分子ATP

λ 80+10.5+17.5=108分子ATP 减去活化所消耗的2分子ATP,一共生产106ATP

7.为什么脂肪酸从头合成的最终产物是C16的软脂酸?

答案:每重复一次合成过程,就可以增长两个碳单位,直至合成需要长度的脂酰-ACP(如

软脂酰-ACP)。软脂酰-ACP是硫解酶的底物,该酶催化生成软脂酸和HS-ACP。软脂酰-ACP ——→ 软脂酸+HS- ACP ,硫解酶由乙酰

CoA和丙二酸单酰CoA合成软脂酸的总反应的化学计量关系式可表示为:乙酰CoA+7丙二酸单酰CoA+14NADPH+14H+→软脂酸+7CO2+14NADP++8CoASH+6H2O全合成过程只合成软脂酸C16,进一步的C链延长和不饱和脂肪酸的形成由其它途径完成

8.脂肪酸的B氧化与饱和脂酸从头合成有哪些相同点和不同点?

答案:不同点:1 》进行部位不同:脂肪酸合成在胞质中,脂肪酸氧化在线粒体中;2》酸基载体不同:脂肪酸合成的酸基载体是ACP,脂肪酸氧化的酰基载体是辅酶A;3》辅酶不同:脂肪酸合成的辅酶是NADP“,脂肪酸氧化的辅酶是NAD”、FAD;4》转运系统不同:脂肪酸合成的起始原料乙酸CoA是通过柠檬酸穿梭系统进行转运的,脂肪酸分解起始物脂酸CoA是通过肉毒碱进行转运的;5》能量变化不同:脂肪酸合成消耗能量,脂肪酸分解产生能量。

相同点:1》都是以2个碳原子单元断裂或延长。2》都需载体的携带,而且都是通过硫酯键与载体结合。

9.酮体是怎样生成的?酮体的利用价值体现在哪里?

答案:酮体是脂肪酸在肝代谢的中间产物。它的生成:肝C线粒体中具有活性很强的生成酮体的酶,可将脂肪酸B-氧化生成的乙酰CoA 一部分通过三羧酸循环氧化成CO2,H2O和能量。另一部分乙酰CoA转变成酮体。

是肝输出能源的一种形式,在肝外组织细胞内重新转变成乙酰CoA 供组织氧化利用。生理意义:当饥饿或血糖较低时,可代替葡萄糖成脑组织及肌肉组织的主要能源。

第十章蛋白质的降解和氨基酸的代谢1,名词解释。

转氨作用:在转氨酶的作用下,把一种氨基酸上的氨基转移到α-酮酸上,形成另一种氨基酸。

联合脱氨基:有转氨酶催化的转氨基反应和L-谷氨酸脱氢酶催化的脱氨基反应偶联在一起的托氨方式。

必需氨基酸:指人体(和其它哺乳动物)自身不能合成,机体又必需,需要从饮食中获得的氨基酸。

2.氨基酸托氨反应产物各有哪些主要的去路?

答:氨的去路:(1)合成尿素(2)合成谷氨酰胺(3)合成非必需氨基酸(4)合成其他含氮化合物如嘌呤碱和嘧啶碱等。α-酮酸的去路:(1)经还原加氨或转氨生成非必需氨基酸;(2)经三羧酸循环转变成糖、脂肪或酮体。

3. 联合脱氨基为什么是生物体内脱去氨基的主要方式?

答:联合脱氨基,是指氨基酸的转氨基作用和氧化脱氨基作用的联合,其过程是氨基酸首先与α-酮戊二酸在转氨酶催化下生成相应的α-酮酸和谷氨酸,谷氨酸在L-谷氨酸脱氢酶作用下生成α-酮戊二酸和氨,α-酮戊二酸再继续参与转氨基作用。联合脱氨基作用是可逆的,所以是体内合成非必需氨基酸的主要途径。

4.体内是如何把氨基酸脱下的有毒的氨及时的转化?

答:氨的去路:氨在体内虽不断产生,但又在不断地迅速地变成其他无毒性含氮物质。其主要去路有:(1)合成尿素(主要去路):尿素通过肾脏随尿排出体外。

合成的途径:尿素的合成,并非是直接化合形成,要通过一个复杂的机构,称为鸟氨酸循环。这个循环包括三个主要步骤:第一步骤是鸟氨酸先与一分子氨和一分子二氧化碳结合形成瓜氨酸;第二步骤是瓜氨酸再与另一分子氨反应,生成精氨酸;第三步骤是精氨酸被精氨酸酶水解,产生一分子尿素和一分子鸟氨酸。鸟氨酸可以再重复第一步骤反应。这样每循环一次,便可促使两分子氨和一分子CO2合成一分子尿素。

尿素合成的场所:主要在肝脏。因为上述各步骤反应所需的酶,特别是精氨酸均存于肝脏。

(2)合成谷氨酰胺:体内的氨除主要用于合成尿素外,还有一部分能与谷氨酸结合,生成谷氨酰胺。谷氨酰胺没有毒性,经血液循环运到肾脏,在肾小管上皮细胞内被谷氨酰胺酶水解,再生成氨和谷氨酸。所生成的氨即肾小管上皮细胞泌氨作用的氨,可直接排入尿中。

(3)可以氨基化其他的α-酮戊酸以变回另外一种α-氨基酸,这就是体内非必需氨基酸合成的途径。(4)合成其他含氮化合物如嘌呤碱和嘧啶碱等。

十一章核酸的降解与核苷酸的代谢

限制性核酸内切酶:是识别DNA的特异序列,并在识别位点或其周围切割双链DNA的一类内切酶。

十二章核酸的生物合成

为什么DNA复制需要有复制点,而转录需要有启动子?

答:DNA复制主要包括引发、延伸、终止三个阶段。复制的引发(Priming)阶段包括DNA复制起点双链解开,通过转录激活步骤合成RNA分子,RNA引物的合成,DNA聚合酶将第一个脱氧核苷酸加到引物RNA的3'-OH末端复制引发的关键步骤就是前导链DNA的合成,一旦前导链DNA的聚合作用开始,滞后链上的DNA合成也随着开始。

启动子是基因(gene)的一个组成部分,控制基因表达(转录)的起始时间和表达的程度。启动子(Promoters)就像“开关”,决定基因的活动。

2.为什么说DNA复制是半保留半不连续复制?

答:(1)半保留即母链DNA解开为两股单链,各自作为模板按碱基配对规律,合成与模板互补的子链。子代细胞的DNA,一股单链从亲代完整地接受过来,另一股单链则完全重新合成。(2)半不连续复制是由于DNA双螺旋的两股单链是反向平行,一条链的走向为5'-3',另一条链为3'-5',DNA的两条链都能作为模板以边解链边复制方式,同时合成两条新的互补链。但是,所有已知DNA聚合酶的合成方向都是5?-3?,所以在复制是,一条链的合成方向和复制叉前进方向相同,可以连续复制,称为领头链;另一条链的合成方向与复制叉前进方向相反,不能顺着解链方向连续复制,必须待模板链解开至足够长度,然后从5…-3?生成引物并复制子链。延长过程中,又要等待下一段有足够长度的模板,再次生成引物而延长,然后连接起来,这条链称随从链。因此就把领头链连续复制,随从链不连续复制的复制方式称为半不连续复制。

3.DNA的复制的高度准确性是通过哪些机制来实现的?

