不同分子量壳聚糖对大肠杆菌抑制作用规律及其机理探讨

不同分子量壳聚糖对大肠杆菌抑制作用规律及其机理探讨
不同分子量壳聚糖对大肠杆菌抑制作用规律及其机理探讨

壳聚糖有广谱抗菌性,且对人体无毒副作用,深入研究有望研制出一种新的抗菌药物。关于壳聚糖抗菌特性的各种影响因素研究很多,但得出的结论并不一致。管云林等[1]与夏文水等[2]分别采用Strepcomycesau-reus(金黄色葡萄球菌)和Escherichiacoli(大肠杆菌)作为试验菌株,发现随壳聚糖的分子量降低抗菌性能增强。而KeisukeUENO等报道对S.aureus和E.coli,平均分子量小于5000的壳聚糖不仅没有抗菌作用,反而能促进细菌的生长,而分子量约为9300的壳聚糖几乎可以完全抑制细菌生长[3]。Yousook等报道分子量为4万的壳聚糖在浓度为0.5%时,对S.aureus和E.coli的杀灭率为90%;分子量为18万的壳聚糖在浓度为500mg/kg时,对S.aureus和E.coli的杀灭率几乎为100%[4]。为了验证壳聚糖的抗菌性能,探讨其抗菌作用的机理,有必要继续对壳聚糖的抗菌特性进一步地研究。本文选择革兰氏阴性菌E.coli作为试验菌株,用自制的不同分子量的壳聚糖作了抗菌性试验,研究了壳聚糖分子量与其抑菌性能之间的关系,并对壳聚糖的抑菌作用机理作了比较深入的探讨,为壳聚糖在食品防腐中的应用提供科学依据。

1试验仪器和材料

1.1实验仪器

LDZX40CI型立式自动电热压力蒸汽灭菌锅:上海中安医疗器械厂;DHG9070A型电热恒温干燥箱:上海益恒实验仪器有限公司;生化培养箱:国华电器;SNCJ1BU无菌操作台:苏净集团安泰公司;江南牌光学显微镜;血球计数板;索氏萃取器。

1.2试验材料

1.2.1供试菌

革兰氏阴性大肠杆菌(Escherichiacoli):由天水师

不同分子量壳聚糖对大肠杆菌抑制作用规律

及其机理探讨

冯小强1,杨声2*,王廷璞2,苏中兴1*,梁凯强2,雷新有2(1.兰州大学化学化工学院,甘肃兰州730000;2.天水师范学院生命科学与化学学院,甘肃天水741001)摘要:考察了不同分子量的壳聚糖对大肠杆菌的抗菌、抑菌作用的影响规律,并利用壳聚糖的席夫碱反应对其氨基加以保护,初步提出了壳聚糖对大肠杆菌的抗菌机理。研究结果表明,壳聚糖分子量越小,对大肠杆菌的抗菌作用越明显;壳聚糖对大肠杆菌的抑菌作用与其氨基的质子化有关。

关键词:壳聚糖;大肠杆菌;抑菌;规律;机理

中图分类号:TS202.3文献标识码:A文章编号:2054-0571(2007)02-0016-03

Antibacterialactivityofchitosanwithdifferentmolecularweight

onEscherichiacoliandthepossiblemechanism

FENGXiao-qiang1,YANGSheng2*,WANGTing-pu2,SUZhong-xing1*,LIANGKai-qiang2,LEIXin-you2(1.CollegeofChemistryandChemicalEngineering,LanzhouUniversity,Lanzhou730000,China;

2.CollegeofLifeSciencesandChemistry,TianshuiNormalUniversity,Tianshui741001,China)

Abstract:TheantibacterialeffectsofchitosanwithdifferentmolecularweightstoEscherichiacoliwerestudied.WiththeprotectionofaminogroupbySchiff’sreaction,theantibacterialmechanismwasrevealedprimarily.Theresultsshowedthatthesmallerthemolecularweightofchitasonwas,thestrongertheantibacterialeffectwas.TheantibacterialabilityofchitosantoE.coliwasrelatedtotheprotonationofaminogroup.

Keywords:chitosan;Escherichiacoli;antibacterial;law;mechanism

收稿日期:2006-04-27

基金项目:天水师范学院科学研究基金资助(X3-01)

作者简介:冯小强(1980-),男,甘肃平凉人,硕士研究生;杨声*,教授;苏中兴*,副教授,通讯作者。

a分子量5万的CTS浓度为1.5%时的抑菌圈,b分子量100万的CTS浓度为1.5%时的抑菌圈,c1%HAc的抑菌圈

图2壳聚糖对大肠杆菌的抑菌圈照片

Figure2.InhibitionzoneofchitosanforEscherichiacoli

1壳聚糖(a)、席夫碱壳聚糖(b)的红外光谱

Figure1.IRspectrumofchitosan(a)andshiffbasechitosan(b)

范学院微生物实验室提供。1.2.2供试壳聚糖(见表1)

1.2.3培养基

牛肉膏蛋白胨固体培养基[5]。2试验方法

2.1低分子量及水溶性壳聚糖的制备2.1.1壳聚糖的降解

称取CTS32g,加入2%HAc400mL,搅拌溶解后,再用分液漏斗缓慢加入5%H2O2200mL,60℃回流反应。反应到一定时间后,取样冷却、抽滤,滤液用氢氧化钠溶液调至pH10,静置2h后过滤,得非水溶性产品。滤液在50℃减压浓缩,浓缩液用2 ̄3倍量的无水乙醇析出沉淀,静置过滤,无水乙醇洗涤数次至中性,冷冻干燥,得水溶性产品。2.1.2降解物分子量的测定

采用黏度法[6]。

2.2壳聚糖的氨基保护(席夫碱反应)

[7]

将5#壳聚糖1g分散到50mL甲醇中,加入3mol的甲醛,在室温下搅拌16h过滤,用甲醇在索氏萃取器中萃取4h,再用乙醚洗涤,进一步除去残留的醛,空气干燥,即得到氨基被保护的产物。

2.3席夫碱改性壳聚糖的IR光谱分析

如图1红外光谱所示,3450cm-1处是形成氢键缔

合的-OH伸缩振动吸收峰与-NH2的伸缩振动吸收峰重叠而增宽的多重吸收峰,1599.62cm-1处是氨基的

N-H特征吸收峰,1650cm-1处是酰胺吸收峰。比较图1中a和b可以看出,在b中,1599.62cm-1的氨基的N-H特征吸收峰消失,这说明-NH2已经得到了保护。

2.4壳聚糖对大肠杆菌的抑菌试验

2.4.1菌种的活化

受试菌种接种于液体营养肉汤培养基内,在37℃、转速为100r/min的摇床内活化24h,使菌液达到一定浓度。2.4.2菌悬液的制备

将活化后的大肠杆菌用接种环挑取2环菌苔于无菌水中,用稀释平板计数法计数(见国标GB47892-1994),制成含菌数约为106个/mL的菌悬液备用。2.4.3滤纸片法测定抑菌作用[8-9]

取φ10mm的灭菌圆滤纸片放入不同浓度的壳聚糖溶液(1%的醋酸溶液为溶剂)中浸泡。将0.1mL菌悬液涂布在培养基平板上,用无菌镊子取浸泡过的圆滤纸片并贴于培养皿中,每皿贴3片。试验设置壳聚糖浓度分别为0.2%、0.4%、0.6%、0.8%、1.2%、1.5%、2%。并以1%的醋酸为对照,对照样除不加壳聚糖外,其他条件与添加壳聚糖的培养基一致。每种浓度重复3次试验,在37℃培养24h,测定圆滤纸片的抑菌圈直径。抑菌圈如图2所示。

型号来源

脱乙酰度/%分子量/(×104)

1#浙江玉环县壳聚糖有限公司981002#浙江玉环县壳聚糖有限公司

96803#自制95204#自制97145#自制>9556#

自制

5(水溶性)

表1供试壳聚糖Table1.Testedchitosan

表2壳聚糖浓度为1.5%时,不同分子量壳聚糖的抑菌圈Table2.Inhibitionzoneofchitosanwithdifferentmolecular

weightattheconcentrationof1.5%CTS分子量/(×105)

抑菌圈直径/mm

0.5>211.4182.0178.01510

14

表3不同浓度时5#壳聚糖(分子量5×104)的抑菌圈Table3.InhibitionzoneofNO.5chitosan(molecularweightof

5×104)dissolvedatdifferentconcentrationsCTS浓度/%

抑菌圈直径/mm

0.2130.4140.6160.8171.2191.5>212.0

>21

3结果与讨论

3.1壳聚糖对大肠杆菌的抑制作用规律

在试验中,先将壳聚糖浓度配制成1.5%,测定其对

大肠杆菌的抑菌圈,如表2所示。

从表2可以看出,不同分子量的壳聚糖对大肠杆菌都有一定的抑菌作用,但随着壳聚糖分子量的增加,其抗菌效果逐渐减弱。低分子量壳聚糖对大肠杆菌有较好的抑制作用,这与管云林[1]及夏文水[2]等的结论一致。测定不同浓度时5#壳聚糖(分子量5×104)的抑菌圈,如表3所示。从表3可以看出,随着壳聚糖浓度的增加,其抑菌作用越明显,但当其浓度达到1.5%时,变化不再很明显,此即为最佳抑菌浓度。

