IEC 61000-4-8(2009)

IEC 61000-4-8(2009)
IEC 61000-4-8(2009)

FORM FDIS (IEC)/FORMULAIRE FDIS (CEI)

2009-01-09

? Registered trademark of the International Electrotechnical Commission

77A/694/FDIS

FINAL DRAFT INTERNATIONAL STANDARD

,,

CE DOCUMENT EST UN PROJET DIFFUSé POUR APPROBATION. IL NE PEUT êTRE CITé COMME NORME INTERNATIONALE AVANT SA PUBLICATION EN TANT QUE TELLE.

OUTRE LE FAIT D'êTRE EXAMINéS POUR éTABLIR S'ILS SONT ACCEPTABLES à DES FINS INDUSTRIELLES, TECHNOLOGIQUES ET COMMERCIALES, AINSI QUE DU POINT DE VUE DES UTILISATEURS, LES PROJETS FINAUX DE NORMES INTERNATIONALES DOIVENT PARFOIS êTRE EXAMINéS EN VUE DE LEUR POSSIBILITé DE DEVENIR DES NORMES POUVANT SERVIR DE RéFéRENCE DANS LES RèGLEMENTATIONS NATIONALES.

LES RéCIPIENDAIRES DU PRéSENT DOCUMENT SONT INVITéS à PRéSENTER, AVEC LEURS OBSERVATIONS, LA NOTIFICATION DES DROITS DE PROPRIéTé DONT ILS AURAIENT éVENTUELLEMENT CONNAISSANCE ET à FOURNIR UNE DOCUMENTATION EXPLICATIVE.

THIS DOCUMENT IS A DRAFT DISTRIBUTED FOR APPROVAL. IT MAY NOT BE REFERRED TO AS AN INTERNATIONAL STANDARD UNTIL PUBLISHED AS SUCH.

IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, TECHNOLOGICAL, COMMERCIAL AND USER PURPOSES, FINAL DRAFT INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STANDARDS TO WHICH REFERENCE MAY BE MADE IN NATIONAL REGULATIONS.

RECIPIENTS OF THIS DOCUMENT ARE INVITED TO SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION.

Titre CEI 61000-4-8 Ed.2: Compatibilité

électromagnétique (CEM) - Partie 4-8 : Techniques d'essai et de mesure – Essai d'immunité au champ magnétique à la fréquence du réseau

Title

IEC 61000-4-8 Ed.2: Electromagnetic compatibility (EMC) – Part 4-8: Testing and measurement techniques – Power frequency magnetic field immunity test

ATTENTION VOTE PARALLèLE CEI – CENELEC

L’attention des Comités nationaux de la CEI, membres du CENELEC, est attirée sur le fait que ce projet finale de Norme

internationale est soumis au vote parallèle.

Les membres du CENELEC sont invités à voter via le système de

vote en ligne du CENELEC.

ATTENTION IEC – CENELEC PARALLEL VOTING

The attention of IEC National Committees, members of CENELEC, is drawn to the fact that this final draft International

Standard (DIS) is submitted for parallel voting.

The CENELEC members are invited to vote through the

CENELEC online voting system.

Copyright ? 2009 International Electrotechnical Commission, IEC . All rights reserved. It is permitted to download this electronic file, to make a copy and to print out the content for the sole purpose of preparing National Committee positions. You may not copy or "mirror" the file or printed version of the document, or any part of it, for any other purpose without permission in writing from IEC.

– 2 – 61000-4-8/FDIS ? IEC

CONTENTS FOREWORD (4)

INTRODUCTION (6)

1Scope (7)

2Normative references (7)

3Terms and definitions (7)

4General (8)

5Test levels (9)

6Test equipment (10)

6.1General (10)

6.2Test generator (10)

6.2.1Current source (10)

6.2.2Characteristics and performances of the test generator for different

inductive coils (10)

6.2.3Verification of the characteristics of the test generator (11)

6.3Inductive coil (12)

6.3.1Field distribution (12)

6.3.2Characteristics of the inductive standard coils 1 m × 1 m and

1 m × 2,6 m (12)

6.3.3Characteristics of the inductive coils for table top and floor standing

equipment (12)

6.3.4Measurement of the inductive coil factor (13)

6.4Test and auxiliary instrumentation (13)

6.4.1Test instrumentation (13)

6.4.2Auxiliary instrumentation (14)

7Test set-up (14)

7.1Test set-up components (14)

7.2Ground (reference) plane for floor standing equipment (14)

7.3Equipment under test (14)

7.4Test generator (15)

7.5Inductive coil (15)

8Test procedure (15)

8.1General (15)

8.2Laboratory reference conditions (15)

8.2.1General (15)

8.2.2Climatic conditions (15)

8.2.3Electromagnetic conditions (16)

8.3Carrying out the test (16)

9Evaluation of the test results (17)

10Test report (17)

Annex A (normative) Inductive coil calibration method (22)

Annex B (normative) Characteristics of the inductive coils (23)

Annex C (informative) Selection of the test levels (29)

Annex D (informative) Information on power frequency magnetic field strength (31)

Bibliography (33)

61000-4-8/FDIS ? IEC – 3 –

Figure 1 – Example of application of the test field by the immersion method (18)

Figure 2 – Example of schematic circuit of the test generator for power frequency

magnetic field (18)

Figure 3 – Example of test set-up for table-top equipment (19)

Figure 4 – Calibration of the standard coils (19)

Figure 5 – Example of test set-up for floor-standing equipment (20)

Figure 6 – Example of investigation of susceptibility to magnetic field by the proximity method with the 1 m × 1 m inductive coil (20)

Figure 7 – Illustration of Helmholtz coils (21)

Figure B.1 – Characteristics of the field generated by a square inductive coil (1 m

side) in its plane (25)

Figure B.2 – 3 dB area of the field generated by a square inductive coil (1 m side) in its plane (25)

Figure B.3 – 3 dB area of the field generated by a square inductive coil (1 m side) in

the mean orthogonal plane (component orthogonal to the plane of the coil) (26)

Figure B.4 – 3 dB area of the field generated by two square inductive coils (1 m side)

0,6 m spaced, in the mean orthogonal plane (component orthogonal to the plane of

the coils) (26)

Figure B.5 – 3 dB area of the field generated by two square inductive coils (1 m side)

0,8 m spaced, in the mean orthogonal plane (component orthogonal to the plane of

the coils) (27)

Figure B.6 – 3 dB area of the field generated by a rectangular inductive coil (1 m × 2,6 m)

in its plane (27)

Figure B.7 – 3 dB area of the field generated by a rectangular inductive coil (1 m × 2,6 m)

in its plane (ground plane as a side of the inductive coil) (28)

Figure B.8 – 3 dB area of the field generated by a rectangular inductive coil (1 m × 2,6 m) with ground plane, in the mean orthogonal plane (component orthogonal to the plane of

the coil) (28)

Table 1 – Test levels for continuous field (9)

Table 2 – Test levels for short duration: 1 s to 3 s (10)

Table 3 – Specification of the generator for different inductive coils (11)

Table 4 – Verification parameter for the different inductive coils (11)

Table D.1 – Values of the maximum magnetic field produced by household appliances (results of the measurements of 100 different devices of 25 basic types) (31)

Table D.2 – Values of the magnetic field generated by a 400 kV line (31)

Table D.3 – Values of the magnetic field in high voltage sub-station areas (32)

Table D.4 – Values of the magnetic field in power plants (32)

– 4 – 61000-4-8/FDIS ? IEC INTERNATIONAL ELECTROTECHNICAL COMMISSION

____________

ELECTROMAGNETIC COMPATIBILITY (EMC) –

Part 4-8: Testing and measurement techniques –

Power frequency magnetic field immunity test

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising

all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international

consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National

Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications

transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any

equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and

members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is

indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of

patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61000-4-8 has been prepared by subcommittee 77A: Low frequency phenomena, of IEC technical committee 77: Electromagnetic compatibility.

This second edition cancels and replaces the first edition published in 1993 and its Amendment 1 (2000). It forms a technical revision.

This edition includes the following significant technical changes with respect to the previous edition: the scope is extended in order to cover 60 Hz. Characteristics, performance and verification of the test generator and related inductive coils are revised. Modifications are also introduced in the test set-up (GRP) and test procedure.

