感载比例阀工作原理

感载比例阀工作原理
感载比例阀工作原理

感载比例阀

一、功能

该总成串联于行车液压制动管路之中,按比例调节车辆在不同载荷下的后轮制动压力,充分利用附着条件,产生尽可能大的制动力;同时避免行车制动时因后轮先抱死而产生的滑移现象,保证车辆制动的方向稳定性。

二、工作原理

阀体中的随动阀芯是一个差径活塞。根据其差径面积来实现输入-输出的比例分配。当车辆载荷不同时,作用在阀芯上的力F(合)将发生变化,通过F(合)的变化来实现该阀对车辆载荷的感应功能。当前制动失效时(P1=0),该阀将失去比例分配功能和感载功能,输出压力(P2)等于输入压力(P3),从而增大后轮制动力。

富康轿车感载比例阀的检查和调整

轿车的轴荷随着乘客人数、行李质量、制动时车速及道路情况(如坡度)的变化而变化,因此,轿车前、后轮与路面间的附着力Fφ也随之变化。由于地面制动力的极限值就是车轮与路面间的附着力,且当制动器制动力达到该附着力时,车轮即被抱死而使轿车失去制动时的方向稳定性;因此,要求给轿车前、后轮提供的制动器制动力能随轴荷的变化而作相应的改变。只有这样,轿车才有较高的制动效能及良好的制动时的方向稳定性。显然,采用固定的轴间(前、后轮)制动力分配是不能满足上述要求的。若在制动管路中安装感载比例阀,则当轿车制动时感载比例阀会根据轴荷的变化调节前、后轮促动管路压力(制动轮缸内制动液压力)的分配比例,使前、后轮促动管路压力分配特性曲线比较接近于理想的前、后轮促动管路压力分配特性曲线,从而使轿车前、后轮的制动力和轮胎与地面之间的附着力相适应,保证轿车具有良好的制动效能。2000年投放市场的神龙富康988豪华型EX系列轿车就使用了感载比例阀,本文介绍其结构、工作原理、检查方法和调整方法。

1.感载比例阀的结构与工作原理

感载比例阀主要由柱塞、阀门、阀座、阀体、杠杆和感载弹簧等组成(图1)。其中,阀门与柱塞固定在一起。阀门将感载比例阀内腔分隔为上、下两个腔。下腔与进油口相通-,并通过油管和制动主缸出油口相接;上腔与出油口相通,并通过油管和后轮促动管路相接。阀体通过螺钉装在车身支架上,推杆下端钩部与轿车后轴减振器下固定端连接,感载弹簧装在杠杆与调整螺母之间,使感载比例阀与推杆之间的连接为弹性连接。

当轿车不制动时,柱塞在感载弹簧通过杠杆施加的推力(F)的作用下使阀门离开阀座而开启。当轿车制动时,来自制动主缸的制动液由进油口输入,通过阀门后从出油口输出到后轮促动管路。此时输入制动液压力(pl)和输出制动液压力(p2)相等,并且,由于阀门上端面的承压面积大于阀门下端面的承压面积,所以在阀门上、下端面上的作用力不等,致使阀门有向下移动的趋势。当输入制动液压力较小而在阀门上、下两端面上的作用力之差小于F时,阀门不动;当输入制动液压力增大到一定程度而在阀门上、下两端面上的作用力之差大于F时,阀门就下移。当阀门与阀座接触时,感载比例阀的上、下两腔被隔断,感载比例阀即处于平衡状态,此时的制动液压力称为调节作用起始点控制压力(ps)。此后,如果输入制动液压力继续增大,则感载比例阀起作用,P2的增量将小于P1的增量。当轿车承载质量增加时,后轴荷也增加,因而车身向后轴移近,感载弹簧被进一步压缩(相当于感载弹簧的预压力增大),致使F增大,ps就相应地提高。由此可见,ps在汽车制动时会随汽车后轴荷的增减而成比例地增减,感载比例阀能对车轮制动力实行调节。

感载比例阀的压力调节性能可通过其调节特性曲线(图2),即轿车在不同的载荷了前、后轮促动管路压力分配特性曲线,来表示。当轿车就载时,感载弹簧的预压力大,所以F大,致使ps高,感载比例阀调节特性曲线为A1B1;当轿车空载时,感载弹簧的预压力小,所以F小,致使ps低,感载比例阀调节特性曲线变为A2B2。在满载与空载之间有无数条斜率相等的调节特性曲线,使轿车在任一载荷下都有一条与其对应的调节特性曲线。从图2及上述分析可知,感载比例阀能满足轿车对制动系统的两个基本要求:在轴荷变化时能自动调节前、后轮促动管路压力的分配比例,使前、后轮促动管路压力分配特性曲线与理想特性曲线尽量接近,以提高轿车的制动效能;保证在各种轴荷下前、后轮促动管路压力分配特性曲线都在相应的理想特性曲线的下方,使轿车在各种轴荷下的制动均为前轮先抱死,从而避免轿车因后轮先抱死而发生侧滑和甩尾现象,以提高轿车在制动时的方向稳定性。

2.感载比例阀的检查标准

感载比例阀的检查标准是汽车制造厂提供的感载比例阀调节特性曲线。富康轿车感载比例阀调节特性曲线是在前轮促动管路压力为6MPa和10MPa时后轮促动管路压力和后轴荷的关系曲线(图3)。

3.感载比例阀的检测

每当液压制动系统维修完毕或液压制动系统有故障时,都应检查感载比例阀的压力控制情况。通常是,先按规定检测前、后轮促动管路压力,然后将检测结果与标准压力进行比较,从而确定是否需要调整或更换感载比例阀。

3.1后轴荷的确定方法

在有称重设备时可用称重设备直接称出后轴荷(总质量),在无称重设备时可将汽油箱中的汽油质量和后轴名义承载质量(含1人)相加后得出后轴承载质量。富康轿车(EX、EXC、EX1、EXCl型)汽油箱中的汽油质量和后轴名义承载质量可从表1中查得(为了保证计算结果与实际情况相符合,检测时应将未列入计算范围的轿车内所有物品取出)。

3.2前、后轮促动管路压力的检测步骤

a.拧下前、后轮制动轮缸的排气螺钉,然后装上专用管接头,再在各专用管接头上安装专用压力检测仪或具有合适量程的压力表。

b.通过压力检测仪进行排气,以保证制动系统内无空气。排气顺序为先后轮制动轮缸,后前轮制动轮缸。

c.检测前、后轮促动管路压力。方法是:起动发动机,然后缓慢踩下制动踏板,使前、后轮促动管路压力逐渐增加,同时观察前、后制动轮缸上压力检测仪指示的压力;当前轮制动轮缸上压力检测仪指示的压力(前轮促动管路压力)为6MPa时稳住制动踏板,然后记下后轮制动轮缸上压力检测仪指示的压力(后轮促动管路压力)。注意:整个测量过程只能在促动管路压力逐渐增加的情况下进行,绝不允许在促动管路压力下降的情况下进行。

3.3感载比例阀性能的判断方法

首先根据轿车后轴荷在图3的曲线a上查出当前轮促动管路压力为6MPa时的后轮促动管路压力(标准压力),然后将测得的后轮促动管路压力与标准压力进行比较,若两者不同,则应调整感载比例阀。例如:某EX1型轿车(在汽油箱内充满汽油),其后轴的实际承载质量为460kg(424kg+36kg);在检查其感载比例阀的过程中测得,当前轮促动管路压力为6MPa时后轮促动管路压力为4.2MPa;在图3的曲线a上查得当前轮促动管路压力为6MPa及后轴承载质量为460kg时,后轮促动管路标准压力约为2.9MPa;由此可见,测得的后轮促动管路压力远大于标准压力,应调整感载比例阀。若测得的后轮促动管路压力与标准压力相同,则应进一步检测感载比例阀的性能。方法是:在保持制动踏板位置不变的情况下改变后轴承载质量,并同时检测后轮促动管路压力的变化情况。如果后轮促动管路压力的变化情况与图3的曲线a吻合,则说明感载比例阀的性能良好。通常,当前轮促动