3.2壳聚糖对大肠杆菌的抑制作用机理试验发现,当相同分子量(5万)的水溶性CTS溶于1%HAc中浓度为1.5%时,有一定的抗菌活性,其抑菌圈为φ14mm ̄φ15mm,同1%HAc(φ12mm)相比,有一定的增强。但当将其溶于蒸馏水中时,无抑菌圈出现。为此,将分子量(5万)的壳聚糖通过席夫碱反应将其-CHO加以保护,将其溶于1%HAc中,配制成浓度为1.5%的溶液,其他同上,测定其抑菌圈,其抑菌圈为φ12mm。而1%HAc对大肠杆菌的抑菌圈为φ12mm,这说明席

夫碱改性后的壳聚糖失去了抑制细菌的功能,同时也说明壳聚糖对大肠杆菌的抑制作用主要与-NH2的质子化有关。壳聚糖分子链上-NH2在酸性条件下易与H+结合形成-NH3+正离子,随着壳聚糖分子量的减小,其分子链上的单位-NH2含量增多,

对于细菌(带有负电荷)的静电引力增强,更多的细菌被絮凝、聚沉,其生长繁殖也随之减弱,即表现为壳聚糖的抗菌性随其分子量的减小而增强。另外,在酸性环境下,质子化氨中的H+可以与营养物质结合,并能交换细胞表面的某些微生物生长所需要的阳离子(如Mn2+、Ca2+、Mo2+等),从而影响细胞结构的稳定性,对机体产生不利的影响。

目前关于壳聚糖的抗菌作用主要有2种机理[10]:第1是壳聚糖通过吸附在细胞表面,形成一层高分子膜,阻止营养物质向细胞内的运输,从而起到抑菌杀菌作用;第2是壳聚糖通过渗透进入细胞体内,吸附细胞体内带有阴离子的细胞质,并发生絮凝作用,扰乱细胞正常的生理活动,从而杀灭细菌。这2种模型都可用来解释试验现象,高分子量壳聚糖和低分子量壳聚糖都对大肠杆菌有抑制作用,但其机理有所不同。高分子量壳聚糖主要遵循的是模型1;

而低分子量壳聚糖2种模型都起作用,故抑制作用较高分子量壳聚糖好。对于革兰氏阴性菌(E.coli)来讲,后一种作用机理起主导作用,因为相对分子质量越小,越容易进入细胞壁的空隙结构内,从而干扰细胞的新陈代谢,杀死细菌。试验对大肠杆菌的研究结果显示,相对分子质量低的壳聚糖的抑菌作用优于相对分子质量高的壳聚糖,此结果恰恰验证了壳聚糖对革兰氏阴性菌的作用机理,即质子化壳聚糖通过某种途径进入到菌体细胞内,吸附结合一些带负电的细胞质,扰乱菌体细胞的正常生理代谢,从而抑制细菌生长。分子质量相对低的壳聚糖的抑菌作用优于分子质量相对高的壳聚糖,是因为分子质量低的壳聚糖更有可能穿过菌体细胞膜而与细胞质发生作用。或者说,平均相对分子质量较低的壳聚糖,含有较多的能穿过细胞膜的小的壳聚糖,因而有较强的抑菌作用。之所以在壳聚糖的抑菌作用与其分子量的关系上的说法比较混乱,可能是因为壳聚糖是一种混合物,是由大分子量和小分子量的壳聚糖组合而成的,其分子量只是平均分子量。不同分子量的壳聚糖取决与其组成中大分子量和小分子量壳聚糖在混合物中所占的比例。最近的研究发现,壳聚糖的抗菌作用与具体的菌种有关,不能笼统而论。所以,如果能将壳聚糖进行比较彻底地分离,使其大分子和小分子分开,再探讨其抑菌规律及机理,也许会取得令人满意的结果。

4结论

壳聚糖对大肠杆菌具有较好的抑制作用,壳聚糖

分子量越小,其对大肠杆菌的抑制作用越好。

壳聚糖对大肠杆菌的抗菌作用与其氨基的质子化有关,即必须在酸性介质中才表现出抑菌作用。

参考文献:

[1]管云林,付强,郎铁柱,等.分子量对壳聚糖抗菌性的影响[A].中国甲壳资源研究开发应用学术研讨会论文集(下册)[C].青岛:中国药学会海洋药物专业委员会,中国海洋湖沼学会药物学分会,1997:35-36.

[2]夏文水,等.甲壳低聚糖功能性质[J].无锡轻工大学学报,1996,15(4):297-302.

[3]UENOK,etal.Applicationsofchitinandchitosan[J].AdvinChitinSci,1997,2:102.[4]YOUSOOKS.Theantibioticeffectofchitosanonbacteriaofvaryingcellwellcomposition[J].AdvinChitinSci,1997,2:890-896.

[5]沈萍,范秀蓉,等.微生物学实验[M].北京:高等教育出版社,2003.

[6]曹宗顺,卢凤琦.药用壳聚糖生物降解膜的研制[J].中国医药工业杂志,1996,27(1):14.

[7]蒋挺大.壳聚糖(第一版)[M].北京:化学工业出版社,2001.[8]YANGTC,CHOUCC,LICF.AntibacterialactivityofN-alkylateddisaccharidechitosanderivatives[J].IntJFoodMicr-obiol,2005,97:237-245.

[9]赵玉清,刘宝全,李慧.壳聚糖-Ag(Ⅰ)的配位与抑菌性研究[J].北华大学学报:自然科学版,2000(10):384-386.

[10]UCHIDAY.Antibacterialactivityofchitinandchitosan[J].GekkanFudoKemikaru,1988,22(4):39-44.

米曲霉沪酿3.042原生质体制备和再生的研究

李铁,臧威,刘井权,孙剑秋*,肖静,张淑园,张兰兰

(齐齐哈尔大学生命科学与工程学院,黑龙江齐齐哈尔161006)

摘要:研究了酶液组成、酶解温度、酶解时间、渗透压稳定剂、培养基成分、再生培养方式等因素对米曲霉沪酿3.042原生质体制备和再生的影响,建立了米曲霉沪酿3.042原生质体制备和再生的适宜方法,即在查氏液体培养基中28℃培养10h,菌体用0.8mol/LNaCl配制的3%溶壁酶、1%纤维素酶、1%蜗牛酶、0.5%溶菌酶的复合酶液,30℃酶解4h ̄6h后,经0.8mol/LNaCl再生固体培养基,双层平板培养法进行原生质体再生,可获得超过70%的再生率。为进一步通过原生质体技术选育优良的酱制品生产用菌株奠定了方法学基础。

关键词:米曲霉沪酿3.042;原生质体;制备;再生

中图分类号:Q813.1文献标识码:A文章编号:2054-0571(2007)02-0019-04

ProtoplastpreparationandregenerationofAspergillusoryzae3.042LITie,ZANGWei,LIUJing-quan,SUNJian-qiu*,XIAOJing,ZHANGShu-yuan,ZHANGLan-lan(CollegeofLifeSciencesandEngineering,QiqiharUniversity,Heilongjiang161006,China)

Abstract:ThefactorsaffectingprotoplastformationandregenerationofAspergillusoryzae3.042werestudiedincludingcompositionofen-zymemixture,enzymolysistemperature,enzymolysistime,osmoticpressurestabilizer,mediumcomposition,culturemethodsandsoon.Theappropriatemethodforprotoplastformationandregenerationweredeveloped.A.oryzae3.042wasculturedinCzapekliquidmediumfor10h,thenthemyceliaweregatheredbycentrifugationanddigestedbyenzymemixtureconsistingof0.8mol/LNaCl,3%lywallzyme,1%cellulase,1%snailaseand0.5%lysozymeat30℃for4 ̄6h,followedbytheregenerationonsolidmediumcontaining0.8mol/LNaClbydouble-layerscultivation.Aregenerationrateof70%wasachieved.Thisstudyprovidedanewmethodtoscreengoodstrainsforsauceproduc-tionbyprotoplasttechnology.