It forms Part 4-8 of the IEC 61000 series of standards. It has the status of a basic EMC publication in accordance with IEC Guide 107.

61000-4-8/FDIS ? IEC – 5 –

The text of this standard is based on the following documents:

FDIS Report on voting

77A/XX/FDIS 77A/XX/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of the IEC 61000 series, under the general title Electromagnetic compatibility, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date1) indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

? reconfirmed,

? withdrawn,

? replaced by a revised edition, or

? amended.

———————

1)The National Committees are requested to note that for this publication the maintenance result date is 2012.

– 6 – 61000-4-8/FDIS ? IEC

INTRODUCTION

This standard is part of the IEC 61000 series of standards, according to the following structure:

Part 1: General

General considerations (introduction, fundamental principles)

Definitions, terminology

Part 2: Environment

Description of the environment

Classification of the environment

Compatibility levels

Part 3: Limits

Emission limits

Immunity limits (in so far as they do not fall under the responsibility of the product committees)

Part 4: Testing and measurement techniques

Measurement techniques

Testing techniques

Part 5: Installation and mitigation guidelines

Installation guidelines

Mitigation methods and devices

Part 9: Miscellaneous

Each part is further subdivided into several parts, published either as international standards, as technical specifications or technical reports, some of which have already been published as sections. Others will be published with the part number followed by a dash and a second number identifying the subdivision (example: IEC 61000-6-1).

This part is an international standard which gives immunity requirements and test procedures related to "power frequency magnetic field".

61000-4-8/FDIS ? IEC – 7 –

ELECTROMAGNETIC COMPATIBILITY (EMC) –

Part 4-8: Testing and measurement techniques –

Power frequency magnetic field immunity test

1 Scope

This part of IEC 61000 relates to the immunity requirements of equipment, only under operational conditions, to magnetic disturbances at power frequencies 50 Hz and 60 Hz related to:

– residential and commercial locations;

– industrial installations and power plants;

– medium voltage and high voltage sub-stations.

The applicability of this standard to equipment installed in different locations is determined by the presence of the phenomenon, as specified in Clause 4. This standard does not consider disturbances due to capacitive or inductive coupling in cables or other parts of the field installation.

Other IEC standards dealing with conducted disturbances cover these aspects.

The object of this standard is to establish a common and reproducible basis for evaluating the performance of electrical and electronic equipment for household, commercial and industrial applications when subjected to magnetic fields at power frequency (continuous and short duration field).

The standard defines:

– recommended test levels;

– test equipment;

– test set-up;

– test procedure.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050(161), International Electrotechnical Vocabulary (IEV) – Chapter 161: Electro-magnetic compatibility

3 Terms and definitions

For the purposes of this document the following terms and definitions apply to the restricted field of magnetic disturbances as well as the terms and definitions from IEC 60050(161) [IEV].

3.1

current distortion factor

ratio of the root-mean square value of the harmonics content of an alternating current to the root-mean square value of the fundamental current

– 8 – 61000-4-8/FDIS ? IEC 3.2

EUT

equipment under test

3.3

inductive coil

conductor loop of defined shape and dimensions, in which flows a current, generating a magnetic field of defined constancy in its plane and in the enclosed volume

3.4

inductive coil factor

ratio between the magnetic field strength generated by an inductive coil of given dimensions and the corresponding current value; the field is that measured at the centre of the coil plane, without the EUT

3.5

immersion method

method of application of the magnetic field to the EUT, which is placed in the centre of an inductive coil (see Figure 1)

3.6

proximity method

method of application of the magnetic field to the EUT, where a small inductive coil is moved along the side of the EUT in order to detect particularly sensitive areas

3.7

ground (reference) plane

GRP

flat conductive surface whose potential is used as a common reference for the magnetic field generator and the auxiliary equipment (the ground plane can be used to close the loop of the inductive coil, as in Figure 5)

[IEV 161-04-36, modified]

3.8

decoupling network, back filter

electrical circuit intended to avoid reciprocal influence with other equipment not submitted to the magnetic field immunity test

4 General

The magnetic fields to which equipment is subjected may influence the reliable operation of equipment and systems.

The following tests are intended to demonstrate the immunity of equipment when subjected to power frequency magnetic fields related to the specific location and installation condition of the equipment (e.g. proximity of equipment to the disturbance source).

The power frequency magnetic field is generated by power frequency current in conductors or, more seldom, from other devices (e.g. Ieakage of transformers) in the proximity of equipment.

As for the influence of nearby conductors, one should differentiate between:

– the current under normal operating conditions, which produces a steady magnetic field, with a comparatively small magnitude;

61000-4-8/FDIS ? IEC – 9 –

– the current under fault conditions which can produce comparatively high magnetic fields but of short duration, until the protection devices operate (a few milliseconds with fuses, a few seconds for protection relays).

The test with a steady magnetic field may apply to all types of equipment intended for public or industrial low voltage distribution networks or for electrical plants.

The test with a short duration magnetic field related to fault conditions, requires test levels that differ from those for steady-state conditions; the highest values apply mainly to equipment to be installed in exposed places of electrical plants.

The test field waveform is that of power frequency.

In many cases (household areas, sub-stations and power plant under normal conditions), the magnetic field produced by harmonics is negligible.

5 Test levels

The preferential range of test levels, respectively for continuous and short duration application of the magnetic field, applicable to distribution networks at 50 Hz and 60 Hz, is given in Table 1 and Table 2.

The magnetic field strength is expressed in A/m; 1 A/m corresponds to a free space magnetic flux density of 1,26 μT.

Table 1 – Test levels for continuous field

Level Magnetic field strength

A/m

1 1

2 3

3 10

4 30

5 100

x a special

a"x" can be any level, above, below or in-between

the other levels. This level can be given in the product

specification.

– 10 – 61000-4-8/FDIS ? IEC Table 2 – Test levels for short duration: 1 s to 3 s

Level Magnetic field strength

A/m

1 n.a.b

2 n.a.b

3 n.a.b

4 300

000

5 1

x a special

a"x" can be any level, above, below or in-between

the other levels. This level, as well the duration of the

test, can be given in the product specification.

b"n.a." = not applicable.

Information on the selection of the test levels is given in Annex C.

Information on actual levels is given in Annex D.

6 Test equipment

6.1 General

The test magnetic field is obtained by a current flowing in an inductive coil; the application of the test field to the EUT is by the immersion method.

An example of application of the immersion method is given in Figure 1.

The test equipment includes the current source (test generator), the inductive coil and auxiliary test instrumentation, that are also given in Figure 3.

generator

6.2 Test

source

6.2.1 Current

The current source typically consists of a voltage regulator (connected to the mains distribution network, or other sources), a current transformer and a circuit for the control of short duration application. The generator shall be able to operate in continuous mode or short duration mode.

The connection between the current transformer and the inductive coil input should be as short as possible to avoid that the currents which flow in the connection produce magnetic fields that affect the magnetic field in the test volume. Preferably the cables should be twisted together.

The characteristics and performances of the current source or test generator for the different fields and for different inductive coils considered in this standard, are given in 6.2.2.

6.2.2 Characteristics and performances of the test generator for different inductive

coils

Table 3 specifies characteristics and performances of the test generator for different inductive coils.

61000-4-8/FDIS ? IEC – 11 –

Table 3 – Specification of the generator for different inductive coils

With standard square

coil

1 m × 1 m 1 turn

With standard

rectangular coil

1 m × 2,6 m 1 turn

With other inductive

coils

Output current range for continuous operation 1 A up to 120 A 1 A up to 160 A

As necessary to

achieve required field

strength in Table 4

Output current range for short duration 320 A up to 1 200 A 500 A up to 1 600 A

As necessary to

achieve required field

strength in Table 4

Current/Magnetic field

waveform

Sinusoidal Sinusoidal Sinusoidal

Current distortion factor

≤8 % ≤8 % ≤8 %

Continuous mode Up to 8 h Up to 8 h Up to 8 h

Short time operation 1s up to 3 s 1s up to 3 s 1 s up to 3 s

Transformer output Floating not connected to

PE Floating not connected to

PE

Floating not connected

to PE

The schematic circuit of the generator is given in Figure 2.

6.2.3 Verification of the characteristics of the test generator

In order to compare the results for different test generators, the essential characteristics of the current parameters in the standard inductive coils shall be verified.