管路压力为6MPa时,若后轴承载质量在一定范围内每增加或减少70kg,而后轮促动管路压力相应地增加或减少1MPa,则说明感载比例阀的性能正常。

4.感载比例阀的调整

感载比例阀调整的实质是对感载弹簧(图4)预压力的调整,而感载弹簧预压力的调整则可以通过调整感载弹簧的长度来实现。增大感载弹簧的长度,可以减小感载弹簧的预压力,从而使后轮促动管路压力降低;减小感载弹簧的长度,可以增大感载弹簧的预压力,从而使后轮促动管路压力提高。为使感载比例阀的调整顺利和迅速,在调整前应根据后轮促动管路压力的测量结果确定要减小还是要增加弹簧的长度。调整步骤是:松开锁止螺母;根据需要通过旋转调整螺母来调整弹簧的长度;在调整结束后,拧紧锁止螺母。注意:在调整过程中,不允许拧动端部螺母。

在调整感载弹簧的长度后应重新检测后轮促动管路压力,若后轮促动管路压力仍不符合标准压力,则需重新进行调整,直至达到标准压力。

在将后轮促动管路压力调整到标准压力后,还应进一步检查感载比例阀的性能,方法是测量在前轮促动管路压力为10MPa时的后轮促动管路压力。若此时后轮促动管路压力超出了图3中曲线b 所示的标准压力,则应更换感载比例阀。

在调整和检测感载比例阀结束后,应拆下专用管接头和装上排气螺钉,然后对制动系统进行排气,最后对轿车进行路试。

依维柯感载比例阀的检查与调整

南京依维柯S系列汽车感载比例阀是串联于液压制动回路的后促动管路中的,其作用是防止后轮出现先抱死的现象。当前、后促动管路压力P1与P2同步增长到一定值PS后,即自动对P2的增长加以节制,使P2的增量小于P1的增量。

感载比例阀的结构与工作原理

比例阀一般采用两端承压面积不等的差径活塞结构,其工作

原理如图1所示。比例阀不工作时,差径活塞2在弹簧3的作用

下处于上极限位置,此时阀门1保持开启,因而在输入控制压力

P1与输出压力P2从零同步增长的初始阶段,总是P1等于P2。但

是压力P1的作用面积A1为π(D2-d2)/4,压力P2的作用面积

A2为πD2/4,因而A2大于A1,故活塞上方液压作用力大于活塞下方液压作用力。在P1、P2同步增长过程中,当活塞上、下两端液压作用之差超过弹簧3的预紧力时,活塞便开始下移。当P1和P2增长到一定值PS时活塞2内腔中的阀座与阀门1接触,进油腔与出油腔即为隔绝,使比例阀进入平衡状态。若进一步提高P1则活塞将回升,阀门再度开启,油液继续流入出油腔而使P2不断升高,但由于A2大于A1,P2尚未增长到新的P1值,活塞又下降到平衡位置。在任一平衡状态下,差径活塞的力的平衡方程为:P2·A2=P1·A1+F(此处F为平衡状态下的弹簧力)。

从而保证P2的增量小于P1的增量,若弹簧3的弹力F不变,则PS点不变,即比例阀节制后轮管路压力的工作点与汽车的载荷无关,这就是非感载比例阀。若要使其工作点与汽车载荷的大小相适应,就必须能改变弹簧力的大小,这就是感载比例阀。感载比例阀及其感载控制机构的原理如图2所示,阀体安装在车架上,其中的活塞4右部的空腔内有阀门2。不制动时,活塞在感载拉力弹簧6通过杠杆5施加的推力F作用下处于右端极限位置,阀门2因其杆部顶触螺塞1而开启。

制动时,来自主缸压力为P1的制动液由进油口A进入,并通过阀门从出油口B输出至后促动管路,此时输出压力P1等于P2。因活塞右端承压面积大于左端承压面积,故P1和P2对活塞的作用力不等,于是活塞不断左移,最后使其上的阀门接触而达到平衡状态,此后,P2的增量将小于P1的增量,其特点是作用于活塞的轴向力F是可变的。拉力弹簧6右端经吊耳与摇臂7相连,而摇臂则夹紧在汽车后悬架的横向稳定杆8的中部,当汽车装载量增加时,后悬架载荷也增加,因而后

轮向车身靠近,后悬架的横向稳定杆便带动摇臂7转过一个角度,将弹簧6进一步拉伸,作用于活塞的推力F便增大;反之,汽车装载量减小。这样,调节作用起始点控制压力值PS就随汽车实际装载量而变化。

依维柯S系列汽车感载比例阀的结构如图3所示,感载比例阀滑杆7的位置由扭杆来控制。扭杆的一端作用于摆杆,另一端则通过调整拉杆与后桥相连,其安装位置如图4所示。

感载比例阀的分解与检查

分解感载比例阀时,首先将感载比例阀

夹在台钳上,用扳手拧下阀盖8,并拆下密封圈;然后取出衬套、柱塞1、密封圈3、弹簧座4、弹簧5、弹簧座6和密封圈7,其分解图如图5所示。

检查感载比例阀的主要内容是:检查阀体的表面和柱塞的外表面是否光洁、无锈蚀,相互配合的零件之间是否有过大间隙。如发现有较轻的缺陷,可用适当的方法予以消除;若缺陷难以消除,则应更换感载比例阀总成(因为阀体和柱塞不作为备件供应)。需要注意的是:每次检修时,对所有密封件,即使看上去完好无损,也应予以更换,而且在装配之前,应使用规定的润滑液润滑各零部件,同时避免密封件与汽油或其它溶剂接触。

感载比例阀的调整

为了确保感载比例阀能在必要时介入制动回路,需对扭杆进行调整。但应注意:液压回路中有压力时,不可对拉杆进行调整;检查应在缓慢的升压过程中进行;检查感载比例阀时,制动系统的所有其它零件都应处于完好的状态。在对汽车进行改装时,若更换了钢板弹簧,则应同时更换说明牌,并对其数据做相应的修改。

调整感载比例阀的方法有行程检查法和压力检查法两种。

行程检查法的具体操作是:

1.秤汽车后部的重量,使其空载;

2.启动发动机;

3.拆下感载比例阀防尘罩2便可以看到柱塞与扭杆的接触部分;

4.将制动踏板踩到底,然后用厚薄规检查柱塞与扭杆之间的间隙,其正常值应为0.1mm;

5.按照上述方法模拟满载时感载比例阀的状态,然后按说明牌所给的定位数值测量扭杆的行程。

压力检查法实际上是通过检查感载比例阀的输入和输出压力来进行调整的方法。具体操作是:先拧下检测口的保护盖,然后装上压力表,让发动机怠速运转,缓慢踏制动踏板,直至感载比例阀前压力表读数为10MPa为止,保持此压力值不变;然后,按表1所示的模拟负荷加载,使感载比例阀加载后的压力表读数满足表中要求。

无论哪种方法,如果感载比例阀后压力表的读数与要求不符,则应调整拉杆,如图4所示,其长度应符合要求。调整结束后,还应检查整车的制动状况是否完好。

液压比例阀工作原理.

液压比例阀工作原理 间电网投资的快速增长为公司提供了良好的发展机遇。2)置信电气生产非晶合金变压器,属于国家推广的节能类产品,公司为国内唯一的规模化生产非晶合金变压器的企业,市场占有率达到80%以上。受政府强制采购政策的推动,非晶合金变压器有望获得大范围的推广,得益于此,公司将面临一个巨大的市场空间。建议重点关注特变电工和置信电气。 电力行业“节能减排”形势严峻 在“十一五”乃至相当长的时间内,“节能减排”将是我国政府工作的重点。“十一五”期间节能减排目标:实现国内生产总值能耗降低20%、主要污染物排放总量减少10%。但电力行业节能减排形势很严峻,具体表现为:1)2006年,发电用煤超过12亿吨,排放的二氧化碳占全国排放总量的54%,火电用水占工业用水的40%,烟尘排放量占全国排放量的20%。2)我国火电发电机组所占比例大,大量小机组存在,这使得煤耗显著偏高。3)电网建设滞后,“重发轻供”导致电网建设落后于电源建设,电网建设中超高压输电线路比重偏低,高耗能变压器使用量太大。 电气设备将在“节能减排”中发挥重要作用 我们认为,未来国内电力行业节能的主要途径为:大力发展特高压电网;加强现有电厂设备改造,提高能源使用效率;积极鼓励新能源开发利用。电气设备将在“发送配用”各个环节发 首页 >>产品中心>>比例式减压阀 一、产品[固定比例式减压阀]的详细资料: 产品名称:固定比例式减压阀