Keywords:Aspergillusoryzae3.042;protoplast;preparation;regeneration

收稿日期:2006-08-30

基金项目:黑龙江省教育厅科学技术研究项目(10541259)

作者简介:李铁(1973-),男,黑龙江齐齐哈尔人,实验师;孙剑秋*,通讯作者。

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

壳聚糖的制备与纯化

甲壳素是一种白色或灰白色的半透明无定形固体,通常在270℃分解。甲壳素基本上不溶解于水、乙醇、乙醚、稀酸以及稀碱等物质,它可溶于浓度较高的无机酸,但不溶于稀硫酸等稀酸。壳聚在溶液状态时,需要被放置在酸性环境中,但是,由于壳聚糖具有醛基结构,因此,壳聚糖在酸性溶液中易发生降解,从而使壳聚糖溶液粘度下降,通过加入甲醇、丙酮、乙醇等物质可以使壳聚糖的溶液粘度升高,在试验中一般常用乙醇,作用最为明显。由于甲壳质中含有羟基,壳聚糖中同时含有羟基和氨基,因此,壳聚糖和甲壳质可以通过酚化、羧基化、氰化、螫合、水解、醚化、酯化、醛亚胺化、烷化、叠氮化、羟基化、成盐、氧化、卤化、接枝与交联等反应生成不同结构和不同性能的衍生物[29]。 甲壳质通过脱乙酰反应可制得壳聚糖,通常使用质量分数为50%左右的氢氧化钠溶液处理甲壳质并加热到105℃,在该温度下保持两小时,然后将材料水洗至中性,经过抽滤、干燥即可得到白色的壳聚糖。壳聚糖的脱乙酰度和相对分子量受反应温度、反应时间以及碱液浓度的影响,使用蟹虾壳海蟹壳、对虾壳、河虾壳和蚕蛹等原料在同一方法和条件下制备壳聚糖,其中以海蟹壳的产率最高,可见海蟹壳是制备壳聚糖的最佳原料。除此之外,还以使用酶法、微波法等方法制备壳聚糖[30]。2.1.2.2 壳聚糖的纯化及脱乙酰 壳聚糖(Chitosan)的纯化: (1)用天平称取6 g chitosan 于800 ml 1%(V/V)的醋酸溶液中,磁力搅拌 溶解2h,待完全溶解后静置2h,可见烧杯底有大量沉淀; (2)将壳聚糖溶液倒入离心管,用普通天平平衡后,再用高速离心机9 000 rmp, 离心10 min 收集上清,倒入另一干净的1 L 烧杯中; (3)边用磁力搅拌器搅拌,边用5 %NaOH 溶液缓慢调pH 值到9,静置2 h, 待chitosan 完全析出; (4)再用高速离心机9 000 rmp, 离心10 min,或者使用真空泵抽滤以收集 纯化的chitosan; (5)放入-70 ℃冰箱过夜,用冻干机干燥备用[31]。 壳聚糖(Chitosan)的脱乙酰: 1)用500 ml 三口瓶配40 %(W/V) NaOH 溶液,与壳聚糖混合,然后将洗 净的磁力搅拌子放入其中; (2)打开磁力搅拌器总开关及加热开关,将反馈式温度计插入硅油中,并将温 度计导线接入仪器后座插口,调节温度计旋钮将温度设定为95℃,待温度达到预定 值时,将三口瓶架入油浴槽,装好冷凝管,打开自来水水龙头和搅拌开关,反应2 h; (3)关闭仪器各开关,将三口瓶架在空中,让瓶底的油滴到用油浴槽内,同时 让温度自然冷切; (4)加入三蒸水稀释后,倒入垫有双层定性滤纸的陶瓷漏斗中,用真空泵抽滤, 多次稀释抽滤洗涤至中性; (5)收集脱乙酰壳聚糖,放入-20 ℃冰箱过夜,用冻干机干燥[31]。 脱乙酰度测定 测定脱乙酰度的方法很多,常用的有FT-IR、NMR、紫外、元素分析等,但是 常用为双突跃电位滴定法,其步骤如下[31]: (1)配制壳聚糖溶液:用电子天平精确称量0.2 g Chitosan 于100 ml 烧杯中, 加入20 ml 0.1 M HCl 溶液,再加40 ml 三蒸水,用保鲜膜封口后磁力搅拌至充分溶解; (2)配制0.4 g/ml NaOH 标准溶液:用电子天平精确称量1.6 g NaOH 于50 ml 烧杯中,溶解后用100 ml 容量瓶定容; (3)用标准缓冲液校正酸度计; (4)边搅拌边滴定,记录数据; (5)用Excel 和Origin 处理数据,画出滴定曲线,得出取代度。 2.1.2.3 壳聚糖改性

壳聚糖在国内外食品中的发展现状及其应用前景

壳聚糖在国内外食品中的发展现状及其应 用前景 摘要: 壳聚糖是一种可被生物体降解而对人体无毒的物质,不仅在食品领域有广泛的应用,在饲料行业、医药行业、以及环境保护等许多领域都有广泛的应用。本文主要概述了壳聚糖在国内外食品中的发展现状,并介绍了壳聚糖的性质、在食品中的应用及其化学改性,阐明了壳聚糖在食品开发方面的广阔前景。 关键词:壳聚糖,添加剂,改性,复合纳米粒子 Chitosan in the development situation of food at home and abroad and its application prospects Ma Zhengran Class 0804, School of Food of Science and Technology, Jiangnan University; 010******* Abstract: Chitosan is a biodegradable and non-toxic substances on the human body. It's not only widely use d in food industry, but also in feed industry, pharmaceutical industry, environmental protection a nd many other areas. This article is mainly about chitosan in the development situation of food at home and abroad,and describes the nature of chitosan, the application in food industry and che mical modification of chitosan and set out the broad development prospects of chitosan. Key words:chitosan; additives; modification; composite nanoparticles 引言 壳聚糖是自然界中唯一带正电荷、阳离子的膳食纤维,被称为挽救人类健康的神奇“电粉”。作为天然的可再生资源,壳聚糖具有广谱抗菌性、吸附性、成膜性、保湿性、生物可降解性、生物可相容性、无毒性以及极好的螯合能力,且能加速伤口愈合。大量应用实例证明,壳聚糖对人体的各项生理功能具有良好的调节作用,并显示出许多生命特征,如改善代谢内分泌功能,调节免疫功能;改善消化机能,降低胆固醇;调节人体酸碱平衡吸附,排除体内有害重金属;活化细胞,增强人体生命活力,延缓衰老等。近年来,随着食品工业的不断发展,国内外研究人员对壳聚糖的关注和重视也不断加强。本文主要论述壳聚糖在国内外食品工业中的各种研究应用及其发展前景。 1、壳聚糖的简介 甲壳素是一种带正电的碱性多糖,广泛存在于虾、蟹、昆虫的甲壳,以及真菌(酵母、霉菌)的细胞壁和植物(如蘑菇)的细胞壁中,是自然界中仅次于纤维素的第二大天然高分子化合物,是存在于自然界中唯一能够被生物降解的阳离子高分子材料。甲壳素经浓碱处理,脱去分子中的乙酰基后,转化为可溶性的脱乙酰甲壳素,又称壳聚糖(Chitosan),学名:几丁聚糖。其化学结构是由大部分氨基葡萄糖和少量的N一乙酰基葡萄糖通过β一1,4糖苷键连接起来的直链多糖。 分子式为:(C6H11NO4)n 结构: 2、壳聚糖在食品中的应用 2.1 抗菌剂

壳聚糖的应用研究进展(综述性论文)

绿色原料——壳聚糖的应用研究进展 09化学1班 XXX 指导老师:沈友教授 (惠州学院化学工程系,广东,惠州,516007) 摘要:本文综述了绿色原料壳聚糖的应用研究进展,着重介绍了壳聚糖在食品,水处理,生物药用,造纸业等方面的应用。 关键词:壳聚糖应用食品水处理 前言 原料在化学品的合成中非常重要,其可以成为影响一个化学品的制造、加工与使用的最大因素之一。如果一个化学品的原料对环境有负面的影响,则该化学品也很可能对环境具有净的负面影响。要实现绿色化学,在选择原料时应尽量使用对人体和环境无害的材料,避免使用枯竭或稀有的材料,尽量采用回收再生的原材料,采用易于提取、可循环利用的原材料,使用环境可降解的原材料。 自然界的有机物,数量最大的是纤维素,其次是蛋白质,排在第三位的是甲壳素,估计每年生物合成甲壳素100 亿t。甲壳素N-脱乙酰基的产物壳聚糖就是一种重要的绿色原料。 壳聚糖化学名称为聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖,壳聚糖的外观为白色或淡黄色半透明状固体, 略有珍珠光泽, 可溶于大多数稀酸如盐酸、醋酸、苯甲酸等溶液, 且溶于酸后,分子中氨基可与质子相结合, 而使自身带正电荷。自1859年,法国人Rouget首先得到壳聚糖后,这种天然高分子的生物官能性和相容性、血液相容性、安全性、微生物降解性等优良性能被各行各业广泛关注,在医药、食品、化工、化妆品、水处理、金属提取及回收、生化和生物医学工程等诸多领域的应用研究取得了重大进展。壳聚糖无毒无害,具有良好的保湿性、润湿性,能防止静电; 化学稳定性良好, 但吸湿性较强, 遇水易分解。对壳聚糖进行化学改性, 得到的壳聚糖衍生物在许多物化性质方面都得到改善,其应用也更加受到关注。本文着重介绍了壳聚糖在食品,医药,水处理方面的应用进展。