The characteristics to be verified are:

– current value in the standard inductive coils;

– field strength in all other inductive coils;

– total distortion factor in the inductive coils.

For standard inductive coils the verifications shall be carried out with a current probe and measurement instrumentation having better than ±2 % accuracy. Figure 4 shows the verification set-up.

For all other inductive coils the verification should be carried out with field strength meter, having an <±1dB accuracy.

Table 4 – Verification parameter for the different inductive coils

Table 1 Level

Current values for the

1 m × 1 m standard coil

A

Current values for the

1 m × 2,6 m standard coil

A

Field strength in the centre for

all other inductive coils

A/m

1 1,15 1,51 1

2 3,45 4,54 3

3 11,5 15,15 10

4 34,48 45,4

5 30

5 114,95 151,5 100

– 12 – 61000-4-8/FDIS ? IEC coil

6.3 Inductive

distribution

6.3.1 Field

For the two 1 turn standard coils 1 m × 1 m and 1 m × 2,6 m, the field distribution is known and shown in Annex B. Therefore, no field verification or field calibration is necessary, the current measurement as shown in Figure 4 is sufficient.

Other coils such as multi-turn coils may be used in order to have a lower testing current, or for EUT not fitting into the two standard coils, inductive coils of different dimensions may be used. For these cases, the field distribution (maximum variation of ±3 dB) shall be verified.

6.3.2 Characteristics of the inductive standard coils 1 m × 1 m and 1 m × 2,6 m

The inductance for the 1 turn standard 1 m × 1 m coil is approximately 2,5 μH, for the 1 m ×2,6 m standard coil approximately 6 μH.

The inductive coil shall be made of copper, aluminium or any conductive non-magnetic material, of such cross-section and mechanical arrangement as to facilitate its stable positioning during the tests. For continuous tests up to 100 A/m the cross section of aluminium should be 1,5 cm2and for short time test up to 1 000 A/m the cross section should be 4 cm2.

The tolerance of the standard coils is ±1 cm, measured between the centre lines (centre of the cross section). The characteristics of inductive coils with respect to the magnetic field distribution are given in Annex B.

6.3.3 Characteristics of the inductive coils for table top and floor standing equipment The list below gives the testing requirements for table top and floor standing equipment.

a) Inductive coil for table-top equipment

The inductive coil of standard dimensions for testing small equipment (e.g. computer monitors, watt-hour meters, transmitters for process control, etc.) has a square form with

1 m side. The test volume of the standard square coil is 0,6 m × 0,6 m × 0,5 m (height).

Any other coils can be used to obtain a field homogeneity better than 3 dB.

For example, a double coil of standard size (Helmholtz coil) could be used in order to obtain a field homogeneity better than 3 dB or for testing larger EUTs.

The double coil (Helmholtz coil) shall be comprised of two or more series of turns, properly spaced (see Figure 7, Figure B.4, Figure B.5).

The test volume of a double standard size coil, 0,8 m spaced, for a 3 dB homogeneity is 0,6 m × 0,6 m × 1 m (height).

For example, the Helmholtz coils, for a 0,2 dB inhomogeneity, have dimensions and separation distances as given in Figure 7.

No GRP is permitted as part of the coil nor on the insulating table below the EUT (see Figure 3).

b) Inductive coil for floor-standing equipment

The inductive coil of standard dimensions for testing floor standing equipment (e.g. racks, etc.) has a square form with 1 m side and 2,6 m height.

The test volume of the standard square coil is 0,6 m × 2 m × 0,6 m (height).

When an EUT does not fit into the standard inductive coil 1 m × 2,6 m, the product committee should select the test method: either the proximity method with the standard

1 m × 1 m 1 turn inductive coil (Figure 6 is an example) or inductive coils shall be made

according to the dimensions of the EUT and the different field orientation of the magnetic field.

61000-4-8/FDIS ? IEC – 13 –

Note that larger inductive coils give comparable results, but it may be not practicable to construct very large coils. In this case the proximity method may give useful but not necessarily reproducible results.

A GRP shall be present as in Figure 5.

NOTE Due to the possible large dimensions of EUTs, the coils may be made of "C" or "T" sections in order to have sufficient mechanical rigidity.

6.3.4 Measurement of the inductive coil factor

In order to make it possible to compare the test results from different test equipment, the inductive coil factor shall be measured without the EUT, in free space condition.

For the two 1 turn standard coils 1m × 1 m and 1 m × 2,6 m, the field distribution is known and shown in Annex B. Therefore, neither field verification nor field calibration is necessary, the current measurement, as shown in Figure 4, is sufficient.

For all other inductive coils the following procedure shall be carried out. An inductive coil of the correct dimensions for the EUT dimensions, shall be positioned at 1 m minimum distance from the wall of the laboratory and any magnetic material, by using insulating supports, and the inductive coil shall be connected to the test generator as prescribed in 6.2.

An appropriate magnetic field sensor shall be used to verify the magnetic field strength generated by the inductive coil.

The field sensor shall be positioned at the centre of the inductive coil (without the EUT) and with suitable orientation to detect the maximum value of the field.

The current in the inductive coil shall be adjusted to obtain the field strength specified by the test level.

The measurement shall be carried out at power frequency.

The measurement procedure shall be carried out with the test generator and inductive coil.

The coil factor is determined (and verified) by the above procedure.

The coil factor gives the current value to be injected in the coil to obtain the required test magnetic field (H/l) in the centre of the inductive coil.

Information on the measurement of the test magnetic field is given in Annex A.

6.4 Test and auxiliary instrumentation

instrumentation

6.4.1 Test

The test instrumentation includes the current measuring system (sensors and instrument) for setting and measuring the current injected in the inductive coil.

NOTE The termination networks, back filters, etc. on power supply, control and signal lines that is part of the test set-up for other tests may be maintained.

The current measuring system is a calibrated current, measuring instrument, probe or shunt. The accuracy of the measurement instrumentation shall be ±2 %.

– 14 – 61000-4-8/FDIS ? IEC instrumentation

6.4.2 Auxiliary

The auxiliary instrumentation comprises a simulator and any other instrument necessary for the operation and verification of the EUT functional specifications.

7 Test set-up

components

7.1 Test

set-up

The test set-up comprises the following components:

– equipment under test (EUT);

– inductive coil;

– test generator;

– GRP for floor standing equipment.

Precautions shall be taken if the test magnetic field may interfere with the test instrumentation and other sensitive equipment in the vicinity of the test set-up.

Examples of test set-ups are given in the following figures:

Figure 3: example of test set-up for table-top equipment;

Figure 5: example of test set-up for floor-standing equipment.

7.2 Ground (reference) plane for floor standing equipment

The ground plane (GRP) shall be placed in the laboratory; the floor standing EUT and auxiliary test equipment shall be placed on it and connected to GRP or to earth terminal.

The ground plane shall be a non-magnetic metal sheet (copper or aluminium) of 0,25 mm minimum thickness; other metals may be used but in this case they shall have at least 0,65 mm minimum thickness.

The minimum size of the ground plane is 1 m × 1 m.

The final size depends on the dimensions of the floor standing EUT.

The ground plane shall be connected to the safety earth system of the laboratory.

7.3 Equipment under test

The equipment is configured and connected to satisfy its functional requirements. Floor standing equipment shall be placed on the GRP with the interposition of a 0,1 m thickness insulating support (e.g. dry wood). For table top equipment see Figure 3.

The equipment cabinets which can be earthed shall be connected to the safety earth directly on the GRP or via the earth terminal to PE.

The power supply, input and output circuits shall be connected to the sources of power supply, control and signal.

The cables supplied or recommended by the equipment manufacturer shall be used. In absence of any recommendation, unshielded cables shall be adopted, of a type appropriate for the signals involved. All cables shall be exposed to the magnetic field for 1 m of their length.

61000-4-8/FDIS ? IEC – 15 –

The back filters, if any, shall be inserted in the circuits at 1 m cable length from the EUT and connected to the ground plane.

The communication lines (data lines) shall be connected to the EUT by the cables given in the technical specification or standard for this application.

generator

7.4 Test

The test generator shall not influence the magnetic field and therefore shall not be placed close to the inductive coil.

coil

7.5 Inductive

The inductive coil, of the type specified in 6.3.2, shall enclose the EUT. The EUT shall be positioned inside the 3 dB test volume of the inductive coil.