答案:主要是通过碱基配对和dna聚合酶的功能来实现

a、底物:AT、CT碱基互补配对,其他的配对形式没有合适的构象,因而不能进入DNA聚合酶活性中心。

b、DNA聚合酶的反向校读机制。

c、DNA聚合酶可以将DNA链弯曲,防止非合成点的干扰。

d、监督作用:DNA聚合酶特异氨基酸和DNA特异碱基特异作用,若错误配对,则不能发生该作用。

4.DNA复制和RNA转录各有何特点?试比较之。

答案:(1)半保留复制,有一定的复制起始点,需要引物,双向复制,半不连续复制。(2)不对称性,连续性,单向性,有特定的起始和终止位点。

5.DNA修复对生物体有何意义?试比较切除修复与重组修复。

答:DNA修复(DNA repairing)是细胞对DNA受损伤后的一种反应,这种反应可能使DNA结构恢复原样,重新能执行它原来的功能;但有时并非能完全消除DNA的损伤,只是使细胞能够耐受这DNA的损伤而能继续生存。

切除修复和重组修复的区别在于,切除修复完全消除了DNA损伤,而重组修复不能完全去除损伤,损伤的DNA段落仍然保留在亲代DNA 链上。

十三章蛋白质的生物合成

1.遗室密码是怎样破译的?它有何特性?

答案:科学家破译遗传密码的过程

1》克里克T4噬菌体实验,信使RNA上的每3个碱基决定一个氨基酸。

2》尼伦伯格和马太的大肠杆菌实验破译了遗传密码AAA、GGG、CCC、UUU

3》霍拉纳的RNA重复序列翻译

遗传密码的特点:无标点性、无重叠性;通用性和例外;简并性;变偶性。

2.核糖体的基本功能有哪些?

答案:合成肽链,在内质网和高尔吉体上加工后叫蛋白质,核糖体是合成蛋白质的场所,是生产蛋白质的机器,它是生产蛋白质的机器的一部分,肽链是由多个氨基酸经过脱水缩合而成,蛋白质有一条或多条肽链盘曲折叠连接而成,核糖体负责合成肽链,随后在内质网上合成蛋白质,最后经过高尔基体包装加工,通过细胞膜将蛋白质运出细胞外

3.tRNA有何功能?

tRNA的主要生物学功能是转运活化了的氨基酸,参与蛋白质的生物合成。具有结合体功能和信息传递功能。tRNA的主要功能是携带氨基酸进入核糖体,在mRNA指导下合成蛋白质。即以mRNA为模板,将其中具有密码意义的核苷酸顺序翻译成蛋白质中的氨基酸顺序。tRNA 与mRNA是通过反密码子与密码子相互作用而发生关系的。

1>3?端接受氨基酸2》识别mRNA链上的密码子3》连接多肽链和核糖体

4.试述原核生物蛋白质合成过程?

答案:蛋白质生物合成的过程分四个步骤:氨基酸活化、肽链合成的起始、延伸、终止和释放。其中,氨基酸活化即氨酰tRNA的合成,反应由特异的氨酰tRNA合成酶催化,在胞液中进行。氨酰tRNA合成酶既能识别特异的氨基酸,又能辩认携带该氨酰基的一组同功受体tRNA分子。

肽链合成的起始对于大肠杆菌等原核细胞来说,是70S起始复合物的形成。它需要核糖体30S和50S亚基、带有起始密码子AUG的mRNA、fMet-tRNAf 、起始因子IF1、IF2、IF3(分子量分别为10 000、80 000和21 000的蛋白质)以及GTP和Mg2+的参加。肽链合成的延伸需要70S起始复合物、氨酰-tRNA、三种延伸因子:一种是热不稳定的EF-Tu,另一种是热稳定的EF-Ts,第三种是依赖GTP的EF-G以及GTP和

Mg2+。肽链合成的终止和释放需要三个终止因子RF1、RF2、RF3蛋白的参与。

5.肽键合成时,每合成1个肽键需消耗多少个高能磷酸键?是在哪个步骤以什么形式消耗的?

答案:4个;氨基酸的活化需要消耗2个高能磷酸键,肽链的延伸需要消耗2个GTP

6.氨酰tRNA合成酶对氨基酸有何特性?氨基酸活化时,其羧基与AMP亿何种化学键相连?氨酰tRNA中的氨酰基以何种化学键与tRNA相连?

答案:选择性;酸酐键;脂键

7.在蛋白质的定向输送时,多肽本身有何作用?

答案:定向输送是由N端一段称为信号肽的肽段控制的,一旦信号肽出现在新生肽链上,此肽链合成后送的去向也就决定了。信号肽结构有一些特征,它可被信号识别体识别。信号肽可以引导蛋白质到底目的地完成分选功能后,常常从蛋白质上被切除。

大学生物化学习题-答案

生物化学习题 蛋白质 —、填空题 1. 氨基酸的等电点(pl)是指—水溶液中,氨基酸分子净电荷为0时的溶液PH值。 2. 氨基酸在等电点时,主要以_兼性一离子形式存在,在pH>pI的溶液中,大部分以负/阴离子形式存在,在pH

生物化学课后答案张丽萍

9 糖代谢 1.假设细胞匀浆中存在代谢所需要的酶和辅酶等必需条件,若葡萄糖的C-1处用14C 标记,那么在下列代谢产物中能否找到14C 标记。 (1)CO 2;(2)乳酸;(3)丙氨酸。 解答: (1)能找到14C 标记的CO 2 葡萄糖→→丙酮酸(*C 1) →氧化脱羧生成标记的CO 2。 (2)能找到14C 标记的乳酸 丙酮酸(*C 1)加NADH+H +还原成乳酸。 (3)能找到14C 标记的丙氨酸 丙酮酸(*C 1) 加谷氨酸在谷丙转氨酶作用下生成14C 标记的丙氨酸。 2.某糖原分子生成 n 个葡糖-1-磷酸,该糖原可能有多少个分支及多少个α-(1—6)糖苷键(*设:糖原与磷酸化酶一次性作用生成)?如果从糖原开始计算,lmol 葡萄糖彻底氧化为CO 2和H 2O ,将净生成多少mol ?ATP? 解答:经磷酸化酶作用于糖原的非还原末端产生n 个葡萄糖-1-磷酸, 则该糖原可能有n +1个分支及n +1个α-(1—6)糖苷键。如果从糖原开始计算,lmol 葡萄糖彻底氧化为CO 2和 H 2O, 将净生成33molATP 。 3.试说明葡萄糖至丙酮酸的代谢途径,在有氧与无氧条件下有何主要区别? 解答:(1) 葡萄糖至丙酮酸阶段,只有甘油醛-3-磷酸脱氢产生NADH+H + 。 NADH+H +代谢去路不同, 在无氧条件下去还原丙酮酸; 在有氧条件下,进入呼吸链。 (2) 生成ATP 的数量不同,净生成2mol ATP; 有氧条件下净生成7mol ATP 。 葡萄糖至丙酮酸阶段,在无氧条件下,经底物磷酸化可生成4mol ATP (甘油酸-1,3-二磷酸生成甘油酸-3-磷酸,甘油酸-2-磷酸经烯醇丙酮酸磷酸生成丙酮酸),葡萄糖至葡糖-6-磷酸,果糖-6-磷酸至果糖1,6--二磷酸分别消耗了1mol ATP, 在无氧条件下净生成2mol ATP 。在有氧条件下,甘油醛-3-磷酸脱氢产生NADH+H +进入呼吸链将生成2× ATP ,所以净生成7mol ATP 。 4.O 2没有直接参与三羧酸循环,但没有O 2的存在,三羧酸循环就不能进行,为什么?丙二酸对三羧酸循环有何作用? 解答:三羧酸循环所产生的3个NADH+H +和1个FADH 2需进入呼吸链,将H +和电子传递给O 2生成H 2O 。没有O 2将造成NADH+H +和FADH 2的积累,而影响三羧酸循环的进行。丙二酸是琥珀酸脱氢酶的竟争性抑制剂,加入丙二酸会使三羧酸循环受阻。 5.患脚气病病人丙酮酸与α–酮戊二酸含量比正常人高(尤其是吃富含葡萄糖的食物后),请说明其理由。 解答:因为催化丙酮酸与α–酮戊二酸氧化脱羧的酶系需要TPP 作酶的辅因子, TPP 是VB 1的衍生物,患脚气病病人缺VB 1, 丙酮酸与α–酮戊二酸氧化受阻, 因而含量比正常人高。 6.油料作物种子萌发时,脂肪减少糖増加,利用生化机制解释该现象,写出所经历的主要生化反应历程。 解答:油料作物种子萠发时,脂肪减少,糖増加,表明脂肪转化成了糖。转化途径是:脂肪酸氧化分解成乙酰辅酶A,乙酰辅酶A 经乙醛酸循环中的异柠檬酸裂解酶与苹果酸合成酶催化, 生成草酰乙酸,再经糖异生转化为糖。 7.激烈运动后人们会感到肌肉酸痛,几天后酸痛感会消失.利用生化机制解释该现象。 解答:激烈运动时, 肌肉组织中氧气供应不足, 酵解作用加强, 生成大量的乳酸, 会感到肌肉酸痛,经过代谢, 乳酸可转变成葡萄糖等其他物质,或彻底氧化为CO 2和 H 2O , 因乳酸含量减少酸痛感会消失。 8.写出UDPG 的结构式。以葡萄糖为原料合成糖原时,每增加一个糖残基将消耗多少ATP? 解答:以葡萄糖为原料合成糖原时 , 每增加一个糖残基将消耗3molATP 。过程如下: ATP G 6P ADP +--+垐?噲?葡萄糖(激酶催化), G 6P G 1P ----垐?噲?(己糖磷酸异构酶催化), 2G 1P UTP UDPG PPi PPi H O 2Pi --+++??→垐?噲?(UDPG 焦磷酸化酶催化), 再在糖原合成酶催化下,UDPG 将葡萄糖残基加到糖原引物非还原端形成α-1,4-糖苷键。