纳米壳聚糖对金属离子的吸附研究

纳米壳聚糖对金属离子的吸附研究 作者:刘美静, 吕建洲 作者单位:辽宁师范大学生命科学学院,辽宁大连,116029 刊名: 安徽农学通报 英文刊名:ANHUI AGRICULTURAL SCIENCE BULLETIN 年,卷(期):2011,17(3) 参考文献(5条) 1.陈盛甲壳素脱乙酰基方法及测定比较 1996(08) 2.袁巨龙;刘盛辉;邢彤纳米技术的应用及发展动向[期刊论文]-浙江工业大学学报 2000(03) 3.郭敏杰;刘振;李梅壳聚糖吸附重金属离子的研究进展[期刊论文]-化工环保 2004(04) 4.袁巨龙;刘盛辉;邢彤纳米技术的应用及发展动向[期刊论文]-浙江工业大学学报 2000(03) 5.刘志挺溶剂蒸发法在微球制备中的应用及研究进展[期刊论文]-广东药学院学报 2007(05) 本文读者也读过(4条) 1.张军丽.张燕.潘庆才.ZHANG Jun-li.ZHANG Yan.PAN Qing-cai合成壳聚糖/DNS杂化材料及吸附重金属Pb2+的性能研究[期刊论文]-应用化工2011,40(2) 2.刘朋肿瘤弱酸性微环境响应壳聚糖基给药载体的研究[学位论文]2011 3.严文锦.许秀枝.王艰.李柱来.YAN Wen-jin.XU Xiu-zhi.WANG Jian.LI Zhu-lai含ZnS的壳聚糖-阿拉伯胶含药微囊的制备及研究[期刊论文]-海峡药学2011,23(5) 4.史佳伟.刘菁.严梅君.SHI Jia-wei.LIU Jing.YAN Mei-jun壳聚糖-g-聚丙烯酸/海泡石复合材料对Hg(Ⅱ)的吸附[期刊论文]-广州化工2011,39(5) 引用本文格式:刘美静.吕建洲纳米壳聚糖对金属离子的吸附研究[期刊论文]-安徽农学通报 2011(3)

壳聚糖

壳聚糖 壳聚糖(chitosan)是由自然界广泛存在的几丁质(chitin)经过脱乙酰作用得到的,化学名称为聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖,自1859年,法国人Rouget首先得到壳聚糖后,这种天然高分子的生物官能性和相容性、血液相容性、安全性、微生物降解性等优良性能被各行各业广泛关注,在医药、食品、化工、化妆品、水处理、金属提取及回收、生化和生物医学工程等诸多领域的应用研究取得了重大进展。针对患者,壳聚糖降血脂、降血糖的作用已有研究报告。 分子式:C56H103N9O39 分子量:1526.4539 简介 壳聚糖是甲壳质经脱乙酰反应后的产品,脱乙酰基程度(D.D)决定了大分子链上胺基(NH2)含量的多少,而且D.D增加,由于胺基质子化而使壳聚糖在稀酸溶液中带电基团增多,聚电解质电荷密度增加,其结果必将导致其结构,性质和性能上的变化,至今壳聚糖稀溶液性质方面的研究都忽略了D.D值对方程的影响。 壳聚糖是以甲壳质为原料,再经提炼而成,不溶于水,能溶于稀酸,能被人体吸收。壳聚糖是甲壳质的一级衍生物。其化学结构为带阳离子的高分子碱性多糖聚合物,并具有独特的理化性能和生物活化功能。 近年来国内外的报导主要集中在吸附和絮凝方面。也有报道表明,壳聚糖是一种很好的污泥调理剂,将其用于活性污泥法废水处理,有助于形成良好的活性污泥菌胶团,并能提高处理效率。但研究其对活性污泥中微生物活性的影响以及其强化生物作用的机理,国内外均未见有报导。

在甲壳素分子中,因其内外氢键的相互作用,形成了有序的大分子结构.溶解性能很差,这限制了它在许多方面的应用, 而甲壳素经脱乙酰化处理的产物一壳聚糖,却由于其分子结构中大量游离氨的存在,溶解性能大大改观,具有一些独特的物化性质及生理功能,在农业、医药、食品、化妆品、环保诸方面具有广阔的应用前景。 物性数据 1. 性状:白色无定形透明物质,无味无臭。 2. 密度(g/mL,25℃):未确定 3. 相对蒸汽密度(g/mL,空气=1):未确定 4. 熔点(oC):未确定 5. 沸点(oC,常压):未确定 6. 沸点(oC,5.2kPa):未确定 7. 折射率:未确定 8. 闪点(oC):未确定 9. 比旋光度(o):未确定 10. 自燃点或引燃温度(oC):未确定 11. 蒸气压(kPa,20oC):未确定 12. 饱和蒸气压(kPa,60oC):未确定 13. 燃烧热(KJ/mol):未确定

壳聚糖、尿素交联微球的缓释规律分析

壳聚糖、尿素交联微球的缓释规律分析 王海斌2,甘邱锋2,吴良展2,曾聪明2,何海斌1,2* 1福建农林大学农业生态研究所,福州(350002) 2 福建农林大学生命科学学院,福州(350002) E-mail:alexhhb@https://www.360docs.net/doc/e76637624.html, 摘要:以壳聚糖为包膜材料,探讨了壳聚糖包膜尿素缓释规律,并运用扫描电子显微观察技术对缓释前后的微球物理结构进行表征。结果表明:包埋微球在浸泡的第1 d氮素释放量占总量的13.43%,34 d仅释放29.03%,符合缓释肥料标准。扫描电镜观察结果显示:微球浸泡前表面膜结构密实,浸泡34 d后微球表面膜形成大量突起的小孔,浸泡前后微球剖面网状结构没有发生明显变化。 关键词:壳聚糖;尿素;缓释肥料 1 引言 我国是一个农业大国,营养缺乏是限制我国农业生产的一个重要因素,化肥使用已成为农业增产主要措施之一。然而据统计,我国氮、磷、钾肥的平均利用率分别仅30%,20%,35% [1]。肥料利用率普遍偏低不仅造成资源的浪费, 降低了农业生产的经济效益, 而且还带来了严重的环境问题[2]。因此研究如何提高肥料利用率已成为当前农业研究的一个热门课题。氮素是植物生长过程中所必须的三大营养元素之一,因此研究氮肥的利用率具有重要的现实意义。缓/控释肥料,是提高肥料利用率的一种有效措施。一方面,减少了大量肥料施用,进而降低了环境污染。另一方面,其一次施肥可满足作物整个生育期的生长需要;其环保性、简便性、高效性已受到大量学者的关注。本研究以无毒、耐热、耐碱、耐腐蚀、可生物降解的世界第二大天然产物壳聚糖作为原料,研究其包埋尿素后的缓释规律。以期为缓释氮肥的开发提供一定的理论基础。 2 材料与方法 2.1 实验材料 壳聚糖(浙江玉环海洋生物化学有限公司产品)、尿素、氨水、冰醋酸、硒粉、浓硫酸、十二烷基苯磺酸钠(LAS)、戊二醛(25%的水溶液)、碘化汞、硫酸钾、碘酸钾、氢氧化钾、双氧水(30%)、酒石酸钠、硫代硫酸钠(以上试剂均为分析纯) 2.2实验仪器 KDN-08消化炉(上海新嘉电子有限公司),凯氏定氮仪(上海新嘉电子有限公司),DJ-1电动搅拌仪(金坛市大地自动化仪器厂),250-B生化培养箱(国华仪器),UV-1600紫外可见分光光度计(北京瑞利分析仪器公司),超低温冰箱(日本三洋株式会社),JSM-5310LV 扫描电子显微镜(日本电子)