Different inductive coils may be selected for testing in the different orthogonal directions, according to the general criteria specified in 6.3.3 a) and in 6.3.3 b).

The inductive coil shall be connected to the test generator in the same way as for the procedure specified in 6.3.4.

The inductive coil selected for the tests shall be specified in the test plan.

8 Test procedure

8.1 General

The test procedure shall include:

– verification of the laboratory reference conditions;

– preliminary verification of the correct operation of the equipment;

– carrying out the test;

– evaluation of the test results.

8.2 Laboratory reference conditions

8.2.1 General

In order to minimize the effect of environmental parameters on the test results, the test shall be carried out in climatic and electromagnetic reference conditions as specified in 8.2.2. and 8.2.3.

8.2.2 Climatic

conditions

Unless otherwise specified by the committee responsible for the generic or product standard, the climatic conditions in the laboratory shall be within any limits specified for the operation of the EUT and the test equipment by their respective manufacturers.

Tests shall not be performed if the relative humidity is so high as to cause condensation on the EUT or the test equipment.

NOTE Where it is considered that there is sufficient evidence to demonstrate that the effects of the phenomenon covered by this standard are influenced by climatic conditions, this should be brought to the attention of the committee responsible for this standard.

– 16 – 61000-4-8/FDIS ? IEC

conditions

8.2.3 Electromagnetic

The electromagnetic conditions of the laboratory shall be such as to guarantee the correct operation of the EUT in order not to influence the test results; otherwise, the tests shall be carried out in a Faraday cage.

In particular, the power frequency magnetic field value of the laboratory shall be at least 20 dB lower than the selected test level.

8.3 Carrying out the test

Care should be taken for any person in the laboratory with respect to applicable requirements regarding human exposure. If no requirements exist on human protection, a distance of 2 m is recommended.

The test shall be carried out on the basis of a test plan including verification of the performances of the EUT as defined in the technical specification.

The power supply, signal and other functional electrical quantities shall be applied within their rated range.

If the actual operating signals are not available, they may be simulated.

Preliminary verification of equipment performances shall be carried out prior to applying the test magnetic field.

The test magnetic field shall be applied by the immersion method to the EUT, previously set up as specified in 7.3.

The test level shall not exceed the product specification.

The test field strength and the duration of the test shall be as determined by the selected test level, according to the different type of fields (continuous or short duration field) established in the test plan.

a) Table-top equipment

The equipment shall be subjected to the test magnetic field as shown in Figure 3.

The plane of the inductive coil shall then be rotated by 90° in order to expose the EUT to the test field with different orientations.

b) Floor-standing equipment

The equipment shall be subjected to the test magnetic field by using inductive coils of suitable dimensions as specified in 6.3.3 b). The test shall be repeated by moving and shifting the inductive coils, in order to test the whole volume of the EUT for each orthogonal direction (see Figure 5).

If the EUT is larger than the 3 dB test volume of the inductive coil, then the test shall be repeated with the coil moved to different positions, in steps corresponding to 50 % of the shortest side of the coil, so that the entire EUT is progressively immersed in the 3 dB test volume.

NOTE The moving of the inductive coil in steps corresponding to 50 % of the shortest side of the coil gives overlapping test fields.

The plane of the inductive coil shall then be rotated by 90° in order to expose the EUT to the test field with different orientations and the same procedure.

61000-4-8/FDIS ? IEC – 17 –

9 Evaluation of the test results

The test results shall be classified in terms of the loss of function or degradation of performance of the equipment under test, relative to a performance level defined by its manufacturer or the requestor of the test, or agreed between the manufacturer and the purchaser of the product. The recommended classification is as follows:

a) normal performance within limits specified by the manufacturer, requestor or purchaser;

b) temporary loss of function or degradation of performance which ceases after the

disturbance ceases, and from which the equipment under test recovers its normal performance, without operator intervention;

c) temporary loss of function or degradation of performance, the correction of which requires

operator intervention;

d) loss of function or degradation of performance which is not recoverable, owing to damage

to hardware or software, or loss of data.

The manufacturer’s specification may define effects on the EUT which may be considered insignificant, and therefore acceptable.

This classification may be used as a guide in formulating performance criteria, by committees responsible for generic, product and product-family standards, or as a framework for the agreement on performance criteria between the manufacturer and the purchaser, for example where no suitable generic, product or product-family standard exists.

10 Test report

The test report shall contain all the information necessary to reproduce the test. In particular, the following shall be recorded:

–the items specified in the test plan required by Clause 8 of this standard;

–identification of the EUT and any associated equipment, for example, brand name, product type, serial number;

–identification of the test equipment, for example, brand name, product type, serial number;

–any special environmental conditions in which the test was performed, for example, shielded enclosure;

–any specific conditions necessary to enable the test to be performed;

–performance level defined by the manufacturer, requestor or purchaser;

–performance criterion specified in the generic, product or product-family standard;

–any effects on the EUT observed during or after the application of the test disturbance, and the duration for which these effects persist;

–the rationale for the pass/fail decision (based on the performance criterion specified in the generic, product or product-family standard, or agreed between the manufacturer and the purchaser);

–any specific conditions of use, for example cable length or type, shielding or grounding, or EUT operating conditions, which are required to achieve compliance.

– 18 –

61000-4-8/FDIS ? IEC

Floor-standing equipment

Table-top equipment

Figure 1 – Example of application of the test field

by the immersion method

Components

Vr Voltage regulator C Control circuit Tc Current transformer

Figure 2 – Example of schematic circuit of the test generator for

power frequency magnetic field

61000-4-8/FDIS ? IEC – 19 –

Figure 3 – Example of test set-up for table-top equipment

To generator

Figure 4 – Calibration of the standard coils

– 20 – 61000-4-8/FDIS ? IEC

Ic

D

G

Components GRP Ground plane C1 Power supply circuit A Safety earth C2 Signal circuit S Insulating support L Communication line EUT Equipment under test

B To power supply source lc

Inductive coil D To signal source, simulator E

Earth terminal

G

To the test generator

Figure 5 – Example of test set-up for floor-standing equipment

Figure 6 – Example of investigation of susceptibility to magnetic field

by the proximity method with the 1 m × 1 m inductive coil

104规约学习(非常好)

104规约(2002版)报文解析 1、 初始化 ● 主站发: 68 04 07 00 00 00 目的:给子站发请求链路状态命令。 子站回答:68 04 0B 00 00 00 目的:子站向主站响应链路状态。 子站回答:68 0E 00 00 00 00 46 01 04 00 01 00 00 00 00 00 目的:初始化结束。 2、 对时 时钟同步命令一般不在104中应用,因为网络路由的延时永远不定(随机),导致对时不准。 ● 主站发:68 14 2C 00 6A 00 67 01 06 00 01 00 00 00 00 E5 3F 00 0F 09 0C 04 目的:向子站发送对时报文。357 毫秒 16 秒 0分 15小时 9日 12月 4年 3、 总召唤 ● 主站发:68 0E 00 00 06 00 64 01 06 00 01 00 00 00 00 14 目的:向地址为01的子站发总召唤命令。 子站回答:68 0E 08 00 02 00 64 01 07 00 01 00 00 00 00 14 目的:子站响应总召唤。 子站回答:68 2D 0A 00 02 00 01 A0 14 00 01 00 01 00 00 00 01 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 目的:子站向主站以ASDU1方式连续上送全遥信,此为第一帧。 报文解析: 子站回答:68 2D 0C 00 02 00 01 A0 14 00 01 00 21 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 目的:子站继续上送全遥信的下一帧。

104规约报文详解(解剖麻雀_最快速掌握_强力推荐)