03 生物化学习题与解析--酶

酶 一、选择题 (一)A 型题 ? 酶的活性中心是指 A .结合抑制剂使酶活性降低或丧失的部位 B .结合底物并催化其转变成产物的部位 C .结合别构剂并调节酶活性的部位 D .结合激活剂使酶活性增高的部位 E .酶的活性中心由催化基团和辅酶组成 ? 酶促反应中,决定反应特异性的是 A .酶蛋白 B .辅酶 C .别构剂 D .金属离子 E .辅基? 关于酶的叙述正确的是 A .酶是生物催化剂,它的化学本质是蛋白质和核酸 B .体内的生物催化剂都是蛋白质 C .酶是活细胞合成的具有催化作用的蛋白质 D .酶改变反应的平衡点,所以能加速反应的进程 E .酶的底物都是有机化合物 ? 酶蛋白变性后活性丧失原因是 A .酶蛋白被完全降解为氨基酸 B .酶蛋白的一级结构受到破坏 C .酶蛋白的空间结构受到破坏

D .酶蛋白不再溶于水 E .失去了激活剂 ? 含有xxB 1的辅酶是 A .NAD + B .FAD C .TPP D .CoA E .FMN ? 解释酶的专一性较合理的学说是 A .锁-钥学说 B .化学渗透学说 C .诱导契合学说 D .化学偶联学说 E .中间产物学说 ? 酶的竞争性抑制剂的特点是 A .当底物浓度增加时,抑制剂作用不减 B .抑制剂和酶活性中心的结合部位相结合 C .抑制剂的结构与底物不相似 D .当抑制剂的浓度增加时,酶变性失活 E .抑制剂与酶的结合是不可逆的 8.磺胺类药物能抑菌,是因为细菌利用对氨基苯甲酸合成二氢叶酸时,磺胺是二氢叶酸合成酶的 A .竞争性抑制剂 B .不可逆抑制剂 C .非竞争性抑制剂 D .反竞争性抑制剂 E .别构抑制剂 9.关于酶的共价修饰,正确的是 A .活性中心的催化基团经修饰后,改变酶的催化活性 B .通过打断某些肽键,使酶的活性中心形成而改变酶的活性 C .只涉及酶的一级结构的改变而不涉及高级结构的改变

生物化学(第三)课后习题详细解答

生物化学(第三版)课后习题详细解答 第一章糖类 提要 糖类是四大类生物分子之一,广泛存在于生物界,特别是植物界。糖类在生物体内不仅作为结构成分和主要能源,复合糖中的糖链作为细胞识别的信息分子参与许多生命过程,并因此出现一门新的学科,糖生物学。 多数糖类具有(CH2O)n的实验式,其化学本质是多羟醛、多羟酮及其衍生物。糖类按其聚合度分为单糖,1个单体;寡糖,含2-20个单体;多糖,含20个以上单体。同多糖是指仅含一种单糖或单糖衍生物的多糖,杂多糖指含一种以上单糖或加单糖衍生物的多糖。糖类与蛋白质或脂质共价结合形成的结合物称复合糖或糖复合物。 单糖,除二羟丙酮外,都含有不对称碳原子(C*)或称手性碳原子,含C*的单糖都是不对称分子,当然也是手性分子,因而都具有旋光性,一个C*有两种构型D-和L-型或R-和S-型。因此含n个C*的单糖有2n个旋光异构体,组成2n-1对不同的对映体。任一旋光异构体只有一个对映体,其他旋光异构体是它的非对映体,仅有一个C*的构型不同的两个旋光异构体称为差向异构体。 单糖的构型是指离羧基碳最远的那个C*的构型,如果与D-甘油醛构型相同,则属D系糖,反之属L系糖,大多数天然糖是D系糖Fischer E论证了己醛糖旋光异构体的立体化学,并提出了在纸面上表示单糖链状立体结构的Fischer投影式。许多单糖在水溶液中有变旋现象,这是因为开涟的单糖分子内醇基与醛基或酮基发生可逆亲核加成形成环状半缩醛或半缩酮的缘故。这种反应经常发生在C5羟基和C1醛基之间,而形成六元环砒喃糖(如砒喃葡糖)或C5经基和C2酮基之间形成五元环呋喃糖(如呋喃果糖)。成环时由于羰基碳成为新的不对称中心,出现两个异头差向异构体,称α和β异头物,它们通过开链形式发生互变并处于平衡中。在标准定位的Hsworth式中D-单糖异头碳的羟基在氧环面下方的为α异头物,上方的为β异头物,实际上不像Haworth式所示的那样氧环面上的所有原子都处在同一个平面,吡喃糖环一般采取椅式构象,呋喃糖环采取信封式构象。 单糖可以发生很多化学反应。醛基或伯醇基或两者氧化成羧酸,羰基还原成醇;一般的羟基参与成脂、成醚、氨基化和脱氧等反应;异头羟基能通过糖苷键与醇和胺连接,形成糖苷化合物。例如,在寡糖和多糖中单糖与另一单糖通过O-糖苷键相连,在核苷酸和核酸中戊糖经N-糖苷键与心嘧啶或嘌呤碱相连。 生物学上重要的单糖及其衍生物有Glc, Gal,Man, Fru,GlcNAc, GalNAc,L-Fuc,NeuNAc (Sia),GlcUA等它们是寡糖和多糖的组分,许多单糖衍生物参与复合糖聚糖链的组成,此外单糖的磷酸脂,如6-磷酸葡糖,是重要的代谢中间物。 蔗糖、乳糖和麦芽糖是常见的二糖。蔗糖是由α-Gla和β- Fru在两个异头碳之间通过糖苷键连接而成,它已无潜在的自由醛基,因而失去还原,成脎、变旋等性质,并称它为非还原糖。乳糖的结构是Galβ(1-4)Glc,麦芽糖是Glcα(1-4)Glc,它们的末端葡萄搪残基仍有潜在的自由醛基,属还原糖。环糊精由环糊精葡糖基转移酶作用于直链淀粉生成含6,7或8个葡萄糖残基,通过α-1,4糖苷键连接成环,属非还原糖,由于它的特殊结构被用作稳定剂、抗氧化剂和增溶剂等。 淀粉、糖原和纤维素是最常见的多糖,都是葡萄糖的聚合物。淀粉是植物的贮存养料,属贮能多糖,是人类食物的主要成分之一。糖原是人和动物体内的贮能多糖。淀粉可分直链淀粉和支链淀粉。直链淀粉分子只有α-1,4连键,支链淀粉和糖原除α-1,4连键外尚有α-1,6连键形成分支,糖原的分支程度比支链淀粉高。纤维素与淀粉、糖原不同,它是由葡萄糖通过β-1.4糖苷键连接而成的,这一结构特点使纤维素具有适于作为结构成分的物理特性,它属于结构多糖。