壳聚糖的制备方法及研究进展

龙源期刊网 https://www.360docs.net/doc/e76637624.html, 壳聚糖的制备方法及研究进展 作者:张立英 来源:《山东工业技术》2018年第02期 摘要:壳聚糖作为一种碱性多糖被广泛应用于食品、生物、化工、医疗等领域。本文重点介绍了壳聚糖的制备方法及其研究进展,并对其发展趋势进行了展望。 关键词:壳聚糖;碱性多糖;制备方法 DOI:10.16640/https://www.360docs.net/doc/e76637624.html,ki.37-1222/t.2018.02.016 壳聚糖本身的分子结构类似于纤维素,因其多了一个带正电荷的胺基,使其化学性质较为活泼。目前壳聚糖正因其优良的生理活性在食品、化妆品、医药、化工、污水处理等方面展现出广阔的应用前景,近十年来国内外对于壳聚糖的开发研究热度一直持续不减,各种新颖的制备方法也是层出不穷。 1壳聚糖的来源 壳聚糖通常是由甲壳素(又名几丁质)经脱乙酰基作用获得,甲壳素在自然界中广泛存在于高等真菌以及节肢动物(虾、蟹、昆虫等)的外壳中,其中虾壳、蟹壳是工业生产壳聚糖的主要原料。由于大分子间的氢键作用,天然存在的甲壳素构造坚固,化学性质稳定,不溶于水、酸碱和一般的有机溶剂,这也使得甲壳素的应用范围非常有限,因此甲壳素只有经脱乙酰基处理成壳聚糖才能获得广泛应用。 2壳聚糖的制备方法 (1)化学降解法。传统的壳聚糖生产多采用化学降解法。作为壳聚糖工业生产最常用的制备方法,化学降解法简便易行,效率高,整个生产过程容易控制,但该法环境污染较为严重,对周边环境具有一定的破坏性。欧阳涟等从蟹壳中获取甲壳素,并通过脱乙酰反应制备出了壳聚糖。试验探究了影响产物壳聚糖脱乙酰反应的各种因素,如反应温度、碱液含量及反应时间等,最终确定制备高脱乙酰度壳聚糖的条件为反应温度70℃,碱液质量分数47%,反应时间10 h。 (2)微生物培养法。微生物发酵法生产壳聚糖起源于美国,我国从上世纪90年代开始研究。其主要原理是利用微生物自身生产的酶进行催化,从而脱去甲壳素中的乙酰基,进而制备壳聚糖。目前该领域研究重点主要集中在优良菌株的选育和培养基的优化上。 贺淹才等首先采用电解法从培养的黑曲霉湿菌体中制得甲壳素,然后采用碱提取法从培养的黑曲霉湿菌体中制备壳聚糖。试验基于黑曲霉细胞壁的主要成分为蛋白质与甲壳素,而蛋白质带有可电离的基团,于溶液中可形成带电荷的阳离子和阴离子,在外加电场作用下发生迁

改性壳聚糖富集研究综述范文【精编】

改性壳聚糖富集研究综述 摘要:壳聚糖及其衍生物是一种天然高分子,随着对其研究的深入发展,涉及的内容和应用范围越来越广泛。本文综合概述了壳聚糖的结构、性质、富集及其化学改性的方法,简单介绍了它们的应用领域。 关键词:壳聚糖;富集;化学改性;应用。 引言: 壳聚糖具有许多独特的化学物理性质,根据其酸化、酉旨化和氧化、接枝与交联、经基化、经烷基化等反应还可制备成多种用途的产品,而且从氨基多糖的特点出发具有比纤维素更为广泛的用途。对壳聚糖的应用开发研究,自本世纪六十年代以来就十分活跃,近年来国际更是十分重视对它的深入开发和应用。通过对甲壳质和壳聚糖进行化学修饰与改性来制备性能独特的衍生物已经成为当今世界应用开发的一个重要方面。 1、壳聚糖及其改性吸附剂 壳聚糖(chitosan)是一种天然化合物,属于碳水化合物中的多糖,是甲壳素N-脱乙酰基的产物,其学名是β(1→4)-2-氨基-2-脱氧-D-葡萄糖。 壳聚糖本身的基本结构是葡萄糖胺聚合物,与纤维素类似。但因多了一个胺基,带有正电荷,所以使其化学性质较为活泼。且因其聚合分子结合键角度自然扭转之故,对于小分子或元素会发生凝集螫合作用。根据甲壳素脱乙酰化时的条件不同,壳聚糖的脱乙酰度和分子量不同,壳聚糖的分子量通常在几十万左右。但一般来说N-乙酰基脱去55%以上的就可称之为壳聚糖。 壳聚糖本身性质十分稳定,不会氧化或吸湿。鉴于壳聚糖及其衍生物具有优良的生理活性,在食品、生物制药、水处理方面显示出非常诱人的应用价值。近年来,国内外对壳聚糖的开发研究十分活跃。 2、壳聚糖富集工艺的研究现状 由于壳聚糖吸附剂有以上的优点,学者们对其富集的工艺已经有了较为深入的研究。 李斌,崔慧[1]研究了以壳聚糖作富集柱,稀H2SO4为洗脱剂,稀NaOH 为再生剂,火焰原子吸收光谱法简便、快速分离富集测定水中痕量Cu(Ⅱ)的方法,于波长325nm 处测定,检出限为20ng·ml-1,线性范围为10~20μg·ml-1。此法的优点在于简便、快速、选择性好、经济实用、效果良好。但由于壳聚糖易降解,在实际操作中存在着流速控制难,富集效果不均一,空白大的问题。

壳聚糖特性及其应用

壳聚糖特性及其应用 作者简介:孔佳琦,女,本科,西北民族大学化工学院,专业:制药工程。 力芬,女,本科,西北民族大学化工学院,专业:环境工程。 摘要:壳聚糖是自然界中储量丰富天然高分子化合物,壳聚糖及其衍生物具有各种优良的性质,本文主要介绍了壳聚糖的特性以及其在不同方面的应用情况,为壳聚糖的研究发展提供依据和思路。 关键词:壳聚糖;特性;应用 壳聚糖(chitosan)又称脱乙酰甲壳素,是由自然界广泛存在的几丁质(chitin)经过脱乙酰作用得到的,化学名称为聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖。纯甲壳素和纯壳聚糖都是一种白色或灰白色透明的片状或粉状固体,无味、无臭、无毒性,纯壳聚糖略带珍珠光泽。在特定的条件下,壳聚糖能发生水解、烷基化、酰基化、羧甲基化、磺化、硝化、卤化、氧化、还原、缩合和络合等化学反应,可生成各种具有不同性能的壳聚糖衍生物,从而扩大了壳聚糖的应用围。本文就壳聚糖的特性和应用进行阐述,为其研究和发展提供依据和思路。

1.特性 1.1抗菌性。壳聚糖是唯一一种天然的弱碱性多糖在弱酸溶剂中易于溶解,溶解后的溶液中含有氨基(NH2+),这些氨基通过结合负电子来抑制细菌。壳聚糖的抗菌性会随着其浓度的增加而增强。壳聚糖对大肠杆菌、金黄色葡萄球菌等有较强的抑制作用。 1.2吸附性。壳聚糖具有很强的吸附功能,特别是对重金属离子的吸附如对铜、汞、铅等离子的吸收。壳聚糖的吸附活性可以有选择地发挥作用。当然还可以吸附胆固醇、甘油三酯、胆酸、油脂[1]等。 1.3保湿性。壳聚糖衍生物分子中有许多活泼的亲水极性基团如-OH、-COOH及-NH2,这些基团可以使其显示出保湿性。对于羧基化壳聚糖,其羟基的含量远大于其他衍生物,且羧基的亲水性所以能够结合更多的水分。因此羧基化壳聚糖的吸湿、保湿性也就明显高于其他类型的壳聚糖衍生物。 1.4成膜性。壳聚糖是线性高分子聚合物,理化性能稳定,可生物降解,粘合性好,成纤成膜性能优良。吴国杰[2]等人研究了壳聚糖膜的制备方法和性能,探讨了壳聚糖溶液成膜的最佳工艺条件。 1.5调节作用。壳聚糖可激活体具有免疫功能的淋巴细胞,使其能分辨正常细胞和癌细胞,并杀死癌细胞。还能调

壳聚糖的功用详解

壳聚糖的功用详解,每位卫康家人必备的资料 壳聚糖的应用 1、食道癌——壳聚糖兑水,虫草兑水喷。每小时交替使用。 2、降压——壳聚糖每天6粒。 3、拉肚子——孩子1粒壳聚糖抖在饭里。 4、孩子长的过快——肌肉裂断,加壳聚糖。 5、癌症——每天50粒,可以活命。 6、身上所有包块——均需壳聚糖。 7、肾衰竭——壳聚糖加虫草。 8、减肥——壳聚糖加银兰。 9、肠胃不好,便秘——壳聚糖。 10、白癜风——壳聚糖,虫草,金苓,五个月。 11、糖尿病——壳聚糖加虫草。 12、脑血栓——壳聚糖,银兰,虫草。 壳聚糖溶液的作用 2粒壳聚糖+纯净水35毫升+白醋2毫升——壳聚糖啫喱水 一、浓度:加200毫升纯净水 1、去角质,每天2-3次 2、足,手上的白癣 3、伤口愈合,淡化瘢痕 4、喂鱼5-10毫升 二、浓度:1000毫升