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- IEC-60870-5-104:应用模型是:物理层,链路层,网络层,传输层,应用层 物理层保证数据的正确送达,保证如何避免冲突。(物理层利用如 RS232上利用全双工) 链路层负责具体对那个slave的通讯,对于成功与否,是否重传由链路层控制(RS485 2线利用禁止链路层确认) 应用层负责具体的一些应用,如问全数据还是单点数据还是类数据等(网络利用CSMA/CD等保证避免冲突的发生) --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 基本定义:端口号2404,站端为Server 控端为Client,平衡式传输,2Byte站地址,2Byte传送原因,3Byte信息地址。 --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 注:APDU 应用规约数据单元(整个数据)= APCI 应用规约控制信息(固定6个字节)+ ASDU 应用服务数据单元(长度可变) --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- APDU长度(系统-特定参数,指定每个系统APDU的最大长度)APDU的最大长度域为253(缺省)。视具体系统最大长度可以压缩。 --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 【1个例子】 104报文分析 BUF序0 1 2 3 4 5 6 7 8 9 .10 11 12 13 14 15 16 17 18 19 20 21 22 M->R:68 1510 0002 001E 01 03 0001 0079 00 00 01 10 01 24 13 D2 0A 02分析的结果是I (主动上报SOE,主动上报是因为104是平衡式规约)报文头固定为0x68,即十进制104 长度15字节(不是6帧的,都是I帧) 发送序号=8【控制字节的解析10 00 02 00 ,发送序号:0010H/2=16/2=8】 接收序号=1 【控制字节的解析10 00 02 00 ,接收序号:0002H/2=2/2 =1】 0x1E=30 即M_SP_TB_1 带长时标的单点信息 01 -> SQ:0 信号个数:1 03 00 -> 传送原因:[ T=0 P/N=0 原因=3 | 突发] 01 00 -> 公共地址:1 79 00 00 -> 0x79=121 信息体地址: 121 01 -> 状态: 1 IV:0 NT:0 SB:0 BL:0 10 01 24 13 D2 0A 02 ->低位10 高位01,即0x0110=1*16*16+16=272 时标: 2002/10/18 19:36:00.272 --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 每个字节都为unsigned char类型,如果是2个字节表示1个short型,则都是低位在前,高位在后。 --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 【字节0】0x68即十进制数104,68做为BUF第0个字节,下面的说明依次向后排 --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 【字节1】15即从字节2到最后的所有字节数(长度) --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 【字节2、3、4、5】这4个字节是4个控制域,对应不同类型的格式(I帧、U帧、S帧),意义和格式都不相同

深入监控调试——报文详解

PLM 入门 V 1.0

目录 目录 (1) 版本信息 (2) 一、功能概述 (3) 二、通讯规约介绍 (3) 三、常用工具介绍 (4) 四、调试过程 (5) 4.1环境搭建 (5) 4.2运行调试 (5) 五、报文查看 (7) 5.1如何抓取报文 (7) 5.2以太网TCP104报文和串口IEC103报文: (8) 5.3串口M OD B US报文 (9) 5.4串口非标报文 (10) 六、报文实例 (11) 6.1报文实例-104上送遥脉报文 (11) 6.2报文实例-104上送遥测报文 (11) 6.3报文实例-104遥控报文 (12) 6.4报文实例-IEC103上送遥脉报文 (14) 6.5报文实例-IEC103上送遥测报文 (14) 6.6报文实例-IEC103遥控报文 (15) 6.7报文实例-IEC103压板投退报文 (16) 6.8报文实例-IEC103第一帧报文 (17) 七、实际问题分析 (17) 附A、安装包介绍 (18)

版本信息

一、功能概述 MCU801A,串口服务器,也叫做通讯管理机,在8000监控系统中作为子站(装置)和后台(8000监控)之间通讯的桥梁,起到规约转换的作用。 图1.1 监控抽象结构图 如上图所示,通过MCU,子站的数据可以上送到8000监控后台,监控后台的命令可以下达到每个子站。MCU主要在串口和以太网之间转换规约,主要涉及规约如下: 1、基于以太网的tcp104规约 2、基于串口的iec10 3、Modbus、自定义规约。 二、通讯规约介绍 通讯规约主要规定了通讯机制和数据帧的数据格式。 与我们的MCU相关的通讯规约主要有TCP104、IEC103、MODBUS,还有许多不规则的自定义规约。具体规约参考产品的规约说明文件。

104规约报文说明

主站与子站通过IEC60870-5-104规约通讯协议说明 目录 目录 (1) 前言 (1) 一、IEC60870-5-104应用规约数据单元基本结构 (2) 1.1 应用规约数据单元APDU (2) 1.2 应用规约控制信息APCI (2) 1.3 应用服务数据单元ASDU (3) 二、IEC60870-5-104规约的过程描述 (5) 三、IEC60870-5-104规约源码分析(报文分析) (5) 3.1启动连接(U格式) (5) 3.2启动连接确认(U格式) (6) 3.3总召唤(I格式) (6) 3.4总召唤确认(I格式) (6) 3.5数据确认(S格式) (6) 3.6总召唤结束(I格式) (7) 3.7测试连接(U格式) (7) 3.8测试连接确认(U格式) (7) 3.9.遥信信息(I格式) (7) 3.9遥测信息(I格式) (10) 3.10 SOE信息(I格式) (11) 前言 根据全国电力系统控制及其通信标准委员会三届五次会议和最近出版的国标DL/T634.5.104:2002对104规约的参数选择做了如下说明: 1、采用端正101规约中的链路地址和短报文(指链路确认报文) 2、采用召唤一级数据 3、两个字节表示公共地址(站址) 4、两个字节表示传送原因 5、三个字节表示信息体地址 上述3、4、5点与上一次通讯协议具体说明有冲突,为执行国际国内标准,建议根据上述要求对报文做如下修改。

一、IEC60870-5-104应用规约数据单元基本结构 应用规约数据单元:APDU(Application protocal data unit) 应用规约控制信息:APCI(Application protocal control information) 应用服务数据单元:ASDU(Application protocal control unit) APDU=APCI + ASDU 1.1 应用规约数据单元APDU 定义了启动字符、应用服务数据单元的长度规范、可传输一个完整的应用规约数据单元。 ●启动字符:68H(一个字节) ●长度规范:报文最大长度255字节,应用规约数据单元的最大长度为253字节,控 制域的长度是4字节,应用服务数据单元的最大长度为249字节。 ●控制域:控制域定义抗报文丢失和重复传送的控制信息、报文传输的启动和停止、 传输连接的监视。控制域的这些类型被用于完成计数的信息传输的(I格式)、计 数的监视功能(S格式)和不计数控制功能(U格式)。 ●应用服务数据单元 1.2 应用规约控制信息APCI 控制域定义抗报文丢失和重复传送的控制信息、报文传输的启动和仃止、传输连接的监视。控制域的这些类型被用于完成计数的信息传输的 (I格式)、计数的监视功能(S格式)和不计数的控制功能(U格式)。

IEC104规约报文说明

IEC104规约调试小结 一、四遥信息体基地址范围 “可设置104调度规约”有1997年和2002年两个版本,在流程上没有什么变化,02 此配置要根据主站来定,有的主站可能设为1,1,2,我们要改与主站一致。 三、以公共地址字节数=2,传输原因字节数=2,信息体地址字节数=3为例对一些基本的报 文分析 第一步:首次握手(U帧) 发送→激活传输启动:68(启动符)04(长度)07(控制域)00 00 00 接收→确认激活传输启动:68(启动符)04(长度)0B(控制域)00 00 00 第二步:总召唤(I帧) 召唤YC、YX(可变长I帧)初始化后定时发送总召唤,每次总召唤的间隔时间一般设为15分钟召唤一次,不同的主站系统设置不同。 发送→总召唤: 68(启动符)0E(长度)00 00(发送序号)00 00(接收序号)64(类型标示)01(可变结构限定词)06 00(传输原因)01 00(公共地址即RTU地址)00 00 00(信息体地址)14(区分是总召唤还是分组召唤,02年修改后的规约中没有分组召唤) 接收→S帧: 注意:记录接收到的长帧,双方可以按频率发送,比如接收8帧I帧回答一帧S帧,也可以要求接收1帧I帧就应答1帧S帧。 6804 01 00 02 00 接收→总召唤确认(发送帧的镜像,除传送原因不同): 68(启动符)0E(长度)00 00(发送序号)00 00(接收序号)64(类型标示)01(可变结构限定词)07 00(传输原因)01 00(公共地址即RTU地址)00 00 00(信息体地址)14(同上) 发送→S帧: 注意:记录接收到的长帧,双方可以按频率发送,比如接收8帧I帧回答一帧S帧,也可以要求接收1帧I帧就应答1帧S帧。 68 04 01 00 02 00 接收→YX帧(以类型标识1为例): 68(启动符)1A(长度)02 00(发送序号)02 00(接收序号)01(类型标示,单点遥信)