生物化学课后习题答案

第二章糖类 1、判断对错,如果认为错误,请说明原因。 (1)所有单糖都具有旋光性。 答:错。二羟酮糖没有手性中心。 (2)凡具有旋光性的物质一定具有变旋性,而具有变旋性的物质也一定具有旋光性。 答:凡具有旋光性的物质一定具有变旋性:错。手性碳原子的构型在溶液中发生了 改变。大多数的具有旋光性的物质的溶液不会发生变旋现象。 具有变旋性的物质也一定具有旋光性:对。 (3)所有的单糖和寡糖都是还原糖。 答:错。有些寡糖的两个半缩醛羟基同时脱水缩合成苷。如:果糖。 (4)自然界中存在的单糖主要为D-型。 答:对。 (5)如果用化学法测出某种来源的支链淀粉有57 个非还原端,则这种分子有56 个分支。 答:对。 2、戊醛糖和戊酮糖各有多少个旋光异构体(包括α-异构体、β-异构体)?请写出戊醛糖的开链结构式(注明构型和名称)。 答:戊醛糖:有3 个不对称碳原子,故有2 3 =8 种开链的旋光异构体。如果包括α-异构体、 β-异构体,则又要乘以2=16 种。 戊酮糖:有2 个不对称碳原子,故有2 2 =4 种开链的旋光异构体。没有环状所以没有α-异 构体、β-异构体。 3、乳糖是葡萄糖苷还是半乳糖苷,是α-苷还是β-苷?蔗糖是什么糖苷,是α-

苷还是β -苷?两分子的D-吡喃葡萄糖可以形成多少种不同的二糖? 答:乳糖的结构是4-O-(β-D-吡喃半乳糖基)D-吡喃葡萄糖[β-1,4]或者半乳糖β(1→4) 葡萄糖苷,为β-D-吡喃半乳糖基的半缩醛羟基形成的苷因此是β-苷。 蔗糖的结构是葡萄糖α(1→2)果糖苷或者果糖β(2→1)葡萄糖,是α-D-葡萄糖的半缩 醛的羟基和β- D -果糖的半缩醛的羟基缩合形成的苷,因此既是α苷又是β苷。两分子的D-吡喃葡萄糖可以形成19 种不同的二糖。4 种连接方式α→α,α→β,β→α, β→β,每个5 种,共20 种-1 种(α→β,β→α的1 位相连)=19。 4、某种α-D-甘露糖和β-D-甘露糖平衡混合物的[α]25 D 为+ °,求该平衡混合物中α-D- 甘露糖和β-D-甘露糖的比率(纯α-D-甘露糖的[α]25 D 为+ °,纯β-D-甘露糖的[α]25 D 为- °); 解:设α-D-甘露糖的含量为x,则 (1-x)= X=% 该平衡混合物中α-D-甘露糖和β-D-甘露糖的比率:= 5、请写出龙胆三糖[β-D-吡喃葡萄糖(1→6)α-D-吡喃葡萄糖(1→2)β-D-呋喃果糖] 的 结构式。. 6、水解仅含D-葡萄糖和D-甘露糖的一种多糖30g,将水解液稀释至平衡100mL。此水解液 在10cm 旋光管中测得的旋光度α为+ °,试计算该多糖中D-葡萄糖和D-甘露糖的物质的 量的比值(α/β-葡萄糖和α/β-甘露糖的[α]25 D 分别为+ °和+ °)。 解:[α]25 D= α25 D /cL×100= ( 30×1)×100= 设D-葡萄糖的含量为x,则 +(1-x)= X=%

生化习题及答案

一.选择题 1.唾液淀粉酶应属于下列那一类酶( D ); A 蛋白酶类 B 合成酶类 C 裂解酶类 D 水解酶类 2.酶活性部位上的基团一定是( A ); A 必需基团 B 结合基团 C 催化基团 D 非必需基团 3.实验上,丙二酸能抑制琥珀酸脱氢酶的活性,但可用增加底物浓度的方法来消除其抑制,这种抑制称为( C ); A 不可逆抑制 B 非竟争性抑制 C 竟争性抑制 D 非竟争性抑制的特殊形式 4.动物体肝脏内,若葡萄糖经糖酵解反应进行到3-磷酸甘油酸即停止了,则此过程可净生成( A )ATP; A 0 B -1 C 2 D 3 5.磷酸戊糖途径中,氢受体为( B ); A NAD+ B NADP+ C FA D D FMN 6.高等动物体内NADH呼吸链中,下列那一种化合物不是其电子传递体( D ); A 辅酶Q B 细胞色素b C 铁硫蛋白 D FAD 7.根据化学渗透假说理论,电子沿呼吸链传递时,在线粒体内产生了膜电势,其中下列正确的是( A ); A 内膜外侧为正,内侧为负 B 内膜外侧为负,内侧为正 C 外膜外侧为正,内侧为负 D 外膜外侧为负,内侧为正 8.动物体内,脂酰CoA经β-氧化作用脱氢,则这对氢原子可生成( B )分子ATP; A 3 B 2 C 4 D 1 9.高等动物体内,游离脂肪酸可通过下列那一种形式转运( C ); A 血浆脂蛋白 B 高密度脂蛋白 C 可溶性复合体 D 乳糜微粒 10.对于高等动物,下列属于必需氨基酸的是(B ); A 丙氨酸 B 苏氨酸 C 谷氨酰胺 D 脯氨酸 11.高等动物体内,谷丙转氨酶(GPT)最可能催化丙酮酸与下列那一种化合物反应( D );