1、皮肤过敏 2、黑斑,汗斑,湿疹,皮炎 3、香港脚,富贵手 4、代替洗发精 三、浓度:2000毫升 1、面疮,颜面白癣 2、荨麻疹 3、基础化妆 4、男士剃须后使用 壳聚糖的妙用 1、外伤:有外伤、烧伤烫伤、溃疡时可以将产品直接敷于伤口处,有止血止疼、止痒、杀菌、消炎之功效,且愈后不留疤痕。 2、治带状疱疹:用白醋把产品调成稠糊状,涂抹于患处,3-7天可痊愈。 3、治褥疮:将伤处清理消毒后,把产品直接敷于患处,1-3天可结痂愈合。 4、治口腔、食道溃疡:将产品直接倒入口中含放2-3次/日,1-2天可痊愈。 5、治红斑狼疮:内服:每日3次,每次4-6粒;外涂:把产品用白醋调匀,涂抹于患处,一个疗程可痊愈。 6、治面瘫:每天3次,每次3-4粒,2-7天(麻痹的面部神经修复)痊愈。 7、治便秘:早晚服2-4粒/次,饭前服用,多喝水。多吃水果蔬菜效果明显。对肠胃炎和痔疮有奇效!8、治脚气:将产品直接敷于患处,2-3天痊愈不复发。用白醋调和以后,涂抹于手脚表面可预防、治疗脚气、手脚发痒、脱皮。 9、治疗湿疹:用白醋把产品调匀,涂于患处2-4天可痊愈。此法对治疗男女阴部瘙痒、阴湿、湿疹有奇效!2-3次可痊愈。 10、减肥:早晚服用,每次6-10粒,饭前服用,配合晚餐少吃主食效果显著。

水溶性壳聚糖的制备方法

水溶性壳聚糖的制备方法,其特征在于包括以下步骤:(1)、原料处理:将壳体去除肉后,清水漂洗备用;(2)、稀酸处理:用壳体重2~4倍4~10%的盐酸浸泡1~2天,再用清水漂洗;(3)、碱煮除蛋白脱脂:用2~4倍8~12%氢氧化钠煮沸2~4小时,用清水漂洗;(4)、再脱钙处理:用2~4倍10~15%盐酸浸泡,以除去碳酸钙和磷酸钙,再用清水漂洗;(5)、脱色处理:用2~4倍清水调节PH值在5左右、在酸性条件下加入1%的KMnO↓[4]至紫红色不褪为止,以除去壳体的有机色素,再用清水漂洗;(6)、还原除去MnO↓[2]:将脱色后的壳体浸泡于1~3%的NaHSO↓[3]溶液中,以除去MnO↓[2],再用1~4%的草酸漂白得到白净甲壳素;(7)、脱乙酰度:用2~4倍55~70%的浓氢氧化钠在75~95℃处理10~20小时,获得壳聚糖粗品;(8)、纯化分离:将粗品溶于8~10倍3~6%稀醋酸,慢慢加入10%左右的浓碱至出现粘液,冷却至5~25℃,静置水解2~4小时,用稀盐酸中和至PH值在8~9,并产生絮状物,不断搅拌,至絮状物不再产生,过滤,洗涤除去氯化钠获得可溶性壳聚糖精品。 壳聚糖的结构、性质及其应用 张洁 海洋药学0844130 摘要:生物相容性好、可降解、对组织和细胞无毒副作用的生物材料一直是生物医学领域研究的热点。壳聚糖(α(1-4)2-氨基2-去氧β-D葡聚糖)是甲壳素脱乙酰得到的天然多糖中惟一的碱性多糖,具有很多优良的特性。本文就壳聚糖的结构、性质及其应用进行综述。 关键词:壳聚糖,结构,性质,应用 壳聚糖(Chitosan,简称CTS),壳聚糖是由N-乙酰糖胺组成,其中糖胺的含量超过90%,具有黏多糖相似的结构特点,而黏多糖在组织中分布广泛,是细胞膜有机组成成分之一,故壳聚糖具有优异的生物相容性⑴~⑵。表现为无毒、无刺激、无免疫抗原、无热原反应、不溶血,有抗菌消炎、促进伤口愈合,抗酸、抗溃疡、降脂和降低胆固醇的作用⑶~⑸。而且具有直接抑制肿瘤细胞的作用,并可通过活化免疫系统显示抗癌活性,与现有的抗癌药合用可增强抗癌效果,近年来其作为药物微球材料的研究也受到了极大的重视⑹,是一种安全可靠的天然生物活性多糖。本文就壳聚糖的结构、性质及其应用进行综述。 一.壳聚糖的结构与性质1.壳聚糖的来源—甲壳素 壳聚糖来源于一种自然资源十分丰富的线性聚合物一甲壳素,是甲壳素经脱乙酰化反应后得到的一种生物高分子Ⅲ。甲壳素是一种天然多糖类生物高分子聚合物,在自然界中广泛存在于低等生物菌类、藻类的细胞,节支动物虾、蟹、昆虫的外壳,软体动物(如鱿鱼、乌贼)的内壳和软骨,高等植物的细胞壁等,将甲壳动物的外壳通过酸碱处理,脱去钙盐和蛋白质,即可得到甲壳素。甲壳素化学名为[(1,4)一2一乙酰胺基一2一脱氧一B—D-葡萄糖],分子式为(C8H13N05)。,单体之间以B(1-4)糖苷键连接,分子量一般在lO6左右,理论胺含量为6.9%。甲壳素的化学结构与植物中广泛存在的纤维素结构非常相似(见图l),故又称为动物纤维素。

壳聚糖及其结构特点

第一章 绪 论 1.1 壳聚糖及其结构特点 壳聚糖(Chitosan)是甲壳素(Chitin)脱乙酰基后的产物,是甲壳素最基本、最重要的衍生物。甲壳素又名甲壳质、几丁质,化学名为(1,4)—2—乙酰胺—2—脱氧—β—D—葡聚糖,主要存在于虾、蟹、蛹及昆虫等动物外壳以及菌类、藻类植物的细胞壁中。节肢类动物的干外壳约含20~50%甲壳素。自然界中甲壳素有三种结构:α、β、γ,其中最为常见、普通的是α型。地球上每年甲壳素的生物合成量为数十亿吨,是产量仅次于纤维素的天然高分子化合物。下图1-1是甲壳素和壳聚糖的结构: 图1-1 甲壳素、壳聚糖分子的结构示意图 Fig.1-1 The configuration schematic of chitin and chitosan 纯净的甲壳素和壳聚糖均为白色片状或粉状固体,比重0.3,常温下能稳定存在。甲壳素分子之间存在强烈的氢键作用,使得甲壳素形成高度的结晶结构,因而甲壳素分子高度难溶。甲壳素不溶于水及绝大多数有机溶剂,也不溶于稀酸、稀浓碱,只溶于浓酸和某些溶剂。壳聚糖分子的活性基团为氨基而不是乙酰基,因而化学性质和溶解性较甲壳素有所改善,可溶于稀酸、甲酸、乙酸,但也不溶于水和绝大多数有机溶剂。由于氨基和羟基比较活泼,壳聚糖的化学性质较甲壳素活泼,可以发生多种化学反应,比如烷基化、酰基化反应等等。 1.2 壳聚糖及其衍生物产品的应用 壳聚糖及其衍生物由于其可再生性、生物相容性以及结构中的多种活性基团,具有多种优良的性质,已经广泛应用于化妆品、食品、医药、农业、环保等多个行业中。 1.2.1 在环保中的应用 壳聚糖及其衍生物能够通过分子中的氨基和羟基与多种金属离子形成稳定的整合物且可帮助微粒凝聚,故广泛用作化工、轻工纺织等废水处理中的吸附剂和絮凝剂。壳聚糖作为吸附剂和絮凝剂,能够有效地捕集溶液中的重金属离子和 有机物,并可以抑制细菌生长,使污水变清,特别是对于汞、铬、铜、铅、钴、3n n 甲壳素壳聚糖

