损伤容限

损伤容限
损伤容限

耐久性——结构具有在使用寿命期内承受重复载荷谱作用而不产生功能性损坏或引起不经济维修等问题的特性。

损伤容限——结构经受定量的疲劳、腐蚀、意外或离散源损伤,在使用期内,结构保持其所要求的剩余强度的能力。

破损安全——当一主要结构件破坏或部分破坏后,在未修使用期内,结构保持其所要求的剩余强度的能力。

安全寿命——是指极小可能发生的飞机结构由于疲劳开裂,其强度降低到它的设计极限值时所经历的时间(以飞行次数、起落次数或飞行小时数计)。

设计服役目标——是设计(或)合格审定时所确定的时间期限(以飞行次数或飞行小时数计),在该时期内,主结构应当不出现重大开裂。

重要结构件(PSE或SSI)——是对承受飞行、地面和增压载荷有重要作用的结构件,其完整性是维持整个飞机结构完整性必不可少的。

单途径传力——外加载荷明显地通过一个元件承受,该单元的破坏将导致结构承受外加载荷能力的丧失。

多途径传力——属于超静定结构,当单个元件破坏

后,其外加载荷将安全地分配到其余承载元件。

广布疲劳损伤(WFD)——结构多个细节部位同时出现具有足够尺寸和密度的裂纹,从而使结构不再满足其损伤容限要求(即当部分结构破坏后,维持其剩余强度要求)。

多部位损伤(MSD)——以同一结构元件中同时出现多条疲劳裂纹为特征的一种广布疲劳损伤源,彼此合并或不合并的多条疲劳裂纹导致不满足剩余强度要求。

多元件损伤(MED)——以相邻诸结构元件中同时出现多条疲劳裂纹为特征的一种广布疲劳损伤源。分散系数——用于描述疲劳分析和实验结果的寿命缩减系数。

基本原理

耐久性和损伤容限是现代飞机结构设计必须满足的结构特性,其含义简单说来是:

耐久性是结构防止和抵抗损伤(包括疲劳、腐蚀、应力腐蚀、热退化、剥离、脱层、磨损和外来物损伤)的能力。

损伤容限是结构防止损伤增长至灾难性破坏的能力。

耐久性设计的目的是:赋予结构高的疲劳品质,使

结构具有对抗疲劳、腐蚀(包括应力腐蚀)和意外损伤的高度阻力,从而确保飞机以低维修成本达到长经济寿命。

损伤容限设计的目的是:使结构受损伤的危险性减至最小,通过断裂控制,保证在损伤使强度降至适航条例规定值(剩余强度要求)之前,以高概率及时检测出损伤,使结构修复后回到条例要求的强度,从而确保民用飞机的安全可靠。