生物化学课后答案_张丽萍

1 绪论 1.生物化学研究的对象和内容是什么? 解答:生物化学主要研究: (1)生物机体的化学组成、生物分子的结构、性质及功能; (2)生物分子分解与合成及反应过程中的能量变化; (3)生物遗传信息的储存、传递和表达; (4)生物体新陈代谢的调节与控制。 2.你已经学过的课程中哪些内容与生物化学有关。 提示:生物化学是生命科学的基础学科,注意从不同的角度,去理解并运用生物化学的知识。 3.说明生物分子的元素组成和分子组成有哪些相似的规侓。 解答:生物大分子在元素组成上有相似的规侓性。碳、氢、氧、氮、磷、硫等6种是蛋白质、核酸、糖和脂的主要组成元素。碳原子具有特殊的成键性质,即碳原子最外层的4个电子可使碳与自身形成共价单键、共价双键和共价三键,碳还可与氮、氧和氢原子形成共价键。碳与被键合原子形成4个共价键的性质,使得碳骨架可形成线性、分支以及环状的多种多性的化合物。特殊的成键性质适应了生物大分子多样性的需要。氮、氧、硫、 磷元素构成了生物分子碳骨架上的氨基(—NH2)、羟基(—OH )、羰基(C O )、羧基(—COOH )、巯基(—SH )、磷酸基(—PO4 )等功能基团。这些功能基团因氮、硫和磷有着可变的氧化数及氮和氧有着较强的电负性而与生命物质的许多关键作用密切相关。 生物大分子在结构上也有着共同的规律性。生物大分子均由相同类型的构件通过一定的共价键聚合成链状,其主链骨架呈现周期性重复。构成蛋白质的构件是20种基本氨基酸。氨基酸之间通过肽键相连。肽链具有方向性(N 端→C 端),蛋白质主链骨架呈“肽单位”重复;核酸的构件是核苷酸,核苷酸通过3′, 5′-磷酸二酯键相连,核酸链也具有方向性(5′、→3′ ),核酸的主链骨架呈“磷酸-核糖(或脱氧核糖)”重复;构成脂质的构件是甘油、脂肪酸和胆碱,其非极性烃长链也是一种重复结构;构成多糖的构件是单糖,单糖间通过糖苷键相连,淀粉、纤维素、糖原的糖链骨架均呈葡萄糖基的重复。 2 蛋白质化学 1.用于测定蛋白质多肽链N 端、C 端的常用方法有哪些?基本原理是什么? 解答:(1) N-末端测定法:常采用2,4―二硝基氟苯法、Edman 降解法、丹磺酰氯法。 ①2,4―二硝基氟苯(DNFB 或FDNB)法:多肽或蛋白质的游离末端氨基与2,4―二硝基氟苯(2,4―DNFB )反应(Sanger 反应),生成DNP ―多肽或DNP ―蛋白质。由于DNFB 与氨基形成的键对酸水解远比肽键稳定,因此DNP ―多肽经酸水解后,只有N ―末端氨基酸为黄色DNP ―氨基酸衍生物,其余的都是游离氨基酸。 ② 丹磺酰氯(DNS)法:多肽或蛋白质的游离末端氨基与与丹磺酰氯(DNS ―Cl )反应生成DNS ―多肽或DNS ―蛋白质。由于DNS 与氨基形成的键对酸水解远比肽键稳定,因此DNS ―多肽经酸水解后,只有N ―末端氨基酸为强烈的荧光物质DNS ―氨基酸,其余的都是游离氨基酸。 ③ 苯异硫氰酸脂(PITC 或Edman 降解)法:多肽或蛋白质的游离末端氨基与异硫氰酸苯酯(PITC )反应(Edman 反应),生成苯氨基硫甲酰多肽或蛋白质。在酸性有机溶剂中加热时,N ―末端的PTC ―氨基酸发生环化,生成苯乙内酰硫脲的衍生物并从肽链上掉下来,除去N ―末端氨基酸后剩下的肽链仍然是完整的。 ④ 氨肽酶法:氨肽酶是一类肽链外切酶或叫外肽酶,能从多肽链的N 端逐个地向里切。根据不同的反应时间测出酶水解释放的氨基酸种类和数量,按反应时间和残基释放量作动力学曲线,就能知道该蛋白质的N 端残基序列。 (2)C ―末端测定法:常采用肼解法、还原法、羧肽酶法。 肼解法:蛋白质或多肽与无水肼加热发生肼解,反应中除C 端氨基酸以游离形式存 在外,其他氨基酸都转变为相应的氨基酸酰肼化物。

生化练习题(带答案)

第一章蛋白质 选择题 1.某一溶液中蛋白质的百分含量为45%,此溶液的蛋白质氮的百分浓度为:E A.8.3% B.9.8% C.6.7% D.5.4% E.7.2% 2.下列含有两个羧基的氨基酸是:D A.组氨酸B.赖氨酸C.甘氨酸D.天冬氨酸E.色氨酸 3.下列哪一种氨基酸是亚氨基酸:A A.脯氨酸B.焦谷氨酸C.亮氨酸D.丝氨酸E.酪氨酸 4.维持蛋白质一级结构的主要化学键是:C A.离子键B.疏水键C.肽键D.氢键E.二硫键 5.关于肽键特点的错误叙述是:E A.肽键中的C-N键较C-N单键短 B.肽键中的C-N键有部分双键性质 C.肽键的羰基氧和亚氨氢为反式构型 D.与C-N相连的六个原子处于同一平面上 E.肽键的旋转性,使蛋白质形成各种立体构象 6.关于蛋白质分子三级结构的描述,其中错误的是:B A.天然蛋白质分子均有这种结构 B.有三级结构的多肽链都具有生物学活性 C.三级结构的稳定性主要是次级键维系 D.亲水基团聚集在三级结构的表面 E.决定盘曲折叠的因素是氨基酸残基 7.具有四级结构的蛋白质特征是:E A.依赖肽键维系四级结构的稳定性 B.在三级结构的基础上,由二硫键将各多肽链进一步折叠、盘曲形成 C.每条多肽链都具有独立的生物学活性 D.分子中必定含有辅基 E.由两条或两条以上具有三级结构的多肽链组成 8.含有Ala,Asp,Lys,Cys的混合液,其pI依次分别为6.0,2.77,9.74,5.07,在pH9环境中电泳分离这四种氨基酸,自正极开始,电泳区带的顺序是:B A.Ala,Cys,Lys,Asp B.Asp,Cys,Ala,Lys C.Lys,Ala,Cys,Asp D.Cys,Lys,Ala,Asp E.Asp,Ala,Lys,Cys 9.变性蛋白质的主要特点是:D A.粘度下降 B.溶解度增加

生物化学课后习题详细解答

生物化学(第三版)课后习题详细解答第三章氨基酸 提要α-氨基酸是蛋白质的构件分子,当用酸、碱或蛋白酶水解蛋白质时可获得它们。蛋白质中的氨基酸都是L型的。但碱水解得到的氨基酸是D型和L型的消旋混合物。 参与蛋白质组成的基本氨基酸只有20种。此外还有若干种氨基酸在某些蛋白质中存在,但它们都是在蛋白质生物合成后由相应是基本氨基酸(残基)经化学修饰而成。除参与蛋白质组成的氨基酸外,还有很多种其他氨基酸存在与各种组织和细胞中,有的是β-、γ-或δ-氨基酸,有些是D型氨基酸。 氨基酸是两性电解质。当pH接近1时,氨基酸的可解离基团全部质子化,当pH在13左右时,在这中间的某一pH(因不同氨基酸而异),氨基酸以等电的兼性离子(HNCHRCOO)+-则全部去质子化。 pH称为该氨基酸的等电点,用3状态存在。某一氨基酸处于净电荷为零的兼性离子状态时的介质 pI表示。 所有的α-氨基酸都能与茚三酮发生颜色反应。α-NH与2,4-二硝基氟苯(DNFB)作用产生相应 DNP-氨基酸(Sanger反应);α-NH与苯乙硫氰酸酯(PITC)作用形成相应氨基酸的苯胺基2的 硫甲2酰衍生物( Edman反应)。胱氨酸中的二硫键可用氧化剂(如过甲酸)或还原剂(如巯基乙醇)断裂。半胱氨酸的SH基在空气中氧化则成二硫键。这几个反应在氨基酸荷蛋白质化学中 占有重要地位。 除甘氨酸外α-氨基酸的α-碳是一个手性碳原子,因此α-氨基酸具有光学活性。比旋是α-氨基酸的物理常数之一,它是鉴别各种氨基酸的一种根据。 参与蛋白质组成的氨基酸中色氨酸、酪氨酸和苯丙氨酸在紫外区有光吸收,这是紫外吸收法定量蛋白质的依据。核磁共振(NMR)波谱技术在氨基酸和蛋白质的化学表征方面起重要作用。 氨基酸分析分离方法主要是基于氨基酸的酸碱性质和极性大小。常用方法有离子交换柱层析、高效液相层析(HPLC)等。 习题 1.写出下列氨基酸的单字母和三字母的缩写符号:精氨酸、天冬氨酸、谷氨酰氨、谷氨酸、苯丙氨酸、色氨酸和酪氨酸。[见表3-1] 表3-1 氨基酸的简写符号 三字单字母单字母三字母符母符名称名称符号符号号号L Leu Ala A (leucine) (alanine) 亮氨酸丙氨酸K Arg Lys R (lysine) 精氨酸(arginine) 赖氨酸M N Asn Met )(methionine) 蛋氨酸(asparagines) 甲硫氨酸(天冬酰氨F D Asp Phe (phenylalanine) 苯丙氨酸(aspartic acid) 天冬氨酸 B Asx Asp Asn或和/P C Pro Cys (praline) 脯氨酸半胱氨酸(cysteine) S Q Gln Ser (serine) 丝氨酸(glutamine) 谷氨酰氨T E Glu Thr (threonine) 谷氨酸(glutamic acid) 苏氨酸Z Gls Glu /和Gln或W G Gly Trp (tryptophan) (glycine)