开题报告-壳聚糖纳米粒子吸附铜离子的性能研究

毕业论文开题报告 高分子材料与工程 壳聚糖纳米粒子吸附铜离子的性能研究 一、选题的背景和意义 壳聚糖分子中含有羟基,乙酰基和氨基,这决定了壳聚糖可进行多功能基团的化学反应。作为自然界唯一带有阳离子的天然多糖,具有独特的生物性能,故在纳米载药、载基因体系中倍受青睐[7-8]。壳聚糖如此多的生物活性使它在医药和生物材料领域备受关注,正在作为一种新型的天然高分子材料应用于实践中。甲壳素和壳聚糖都可以形成分子内和分子间氢键。甲壳素分子内有-OH-和-CO-基团,分子链之间存在强烈的氢键,所以几乎不溶于水及一般的有机溶剂、稀酸、稀碱或浓碱。而壳聚糖分子内有-OH,-NH 2 ,-O基团,也可以形成多种分子内氢键,但是与甲壳素不同的是其分子链的刚性和堆积密 度均小于甲壳素,所以其溶解性较甲壳素好。在稀酸中,壳聚糖的-NH 2被质子化为-NH 3 +, 破坏了原有的氢键和晶格结构,此时-OH与水分子结合,从而使壳聚糖溶解。壳聚糖为亲水性阳离子聚合物,在乙酸溶液中能产生聚电解质效应。在极稀的壳聚糖溶液中,壳聚糖的分子链充分伸直,类似刚性结构。甲壳素和壳聚糖是少数带正电荷的天然产物之一,具有许多独特的物理、化学性质和生物功能,又具有许多独特的生理活性,是一种非常有价值的新材料。 因CS本身所具有的特性,引起了人们的极大兴趣,在过去的30年中,其在农业、工业和医药领域中的应用发展迅速。在农业中,CS曾被用作一种抗病毒液添加到肥料中,帮助植物抵抗病毒侵害,以及作为重金属修复剂应用于农业和工业中。CS还曾作为一种化妆品添加剂和纺织品助染剂而广泛应用。在造纸的过程中也常加入CS作为加固剂。CS同时具有的生物活性、抗血凝成分和杀菌效果使其在外科手术中也有应用。。纳米粒子由于具有量子尺寸效应、小尺寸效应、表面效应、宏观量子隧道效应而显示出独特的物理化学特性,近年来, 以CS 为原料制备的纳米粒子由于其在药物运输、基因治疗、污水处理等方面具有广泛的用途而备受关注, 成为当前的研究热点。在水处理方面,壳聚糖可用作吸附剂、絮凝剂、重金属离子螯合剂等。其最大优点是不会产生二次污染,目前最大用量是作为无毒的阳离子絮凝剂处理有机废水和螯合废水中的有毒金属离子。相信结合两者的特性制备壳聚糖纳米粒子来处理有机废水和螯合废水中的有毒金属离子也是一种新的探索。

壳聚糖的作用机理

壳聚糖类造纸助剂的作用机理及应用 随着国民经济的发展和人民生活水平的提高,纸及纸制品的需求发生了明显的改变,特种纸、加工纸、高档纸供不应求,国家花费大量的外汇进口这类产品。为了改变这种状况,行之有效的方案之一是研制、开发相应的造纸化学品。当前广泛使用的造纸湿部助剂主要有合成高分子和天然高分子,前者虽然具有许多优势,如成本低、性能独特等,但基本上均为石油下游产品,而现存的石油资源短则数十年、长则一百年左右将会枯竭;而且这类合成高聚物绝大多数都不能生物降解,有的甚至有毒性,对生物、生态有不利的影响。显然,科学的发展观直接影响新型造纸助剂的开发领域。天然高聚物以其可再生、无毒、生物相容、环境友好、来源丰富,性能优良等特性,日趋受到人们的青睐,正逐步取代合成聚合物。 工业上常使用的天然高聚物主要有淀粉及其改性物、纤维素及其改性物、瓜尔胶及其改性物、蛋白质及改性物,但普遍存在着用量大、效果欠佳等不足,如淀粉作内部添加剂 在纸张上留着性能差、易产生沉积等。而分子结构与纤维素极其相似、易改性的壳聚糖则 早已被造纸化学品研究人员中的有识之士所关注。 近年来,国内外对甲壳素及其衍生物在造纸业中的开发利用的研究非常活跃;其中,日本的研究最广泛,包括纸张施胶、增强、助留助滤、整饰和造纸废水处理,以及以壳聚 糖为主要组分抄造特种纸等,申请了大量的专利,并有许多成熟的工业产品问世。我国近 期也有一些机构从事该项研究工作,主要集中在增强、助留助滤、特种纸上,发展势头良 好。 为使读者了解这一方面的新近研究和发展方向,本文在总结前人工作的同时,结合笔者近期研究的结果,就壳聚糖及其衍生物在造纸工业上的各类应用及作用机理作一综述。 1 壳聚糖及其衍生物在造纸工业中的应用 壳聚糖及其衍生物能与纤维素强烈作用,是一种性能优良的造纸助剂,迄今发表的大 量有关的研究报道及专利文献,几乎涉及到造纸工业的各个工序。 1.1 表面施胶剂或辅助施胶剂 草类纤维抄造出的纸张品质一般较差,壳聚糖强度高,成膜性好,与纤维素间的作用大,因而壳聚糖作草浆纤维纸张的表面施胶剂更有实际意义,可大幅度改善纸张性能。0.1~1g/m2 壳聚糖涂布于成纸表面上,能提高纸张的表面强度、柔软性及印刷性能。加入N 一烷基壳聚糖纤维于硫酸盐浆中,抄造出的纸张有高的 撕裂度、耐折度。与松香胶相比较, 壳聚糖作表面施胶剂时,有更高的干湿强度、耐破度、撕裂度,印刷性能、耐水性能及电绝缘性能。新闻

改性壳聚糖的研究进展

改性壳聚糖的研究进展 1壳聚糖的理化性质 壳聚糖(chitosan,(1,4)-2-氨基-2-脱氧-β-D-葡聚糖)是甲壳素(chitin,(1,4)-2-乙酰氨基-2-脱氧-β-D-葡聚糖)部分脱乙酰化的产物。甲壳素广泛存在于蟹、虾以及藻类、真菌等低等动植物中,含量极其丰富,自然界每年产量约在100亿吨,是仅次于纤维素的第二大多糖。它是由葡萄糖结构单元组成的直链多糖,此多糖中含有数千个乙酰己糖胺残基,因此在分子间形成很强的氢键,导致其不溶于水和普通有机溶剂,这就大大限制了其应用范围。 将甲壳素在碱性条件下加热,脱去N-乙酰基后可生成壳聚糖。人们常将N-脱乙酰度和粘度(平均相对分子质量)作为衡量壳聚糖性能的两项指标。N-脱乙酰度是判定壳聚糖溶解性的依据,脱乙酰度越高,分子链上的游离氨基就越多,在酸中的溶解性就越好;而壳聚糖相对分子质量越大,分子之间的缠绕程度就越大,溶解度就越小。壳聚糖是自然界中唯一的一种碱性多糖,它一般是白色无定型、半透明、略有珍珠光泽的固体。壳聚糖可溶于大多数稀酸,如盐酸、醋酸、苯甲酸溶液,且溶于酸后分子中氨基可与质子结合,使自身带上正电荷。甲壳素及壳聚糖的结构式如图1所示:

图1壳寡糖与壳聚糖的结构式 甲壳素和壳聚糖在自然界可以被各种微生物降解。微生物中的甲壳素酶(chitinase)可以随机地水解甲壳素的N-乙酰-β-(1-4)糖苷键。而壳聚糖可以被多种酶水解,包括壳聚糖酶(chitosanase)、麦芽糖酶、脂肪酶、以及各种来源的蛋白酶。在人体内甲壳素酶和壳聚糖酶并非普遍存在,通过测定显示N-乙酰壳聚糖在人血清中可以被人体内普遍存在的溶菌酶(lysozyme)降解。 壳聚糖的主链结构中引入了2-氨基,化学性质区别于3,6-羟基,与甲壳素相比增加了反应选择性的功能基团。由于C6-OH是一级羟基,C3-OH是二级羟基,空间位阻不同反应活性也不同,再加上C2-NH2,壳聚糖就具有三个活性不同的可供修饰的基团。根据不同的需要,被修饰的壳聚糖作为一种功能大分子广泛用于各种领域。由于壳聚糖只在酸性水溶液中溶解,而在中性或碱性水溶液中以及多数有机溶剂中不溶,限制了它的应用范围,因此科学家们采用衍生化的方法对壳聚糖进行改性获得了多种水溶性和可溶解于某些有机溶剂的衍生物,大大扩展了壳聚糖的应用范围。其中包括对壳聚糖进行N-,O-酰化,含氧无机酸酯化,醚化,N-烷基化,C6-OH和C3-OH的氧化,以及鳌合、交联等,在此过程中获得了许多性能良好,甚至是