一句话就是:应用耐久性与损伤容限技术,以高可靠性实现民机至少20年的设计服役目标(使用寿命)。

损伤容限的概率设计方法

复合材料结构概率损伤容限设计方法研究 1. 研究背景 现阶段在复合材料结构的损伤容限设计方法中,所考虑的主要物理量是按确定量来处理的而忽略了它们的随机性,即确定性方法。例如,复合材料结构在制造或使用期间常常会产生损伤,为了使设计的结构在经受这样的损伤之后仍能安全使用,在实践中一般的做法是限制复合材料结构中的许用应力。典型的做法是,将复合材料结构设计成经得起下述最苛刻的二个条件中的任何一个:(1)极限载荷下任何位置的6.3 mm的开孔;(2)规定尺寸的物体冲击表面时引起的损伤(代表目视勉强可见的冲击损伤威胁)。两个准则都假设在构件的寿命期内存在缺陷。很显然,这些准则降低了复合材料的许用强度。确定性方法规定一个安全系数以覆盖未知量而导致保守的设计,传统上安全系数一般取为1.5。 实际上,飞机结构的安全性要受到很多因素的影响,其中一些主要影响因素还具有明显的、不可忽视的随机特性。因此用统计模式来表征部件尺寸、环境因子、材料特性和外载荷等设计变量更为符合实际情况。确定性方法是找出并定义在设计中要满足的一个最严重情况或极值,而概率设计方法则在设计中利用统计学特征并试图提供一个期望的可靠度。概率方法依赖于一个变量的统计特征来确定它的大小和频率,较确定性方法更为合理。 当前军用和民用飞机的结构设计除满足强度和刚度要求外,已广泛采用耐久性/损伤容限设计思想。其中,损伤容限设计思想是在“破损安全”概念的基础上演变而来的,主要基于如下考虑,即结构带损伤使用是难以避免的事情。损伤容限设计思想要求含损伤结构在损伤被检出之前要保持足够的剩余强度。损伤容限设计是依靠结构对损伤容忍能力和规定的无损检测的有效性来保证安全的。目前的损伤容限设计方法属于确定性设计方法。因此,进一步的设计思想是发展一种能综合考虑各种主要因素的影响及其随机性的设计方法,即复合材料结构可靠性分析与设计方法。 2. 复合材料结构概率损伤容限设计涉及的损伤表征问题研究 2.1 损伤类型及其相应的损伤信息数据库 在复合材料材料结构损伤容限设计中的初始缺陷主要包括制造加工缺陷与使用(服役)缺陷两大类。按照损伤类型又可以分为(1)脱胶分层,(2)孔隙率,(3)开孔,(4)冲击损伤等等。 国外的研究表明,对复合材料结构可靠性进行评估而言,能够利用的有关损伤的定量信息很少。因此建立损伤数据库是实现复合材料结构概率损伤容限设计方法的最基础的工作。 进行复合材料结构概率损伤容限设计与评估需要的损伤信息包括损伤类型、导致损伤的

第八章 复合材料结构耐久性损伤容限设计4-2

课 题 第八章复合材料结构耐久性损伤容限设计(二) 目的与要求耐久性/损伤容限的基本设计方法、通用过程流程和一般设计原则提高零部件耐久性/损伤容限的特殊设计方法和材料使用因素 了解耐久性/损伤容限设计实例 材料因素对耐久性/损伤容限设计的影响程度 重点耐久性/损伤容限的基本设计方法、通用过程流程和一般设计原则提高零部件耐久性/损伤容限的特殊设计方法和材料使用因素 难 点 耐久性/损伤容限的基本设计方法、通用过程流程和一般设计原则 教 具 复 习提问耐久性/损伤容限的基本设计方法、通用过程流程和一般设计原则?提高零部件耐久性/损伤容限的特殊设计方法和材料使用因素? 新知 识点 考查 耐久性/损伤容限的基本设计方法、通用过程流程和一般设计原则 布置 作业 课堂布置 课后 回忆 耐久性/损伤容限的基本设计方法、通用过程流程和一般设计原则?备注 教员张颖云

1.耐久性/损伤容限设计方法 1.1.概述 1.1.1目的 耐久性/损伤容限的设计方法主要是正确地制定和执行,对结构的耐久性/损伤容限控制计划。 1.1.2主要的两项任务 ●确定关键件根据系统的整体性、零件在系统中的位置、作用以及零件的 服役环境,又设计人员预先或者设计过程中确定零件或部件是否属于关键件,或者重要件。 ●对关键件进行全面的质量控制由设计人员,协同工艺人员、质量控制、 操作人员和其他方面的人员,共同完成关注关键件或重要件的制造过程,要求从材料的定制、运输、存储、下料、铺贴、固化、成形、机械加工,以及随后的试验等方面进行控制。 1.1.3设计原则 ●关键部位、关键件可能出现的缺陷/损伤的类型、尺寸、位置、范围以及 他们的相对严重性; ●评定损伤对疲劳载荷的敏感性及其疲劳扩展性,修理的最佳方案和可能保 留的剩余强度值; ●最后剩余强度的验证,确定检查间隔时间、检查方法,以及中间发生的损 伤扩展; ●环境对带有缺陷或损伤的零部的影响程度,突发事件可能导致的损伤和缺 陷的发展。 1.2.关键件的选择 1.2.1.评价因素 ●一旦破坏或其破坏持续未被查出会对结构安全造成严重的后果的结构危 险部位和构建 ?承受的服役中出现超载能力对飞机而言就是飞行可能出现结构承 力; ?静态试验或启动过程中附加的超大载荷对飞机而言则表示为,地面