危害辨识与风险评价结果一览表

危险源识别、评价和预控一览表 工程名称: 北京市*************涉及电力工程工程(L1线、L3线) 注:1、判别依据:Ⅰ、不符合法律、法规及其他要求;Ⅱ、曾发生事故,仍未采取有效措施;Ⅲ、相关方合理要求; Ⅳ、直接观察到的危险;Ⅴ、作业条件危险性评价法(LEC法)。

要注意;<20(1级危险),可以接受。 3、控制措施包括:培训;施工组织设计、施工方案;安全、技术交底;监督、指挥、检查;规程、规范、标准、管理制度;管理方案等。 危险源识别、评价和预控一览表 Ⅳ、直接观察到的危险;Ⅴ、作业条件危险性评价法(LEC法)。

要注意;<20(1级危险),可以接受。 3、控制措施包括:培训;施工组织设计、施工方案;安全、技术交底;监督、指挥、检查;规程、规范、标准、管理制度;管理方案等。 危险源识别、评价和预控一览表 注:1、判别依据:Ⅰ、不符合法律、法规及其他要求;Ⅱ、曾发生事故,仍未采取有效措施;Ⅲ、相关方合理要求; Ⅳ、直接观察到的危险;Ⅴ、作业条件危险性评价法(LEC法)。

要注意;<20(1级危险),可以接受。 3、控制措施包括:培训;施工组织设计、施工方案;安全、技术交底;监督、指挥、检查;规程、规范、标准、管理制度;管理方案等。 危险源识别、评价和预控一览表 Ⅳ、直接观察到的危险;Ⅴ、作业条件危险性评价法(LEC法)。

要注意;<20(1级危险),可以接受。 3、控制措施包括:培训;施工组织设计、施工方案;安全、技术交底;监督、指挥、检查;规程、规范、标准、管理制度;管理方案等。 危险源识别、评价和预控一览表 工程名称: 北京市*************涉及电力工程工程(L1线、L3线)

104报文解读

104规约大致有1997年和2002年(02版)两个版本,在配置上没什么变化,只 4096个,YK最多可配256个,YM最多可配512个。 4个控制域8位位组:前两个是发送序号,后两个是接收序号。 补充说明: 1、报文中的APDU长度指的是除68和APDU长度字节的所有字节。 2、注意长帧报文的“发送序号”与“接收序号”具有抗报文丢失功能。 3常用的类型标识 遥测:09----带品质描述的遥测量,每个遥测值占3个字节 0a----带3个字节时标的且具有品质描述的遥测值,每个遥测值占6个字节 0b---不带时标的标度化值,每个遥测值占3个字节 0c---带3个字节时标的标度化值,每个遥测值占6个字节 0d---带品质描述的浮点值,每个遥测值占5个字节 0e---带3个字节时标且具有品质描述的浮点值,每个遥测值占8个字节 15---不带品质描述的遥测值,每个遥测值占2个字节 遥信:01---不带时标的单点遥信,每个遥信占1个字节 03---不带时标的双点遥信,每个遥信占1个字节 14---具有状态变位检测的成组单点遥信,每个字节包括8个遥信SOE:02---带3个字节短时标的单点遥信 04---带3个字节短时标的双点遥信 1e---带7个字节时标的单点遥信 1f---带7个字节时标的双点遥信 遥脉:0f---不带时标的电度量,每个电度量占5个字节 10---带3个字节短时标的电度量,每个电度量占8个字节 25---带7个字节长时标的电度量,每个电度量占12个字节 其他:2d---单点遥控 2e---双点遥控 2f---双电遥调 64---召唤全数据 65---召唤全电度 67---时钟同步命令 4、常用的传送原因列表: 1---周期、循环 2---背景扫描 3---突发、自发上传

网络参数及104规约说明-施志晖

104规约的网络结构及报文介绍 中西部施志晖 随着光纤通讯的兴起,为104规约的应用提供了越来越好的平台。现在104规约逐渐趋向主流。 1:104规约的网络模式及网络参数的介绍 1.1 104规约的网络模式 1.2 网络参数的介绍 在104通讯时,主站会分配一些IP地址和子网掩码,网关等参数, 2:104的报文结构及一些参数的理解 2.1 104的报文结构

104的报文共分为3种格式,即U格式,I格式,和S格式。 基本结构为:68+ length+控制8位组1+控制8位组2+控制8位组3+控制8位组4 +ASDU 其中: 控制域的第一个8位位组的第1比特=0定义了I格式,它表明APDU中包含应用服务数据单元ASDU,主要用于主站的总查询,对时,召唤电量,遥控等,子站的变化遥测,soe,变位遥信等的传送。如: 68 0e 00 00 00 00 64 01 06 01 c5 00 00 00 00 14 控制域的第一个8位位组的第1比特为1,第2比特为0定义了S格式,此种格式的APDU 不包含ASDU,当报文接收方收到发送方的I格式报文后,如果没有I格式报文需要发送给对方,可以向对方发送S格式报文以对所接收到的报文进行确认。比如: 子站发送报文: 68 46 0a 2f (发送序号)06 00 (接受序号)0b 0a 03 00 03 00 08 40 00 b5 0a 00 09 40 00 83 fe 00 0a 40 00 71 0a 00 14 40 00 42 f6 00 15 40 00 74 01 00 16 40 00 71 09 00 4a 40 00 13 00 00 4d 40 00 e9 ff 00 4f 40 00 0a 00 00 58 40 00 f6 ff 00 子站接收主站的确认报文: 68 04 01 00 0c 2f 控制域的第一个8位位组的第1比特=1,第2比特=1定义了U格式,此种格式的APDU 也不含ASDU,其作用主要在于实现3种控制功能,即启动子站进行数据传输(STARTDT)、停止子站的数据传输(STOPDT)和TCP链路测试(TESTFR)。比如: 接收报文: 68 04 07 00 00 00 (启动数据传输0000 0111) 发送报文: 68 04 0b 00 00 00 (确认数据传输0000 1011) 2.2 104的实施过程 IEC 60870-5-104包括非常丰富的应用服务数据单元(ASDU),它不但选取了绝大部分IEC 60870-5-101规约的ASDU,而且还扩展了类型标识为58到64,以及类型标识为107的新的ASDU。但在实际使用中,能够用到的仅仅是其中一小部分。 其实施过程为: (1)TCP连接的建立过程。站端RTU作为服务器,在建立TCP连接前,应一直处于侦听状态并等待调度端的连接请求,当TCP连接已经建立,则应持续地监测TCP连接的状态,以便TCP连接被关闭后能重新进入侦听状态并初始化一些与TCP连接状态有关的程序变量;调度端作为客户机,在建立TCP连接前,应不断地向站端RTU发出连接请求,一旦连接请求被接收,则应监测TCP连接的状态,以便TCP连接被关闭后重新发出连接请求。需要注意的是,每次连接被建立后,调度端和站端RTU应将发送和接收序号清零,并且子站只有在收到了调度系统的STARTDT后,才能响应数据召唤以及循环上送数据,但在收到STARTDT之前,子站对于遥控、设点等命令仍然应进行响应。 (2)循环遥测数据传送。对于遥测量,可以使用类型标识为9(归一化值)、11(标度化值)和13(短浮点数)及21(不带描述)的ASDU定时循环向调度端发送。 (3)总召唤过程。调度主站向子站发送总召唤命令帧(类型标识为100,传输原因为6),子站向主站发送总召唤命令确认帧(类型标识为100,传输原因为7),然后子站向主站发送单点遥信帧(类型标识为1)和双点遥信帧(类型标识为3),最后向主站发送总召唤命令结束帧(类型标识为100,传输原因为10)。 (4)校时过程。调度主站向子站发送时间同步帧(类型标识为104,传输原因6),子站

104规约报文解释说明

链路先握手再通信,不握手不通信,通信中断须再握手(建立链路) 确认报文的来回须对方的认可,认可方式可以是一条专用的报文也可以是下一个询问报文中的FCB来暗示 原因传送的信息都必须带上原因,不允许没有理由的传输 地址每个信息量都有一个唯一的不重复的地址 类型每种信息的传输都有不同的功能类型 68 启动符 5D 长度 6C 控制域1 03 控制域2 78 控制域3 00 控制域4 01 遥信 D0 可变结构限定词(信息体个数) 14 00 传送原因 01 00 站地址 01 00 00 信息体地址(点号=信息体地址-起始地址) 00 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