产品特点:本厂生产的比例式减压阀,外形美观,质量可靠,比例准确,工作平稳.既减动压也减静压。该阀利用阀体内部活塞两端不同截面积产生的压力差,改变阀后的压力,达到减压目的。我厂减压阀的减压比例是:2:1,3:1,4:1,3:2,S 2等,亦可根据用户的要求设计特殊比例的减压阀.固定比例式减压阀,减压阀。 二、主要技术参数: 适用介质水、气体 适用温度≤90℃ 压力误差≤8% 最小开启2:1 0.2MPa 压力3:1 0.3MPO 连接形式法兰、内螺纹 主要零件阀体锡青铜不锈钢铸铁 材料内件锡青铜不锈钢锡青铜或不锈钢 三、比例式减压阀主要外形尺寸(法兰连接尺寸PNl.OMPa按GB4216.4—84标准): 公称通径DN (mm)A1 25 115 32 124 40 132 50 140 65 155 80 155 100 200 125 220 150 230 200 270 订货须知: 一、①比例式减压阀产品名称与型号②比例式减压阀口径③比例式减压阀是否带附件二、若已经由设计单位选定公司的比例式减压阀型号,请按比例式减压阀型号 三、当使用的场合非常重要或环境比较复杂时,请您尽量提供设计图纸和详细参数,

液压比例阀工作原理

液压比例阀工作原理)置信电气生产非晶合金变压器,2间电网投资的快速增长为公司提供了良好的发展机遇。市场占公司为国内唯一的规模化生产非晶合金变压器的企业,属于国家推广的节能类产品,%以上。受政府强制采购政策的推动,非晶合金变压器有望获得大范围的推广,80有率达到得益于此,公司将面临一个巨大的市场空间。建议重点关注特变电工和置信电气。电力行业“节能减排”形势严峻“十一五”期间在“十一五”乃至相当长的时间内,“节能减排”将是我国政府工作的重点。%。但电力%、主要污染物排放总量减少10节能减排目标:实现国内生产总值能耗降低20亿吨,排放的二氧年,发电用煤超过121)2006行业节能减排形势很严峻,具体表现为:%,烟尘排放量占全国排放量的40化碳占全国排放总量的54%,火电用水占工业用水的)电网32)我国火电发电机组所占比例大,大量小机组存在,这使得煤耗显著偏高。%。20“重发轻供”导致电网建设落后于电源建设,电网建设中超高压输电线路比重偏建设滞后,低,高耗能变压器使用量太大。电气设备将在“节能减排”中发挥重要作用加强现有电厂设备未来国内电力行业节能的主要途径为:大力发展特高压电网;我们认为,改造,提高能源使用效率;积极鼓励新能源开发利用。电气设备将在“发送配用”各个环节发 首页>>产品中心>>比例式减压阀 的详细资料:固定比例式减压阀一、产品[] 产品名称:固定比例式减压阀. 产品特点:本厂生产的比例式减压阀,外形美观,质量可靠,比例准确,工作平稳.既减动压也减静压。该阀利用阀体内部活塞两端不同截面积产生的压力差,改变阀后的压力,达到减压目的。我厂减压阀的减压比例是:2:1,3:1,4:

比例阀设计

内部资料 比 例 阀 设 计 2005年3月19日

目录 三制动压力调解阀(比例阀)的设计 (3) 3.1制动压力调解阀结构及工作原理 (3) 3.1.1制动力限压阀(BG) (3) 3.1.2制动力调解阀(BR16 BR18) (4) 3.1.3带有支路的制动力调解阀(BRMS) (5) 3.1.4串联的制动力调解阀 (7) 3.1.5带关闭特性的感载比例阀 (9) 3.1.6介绍几种实用的比例阀及惯性阀 (9) 3.2制动力调解阀的参数设计 (11) 3.3 比例阀特性曲线及其偏差的确定 (12) 3.4 尺寸链计算 (12) 3.5 装配过盈量的确定 (12) 3.6 比例阀零件材料选用 (12) 3.7液压感载式制动压力调解阀性能要求及台架试验方法 (14) 1 主题内容与适用范围 (15) 2 引用标准 (15) 3 技术要求 (15) 4试验方法 (17) 5 验收规则 (21) 6 标志包装运输储运 (21) 2005年3月19日星期六

三 制动压力调解阀(比例阀)的设计 3.1制动压力调解阀结构及工作原理 当汽车制动时, 随着汽车减速度的增加,从后轴转移到前轴的汽车载荷也将增加,然而, 由于制动力的分配在设计时已经确定了,因此仅允许其变化在相对的范围内。而在其它情况下,无论是前轴还是后轴的制动力超过允许值都存在着汽车侧滑或操纵失灵的危险。 为了避免这些不足,就要在制动时,按着载荷的变化而改变制动力的分配,以便在各种情况下,基本上得到最佳的制动力分配,至少防止了后轴的抱死。 3.1.1制动力限压阀(BG) 在末达到阀的关闭点之前,输入端和输出端的压力相同,当压力增加超过了关闭点的压力时,输出端保持恒定值,压力不在增加。见图 1。 图 1 制动力限压阀特性曲线 工作原理: 由制动主缸产生的液压由A1端进入环形空间(1),穿过阀(2)和腔(3)经A2端输出到制动分泵,当液压增大到关闭点时,阀的活塞(4)向下移动压迫弹簧(5)直到阀(2)的锥座关闭。腔(1)和腔(2)隔开,在这种情况下,即使压力再增加也不影响阀的功能。因为活塞(4)平衡了这种关系。如果制动分泵的体积增大,例如热膨胀导致腔(3)的压力下降,则弹簧(5)将使锥座(2)打开,继续保持腔(1)和腔(3)的关系。便利压力再次达到预定值。如果由于制动器液体膨胀,腔(3)中的压力超过腔(1)中的压力,则弹簧阀座(6)向下移动,并且锥阀(2)打开,又实现了新的平衡。见图 2 。

比例阀原理

比例阀结构及工作原理 比例阀结构及工作原理 1 引言 电液比例阀是阀内比例电磁铁输入电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例压力、流量输出元件。阀芯位移也可以以机械、液压或电形式进行反馈。电液比例阀具有形式种类多样、容易组成使用电气及计算机控制各种电液系统、控制精度高、安装使用灵活以及抗污染能力强等多方面优点,应用领域日益拓宽。近年研发生产插装式比例阀和比例多路阀充分考虑到工程机械使用特点,具有先导控制、负载传感和压力补偿等功能。它出现对移动式液压机械整体技术水平提升具有重要意义。特别是电控先导操作、无线遥控和有线遥控操作等方面展现了其良好应用前景。 2 工程机械电液比例阀种类和形式 电液比例阀包括比例流量阀、比例压力阀、比例换向阀。工程机械液压操作特点,以结构形式划分电液比例阀主要有两类:一类是螺旋插装式比例阀(scr ewin cartridge proportional valve),另一类是滑阀式比例阀(spool proporti onal valve)。 滑阀式比例阀又称分配阀,是移动式机械液压系统最基本元件之一,是能实现方向与流量调节复合阀。电液滑阀式比例多路阀是比较理想电液转换控制元件,它保留了手动多路阀基本功能,还增加了位置电反馈比例伺服操作和负载传感等先进控制手段。它是工程机械分配阀更新换代产品。 出于制造成本考虑和工程机械控制精度要求不高特点,一般比例多路阀内不配置位移感应传感器,具有电子检测和纠错功能。,阀芯位移量容易受负载变化引起压力波动影响,操作过程中要靠视觉观察来保证作业完成。电控、遥控操作时更应注意外界干涉影响。近来,电子技术发展,人们越来越多采用内装差动变压器(LDVT)等位移传感器构成阀芯位置移动检测,实现阀芯位移闭环控制。这种由电磁比例阀、位置反馈传感器、驱动放大器和其它电子电路组成高度集成比例阀,具有一定校正功能,可以有效克服一般比例阀缺点,使控制精度到较大提高。 3 电液比例多路阀负载传感与压力补偿技术 节约能量、降低油温和提高控制精度,同时也使同步动作几个执行元件运动时互不干扰,现较先进工程机械都采用了负载传感与压力补偿技术。负载传感与