耐久性和损伤容限分析软件MSC

耐久性和损伤容限分析软件MSC.Fatigue介绍 耐久性和损伤容限分析软件MSC.Fatigue介绍 在操作中失败的机械系统引起包括在其中的各个部件的严重问题。制造商面临高额的保证花费和负担,而更重要的是操纵有缺陷的小汽车、卡车、飞行器或机械设备的人的安全性可能是冒险的。为减少产品可能过早疲劳破坏或预料不到破坏的这些风险,制造商可能: -使用更高的安全系数保守设计部件,结果是增加了重量和费用。 -依赖于繁重的物理疲劳试验,预测疲劳情况和寿命期望。这将导致费用增加和推向市场的时间加长。同时也限制了能进行试验工况数量和操作环境。 作为用户“产品虚拟开发(VPD)”过程的一个关键环节,MSC.Fatigue可以帮助用户快速而准确地预测产品在任何与时间相关和频率相关的载荷工况作用下的寿命,并优化产品的重量和形状。 MSC.Fatigue产品家族软件提供了可以由用户根据需求而定一系列集成的产品: 核心产品:例如:Basic, Pre&Post, Strain Gauge, and Utilities。提供建模、测试、功能、评估和从耐久性观点对产品性能的提高等基本的功能。 可选产品:例如Fracture, Multiaxial,和Vibration ,扩展核心产品的能力。 工业领域专业产品:例如Spot Weld和 Wheels。为特定的工业或应用领域提供的疲劳计算。 MSC.Fatigue是MSC与MSC在疲劳和耐久性分析领域的合作伙伴nCode合作开发的。我们推荐MSC.Patran 作为MSC.Fatigue分析的前后处理软件工具。可以从其它MSC的软件产品中获得MSC.Fatigue需要的几何和有限元结果,例如MSC.Nastran, MSC.Marc和MSC.Dytran。载荷工况可以从MSC.ADAMS或物理试验中获得。需要的材料信息可以从MSC.Fatigue的标准库中获得,从MSC.EnterpriseMvision材料数据库中获得,或者由用户自己提供。 获益: -通过识别需要时间处理的部件的薄弱环节,加速创新。 -所有的可能的载荷工况情况下,对产品进行虚拟试验,增加产品最终设计时的信心。 -使新设计快速走向市场,避免沉长的物理上“装与拆”的循环,而它需要数周或数月才能充分地达到正常的循环寿命时间。 -最大限度地减少产之间品数据传递的时间,而此产品与MSC公司的其它仿真工具有很好的集成。最大限度地减少部件保守设计而节省费用。 -通过将此产品作为MSC校园Licensing系统的一部分,节省在仿真技术方面的投资。 应用: -承受低循环或随机振动载荷的飞行器。 -汽车悬架系统和刹车系统。 -非高速路行驶的车辆,具有相对粗糙的操作环境。 -发动机噪声,风力涡轮机和有随机振动的海洋钻井平台。