结构说明: TYP:类型标识,可查表 在监视方向的过程信息 <0> := 未定义 <1> := 单点信息M_SP_NA_1 <3> := 双点信息M_DP_NA_1 <5> := 步位置信息M_ST_NA_1 <7> := 32比特串M_BO_NA_1 <9> := 测量值,归一化值M_ME_NA_1 <11> := 测量值,标度化值M_ME_NB_1 <13> := 测量值,短浮点数M_ME_NC_1 <15> := 累计量M_IT_NA_1 <20> := 带状态检出的成组单点信息M_PS_NA_1 <21> := 不带品质描述的归一化测量值M_ME_ND_1 <22..29>:= 为将来的兼容定义保留 <30> := 带时标CP56Time2a的单点信息M_SP_TB_1 <31> := 带时标CP56Time2a的双点信息M_DP_TB_1 <32> := 带时标CP56Time2a的步位置信息M_ST_TB_1 <33> := 带时标CP56Time2a的32比特串M_BO_TB_1 <34> := 带时标CP56Time2a的测量值,归一化值M_ME_TD_1 <35> := 带时标CP56Time2a的测量值,标度化值M_ME_TE_1 <36> := 带时标CP56Time2a的测量值,短浮点数M_ME_TF_1 <37> := 带时标CP56Time2a的累计量M_IT_TB_1 <38> := 带时标CP56Time2a的继电保护装置事件M_EP_TD_1 <39> := 带时标CP56Time2a的继电保护装置成组启动事件M_EP_TE_1 <40> := 带时标CP56Time2a的继电保护装置成组输出电路信息M_EP_TF_1 <41..44>:= 为将来的兼容定义保留 在控制方向的过程信息 类型标识:= UI8[1..8]<45..69> CON <45> := 单命令C_SC_NA_1 CON <46> := 双命令C_DC_NA_1 CON <47> := 步调节命令C_RC_NA_1 CON <48> := 设点命令,归一化值C_SE_NA_1 CON <49> := 设点命令,标度化值C_SE_NB_1 CON <50> := 设点命令,短浮点数C_SE_NC_1 CON <51> := 32比特串C_BO_NA_1 <52..57> := 为将来的兼容定义保留 在控制方向的过程信息,带时标的ASDU CON <58> := 带时标CP56Time2a的单命令C_SC_TA_1 CON <59> := 带时标CP56Time2a的双命令C_DC_TA_1 CON <60> := 带时标CP56Time2a的步调节命令C_RC_TA_1 CON <61> := 带时标CP56Time2a的设点命令,归一化值C_SE_TA_1 CON <62> := 带时标CP56Time2a的设点命令,标度化值C_SE_TB_1 CON <63> := 带时标CP56Time2a的设点命令,短浮点数C_SE_TC_1 CON <64> := 带时标CP56Time2a的32比特串C_BO_TA_1 <65..69> := 为将来的兼容定义保留

104规约报文说明

主站与子站通过IEC60870 -5-104 规约通讯协议说明 目录 目录 (1) 、八―丄 前言 (1) 一、IEC60870-5-104 应用规约数据单元基本结构 (2) 1.1 应用规约数据单元APDU (2) 1.2 应用规约控制信息APCI (2) 1.3 应用服务数据单元ASDU (3) 二、IEC60870-5-104 规约的过程描述 (5) 三、IEC60870-5-104 规约源码分析(报文分析) (5) 3.1启动连接(U 格式) (5) 3.2启动连接确认(U 格式) (6) 3.3总召唤(I 格式) (6) 3.4总召唤确认(I 格式) (6) 3.5数据确认(S 格式) (6) 3.6总召唤结束(I 格式) (7) 3.7测试连接(U 格式) (7) 3.8测试连接确认(U 格式) (7) 3.9.遥信信息(I 格式) (7) 3.9遥测信息(I 格式) (10) 3.10 SOE 信息(I 格式) (11) 根据全国电力系统控制及其通信标准委员会三届五次会议和最近出版的国标 DL/T634.5.104:2002 对104 规约的参数选择做了如下说明: 1、采用端正101 规约中的链路地址和短报文(指链路确认报文) 2、采用召唤一级数据 3、两个字节表示公共地址(站址) 4、两个字节表示传送原因 5、三个字节表示信息体地址 上述3、4、 5 点与上一次通讯协议具体说明有冲突,为执行国际国内标准,建议根据上述要求对报文做如下修改。

IEC60870-5-104应用规约数据单元基本结构 应用规约数据单元:APDU( Applicati on protocal data unit ) 应用规约控制信息:APCI (Application protocal control information ) 应用服务数据单ASDU( Applicati on protocal con trol unit ) APDU=APCI + ASDU 1.1应用规约数据单元APDU 定义了启动字符、应用服务数据单元的长度规范、可传输一个完整的应用规约数据单丿元。 ? 启动字符:68H(—个字节) ?长度规范:报文最大长度255字节,应用规约数据单元的最大长度为253字节,控制域的长度是4字节,应用服务数据单元的最大长度为249字节。 ?控制域:控制域定义抗报文丢失和重复传送的控制信息、报文传输的启动和停止、传输连接的监视。控制域的这些类型被用于完成计数的信息传输的(I格式)、计 数的监视功能(S格式)和不计数控制功能(U格式)。 ?应用服务数据单元 1.2应用规约控制信息APCI 控制域定义抗报文丢失和重复传送的控制信息、报文传输的启动和仃止、传输连接的监视。控制域的这些类型被用于完成计数的信息传输的(I格式)、计数的监视功能(S格式)和不计数的控制功能(U格式)。

104规约报文说明

主站和子站通过IEC60870-5-104规约通讯协议说明 目录 目录 (1) 前言 (1) 一、IEC60870-5-104使用规约数据单元基本结构 (2) 1.1 使用规约数据单元APDU (2) 1.2 使用规约控制信息APCI (2) 1.3 使用服务数据单元ASDU (3) 二、IEC60870-5-104规约的过程描述 (5) 三、IEC60870-5-104规约源码分析(报文分析) (5) 3.1启动连接(U格式) (5) 3.2启动连接确认(U格式) (6) 3.3总召唤(I格式) (6) 3.4总召唤确认(I格式) (6) 3.5数据确认(S格式) (6) 3.6总召唤结束(I格式) (7) 3.7测试连接(U格式) (7) 3.8测试连接确认(U格式) (7) 3.9.遥信信息(I格式) (7) 3.9遥测信息(I格式) (10) 3.10 SOE信息(I格式) (11) 前言 根据全国电力系统控制及其通信标准委员会三届五次会议和最近出版的国标DL/T634.5.104:2002对104规约的参数选择做了如下说明: 1、采用端正101规约中的链路地址和短报文(指链路确认报文) 2、采用召唤一级数据 3、两个字节表示公共地址(站址) 4、两个字节表示传送原因 5、三个字节表示信息体地址 上述3、4、5点和上一次通讯协议具体说明有冲突,为执行国际国内标准,建议根据上述要求对报文做如下修改。 一、IEC60870-5-104使用规约数据单元基本结构 使用规约数据单元:APDU(Application protocal data unit)

使用规约控制信息:APCI(Application protocal control information) 使用服务数据单元:ASDU(Application protocal control unit) APDU=APCI + ASDU 1.1 使用规约数据单元APDU 定义了启动字符、使用服务数据单元的长度规范、可传输一个完整的使用规约数据单元。 ●启动字符:68H(一个字节) ●长度规范:报文最大长度255字节,使用规约数据单元的最大长度为253字节,控 制域的长度是4字节,使用服务数据单元的最大长度为249字节。 ●控制域:控制域定义抗报文丢失和重复传送的控制信息、报文传输的启动和停止、 传输连接的监视。控制域的这些类型被用于完成计数的信息传输的(I格式)、计 数的监视功能(S格式)和不计数控制功能(U格式)。 启动68H 使用规约数据单元的长度(APDU) 控制域八位位组1 控制域八位位组2 控制域八位位组3 控制域八位位组4使用规约控制信息APCI 启动一个字节 长度一个字节 四个控制域八位位组 IEC60870-5-104的使用服务数据单元使用服务数据单元ASDU 最大帧长为249 1.2 使用规约控制信息APCI 控制域定义抗报文丢失和重复传送的控制信息、报文传输的启动和仃止、传输连接的监视。控制域的这些类型被用于完成计数的信息传输的 (I格式)、计数的监视功能(S 发送序号N(S) LSB 0 MSB 发送序号N(S) 接收序号N(R) LSB 0 MSB 接收序号N(R) 0 0 1 接收序号N(R) LSB 0 MSB 接收序号N(R) TESTFR STOPDT STARTDT 1 1 CON ACT CON ACT CON ACT