比例电磁阀电磁设计流程

1. 比例电磁铁的结构原理 比例电磁铁结构主要由衔铁、导套、极靴、壳体、线圈、推杆等组成。其工作原理是:磁力线总是具有沿着磁阻最小的路径闭合,并有力图缩短磁通路径以减小磁阻,如图1。 图1 比例电磁铁的剖面图 普通电磁铁就是一个开关量,不是开就是关,关的时候开口最小,开的时候开口最大,没有办法调节;比例电磁铁是根据给定电流的大小决定阀开口的大小,是一个连续的过程。比例电磁铁和普通的电磁铁区别就是比例电磁铁是普通电磁铁加一个弹簧,可以使比例电磁铁输出的力和电流成比例关系,和位移无关,所以比例电磁铁必须具有水平吸力特性,即在工作区内,其输出力的大小只与电流有关,与衔铁位移无关。若电磁铁的吸力不显水平特性,弹簧曲线与电磁力曲线族只有有限的几个交点,这意味着不能进行有效的位移控制。在工作范围内,不与弹簧曲线相交的各电磁力曲线中,对应的电流在弹簧曲线以下,不会引起衔铁位移;在弹簧曲线以上时,若输出这样的电流,电磁力将超过弹簧力,将衔铁一直拉到极限位置为止。相反,若电磁铁具有水平特性,那么在同样的弹簧曲线下,将与电磁力曲线族产生许多交点。在这些交点上,弹簧力与电磁力相等,就是说,逐渐加大输入电流时,衔铁能连续地停留在各个位置上。 图2 比例电磁铁的电流-力-行程关系 比例电磁铁要求在一定的位移范围内,衔铁的输出力为一准恒定值,如图2所示。根据电磁铁基本工作原理,在衔铁运动过程中,磁阻会越来越小,衔铁受力越来越大,不会出现输出力恒定的情况,为了使电磁铁能在一定位移内输出近视恒定的力,电磁铁采用结构的特殊—隔磁环。隔磁环采用非导磁材料——通常为黄铜,嵌在前后导套的中间,减少电磁铁即将闭合时急剧增大的电磁力,使整个电磁力变的平稳。

电液比例阀工作原理

电液比例阀是阀内比例电磁铁输入电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例压力、流量输出元件。阀芯位移也可以以机械、液压或电形式进行反馈。电液比例阀具有形式种类多样、容易组成使用电气及计算机控制各种电液系统、控制精度高、安装使用灵活以及抗污染能力强等多方面优点,应用领域日益拓宽。近年研发生产插装式比例阀和比例多路阀充分考虑到工程机械使用特点,具有先导控制、负载传感和压力补偿等功能。它出现对移动式液压机械整体技术水平提升具有重要意义。特别是电控先导操作、无线遥控和有线遥控操作等方面展现了其良好应用前景。 2 工程机械电液比例阀种类和形式 电液比例阀包括比例流量阀、比例压力阀、比例换向阀。工程机械液压操作特点,以结构形式划分电液比例阀主要有两类:一类是螺旋插装式比例阀(screwin cartridge proportional valve),另一类是滑阀式比例阀(spool proportional valve)。 螺旋插装式比例阀是螺纹将电磁比例插装件固定油路集成块上元件,螺旋插装阀具有应用灵活、节省管路和成本低廉等特点,近年来工程机械上应用越来越广泛。常用螺旋插装式比例阀有二通、三通、四通和多通等形式,二通式比例阀主比例节流阀,它常它元件一起构成复合阀,对流量、压力进行控制;三通式比例阀主比例减压阀,也是移动式机械液压系统中应用较多比例阀,它主对液动操作多路阀先导油路进行操作。利用三通式比例减压阀可以代替传统手动减压式先导阀,它比手动先导阀具有更多灵活性和更高控制精度。可以制成如图1所示比例伺服控制手动多路阀,不同输入信号,减压阀使输出活塞具有不同压力或流量进而实现对多路阀阀芯位移进行比例控制。四通或多通螺旋插装式比例阀可以对工作装置实现单独控制。 滑阀式比例阀又称分配阀,是移动式机械液压系统最基本元件之一,是能实现方向与流量调节复合阀。电液滑阀式比例多路阀是比较理想电液转换控制元件,它保留了手动多路阀基本功能,还增加了位置电反馈比例伺服操作和负载传感等先进控制手段。它是工程机械分配阀更新换代产品。 出于制造成本考虑和工程机械控制精度要求不高特点,一般比例多路阀内不配置位移感应传感器,具有电子检测和纠错功能。,阀芯位移量容易受负载变化引起压力波动影响,操作过程中要靠视觉观察来保证作业完成。电控、遥控操作时更应注意外界干涉影响。近来,电子技术发展,人们越来越多采用内装差动变压器(LDVT)等位移传感器构成阀芯位置移动检测,实现阀芯位移闭环控制。这种由电磁比例阀、位置反馈传感器、驱动放大器和其它电子电路组成高度集成比例阀,具有一定校正功能,可以有效克服一般比例阀缺点,使控制精度到较大提高。 3 电液比例多路阀负载传感与压力补偿技术 节约能量、降低油温和提高控制精度,同时也使同步动作几个执行元件运动时互不干扰,现较先进工程机械都采用了负载传感与压力补偿技术。负载传感与

SMC比例阀工作原理

S M C比例阀工作原理 This model paper was revised by the Standardization Office on December 10, 2020

SMC比例阀工作原理 [SMC ITV系列电气比例阀] 电气比例阀通过电信号控制气压力,可以实现气压力的连续、无级调节,能实现远程控制和程序控制,对于需要对气压力进行连续或者无级调节的场合,特别适用于电气比例阀。对于SMC ITV系列电气比例阀有以下特点: 1、灵敏度高、性能好。保护等级为IP65.电缆方向有直线型和直角型。 2、SMC ITV0000系列为薄型(仅15mm),轻(100g)。最多可集装至10位。响应快(无负载时为)。快换接头链接。带错误显示灯(LED)。 3、SMC ITV2000/ITV3000系列为正压型,设定压力范围有三档。在平衡状态时耗气量为0.在不加压状态下,可进行零位调整和满位调整。在加压状态下若断电,能暂时保持输出压力不变。有两种监控方式(模拟输出、开关输出)可供选择。 4、SMC ITV系列电气比例阀配线方法 把电缆接到本体插座上应按SMC ITV系列电器使用说明书上的配线图进行配线。配线一旦失误,阀可能损坏。另外,DC电源应使用容量足够、电压波动小的电源。 5、SMC ITV系列电气比例阀特性曲线 参见SMC ITV系列电气比例阀样本 6、SMC ITV系列电气比例阀使用注意事项 1)SMC ITV电气比例阀之前,应设置5μm以下过滤精度和油雾分离器,保证气源处理系统达到SMC压缩空气清净化系统第④系列的要求,向ITV比例阀提供清洁干燥的压缩空气,以便能达到ITV电气比例阀应有的各种特性。

比例阀电磁线圈工作原理

电磁力的方向取决于电磁铁道结构 上图就是常规定电磁铁,电磁铁道工作气隙在动铁道上部,通电后电磁力向上(正比例溢流阀);下图为反比例电磁铁,电磁铁工作气隙在动铁道下部,通电后电磁力向下(反比例溢流阀)。 当然,实现反比例用反比例电磁铁仅仅是途径之 一。" 描述: 双向电磁铁 图片: 描述: 双向旋转电磁铁 图片: 我对楼上朋友的想法,没有完全搞清楚,希望能进一步表达清楚。主要是感到楼上朋友的想法很特别,没有什么框框,说不准有什么新道道。至于楼主的问题,我在1楼给出插图后,写得太简单一点,现补充一下,看看与楼上朋友的想法能否对的上。 1)楼主的问题是“为什么比例阀的电磁铁线圈通电总是使衔铁向一个方向运动,而不会向相反方向运动呢?” 现在想来,实际上这里有两种可能性。 2)第一,就像我在1楼用两张插图表示的那样,电磁铁可以向离开线圈腹部方向运动(一般感到的情况,开关电磁铁也是这样,所谓正比例),也可以向进入线圈腹部方向运动(一般看不到,所谓反比例)。这里,关键是工作气隙位置的布置,因为通电后磁力线总是去图缩小磁路上的总磁阻,也就是将气隙降低到最小。不管动铁是向那个方向动,都是磁路减小气隙造成的。