从安全寿命到损伤容限——结构设计的观念演变

从安全寿命到损伤容限 ——结构设计的观念演变 摘要 结构的设计,必须在性能、安全、成本三者间取得平衡。 最早仅考虑材料静力强度;20世纪30年代后为采用线性疲劳观念的“安全寿命”, 50年代改进为“破损安全”;而70年代则使得“损伤容限”成为现今的标准结构设计准则。1988年揭示了散布型疲劳损伤(亦称为“广布疲劳”)成为“损伤容限”结构设计的新课题。 1、静力强度 早期应用中,由于金属材料极富韧性(ductility),结构设计方法很保守,因此结构的安全裕度(Margin of Safety)相当大。在结构遭遇疲劳问题之前,设备早就因为其它使用原因而失效了,因此结构疲劳寿命不是此时的设计重点。结构设计只要满足材料静力强度(Static Strength)就不会有问题,结构分析则以静力试验为佐证,试验负载是使用负载乘以一个安全系数,以计入不确定因素,比如:负载不确定、结构分析不准确、材料性质变异、制造质量变异……等。 为了减轻结构重量以提升使用性能,在材料静力强度主导结构安全的思想下,一些强度高但韧性低的金属材料开始出现在设备结构上。只是此时的设备运行工况已非昔日设计工况可比,结构应力大增,应

力集中(Stress Concentration)效应使高应力情况更加恶化,最后导致产生疲劳裂纹,降低了结构安全裕度,材料静力强度已不足以保证设备运行的结构安全。 2. “安全寿命” “安全寿命”(Safe Life)设计观念。在这种设计观念里,设备在预定的运行期间内需能承受预期的反复性负载,当结构运行时数到达运行寿命时,认定结构疲劳寿命已经完全耗尽,设备必须报废。 “安全寿命”设计观念的缺点,在于它的疲劳分析与设计一般是采用“疲劳强度耐久限制”(Fatigue Strength‐Endurance Limit)的方法,也就是所谓的麦林法则(Miner's Rule)。它是在实验室里对多片截面积各异的小尺寸材料试片,施加不同的等振幅(Constant Amplitude)负载,直到试片疲劳破坏为止,以获得此材料在各种施加应力和发生疲劳破坏的负载周期之数据,称之为S‐N曲线(S‐N Curve,S代表施加应力,N代表负载周期数),再以实际结构件在各种设计运行条件下的应力,找到相对应的疲劳破坏负载周期数,依线性累加的方式加总,就可预测结构的疲劳寿命,并应用于设计。虽然这种方法已行之多年,且普遍为一般结构设计及分析所接受,然而这种分析方法有其先天上的缺点,使得分析的结果常不符合实际。 因为一般在实验室里做这种小型试片的疲劳试验时,试片表面上都有经过特别处理,以使试片表面尽可能光滑平整而没有任何缺陷,也就是没有任何裂纹的存在。因此,由这种试片所得的疲劳寿命试验数据,就包括了裂纹初始(Crack Initiation)及裂纹生长(Crack Growth)

T300级复合材料冲击容限和拉伸强度

T300级复合材料冲击容限和拉伸强度 北京航空航天大学附属中学 成员:崔容熊天宇张子琪 指导教师:魏云波 (以上姓名排序皆按照姓氏字母顺序) 摘要:采用落锤式冲击台冲击了国产T300复合材料层板,测量冲击高度与冲击凹坑深度的关系。采用高频疲劳力学试验机对冲击后的复合材料层板进行了压缩强度试验,测定了冲击凹坑深度与压缩剩余强度之间的关系,对复合材料层板的冲击损伤及其强度有深入的了解,验证了前人的猜想,得到了关于冲击凹坑深度、冲击能量、压缩(拉伸)强度的关系,这大大方便了实际中的简便计算。 关键词: T300级复合材料冲击损伤容限拉伸强度 一、前言 1.研究背景: 目前冲击损伤是飞机结构强度设计中一个非常重要的问题。飞机在实际飞行中由冰雹,鸟撞或者在维修过程中不经意都会对连接件产生一定程度的冲击损伤,并且在连接件材料的表面留有一定的破坏凹坑或表面拉伸。而且,现如今,复合材料在飞机上的运用越来越受重视,了解复合材料的冲击性能就尤为显得重要。本实验探究冲击损伤与凹坑深度之间的内在联系还有材料本身拉伸强度的结构特性。 就在不久前,应用了T300级复合材料的我国国产猎鹰06高教机准备投入实现首次装机件试制。T300复合材料属环氧基碳纤维增强复合材料。由碳纤维和树脂结合而成的复合材料由于具有比重小、韧性好和强度高、比强度高、比模量高、密度小、耐热、耐低温、优异的热物理性能、化学稳定性以及材料性能可设计等优点,已广泛应用于航天、航空、体育休闲和工业领域。 研究碳纤维/环氧树脂复合材料的力学性能,尤其是其高温性能,对其在超常环境下的使用具有重要意义。所以现在是一个研究与应用复合材料的高速时代。 2.文献调研: 我组共查阅了有关(及其相关)资料论文15篇,其中有效(对本组研究有一定帮助的)论文11篇。 通过对文献资料的研究与思考,我们认为(结合文献中思想):新材料的引入有可能使