104规约向IEC61850信息模型转换的研究与实现

收稿日期:20072052301 基金项目:国家自然科学基金资助项目(60574037)1 104规约向IEC 61850信息 模型转换的研究与实现 李 强,朱永利,董志敏 (华北电力大学电气与电子工程学院,河北保定071003) 摘要:面向点的传统规约向面向对象技术的IEC 61850转换是网络技术发展的必然趋势。文章在深入研究 IEC 60870-5-104和IEC 61850协议的基础上,建立了一种兼顾现有系统又遵循IEC 61850的新型电力远动 通信系统网络结构。通过应用XML Schema 技术对协议映射建模这种新的规约映射方法来设计规约转换网关。该转换网关是利用以太网通信、信息建模以及XML 等技术来实现传统通信协议与IEC 61850协议的无缝转换,它具有配制灵活、通用性强的优点。 关键词:IEC 60870-5-104;IEC 61850;XML Schema ;转换网关;无缝通信 中图分类号:TM764 文献标识码:A 文章编号:1007-2691(2008)02-0098-05 Research and implementation of conversion of 104 protocol toward IEC 61850information model L I Qiang ,ZHU Y ong 2li ,Dong Zhi 2min (School of Electrical and Electronic Engineering ,North China Electric Power University ,Baoding 071003,China )Abstract :The conversion of traditional protocol of the dot 2oriented technique toward object 2oriented IEC 61850is an inevitable trend.Based on the in 2depth study on IEC60870-5-104and IEC 61850,a new network architecture of telecontrol communication which puts both the existing system and IEC 61850into consideration is established .Through applying a new protocol mapping method that uses XML Schema technology to model the protocol mapping ,a conversion gateway is designed.The gateway uses the technique of Ethernet Communication ,Information Modeling and XML to realize the seamlessly conversion between the traditional communication protocol and IEC 61850,it is en 2abled to have the characteristics of smart configuration and strong universality. K ey w ords :IEC 60870-5-104;IEC 61850;XML Schema ;conversion gateway ;seamless communication 0 引 言 目前,在我国电力系统远动信息交换中使用较多的是IEC60870-5-104。在新的网络化规约陆续出台的今天,将采用旧通信规约的远动系统纳入新型网络化远动系统的体系结构中,在保持原有系统结构和设备不变的情况下使其与最新的国际标准接轨。这是实现电力系统无缝远动通信 的重要环节。 文章在对IEC60870-5-104和IEC 61850协议进行深入研究的基础上,针对IEC 61850所定义的数据结构和104数据单元格式的特点,提出了104规约向IEC 61850规约进行映射和转换的方法,并详细描述了它基于XML 技术的具体实现过程,为新旧规约之间的转换创造了条件。 1 IEC 60870-5-104标准简介 IEC60870-5-104远动规约(以下简称104规约)的网络参考模型可分为5层:物理层、链 第35卷第2期2008年3月 华北电力大学学报Journal of North China Electric Power University Vol 135,No 12 Mar 1,2008

104报文解析

1)程序启动后,首先发送链路连接请求帧, 68 04 07 00 00 00 起始字符:68H 应用规约数据单元长度(APDU):04H(4个字节,即07 00 00 00) 控制域第一个八位组:07H --> 0000 0111 由前两位11可知是U格式帧; 由第三四位01可知是链路连接请求帧(TESTFR:CON=0,TESTFR:ACT=0,STOPDT:CON=0,STOPDT:ACT=0,STARTDT:CON=0,STARTDT:ACT=1) 控制域后三个八位组:00H 00H 00H(无意义) 2)随后,接到模拟从站发送来的连接请求确认帧, 68 04 0B 00 00 00 起始字符:68H 应用规约数据单元长度(APDU):04H(4个字节,即0B 00 00 00) 控制域第一个八位组:0BH --> 0000 1011 由前两位11可知是U格式帧; 由第三四位10可知是链路连接确认帧(TESTFR:CON=0,TESTFR:ACT=0,STOPDT:CON=0,STOPDT:ACT=0,STARTDT:CON=1,STARTDT:ACT=0) 控制域后三个八位组:00H 00H 00H(无意义) 3)主站发送总召唤激活请求命令, 68 0E 00 00 00 00 64 01 06 00 01 00 00 00 00 14 起始字符:68H 应用规约数据单元长度(APDU):0EH(14个字节,即00 00 00 00 64 01 06 00 01 00 00 00 00 14) 控制域第一个八位组:00H --> 0000 0000 由第一位0可知是I格式帧; 控制域第二个八位组:00H --> 与第一个八位组的第2-8位组成 0000 0000(高位)0000 000(低位) 所以,发送序号N(S)=0(注:I格式帧计数) 控制域第三四八位组:00H 00H --> 0000 0000(第四个八位组,高位)0000 000(第三个八位组的第2-8位,低位) 所以,接收序号N(R)=0(注:I格式帧计数) 类型标识:64H(CON<100>:=总召唤命令) 可变结构限定词:01H(SQ=0,number=1) 传送原因:06H 00H(Cause=6,激活)注:用两个八位组表示传送原因,且低位在前、高位在后,即Cause=0006H,本文中的所有报文顺序都是由高至低。 APDU地址:01H 00H(ADDR=1,即0001H,低位在前,高位在后) 信息体地址:00H 00H 00H(低位在前,高位在后) 信息体元素:14H(召唤限定词QOI=20,站召唤全局) 4)从站发送总召唤激活确认命令, 68 0E 00 00 02 00 64 01 07 00 01 00 00 00 00 14 起始字符:68H 应用规约数据单元长度(APDU):0EH(14个字节,即00 00 00 00 64 01 06 00 01 00 00 00 00 14) 控制域第一个八位组:00H --> 0000 0000 由第一位0可知是I格式帧; 控制域第二个八位组:00H --> 与第一个八位组的第2-8位组成 0000 0000(高位)0000 000(低位)

及104规约报文解析方法

101、104规约报文解析方法 一、电力系统数据通信协议体系 IEC60870-5系列:远动通信协议体系 IEC60870-6系列:计算机数据通信协议体系 IEC61850-7系列:变电站数据通信协议体系 IEC60870-5系列; IEC TC57 WG03(远动规约) 配套标准 IEC60870-5-101:基本远动任务 IEC60870-5-102:电能累计量 IEC60870-5-103:继电保护 IEC60870-5-104:IEC60870-5-101的网络访问 其他规约类型;CDT、、MODBUS等。 二、远动传输规约IEC60870-5-104的解析方法 1)程序启动后,首先发送链路连接请求帧,68 04 07 00 00 00 起始字符:68H

应用规约数据单元长度(APDU):04H (4个字节,即07 00 00 00) 控制域第一个八位组:07H --> 0000 0111 由前两位11可知是U格式帧; 由第三四位01可知是链路连接请求帧2)随后,接到模拟从站发送来的连接请求确认帧, 68 04 0B 00 00 00 起始字符:68H 应用规约数据单元长度(APDU):04H (4个字节,即0B 00 00 00) 控制域第一个八位组:0BH --> 0000 1011 由前两位11可知是U格式帧; 由第三四位10可知是链路连接确认帧3)主站发送测试链路询问帧, 68 04 43 00 00 00 控制域第一个八位组:43H --> 0100 0011 由前两位11可知是U格式帧;

由第七八位01可知是链路测试请求帧4)从站发送链路测试确认帧; 68 04 83 00 00 00 控制域第一个八位组:43H --> 0100 0011 由前两位11可知是U格式帧; 由第七八位11可知是链路测试确认帧5)主站发送总召唤激活请求命令;

相关文档
最新文档