3)第二,受到楼上朋友的启发,实际上楼主的问题,是不是还有第二层的意思,就是同一个电磁铁,能不能要它往左就往左,要它往右就往右。也就是楼上朋友讲的,“做的其中一端吸力很强,另外一端弱,推杆中间是个圆柱的!所以一通电就被吸到强的那一端了”实际上确有类似的电磁铁,只不过是两头“强”,即两头都有一个“气隙”(在循环的磁路总有意留出来空气间隙)。 这种电磁铁叫做“双向比例电磁铁”,在动铁两头各配置一个气隙,两组控制线圈分别管理一个气隙,甲线圈通电,电磁铁动铁左移;乙想线圈通电,电磁铁动铁就右移。 4)顺便讲到,既然有直线运动电磁铁,就一定会有旋转电磁铁。

比例电磁阀工作原理

比例电磁阀工作原理 电液比例阀是阀内比例电磁铁输入电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例压力、流量输出元件。阀芯位移也可以以机械、液压或电形式进行反馈。电液比例阀具有形式种类多样、容易组成使用电气及计算机控制各种电液系统、控制精度高、安装使用灵活以及抗污染能力强等多方面优点,应用领域日益拓宽。近年研发生产插装式比例阀和比例多路阀充分考虑到工程机械使用特点,具有先导控制、负载传感和压力补偿等功能。它出现对移动式液压机械整体技术水平提升具有重要意义。特别是电控先导操作、无线遥控和有线遥控操作等方面展现了其良好应用前景。 2 工程机械电液比例阀种类和形式 电液比例阀包括比例流量阀、比例压力阀、比例换向阀。工程机械液压操作特点,以结构形式划分电液比例阀主要有两类:一类是螺旋插装式比例阀(screwin cartridge proportional valve),另一类是 滑阀式比例阀(spool proportional valve)。 螺旋插装式比例阀是螺纹将电磁比例插装件固定油路集成块上元件,螺旋插装阀具有应用灵活、节省管路和成本低廉等特点,近年来工程机械上应用越来越广泛。常用螺旋插装式比例阀有二通、三通、四通和多通等形式,二通式比例阀主比例节流阀,它常它元件一起构成复合阀,对流量、压力进行控制;三通式比例阀主比例减压阀,也是移动式机械液压系统中应用较多比例阀,它主对液动操作多路阀先导油路进行操作。利用三通式比例减压阀可以代替传统手动减压式先导阀,它比手动先导阀具有更多灵活性和更高控制精度。可以制成如图1所示比例伺服控制手动多路阀,不同输入信号,减压阀使输出活塞具有不同压力或流量进而实现对多路阀阀芯位移进行比例控制。四通或多通螺旋插装式比例阀可以对工作装置实现单 独控制。 滑阀式比例阀又称分配阀,是移动式机械液压系统最基本元件之一,是能实现方向与流量调节复合阀。电液滑阀式比例多路阀是比较理想电液转换控制元件,它保留了手动多路阀基本功能,还增加了位置电反馈比例伺服操作和负载传感等先进控制手段。它是工程机械分配阀更新换代产品。 出于制造成本考虑和工程机械控制精度要求不高特点,一般比例多路阀内不配置位移感应传感器,具有电子检测和纠错功能。,阀芯位移量容易受负载变化引起压力波动影响,操作过程中要靠视觉观察来保证作业完成。电控、遥控操作时更应注意外界干涉影响。近来,电子技术发展,人们越来越多采用内装差动变压器(LDVT)等位移传感器构成阀芯位置移动检测,实现阀芯位移闭环控制。这种由电磁比例阀、位置反馈传感器、驱动放大器和其它电子电路组成高度集成比例阀,具有一定校正功能,可以有效克服一 般比例阀缺点,使控制精度到较大提高。 3 电液比例多路阀负载传感与压力补偿技术 节约能量、降低油温和提高控制精度,同时也使同步动作几个执行元件运动时互不干扰,现较先进工程机械都采用了负载传感与压力补偿技术。负载传感与压力补偿是一个很相似概念,都是利用负载变化引起压力变化去调节泵或阀压力与流量以适应系统工作需求。负载传感对定量泵系统来讲是将负载压力负载感应油路引至远程调压溢流阀上,当负载较小时,溢流阀调定压力也较小;负载较大,调定压力也较大,但也始终存一定溢流损失。变量泵系统是将负载传感油路引入到泵变量机构,使泵输出压力随负载压力升高而升高(始终为较小固定压差),使泵输出流量与系统实际需要流量相等,无溢流损失,实现了节能。 压力补偿是提高阀控制性能而采取一种保证措施。将阀口后负载压力引入压力补偿阀,压力补偿阀对阀口前压力进行调整使阀口前后压差为常值,这样节流口流量调节特性流经阀口流量大小就只与该阀口开 度有关,而不受负载压力影响。 4 工程机械电液比例阀先导控制与遥控 电液比例阀和其它专用器件技术进步使工程车辆挡位、转向、制动和工作装置等各种系统电气控制成为现实。一般需要位移输出机构可采用类似于图1 比例伺服控制手动多路阀驱动器完成。电气操作具有响应快、布线灵活、可实现集成控制和与计算机接口容易等优点,现代工程机械液压阀已越来越多采用电控先导控制电液比例阀(或电液开关阀)代替手动直接操作或液压先导控制多路阀。采用电液比例阀(或电

SMC比例阀工作原理

SMC比例阀工作原理 [SMC ITV系列电气比例阀] 电气比例阀通过电信号控制气压力,可以实现气压力的连续、无级调节,能实现远程控制和程序控制,对于需要对气压力进行连续或者无级调节的场合,特别适用于电气比例阀。对于SMC ITV系列电气比例阀有以下特点: 1、灵敏度高、性能好。保护等级为IP65.电缆方向有直线型和直角型。 2、SMC ITV0000系列为薄型(仅15mm),轻(100g)。最多可集装至10位。响应快(无负载时为0.1s)。快换接头链接。带错误显示灯(LED)。 3、SMC ITV2000/ITV3000系列为正压型,设定压力范围有三档。在平衡状态时耗气量为0.在不加压状态下,可进行零位调整和满位调整。在加压状态下若断电,能暂时保持输出压力不变。有两种监控方式(模拟输出、开关输出)可供选择。 4、SMC ITV系列电气比例阀配线方法 把电缆接到本体插座上应按SMC ITV系列电器使用说明书上的配线图进行配线。配线一旦失误,阀可能损坏。另外,DC电源应使用容量足够、电压波动小的电源。 5、SMC ITV系列电气比例阀特性曲线 参见SMC ITV系列电气比例阀样本 6、SMC ITV系列电气比例阀使用注意事项 1)SMC ITV电气比例阀之前,应设置5μm以下过滤精度和油雾分离器,保证气源处理系统达到SMC压缩空气清净化系统第④系列的要求,向ITV比例阀提供清洁干燥的压缩空气,以便能达到ITV电气比例阀应有的各种特性。 2)SMC ITV电气比例阀之前,不得装油雾器。 3)SMC ITV电气比例阀在加压状态下切断电源,出口侧压力能暂时保持,但不能一直保持。 *SMC ITV电气比例阀其它使用注意事项,请参见SMC ITV系列电器使用说明书。 SMC ITV系列电气比例阀型号列表 SMC ITV系列电气比例阀样本