损伤容限技术

民用飞机损伤容限技术 (FAA专家Swift 在华培训班讲课摘录) 1. 损伤容限评定主要目标 (1)对强度、细节设计和制造的评定必须表明,飞机在整个使用寿命期间将避免由于疲劳、腐蚀、制造缺陷或意外损伤引起的灾难性破坏; (2) 新研制的飞机,必须进行损伤容限评定;此后更改的老机,更改部分也必须进行损伤容限评定; (3) 损伤容限评定的主要目标: a. 裂纹增长和剩余强度分析; b. 检测。 2. 损伤容限要求的主要更改 (1)剩余强度载荷为100%限制载荷;取消了动强度因子。 (2)结构必须是损伤容限的,除非是无法实施。 (3)检查必须依据谱载作用下裂纹增长速率来确定。 (4)必须考虑广布疲劳损伤的情况: a. 多条小裂纹的独立增长,即便每一条都小于可检长度,有可能突然连接起 来形成单个临界裂纹; b. 先前的疲劳暴露产生的次结构件上的裂纹,由于主结构上的破坏而引起载 荷的重新分布; c. 多传力路径结构中,有相近应力水平的独立元件,可能发生同时破坏。3. 试验支持的分析评估(略) 4. 评定临界部位的选择准则 飞机在外场主要靠目视检查,一架大型飞机的检查面积约15,000 in2,关键部位一般约150个。A320的关键部位有500个,B767则仅有27个。 (1)受拉或剪的元件; (2)低静强度裕度部位; (3)高应力集中处; (4)高载传递处; (5)当主元件破坏后,次元件出现高应力处; (6)有高裂纹扩展率的材料; (7)易受偶然性损伤的部位; (8)部件试验结果; (9)全尺寸试验结果。 5. 损伤容限评定的任务 (1)确定飞机用途。 (2)编制重心过载谱。

第八章复合材料结构耐久性损伤容限设计4-2概论

第八章复合材料结构耐久性损伤容限设计(二)第2 页共8 页 课 题 第八章复合材料结构耐久性损伤容限设计(二) 目的与要求耐久性/损伤容限的基本设计方法、通用过程流程和一般设计原则提高零部件耐久性/损伤容限的特殊设计方法和材料使用因素 了解耐久性/损伤容限设计实例 材料因素对耐久性/损伤容限设计的影响程度 重点耐久性/损伤容限的基本设计方法、通用过程流程和一般设计原则提高零部件耐久性/损伤容限的特殊设计方法和材料使用因素 难 点 耐久性/损伤容限的基本设计方法、通用过程流程和一般设计原则 教 具 复 习提问耐久性/损伤容限的基本设计方法、通用过程流程和一般设计原则?提高零部件耐久性/损伤容限的特殊设计方法和材料使用因素? 新知 识点 考查 耐久性/损伤容限的基本设计方法、通用过程流程和一般设计原则 布置 作业 课堂布置 课后 回忆 耐久性/损伤容限的基本设计方法、通用过程流程和一般设计原则?备注 教员