生物化学习题及答案_酶

酶 (一)名词解释 值) 1.米氏常数(K m 2.底物专一性(substrate specificity) 3.辅基(prosthetic group) 4.单体酶(monomeric enzyme) 5.寡聚酶(oligomeric enzyme) 6.多酶体系(multienzyme system) 7.激活剂(activator) 8.抑制剂(inhibitor inhibiton) 9.变构酶(allosteric enzyme) 10.同工酶(isozyme) 11.诱导酶(induced enzyme) 12.酶原(zymogen) 13.酶的比活力(enzymatic compare energy) 14.活性中心(active center) (二)英文缩写符号 1.NAD+(nicotinamide adenine dinucleotide) 2.FAD(flavin adenine dinucleotide) 3.THFA(tetrahydrofolic acid) 4.NADP+(nicotinamide adenine dinucleotide phosphate)5.FMN(flavin mononucleotide) 6.CoA(coenzyme A) 7.ACP(acyl carrier protein) 8.BCCP(biotin carboxyl carrier protein) 9.PLP(pyridoxal phosphate) (三)填空题

1.酶是产生的,具有催化活性的。2.酶具有、、和等催化特点。3.影响酶促反应速度的因素有、、、、和。 4.胰凝乳蛋白酶的活性中心主要含有、、和基,三者构成一个氢键体系,使其中的上的成为强烈的亲核基团,此系统称为系统或。 5.与酶催化的高效率有关的因素有、、、 、等。 6.丙二酸和戊二酸都是琥珀酸脱氢酶的抑制剂。 7.变构酶的特点是:(1),(2),它不符合一般的,当以V对[S]作图时,它表现出型曲线,而非曲线。它是酶。 8.转氨酶的辅因子为即维生素。其有三种形式,分别为、、,其中在氨基酸代谢中非常重要,是、和的辅酶。 9.叶酸以其起辅酶的作用,它有和两种还原形式,后者的功能作为载体。 10.一条多肽链Asn-His-Lys-Asp-Phe-Glu-Ile-Arg-Glu-Tyr-Gly-Arg经胰蛋白酶水解可得到个多肽。 11.全酶由和组成,在催化反应时,二者所起的作用不同,其中决定酶的专一性和高效率,起传递电子、原子或化学基团的作用。12.辅助因子包括、和等。其中与酶蛋白结合紧密,需要除去,与酶蛋白结合疏松,可以用除去。13.T.R.Cech和S.Alman因各自发现了而共同获得1989年的诺贝尔奖(化学奖)。 14.根据国际系统分类法,所有的酶按所催化的化学反应的性质可分为六类、、、、、和。

王镜岩生物化学课后习题详细解答

生物化学(第三版)课后习题详细解答 第三章氨基酸 提要 α-氨基酸是蛋白质的构件分子,当用酸、碱或蛋白酶水解蛋白质时可获得它们。蛋白质中的氨基酸都是L型的。但碱水解得到的氨基酸是D型和L型的消旋混合物。 参与蛋白质组成的基本氨基酸只有20种。此外还有若干种氨基酸在某些蛋白质中存在,但它们都是在蛋白质生物合成后由相应是基本氨基酸(残基)经化学修饰而成。除参与蛋白质组成的氨基酸外,还有很多种其他氨基酸存在与各种组织和细胞中,有的是β-、γ-或δ-氨基酸,有些是D型氨基酸。 氨基酸是两性电解质。当pH接近1时,氨基酸的可解离基团全部质子化,当pH在13左右时,则全部去质子化。在这中间的某一pH(因不同氨基酸而异),氨基酸以等电的兼性离子(H3N+CHRCOO-)状态存在。某一氨基酸处于净电荷为零的兼性离子状态时的介质pH称为该氨基酸的等电点,用pI 表示。 所有的α-氨基酸都能与茚三酮发生颜色反应。α-NH2与2,4-二硝基氟苯(DNFB)作用产生相应的DNP-氨基酸(Sanger反应);α-NH2与苯乙硫氰酸酯(PITC)作用形成相应氨基酸的苯胺基硫甲酰衍生物( Edman反应)。胱氨酸中的二硫键可用氧化剂(如过甲酸)或还原剂(如巯基乙醇)断裂。半胱氨酸的SH基在空气中氧化则成二硫键。这几个反应在氨基酸荷蛋白质化学中占有重要地位。 除甘氨酸外α-氨基酸的α-碳是一个手性碳原子,因此α-氨基酸具有光学活性。比旋是α-氨基酸的物理常数之一,它是鉴别各种氨基酸的一种根据。 参与蛋白质组成的氨基酸中色氨酸、酪氨酸和苯丙氨酸在紫外区有光吸收,这是紫外吸收法定量蛋白质的依据。核磁共振(NMR)波谱技术在氨基酸和蛋白质的化学表征方面起重要作用。 氨基酸分析分离方法主要是基于氨基酸的酸碱性质和极性大小。常用方法有离子交换柱层析、高效液相层析(HPLC)等。 习题 1.写出下列氨基酸的单字母和三字母的缩写符号:精氨酸、天冬氨酸、谷氨酰氨、谷氨酸、苯丙氨酸、色氨酸和酪氨酸。[见表3-1] 表3-1 氨基酸的简写符号

生化课后习题答案

一绪论 1.生物化学研究的对象和内容是什么? 解答:生物化学主要研究:(1)生物机体的化学组成、生物分子的结构、性质及功能;(2)生物分子分解与合成及反应过程中的能量变化;(3)生物遗传信息的储存、传递和表达;(4)生物体新陈代谢的调节与控制。 2.你已经学过的课程中哪些内容与生物化学有关。 提示:生物化学是生命科学的基础学科,注意从不同的角度,去理解并运用生物化学的知识。 3.说明生物分子的元素组成和分子组成有哪些相似的规侓。解答:生物大分子在元素组成上有相似的规侓性。碳、氢、氧、氮、磷、硫等 6 种是解答蛋白质、核酸、糖和脂的主要组成元素。碳原子具有特殊的成键性质,即碳原子最外层的 4 个电子可使碳与自身形成共价单键、共价双键和共价三键,碳还可与氮、氧和氢原子形成共价键。碳与被键合原子形成 4 个共价键的性质,使得碳骨架可形成线性、分支以及环状的多 O 种多性的化合物。特殊的成键性质适应了生物大分子多样性的需要。氮、氧、硫、磷元素构成了生物分子碳骨架上的氨基(—NH2)、羟基(—OH)、羰基(C)、羧基(—COOH)、