比例调节阀工作原理

比例调节阀工作原理 一、各个部件介绍:1 反馈杆1、1 连接销钉1、2 连接卡子2、1 喷嘴, 正作用(> >)2、2 喷嘴, 反作用(< >)3 膜片连杆(档板)4 测量弹簧5测量比较膜片6、1 量程调整螺钉6、2 零调整螺丝7 正反作用调整器8 比例/增益Xp9气源压力调整针阀10 气动放大器11 输出气量调整Q12电磁阀(可选件) 13 I/P转换器 二、工作原理:输入控制电流信号的变化被I/P转换器按比例转换为气动控制信号Pe送给气动单元,作为控制给定值,来调整阀杆的行程。气动控制信号pe在测量比较膜片(5)上的作用力与范围弹簧(4)的力(阀位反馈力)相比较。如果输入控制信号引起气动控制信号pe变化或阀位引起反馈杆(1)变化,膜片连杆使杠杆/挡板(3)与喷嘴(2、1或2、2)的间隙发生变化,产生与偏差相对应的喷嘴背压。可调整气路转换块(7)决定哪个喷嘴工作即决定阀门定位器正反作用。气源供给气动放大器(10)和气源压力调整针阀(9),调整后的气源经比例/增益调整Xp(8)和气路转换块(7)到喷嘴(2、1 或2、2),控制信号或阀位反馈杆(1)变化引起挡板与喷嘴间隙变化,使喷嘴背压变化并传到气动放大器(10),经放大产生输出信号压力Pst,再经输出气量调整(11)传送到气动执行器,使阀位定位在控制信号要求值。对于直行程控制阀,阀行程是由连接销钉(1、1)传

递给反馈杆(1)的;对于角行程控制阀,是在反馈杆上加一个随动轮,并随安装在执行器传动轴上的凸轮的转动而位移。最终,反馈杆的线性运动被转换为范围弹簧(4)的作用力。若用于双作用执行器,阀门定位器则再装一个反向输出气动放大器,将输出两个相反的输出信号压力(Pst1和Pst2)。可调比例/增益Xp (8)和输出气量调整针阀Q(11)用来优化定位控制。两个调整螺钉(6、1和6、2)用来调整零点和量程。作用方向当气动控制信号(Pe)增加,输出信号压力(Pst)可选择为增加-增加(正作用>>)或增加-减小(反作用<>)。作用方向由气路转换块(7)的位置决定,并有相应标记。可在现场调整改变作用方向。

比例调节阀工作原理

比例调节阀控制器工作原理 一、各个部件介绍: 1 反馈杆 1.1 连接销钉 1. 2 连接卡子2.1 喷嘴, 正作用(> >)2.2 喷嘴, 反作用(< >) 3 膜片连杆(档板) 4 测量弹簧5测量比较膜片 6.1 量程调整螺钉 6.2 零调整螺丝7 正反作用调整器8 比例/增益Xp 9气源压力调整针阀10 气动放大器11 输出气量调整Q 12电磁阀(可选件) 13 I/P转换器

二、工作原理: 输入控制电流信号的变化被I/P转换器按比例转换为气动控制信号Pe送给气动单元,作为控制给定值,来调整阀杆的行程。 气动控制信号pe在测量比较膜片(5)上的作用力与范围弹簧(4)的力(阀位反馈力)相比较。如果输入控制信号引起气动控制信号pe变化或阀位引起反馈杆(1)变化,膜片连杆使杠杆/挡板(3)与喷嘴(2.1或2.2)的间隙发生变化,产生与偏差相对应的喷嘴背压。可调整气路转换块(7)决定哪个喷嘴工作即决定阀门定位器正反作用。 气源供给气动放大器(10)和气源压力调整针阀(9),调整后的气源经比例/增益调整Xp(8)和气路转换块(7)到喷嘴(2.1 或2.2),控制信号或阀位反馈杆(1)变化引起挡板与喷嘴间隙变化,使喷嘴背压变化并传到气动放大器(10),经放大产生输出信号压力Pst,再经输出气量调整(11)传送到气动执行器,使阀位定位在控制信号要求值。 对于直行程控制阀,阀行程是由连接销钉(1.1)传递给反馈杆(1)的;对于角行程控制阀,是在反馈杆上加一个随动轮,并随安装在执行器传动轴上的凸轮的转动而位移。最终,反馈杆的线性运动被转换为范围弹簧(4)的作用力。 若用于双作用执行器,阀门定位器则再装一个反向输出气动放大器,将输出两个相反的输出信号压力(Pst1和Pst2)。可调比例/增益Xp(8)和输出气量调整针阀Q (11)用来优化定位控制。两个调整螺钉(6.1和6.2)用来调整零点和量程。 作用方向 当气动控制信号(Pe)增加,输出信号压力(Pst)可选择为增加-增加(正作用>>)或增加-减小(反作用<>)。作用方向由气路转换块(7)的位置决定,并有相应标记。可在现场调整改变作用方向。

德国力士乐比例换向阀工作原理2011

德国力士乐比例换向阀工作原理2011-1-14 来源:上海颖哲工业自动化设备有限公司第五营业部>>进入该公司展台德国力士乐比例换向阀工作原理,REXROTH比例换向阀作用,力士乐换向阀应用德国REXROTH比例换向阀是一种中高压整体式两路换向阀。可按客户要求在阀上设溢流阀、过载阀、单向阀、补油阀等。溢流阀可调节系统压力、过载阀控制单个油腔工作压力,单向阀防止油液倒流,换向阀滑阀机能有A、O、Y、P等,可任意组合。换向手柄有两种安装形式,便于不同方向的操作。该阀采用并联油路,设计有压力输出口与其它液压元件相接提供动力源。经过特殊设计的密封方式,使阀的密封性能卓越。该阀泛用于叉车、环卫车辆、小型装载机等工程机械的液压系统。液压换向阀,由左右驱动阀组成,驱动阀包括驱动阀阀体和阀芯,其特征是:所述驱动阀阀体上设有过载保护阀,过载保护阀与阀体的进出油口连接,所述过载保护阀包括主阀体、副阀体、阀针和单向阀芯,所述主阀体后端螺接有副阀体,所述副阀体内腔置有阀针,阀针后端套接复位弹簧,锥形阀针与副阀体前端的油孔触接,所述单向阀芯前端设有圆孔,圆孔与节流阀芯滑动配合,所述中心设有节流孔的节流阀芯后端设有弹簧,所述副阀体前端与单向阀芯内腔之间形成卸压腔。有益效果:实现了微动效果;增加过载保护阀,使工作系统传过来的瞬时高压在系统的溢流阀卸荷之前开启,去除峰值压力,有效保护了液压件及结构件免受到破坏性冲击,换向阀是管路流体输送系统中控制部件,它是用来改变通路断面和介质流动方向,具有导流、截止、调节、节流、止回、分流或溢流卸压等功能。REXROTH比例换向阀原理主要用来控制流体。例1个活塞向1个方向移动。要向1端充流体,另1端排流体,进的1端是高压流体,出的1端回到油箱。这1个动作要求进端阀打开,排(回)流阀关闭,另1端进端阀关闭,打开排(回)流阀关闭。活塞材能向1个方向移动。目前现成产品有2位3通,2位4通,3位5通等。换向阀原理,是根据压力系统的工作压力自动启闭,一般安装于封闭系统的设备或管路上保护系统安全。当设备或管道内压力超过安全阀设定压力时,即自动开启泄压,保证设备和管道内介质压力在设定压力之下,保护设备和管道正常工作,防止发生意外,减少损失。 力士乐比例换向阀是一种以手动换向为主体的组合阀。带有先导式安全阀和单向阀,油路形式为并联油路。该阀结构简单,泄露量小,安全阀启闭性好,滑阀机能有O、P、Y、A几种形式。定位方式有弹簧复位和钢球定位两种。主要应用于工程机械、矿山机械、起重运输机械和其它机械液压系统,用于改变液流方向,实行多个执行机构的集中控制。压力补偿元件,比例流量阀,电磁多路换向阀及各种功能阀组成,采用定量泵可实现比例多路换向控制回路,回路温升低,无载功耗少,适应于中、小型液压移动机械。德国力士乐比例换向阀工作原理,REXROTH比例换向阀作用,力士乐换向阀应用 REXROTH比例换向阀是由单向阀、安全阀、进油体、回油体和多个换向阀片组合而成的组合阀。以手动换向为主。它具有结构紧凑、工作压力高、性能优异、工作可靠等特点。油路采用并联油路。有多种滑阀技能供系统需要。阀杆复位方式采用手动换向弹簧自动复位或钢珠定位。阀片内部设单向阀,以防止油液倒流。进油阀片带有溢流阀,以控制整个系统压力。根据用户需要,换向阀两端可装有过载阀以满足不同执行机构负载需要。 力士乐比例换向阀是片式结构的换向阀,是参照多田野汽车起重机下车阀改进设计而成。它主要用于控制汽车起重机支腿的伸缩,设计除保证原有性能外,还注重考虑了通往上车的油路通道,使中位压力损失大为下降,减小了系统的发热。事实证明,该阀完全能替代多田野汽车起重机下车阀,实现了进口元件的国产化。该阀主要是由前端阀体、选择阀组、液控阀组和四联换向阀组成。其安全阀结构紧凑,启闭性能好,噪声小。该阀为手工操作,具有操纵轻便、换向灵活、定位可靠等特点。该阀还可用于其他工程机械的液压系统。每加一片增加100元。 德国REXROTH比例换向阀主要用于液压汽车起重机和液压高空作业车等型号的