第八章复合材料结构耐久性损伤容限设计(二)第2 页共8 页

第八章复合材料结构耐久性损伤容限设计(二)第2 页共8 页 1.耐久性/损伤容限设计方法 1.1.概述 1.1.1目的 耐久性/损伤容限的设计方法主要是正确地制定和执行,对结构的耐久性/损伤 容限控制计划。 1.1.2主要的两项任务 ●确定关键件根据系统的整体性、零件在系统中的位置、作用以及零件的 服役环境,又设计人员预先或者设计过程中确定零件或部件是否属于关键件, 或者重要件。 ●对关键件进行全面的质量控制由设计人员,协同工艺人员、质量控制、 操作人员和其他方面的人员,共同完成关注关键件或重要件的制造过程,要求 从材料的定制、运输、存储、下料、铺贴、固化、成形、机械加工,以及随后 的试验等方面进行控制。 1.1.3设计原则 ●关键部位、关键件可能出现的缺陷/损伤的类型、尺寸、位置、范围以及 他们的相对严重性; ●评定损伤对疲劳载荷的敏感性及其疲劳扩展性,修理的最佳方案和可能保 留的剩余强度值; ●最后剩余强度的验证,确定检查间隔时间、检查方法,以及中间发生的损 伤扩展; ●环境对带有缺陷或损伤的零部的影响程度,突发事件可能导致的损伤和缺 陷的发展。 1.2.关键件的选择 1.2.1.评价因素 ●一旦破坏或其破坏持续未被查出会对结构安全造成严重的后果的结构危 险部位和构建 ?承受的服役中出现超载能力对飞机而言就是飞行可能出现结构承 力; ?静态试验或启动过程中附加的超大载荷对飞机而言则表示为,地面

热固性复合材料与热塑性复合材料

热固性复合材料与热塑性复合材料 1热固性树脂基复合材料 热固性树脂基复合材料是应用十分广泛的复合型材料,这种材料是经过复合而成,在多高科技产品中都得到了广泛的应用与研究,例如在大型客运机的应用中,其不仅减轻了重量,并且还优化了飞机的性能,减轻了飞机在飞行过程中的阻碍,热固性树脂具有非常优异的开发潜能,其应用领域也会在其改性后得到更大的发展。 典型的热固性树脂复合材料分为以下几种: (1)酚醛树脂复合材料:随着对阻燃材料的强烈需求,美国西化学公司,道化学公司等一系列大型化学公司都先后研制成功了新一代的酚醛树脂复合材料。其具有优异的阻燃、低发烟、低毒雾性能和更加优异的热机械物理性能。在制备这种具有阻燃效果的材料上,研究人员重新设计思路,在加入不饱和键等其他基团条件下,提高了反应速度,减少了挥发组分。使酚醛树脂复合材料在其应用领域得到大力发展。 (2)环氧树脂复合材料:由于环氧树脂本身的弱点,研究人员对其进行了两面的改性研究,一面是改善湿热性能提高其使用温度;另一面则是提高韧性,进而提高复合材料的损伤容限。含有环氧树脂所制备的复

合材料己经大力应用到机翼、机身等大型主承力构件上。 (3)双马来酞亚胺树脂复合材料:在双马来酞亚胺树脂复合材料中,由于双马来酞亚胺树脂具有流动性和可模塑性,良好的耐高温、耐辐射、耐湿热、吸湿率低和热膨胀系数小等优异性能,所以这种树脂则会广泛运用在绝缘材料、航空航天结构材料、耐磨材料等各个领域中。(4)聚酰亚胺复合材料:聚酰亚胺复合材料具有高比强度,比模量以及优异的热氧化稳定性。其在航空发动机上得到了广泛应用,主要可明显减轻发动机重量,提高发动机推重比。所以在航天航空领域得到了大力的发展和运用。 2热塑性树脂基复合材料 热塑性树脂基复合材料:其自身中的基体是热塑性树脂,该类复合材料是由热塑性树脂基体、增强相以及一些助剂组成。在热塑性复合材料中最典型和最常见的热塑性树脂有聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯、聚酰胺、聚酯树脂、聚碳酸树脂、聚甲醛树脂、聚醚酮类、热塑性聚酰亚胺、聚苯硫醚、聚飒等。 而热塑性树脂复合材料具有很多的特点,以下概述了一些热塑性树脂复合材料的特点。