壳聚糖的制备

壳聚糖及其衍生物的制备 甲壳素(chitin)在自然不仅含量十分丰富,而且可生物降解,是环境友好产品,利用沿海地区丰富的虾蟹壳为原料,可生产出甲壳素,变废为宝,净化环境。甲壳素经浓碱处理去掉乙酰其后得壳聚糖(chitosan),分子结构如下: O O CH2OH OH NH2n O 壳聚糖经化学改性可得系列的衍生物,如:羧甲基壳聚糖、低聚壳聚糖等。这些系列产品在许多方面有着极其广泛的用途。如在医学方面可作为抗癌制剂、手术缝线、人造皮肤、药物载体等;在轻工业上可作为化妆品填料、增白剂、固发剂或增强纸张的光洁度;在环保方面可作为絮凝剂、吸附剂,用于污水处理,还可用作饮料的澄清剂、无毒包装材料等;在农业方面是一种新型植物生长调节剂,促进植物生长、增加产量、提高品质、诱导植物的广谱抗病性,还可用于生产生物农药,用于果蔬保鲜。因此壳聚糖及其衍生物系列产品有很好的潜在需求和市场前景。 一、实验目的 1.了解壳聚糖及其衍生物的应用概况; 2.学习壳聚糖及其衍生物的制备原理和方法; 3.强化学生环保意识,变废为宝; 4.制备2~5g的产品。 二、实验内容 1.利用强碱制备壳聚糖; 2.测定壳聚糖的脱乙酰度。 三、实验原理

甲壳素是酰胺类多糖,壳聚糖的制备过程,就是酰胺的水解过程。酰胺有如下几种结构: 酰胺可在强酸或强碱条件下水解,对于低分子的酰胺,水解可以进行得比较 完全,但对于多糖来说,强酸更容易水解糖苷键,所以甲壳素的脱乙酰基,一般 情况下不采用强酸水解;相对说来,强碱造成糖苷键的断裂不像强酸那么严重, 所以都用强碱来脱乙酰基。 酸碱滴定法的原理是壳聚糖的自由氨基呈碱性,可与酸定量地发生质子化反应,形成壳聚糖地胶体溶液: 溶液中游离的H+用碱反滴定,这样,从用于溶解壳聚糖的酸量与滴定用去的碱量 之差,即可推算出壳聚糖自由氨基结合酸的量,从而计算出壳聚糖中自由氨基的 含量。 四、实验材料与设备 1.实验设备与仪器 水浴锅,电炉,烧杯,三角瓶,碱式滴定管,电子天平。 2.实验材料与试剂 甲壳素,NaOH,HCl,甲基橙指示剂,乙醇、丙酮。 五、实验步骤 1.壳聚糖的制备 (1)取三个烧杯,编号1﹟、2﹟、3﹟,于每个烧杯中加入甲壳素5g,于1﹟ 烧杯中加入40%NaOH 100mL,2﹟烧杯中加入50%NaOH 100mL, 3﹟烧杯中加入 60%NaOH 100mL,100℃煮沸2h,脱乙酰基。 (2)反应完毕取出,用蒸馏水洗至中性,再用乙醇、丙酮洗涤后,干燥,即得 白色壳聚糖。 2.脱乙酰度的测定 准确称取上述方法制备的三种壳聚糖各0.5g,分别置于250mL三角瓶中,加入

壳聚糖开发应用现状(1)

天然产物提取分离技术 课程论文 题目壳聚糖开发应用现状 壳聚糖开发应用现状 摘要壳聚糖(chitosan)是一种由甲壳素脱乙酰基后的产物。壳聚糖及其衍生物具有优良的生理活性和功能保健作用。在食品,医药方面显示出非常诱人的应用价值。本文介绍它的特性,简单的化学法制作,并着重介绍壳聚糖在食品,药物制剂,生物技术以及其他方面的应用。最后介绍了国内外壳聚糖的市场现状及发展前景。

关键词壳聚糖脱乙酰甲壳质药物制剂生物技术 前言壳聚糖(Chitosan)又称脱乙酰甲壳质;可溶性甲壳质.是甲壳素脱去乙酰基后的产物。壳聚糖具有许多特殊的性能,如良好的生物降解性、生物相容性、无毒,无污染等。壳聚糖分子中的活性侧基为氨基。可酸化成盐。导入羧基官能团,取代合成侧链铵盐、混合醚、聚氧乙烯醚等等,制备具有水溶性、醇溶性、有机溶剂溶解性、表面活性以及纤维性等各种衍生物。壳聚糖(chitosan)是由自然界广泛存在的几丁质(chitin)经过脱乙酰作用得到的,化学名称为聚葡萄糖胺[(1-4)-2-氨基-B-D葡萄糖,自1859年,法国人Rouget首先得到壳聚糖后,这种天然高分子的生物官能性和相容性、血液相容性、安全性、微生物降解性等优良性能被各行各业广泛关注,在医药、食品、化工、化妆品、水处理、金属提取及回收、生化和生物医学工程等诸多领域的应用研究取得了重大进展。针对患者,壳聚糖降血脂、降血糖的作用已有研究报告。 1、壳聚糖的特性 壳聚糖是由大部分D-氨基葡萄糖和少量的N-乙酰-D-氨基葡萄糖组成,以β(1,4)糖苷健连接起来的直链多糖,化学名为(1,4)-2-氨基-2-脱氧-β-D-葡萄糖,其结构类似于纤维素。 壳聚糖因其独特的分子结构,是天然多糖中推一大量存在的碱性氨基多糖,因而具有一系列特殊功能性质。壳聚糖有αβγ三种构象,其分子键是以螺旋形式存在,α-型研究较多,因为这种构象的壳聚糖存在最多也最易制得。β-型则关注的相对较少,然而这种构象的特征是具有很弱的分子间作用力,并且被确定在不同的调节反应中会显示出比a-型更高的反应能够活性和对溶剂的更高的亲和力。在壳聚糖结构中存在四种类型的糖苷键,但由于C2-氨基或乙酰氢基的存在而使得糖苷键都较难水解。壳聚糖分子中含有羟基,乙酰氢基和氨基,决定了壳聚糖可进行多功能基化学反应。 2、壳聚糖的制备方法 这里介绍一下化学法生产工艺[1] 2.1、主要原料主要原料有虾蟹壳、4 %~6 %的工业盐酸、10 %和40 %氢氧化钠溶液、高锰酸钾、亚硫酸氢钠(工业级)、去离子水、水。 2.2、生产工艺要点 1)将剔除肉质的虾蟹壳加水煮沸抽提得到净甲壳; 2)将净甲壳加入4 %~6 %盐酸浸泡除去钙盐等 3)将除盐后的甲壳质加入质量百分比为10 %的氢氧化钠溶液煮沸,脱除蛋白质,得到粗品甲壳素。 4)将粗品甲壳素先用1 %高锰酸钾脱色漂白,再用2 %亚硫酸氢钠溶液还原,并洗净沥干,即得到不溶性甲壳素; 5)将不溶性甲壳素加于脱乙酰基反应釜内,用40 %氢氧化钠溶液(质量百分比)在80~100℃下进行脱乙酰基反应。反应终结后经洗净、脱水、烘干得可溶性壳聚糖产品。

浅谈壳聚糖的发展概况

浅谈壳聚糖的发展概况 关键词:壳聚糖;壳聚糖制备;壳聚糖应用 引语:本文介绍了壳聚糖的性质、制备以及着重介绍了壳聚糖在水处理、分析化学、纺织工业、膜材料、液晶材料、医学材料方面的应用。 1壳聚糖 壳聚糖(chitosan)又称脱乙酰甲壳素,是由自然界广泛存在的几丁质(chitin)经过脱乙酰作用得到的,化学名称为聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖。自1859年,法国人Rouget首先得到壳聚糖后,这种天然高分子的生物官能性和相容性、血液相容性、安全性、微生物降解性等优良性能被各行各业广泛关注,在医药、食品、化工、化妆品、水处理、金属提取及回收、生化和生物医学工程等诸多领域的应用研究取得了重大进展。针对患者,壳聚糖降血脂、降血糖的作用已有研究报告。同时,壳聚糖被作为增稠剂、被膜剂列入国家食品添加剂使用标准GB-2760。[1] 1.1物理属性 纯甲壳素和纯壳聚糖都是一种白色或灰白色半透明的片状或粉状固体,无味、无臭、无毒性,纯壳聚糖略带珍珠光泽。生物体中甲壳素的相对分子质量为1×106~2×106,经提取后甲壳素的相对分子质量约为3×105~7×105,由甲壳素制取壳聚糖相对分子质量则更低,约2×105~5×105。在制造过程中甲壳素与壳聚糖相对分子质量的大小,一般用粘度高低的数值来表示。商品壳聚糖视其用途不同有三种不同的粘度,即高粘度产品为0.7~1Pa·s、中粘度产品为0.25~0.65Pa·s、低粘度产品<0.25Pa·s。制造纤维产品必须采用高粘度的甲壳素或壳聚糖。[2] 1.2化学性质 化学名:β-(1→4)-2-氨基-2-脱氧-D- 葡萄糖 分子式:(C6H11NO4)N

相关文档
最新文档