hplc泵与比例阀的结构原理与常见故障

泵与比例阀的结构原理与常见故障 第一部分:泵与比例阀的结构与工作原理 1. 单向阀 单向阀一般由阀体、阀座和红宝石球组成,在压力的作用下宝石球离开阀座,流动相流过单向阀,反之,在反向力的作用下宝石球回到阀座上,此时流动相不能流过。显然宝石球与阀座之间的配合必须非常适合才能防止流动相的泄漏,为了保证单向阀不发生泄漏,Agilent1 200的出口单向阀中安装了两套宝石球和阀座,入口单向阀阀芯是将宝石球用一个合适的弹簧压在阀座上,用电磁阀通过程序主动控制宝石球的位置,进而控制入口单向阀的开闭,并且为了降低成本和节省维护费用,采用了可置换式的卡套式单元件。 单向阀是实现泵体功能的关键部件,平时出问题最多,使用维护起来也格外需要注意。Agi lent 1200的入口单向阀是主动电磁阀,配备一个阀芯。如图: 从入口主动电磁阀的底部看,中间有一个带火漆的内六角螺钉,这个螺钉是出厂前校定好的,改变螺钉的位置会导致阀体内磁芯冲程的改变,进而改变泵的实际流速,或者导致磁芯上密

封膜片被击穿或阀芯损坏。阀底四角有四个内六角螺钉,拆掉四个螺钉,取下阀体,阀体内是一个空腔,里边有一个磁芯压在空腔内的弹簧上,磁芯另一端有一段柱状突起,正好可以插到正方形塑料片中间的圆孔上,圆孔中间有一个黑色的垫片,取下正方形的黑色塑料板,黑色垫片下压着一个圆形的透明膜片,这个透明膜片起密封作用,膜片下是一个顶针插在孔里,顶针一直伸到电磁阀状阀芯的凹孔内。 将阀芯用合适的塑料杆从阀芯上部(直径大的一端)对准金色的膜片部位用力往下慢慢顶开(尽量不要划伤金色的膜),阀芯尾部顶出来的依次为:半透明的阀座、宝石球和弹簧,留在阀芯外套里的是不透明的塑料套管,弹簧和宝石球就在套管内运动。阀芯装到阀体上去的时候顶针插在阀芯尾部阀座上的小孔里,顶在宝石球上,装好后宝石球被顶针顶着,离开阀座,阀芯里的弹簧被压缩,此时电磁阀芯处于打开的状态,流动相可以通过;通电时线圈产生磁场,将阀体内部的磁芯以及顶针吸回去,阀芯里的宝石球在弹簧的作用下落在阀座上,封闭阀座中心的流动相入口,此时电磁阀芯处于闭合状态,流动相不能通过。 常见的电磁阀芯一共有两种,如图所示: 图中下方左边纯白色的是普通的阀芯,阀芯外壳整体为塑料结构,主要是二元高压梯度系统和四元低压梯度系统使用;下方右边底部深色的是耐压的阀芯,阀芯尾部塑料壳改为金属结构,主要是快速液相使用,和普通的阀芯主要区别在于其阀座上有金属箍,耐压能力大大提高了,估计新出的1290也是这种阀芯或者更好的。

比例电磁阀

比例电磁阀 安全措施,锁闭阀丢失让居民自己负责的做法不合理。 记者就此咨询了张华才。张华才答复说,锁闭阀的丢失属人为破坏,不能与质量问题等原因等同论处。根据《威海市城市集中供热管理办法》和《城市居民住宅供热合同》规定,入户阀门井以后的楼内设施为用热设施,由供暖用户维护,供热单位负责维修,因此锁闭阀丢失应由供暖用户来承担设施费用,供暖单位给予更换,希望市民能够理解。威海热电厂此前已多次通过不同方式告知居民到供热单位自行购买锁闭阀以及时更换。 锁闭阀丢失后应及时重装 “一些供暖用户的锁闭阀被偷走,而失主往往对锁闭阀被盗之事并不关心。”张华才不无担忧地说,出现这种情况是十分危险的。其原因是,在供暖单位进行试水期间,如果居民不及时检查自家的锁闭阀是否完好,难免会出现供 一、产品[不锈钢电磁阀]的详细资料: 产品型号:ZBSF 产品名称:不锈钢电磁阀 产品特点:ZBSF系列全不锈钢电磁阀是工业过程自动化控制系统用执行器。它在接受电控信号后能自动开启或关闭,实现对管道中的液体介质的通断或流量调节控制。本系列电磁阀可广泛地应用于纺织、印刷、化工、塑料、橡胶、制药、食品、建材、机械、电器、表面处理等生产和科研部门以及浴室、食堂、空调等人们日常生活设施中。ZBSF-Y系列电磁阀主要用于腐蚀性液体、超净液体和食用液体等液体介质的控制。ZBSF系列电磁阀主要用于腐蚀气体、超净气体等气体介质的控制。 全不锈钢电磁阀,不锈钢电磁阀,电磁阀。 二、结构与工作原理: 本阀为分步动作直接导式常闭电磁阀,线圈通电后衔铁先带动小阀开启,大阀在所形成的介质压差和电磁力的作用下而开启。线圈断电,衔铁部件复位,大小阀利用介质压力而紧密关闭。 三、型号规格说明: 四、技术参数: 五、ZBSF不锈钢电磁阀安装尺寸:

多路阀换向阀的工作原理

多路阀换向阀的工作原理 通常,工作阀片成组配置,进口阀块内置三通压力补偿旁通溢流阀。逻辑元件,当多路阀换向阀停止操作,且各阀均在中位时,该阀则以补偿压力(6-·12BAR)旁通主油路流量。当某一阀工作时,该阀在负载压力作用下旁通口减少,根据负载压力提供所需的流量。 负载感应梭阀将各工作阀片的负载压力传至进口阀块的压力补偿旁通溢流阀。二通压力补偿定差减压阀:当多个工作片阀同时工作时,负载压力传至该阀的弹簧侧。此时,通过阀心的负反馈作用,来自动调节节流阀口两端的压力差,使其基本保持不变。在其作用下各阀的流量均保持恒定,且不受负载变化的影响。机械设计,机械加工,设计软件,机械工程师,设备管理,焊接,液压,铸造,密封,测量,工程机械,粉末冶金,轴承,齿轮,泵阀,工业自动化。 安全溢流阀:通常用于工作机构极限保护,例如变幅油缸。 电磁溢流阀:用于工作机构的超限保护,例如:起重机的力矩限制,三圈保护等。 比例减压阀:位于工作阀片手拉杆的相对一侧,为直动式比例减压阀,驱动滑阀实现比例换向,注意:直动式比例减压阀的比例换向相对于