巯基(—SH)、磷酸基(—PO4 )等功能基团。这些功能基团因氮、硫和磷有着可变的氧化数及氮和氧有着较强的电负性而与生命物质的许多关键作用密切相关。生物大分子在结构上也有着共同的规律性。生物大分子均由相同类型的构件通过一定的共价键聚合成链状,其主链骨架呈现周期性重复。构成蛋白质的构件是20 种基本氨基酸。氨基酸之间通过肽键相连。肽链具有方向性(N 端→C 端),蛋白质主链骨架呈“肽单位”重复;核酸的构件是核苷酸,核苷酸通过3′, 5′-磷酸二酯键相连,核酸链也具有方向性(5′、→3′ ),核酸的主链骨架呈“磷酸-核糖(或脱氧核糖)”重复;构成脂质的构件是甘油、脂肪酸和胆碱,其非极性烃长链也是一种重复结构;构成多糖的构件是单糖,单糖间通过糖苷键相连,淀粉、纤维素、糖原的糖链骨架均呈葡萄糖基的重复。 二蛋白质化学 1.用于测定蛋白质多肽链N 端、C 端的常用方法有哪些?基本原理是什么? 解答:(1)N-末端测定法:常采用2, 4 ―二硝基氟苯法、Edman 降解法、丹磺酰氯法。①2, 4 ―二硝基氟苯(DNFB 或FDNB)法:多肽或蛋白质的游离末端氨基与2, 4 ―二硝基氟苯2, 4 ―DNFB)(反应(Sanger 反应)生成DNP―

生物化学b2课后题答案汇总

蛋白质降解及氨基酸代谢: 1.氨基酸脱氨基后C链如何进入TCA循环.(30分) P315 图30-13 2.说明尿素形成机制和意义(40分) P311-314 概括精要回答 3.提高Asp和Glu的合成会对TCA循环产生何种影响?细胞会怎样应付这种状况?(30分) 参考答案: 核苷酸代谢及蛋白质合成题目及解答精要: 1.生物体内嘌呤环和嘧啶环是如何合成的?有哪些氨基酸直接参与核苷酸的合成? 嘌呤环(Gln+Gly+Asp)嘧啶环(Gln+Asp) 2.简要说明糖、脂肪、氨基酸和核苷酸代谢之间的相互联系? 直接做图,并标注连接点 生物氧化及电子传递题目及解答精要: 名词解释:(60分,10分一题) 甘油-3-磷酸穿梭:P139 需概括 苹果酸-天冬氨酸穿梭:P139 需概括 电子传递链:P119 解偶联剂:P137 化学渗透假说:P131 生物氧化:P114 两个出处,总结概括 问答题:(10分) 1.比较底物水平磷酸化和氧化磷酸化两者的异同? 参考答案: 也可自己概括 2.以前有人曾经考虑过使用解偶联剂如2,4-二硝基苯酚(DNP)作为减肥药,但不久即放弃使用,为什么?(10分)

参考答案: 3.已知有两种新的代谢抑制剂A和B:将离体的肝线粒体制剂与丙酮酸、氧气、ADP和无机磷酸一起保温,发现加入抑制剂A,电子传递和氧化磷酸化就被抑制;当既加入A又加入抑制剂B的时候,电子传递恢复了,但氧化磷酸化仍不能进行,请问:①.抑制剂A和B属于电子传递抑制剂,氧化磷酸化抑制剂,还是解偶联剂?②.给出作用方式和A、B类似的抑制剂?(20分) 参考答案: 糖代谢及其他途径: 题目及解答精要: 1.为什么糖原讲解选用磷酸解,而不是水解?(50分) P178 2.糖酵解、TCA循环、糖异生、戊糖磷酸途径和乙醛酸循环之间如何联系?(50分) 糖酵解(无氧),产生丙酮酸进入TCA循环(有氧)(10分) 糖异生糖酵解逆反应(1,3,10步反应单独代谢流程)(10分) TCA循环中草酰乙酸可进入唐异生(10分) 戊糖磷酸途径是糖酵解中G-6-P出延伸出来并又回去的一条戊糖支路(10分) 乙醛酸循环是TCA循环在延胡羧酸和L-苹果酸间的一条捷径(10分) 糖酵解题目及解答精要: 1.名词解释(每个10分) 糖酵解:P63 激酶:P68 底物水平磷酸化:笔记 2.问答题 ①为什么砷酸是糖酵解作用的毒物?(15分) P75 ②糖酵解中两个耗能阶段是什么?两个产能阶段是什么?三个调控位点在哪里?(15分) P80 表22-1 ③糖酵解中磷酸基团参与了哪些反应?(20分) 在1,3,6,7,8,10步参加了反应 ④当肌肉组织激烈活动时,与休息时相比需要更多的ATP。在骨骼肌里,例如兔子的腿肌或火鸡的飞行肌,需要的A TP几乎全部由厌氧酵解反应产生的。假设骨骼肌缺乏乳酸脱氢酶,它们能否进行激烈的体力活动,即能否借

生化课后题目及答案

2 蛋白质化学 2.测得一种血红蛋白含铁0.426%,计算其最低相对分子质量。一种纯酶按质量计算含亮氨酸1.65%和异亮氨酸2.48%,问其最低相对分子质量是多少? 解答: (1)血红蛋白: 55.8100100131000.426??=铁的相对原子质量最低相对分子质量==铁的百分含量 (2)酶: 因为亮氨酸和异亮氨酸的相对分子质量相等,所以亮氨酸和异亮氨酸的残基数之比为: 1.65%: 2.48%=2:3,因此,该酶分子中至少含有2个亮氨酸,3个异亮氨酸。 ()r 2131.11100159001.65M ??=≈最低 ()r 3131.11100159002.48M ??=≈最低 3.指出下面pH 条件下,各蛋白质在电场中向哪个方向移动,即正极,负极,还是保持原点? (1)胃蛋白酶(pI 1.0),在pH 5.0; (2)血清清蛋白(pI 4.9),在pH 6.0; (3)α-脂蛋白(pI 5.8),在pH 5.0和pH 9.0; 解答:(1)胃蛋白酶pI 1.0<环境pH 5.0,带负电荷,向正极移动; (2)血清清蛋白pI 4.9<环境pH 6.0,带负电荷,向正极移动; (3)α-脂蛋白pI 5.8>环境pH 5.0,带正电荷,向负极移动; α-脂蛋白pI 5.8<环境pH 9.0,带负电荷,向正极移动。 6.由下列信息求八肽的序列。 (1)酸水解得 Ala ,Arg ,Leu ,Met ,Phe ,Thr ,2Val 。 (2)Sanger 试剂处理得DNP -Ala 。 (3)胰蛋白酶处理得Ala ,Arg ,Thr 和 Leu ,Met ,Phe ,2Val 。当以Sanger 试剂处理时分别得到DNP -Ala 和DNP -Val 。 (4)溴化氰处理得 Ala ,Arg ,高丝氨酸内酯,Thr ,2Val ,和 Leu ,Phe ,当用Sanger 试剂处理时,分别得DNP -Ala 和DNP -Leu 。 解答:由(2)推出N 末端为Ala ;由(3)推出Val 位于N 端第四,Arg 为第三,而Thr 为第二;溴化氰裂解,得出N 端第六位是Met ,由于第七位是Leu ,所以Phe 为第八;由(4),第五为Val 。所以八肽为:Ala-Thr-Arg-Val-Val-Met-Leu-Phe 。 7.一个α螺旋片段含有180个氨基酸残基,该片段中有多少圈螺旋?计算该α-螺旋片段的轴长。 解答:180/3.6=50圈,50×0.54=27nm ,该片段中含有50圈螺旋,其轴长为27nm 。 8.当一种四肽与FDNB 反应后,用5.7mol/LHCl 水解得到DNP-Val 及其他3种氨基酸;