手动比例换向,微动性能不好,若用于流量控制精度较高的应用,应采用比例伺服驱动配置的工作阀片。REXROTH,BUCHER,DELTAPOWER均有伺服驱动的比例多路阀换向阀。 根据使用场所、用途,多路换向阀且了解有关法规、规格、标准、方针、许用认可后既可选用适合各种要求的阀门,确认阀门的工作条件、适用介质、工作压力、介质温度,确定与管道相匹配的公称通径多路换向阀:DN(mm),确定与管道相连接方式:法兰式、内(外)螺纹式、焊接式、对夹式、卡箍式、卡套式等,确定阀门的密封性能要求、多路阀密封等级或密封泄漏量,确定阀门的防护涂层要求、包装要求、运输要求。 特殊需要的多路换向阀还应确定:结构长度、阀门高度、外型尺寸、流阻、排放能力、流量特性、防护等级、防爆性能等参数,确定阀门的安装位置及姿势,确定阀门的操作方式,多路换向阀蜗轮动、气动、电动、液动、电磁动、电液动等。确认阀门的类型:闸阀、截止阀、节流阀、柱塞阀、球阀、蝶阀、隔膜阀、旋塞阀、止回阀、安全阀、疏水阀及其它特种阀;确定阀门的使用形式:开关型、调节型、安全型等。确定阀门壳体及内件的材料:多路换向阀灰铁、球铁、碳钢、合金钢、不锈钢、铜合金、铝合金、塑料等。

安捷伦泵与比例阀的结构原理与常见故障

第一部分:泵与比例阀的结构与工作原理 1.单向阀 单向阀一般由阀体、阀座和红宝石球组成,在压力的作用下宝石球离开阀座,流动相流过单向阀,反之,在反向力的作用下宝石球回到阀座上,此时流动相不能流过。显然宝石球与阀座之间的配合必须非常适合才能防止流动相的泄漏,为了保证单向阀不发生泄漏,Agilent1 200的出口单向阀中安装了两套宝石球和阀座,入口单向阀阀芯是将宝石球用一个合适的弹簧压在阀座上,用电磁阀通过程序主动控制宝石球的位置,进而控制入口单向阀的开闭,并且为了降低成本和节省维护费用,采用了可置换式的卡套式单元件。 单向阀是实现泵体功能的关键部件,平时出问题最多,使用维护起来也格外需要注意。Agi lent1200的入口单向阀是主动电磁阀,配备一个阀芯。如图: 从入口主动电磁阀的底部看,中间有一个带火漆的内六角螺钉,这个螺钉是出厂前校定好的,改变螺钉的位置会导致阀体内磁芯冲程的改变,进而改变泵的实际流速,或者导致磁芯上密封膜片被击穿或阀芯损坏。阀底四角有四个内六角螺钉,拆掉四个螺钉,取下阀体,阀体内是一个空腔,里边有一个磁芯压在空腔内的弹簧上,磁芯另一端有一段柱状突起,正好可以插到正方形塑料片中间的圆孔上,圆孔中间有一个黑色的垫片,取下正方形的黑色塑料板,

黑色垫片下压着一个圆形的透明膜片,这个透明膜片起密封作用,膜片下是一个顶针插在孔里,顶针一直伸到电磁阀状阀芯的凹孔内。 将阀芯用合适的塑料杆从阀芯上部(直径大的一端)对准金色的膜片部位用力往下慢慢顶开(尽量不要划伤金色的膜),阀芯尾部顶出来的依次为:半透明的阀座、宝石球和弹簧,留在阀芯外套里的是不透明的塑料套管,弹簧和宝石球就在套管内运动。阀芯装到阀体上去的时候顶针插在阀芯尾部阀座上的小孔里,顶在宝石球上,装好后宝石球被顶针顶着,离开阀座,阀芯里的弹簧被压缩,此时电磁阀芯处于打开的状态,流动相可以通过;通电时线圈产生磁场,将阀体内部的磁芯以及顶针吸回去,阀芯里的宝石球在弹簧的作用下落在阀座上,封闭阀座中心的流动相入口,此时电磁阀芯处于闭合状态,流动相不能通过。 常见的电磁阀芯一共有两种,如图所示: 图中下方左边纯白色的是普通的阀芯,阀芯外壳整体为塑料结构,主要是二元高压梯度系统和四元低压梯度系统使用;下方右边底部深色的是耐压的阀芯,阀芯尾部塑料壳改为金属结构,主要是快速液相使用,和普通的阀芯主要区别在于其阀座上有金属箍,耐压能力大大提高了,估计新出的1290也是这种阀芯或者更好的。

气比例阀 伺服阀的工作原理

典型电---气比例阀、伺服阀的工作原理 电---气比例阀和伺服阀按其功能可分为压力式和流量式两种。压力式比例/伺服阀将输给的电信号线性地转换为气体压力;流量式比例/伺服阀将输给的电信号转换为气体流量。由于气体的可压缩性,使气缸或气马达等执行元件的运动速度不仅取决于气体流量。还取决于执行元件的负载大小。因此精确地控制气体流量往往是不必要的。单纯的压力式或流量式比例/伺服阀应用不多,往往是压力和流量结合在一起应用更为广泛。 电---气比例阀和伺服阀主要由电---机械转换器和气动放大器组成。但随着近年来廉价的电子集成电路和各种检测器件的大量出现,在1电---气比例/伺服阀中越来越多地采用了电反馈方法,这也大大提高了比例/伺服阀的性能。电---气比例/伺服阀可采用的反馈控制方式,阀内就增加了位移或压力检测器件,有的还集成有控制放大器。 一、滑阀式电---气方向比例阀 流量式四通或五通比例控制阀可以控制气动执行元件在两个方向上的运动速度,这类阀也称方向比例阀。图示即为这类阀的结构原理图。它由直流比例电磁铁1、阀芯2、阀套3、阀体4、位移传感器5和控制放大器6等赞成。位移传感器采用电感式原理,它的作用是将比例电磁铁的衔铁位移线性地转换为电压信号输出。控制放大器的主要作用是: 1)将位移传感器的输出信号进行放大; 2)比较指令信号Ue和位移反馈信号U f U; 3)放大,转换为电流信号I输出。此外,为了改善比例阀的性能,控制放大器还含有对反馈信号 Uf的处理环节。比如状态反馈控制和PID调节等。 带位置反馈的滑阀式方向比例阀,其工作原理是:在初始状态,控制放大器的指令信号UF=0,阀芯处于零位,此时气源口P与A、B两端输出口同时被切断,A、B两口与排气口也切断,无流量输出;同时位移传Uf=0。若阀芯受到某种干扰而偏离调定的零位时,位移传感器将输出一定的电压Uf,控制放 放大后输出给电流比例电磁铁,电磁铁产生的推力迫使阀芯回到零位。若指令Ue>0,则 电压差增大,使控制放大器的输出电流增大,比例电磁铁的输出推力也增大,推动阀芯右移。而阀芯的右移又引起反馈电压Uf的增大,直至Uf与指令电压Ue基本相等,阀芯达到力平衡。此时。 Ue=Uf=KfX(Kf为位移传感器增益) 上式表明阀芯位移X与输入信号Ue成正比。若指令电压信号Ue<0,通过上式类似的反馈调节过程,使阀芯左移一定距离。 阀芯右移时,气源口P与A口连通,B口与排气口连通;阀芯左移时,P与B连通,A与排气口连通。节流口开口量随阀芯位移的增大而增大。上述的工作原理说明带位移反馈的方向比例阀节流口开口量与气流方向均受输入电压Ue的线性控制。 这类阀的优点是线性度好,滞回小,动态性能高。 二、滑阀式二级方向伺阀 下图所示为一种动圈式二级方向伺服阀。它主要由动圈式力马达、喷嘴挡板式气动放大器、滑阀式气动放大器、反馈弹簧等组成。喷嘴档板气动放大器做前置级,滑阀式气动放大器做功率级。 这种二级方向伺服阀的工作原理是:在初始状态,左右两动圈式力马达均无电流输入,也无力输出。在喷嘴气流作用下,两挡板使可变节流器处于全开状态,容腔3、7内压力几乎与大气压相同。滑阀阀芯被装在两侧的反馈弹簧5、6推在中位,两输出口A、B与气源口P和排气口O均被隔开。 当某个动圈式马达有电流输入是(例如右侧力马达),输出与电流I成正比的推力Fm将挡板推向喷嘴,使可变节流器的流通面积减小,容腔6内的气压P6升高,升高后的P6又通过喷嘴对档板产生反推力Ff。当Ff 与Fm平衡时,P6趋于稳定,其稳定值乘以喷嘴面积Ay等于电磁力。另一方面,P6升高使阀芯两侧产生压力差,该压力差作用于阀芯断面使阀芯克服反馈弹簧力左移,并使左边反馈弹簧的压缩量增加,产生附加的弹簧

相关文档
最新文档