生物化学习题与解析--细胞信息转导

细胞信息转导 一、选择题 ( 一 )A 型题 1 .下列哪种物质不是细胞间信息分子 A .胰岛素 B . CO C .乙酰胆碱 D .葡萄糖 E . NO 2 .通过核内受体发挥作用的激素是 A .乙酰胆碱 B .肾上腺素 C .甲状腺素 D . NO E .表皮生长因子 3 .下列哪种物质不是第二信使 A . cAMP B . cGMP C . IP 3 D . DAG E . cUMP 4 .膜受体的化学性质多为 A .糖蛋白 B .胆固醇 C .磷脂 D .酶 E .脂蛋白 5 .下列哪种转导途径需要单跨膜受体 A . cAMP - 蛋白激酶通路 B . cAMP - 蛋白激酶通路 C .酪氨酸蛋白激酶体系 D . Ca 2+ - 依赖性蛋白激酶途径 E .细胞膜上 Ca 2+ 通道开放 6 .活化 G 蛋白的核苷酸是 A . GTP B . CTP C . UTP D . ATP E . TTP 7 .生成 NO 的底物分子是 A .甘氨酸 B .酪氨酸 C .精氨酸 D .甲硫氨酸 E .胍氨酸 8 .催化 PIP 2 水解为 IP 3 的酶是 A .磷脂酶 A B .磷脂酶 A 2 C .磷脂酶 C D . PKA E . PKC 9 .第二信使 DAG 的来源是由 A . PIP 2 水解生成 B .甘油三脂水解而成 C .卵磷脂水解产生 D .在体内合成 E .胆固醇转化而来的 10 . IP 3 受体位于 A 、细胞膜 B 、核膜 C 、内质网 D 、线粒体内膜 E 、溶酶体 11 . IP 3 与内质网上受体结合后可使胞浆内 A . Ca 2+ 浓度升高 B . Na 2+ 浓度升高 C . cAMP 浓度升高 D . cGMP 浓度下降 E . Ca 2+ 浓度下降 12 .激活的 G 蛋白直接影响下列哪种酶的活性 A .磷脂酶 A B .蛋白激酶 A C .磷脂酶 C D .蛋白激酶 C E .蛋白激酶 G 13 .关于激素,下列叙述正确的是 A .都由特殊分化的内分泌腺分泌 B .激素与受体结合是可逆的 C .与相应的受体共价结合,所以亲和力高 D .激素仅作用于细胞膜表面 E .激素作用的强弱与其浓度成正比 14 . 1 , 4 , 5 - 三磷酸肌醇作用是 A .细胞膜组成成 B .可直接激活 PK C C .是细胞内第二信使 D .是肌醇的活化形式 E .在细胞内功能 15 .酪氨酸蛋白激酶的作用是 A .分解受体中的酪氨 B .使蛋白质中大多数酪氨酸磷酸化 C .使各种含有酪氨酸的蛋白质活化 D .使蛋白质结合酪氨酸

生物化学第四版课后参考答案

1 绪论 1.生物化学研究的对象与内容就是什么? 解答:生物化学主要研究: (1)生物机体的化学组成、生物分子的结构、性质及功能; (2)生物分子分解与合成及反应过程中的能量变化; (3)生物遗传信息的储存、传递与表达; (4)生物体新陈代谢的调节与控制。 2.您已经学过的课程中哪些内容与生物化学有关。 提示:生物化学就是生命科学的基础学科,注意从不同的角度,去理解并运用生物化学的知识。 3.说明生物分子的元素组成与分子组成有哪些相似的规侓。 解答:生物大分子在元素组成上有相似的规侓性。碳、氢、氧、氮、磷、硫等6种就是蛋白质、核酸、糖与脂的主要组成元素。碳原子具有特殊的成键性质,即碳原子最外层的4个电子可使碳与自身形成共价单键、共价双键与共价三键,碳还可与氮、氧与氢原子形成共价键。碳与被键合原子形成4个共价键的性质,使得碳骨架可形成线性、分支以及环状的多种多性的化合物。特殊的成键性质适应了生物大分子多样性的需要。氮、氧、硫、磷元素构成了生物分子碳骨架上的氨基(-NH2)、羟基(-OH)、羰基()、羧基(-COOH)、巯基(-SH)、磷酸基(-PO4 )等功能基团。这些功能基团因氮、硫与磷有着可变的氧化数及氮与氧有着较强的电负性而与生命物质的许多关键作用密切相关。 生物大分子在结构上也有着共同的规律性。生物大分子均由相同类型的构件通过一定的共价键聚合成链状,其主链骨架呈现周期性重复。构成蛋白质的构件就是20种基本氨基酸。氨基酸之间通过肽键相连。肽链具有方向性(N 端→C端),蛋白质主链骨架呈"肽单位"重复;核酸的构件就是核苷酸,核苷酸通过3′, 5′-磷酸二酯键相连,核酸链也具有方向性(5′、→3′),核酸的主链骨架呈"磷酸-核糖(或脱氧核糖)"重复;构成脂质的构件就是甘油、脂肪酸与胆碱,其非极性烃长链也就是一种重复结构;构成多糖的构件就是单糖,单糖间通过糖苷键相连,淀粉、纤维素、糖原的糖链骨架均呈葡萄糖基的重复。 2 蛋白质化学 1.用于测定蛋白质多肽链N端、C端的常用方法有哪些?基本原理就是什么? 解答:(1) N-末端测定法:常采用―二硝基氟苯法、Edman降解法、丹磺酰氯法。 ①―二硝基氟苯(DNFB或FDNB)法:多肽或蛋白质的游离末端氨基与―二硝基氟苯(―DNFB)反应(Sanger反应),生成DNP―多肽或DNP―蛋白质。由于DNFB与氨基形成的键对酸水解远比肽键稳定,因此DNP―多肽经酸水解后,只有N―末端氨基酸为黄色DNP―氨基酸衍生物,其余的都就是游离氨基酸。 ②丹磺酰氯(DNS)法:多肽或蛋白质的游离末端氨基与与丹磺酰氯(DNS―Cl)反应生成DNS―多肽或DNS―蛋白质。由于DNS与氨基形成的键对酸水解远比肽键稳定,因此DNS―多肽经酸水解后,只有N―末端氨基酸为强烈的荧光物质DNS―氨基酸,其余的都就是游离氨基酸。 ③苯异硫氰酸脂(PITC或Edman降解)法:多肽或蛋白质的游离末端氨基与异硫氰酸苯酯(PITC)反应(Edman反应),生成苯氨基硫甲酰多肽或蛋白质。在酸性有机溶剂中加热时,N―末端的PTC―氨基酸发生环化,生成苯乙内酰硫脲的衍生物并从肽链上掉下来,除去N―末端氨基酸后剩下的肽链仍然就是完整的。 ④氨肽酶法:氨肽酶就是一类肽链外切酶或叫外肽酶,能从多肽链的N端逐个地向里切。根据不同的反应时间测出酶水解释放的氨基酸种类与数量,按反应时间与残基释放量作动力学曲线,就能知道该蛋白质的N端残基序列。

相关文档
最新文档