北航-结构与耐久性损伤容限设计-考试题目范围-关老师

结构耐久性和损伤容限设计理论与方法梁昆2012年12月7日 1、张开型或I 型:外载荷为垂直于裂纹平面的正应力,裂纹面相对位移垂直于裂纹平面。 滑开型或II 型:外载荷为面内垂直裂纹前缘的剪力。裂纹在其自身平面内作垂直于裂纹前缘的滑动。 撕开型或III 型:外载荷为离面剪力。裂纹面在其自身平面内作平行于裂纹前缘的错动。 2、应力强度因子:应力强度因子K 则是构件几何、裂纹尺寸与外载荷的函数,它表征了裂纹尖端受载和变形的强度,是裂纹扩展趋势或者裂纹扩展推动力的度量。 三种种类:受双向拉伸载荷情况、无穷远处收均匀建立情况、受离面建立情况分别对应I 、II 、III 型裂纹的应力场和位移场可表达为:a K I πσ =,a K II πτ=,a q K III π= 3、应力强度因子求法: 1、解析法a 、无限大板含有无限多个均匀相距2b 而各长2a 的共线裂纹 可见,无限大板上有共线的无限多裂纹时,其应力强度因子等于只有一个裂纹时的应力强度因子乘以一个系数,此系数永远大于1.0 b 、含中心裂纹无限大板受楔力P 2.数值解法 数值方法有边界积分方程法、边界配置法、有限元法以及一些建立在能量原理上的方法。 下面简要介绍使用有限元法求解应力强度因子的原理。 用有限元法计算应力强度因子,可用两种方法: 一种方法是直接应用裂纹尖端应力或位移场渐进解的表达式: 另一种方法是通过能量关系,例如应用J 积分计算,用来计算应力强度因子。 3.实验方法 应力强度因子不可能通过实验直接求得,但可以通过它与某些可测量的量的关系求得。 4.叠加法 由于应力强度因子的概念是建立在线弹性力学基础上的,叠加原理可用于求应力强度因子。 4、求下图所示情况的应力强度因子 已知图1.7(b)的应力强度因子解为:,利用叠加原理可知图1.7(a)的应力强度因子为,所以,解为 5、断裂韧度是材料抵抗裂纹扩展的抗力。Kc ,Gc 等称为材料的断裂韧度。 断裂韧度的特点1、与试件厚度有关系2、与材料状态(热处理等)有关3、与温度有关。 6、比较脆性断裂与准脆性断裂之间的异同 脆性断裂:材料是理想脆性,裂纹尖端无塑性区,可用K 或G 准则。 准脆性断裂:裂纹尖端附近材料存在小范围屈服,但仍使用K 或G 准则。 7、能量释放率G 与应力强度因子K 的关系:见书P18 8、J 积分定义:??ΓΓ?? ? ????-=???? ?????-=ds x u T Wdy x u T Wdy J i i

复合材料修复资料

玻璃纤维材料的修复 -----------------------------------------------------------------------------------------其他行业的玻璃纤维修复 1.汽车保险杠是玻璃钢的,损坏了只能用玻璃纤维和树脂来修补,首先你需要买树脂和玻璃纤维毡,这些卖玻璃钢产品的门市都有的,树脂论公斤卖的,叫他们给你配好了,因为其实它有三种材料:树脂、催干剂和固化剂,问清楚怎么用?因为都是化学材料,三者放在一起会起化学反应,放热的,量大的话还会爆炸的,所以要注意安全,不要被烫到了,不要被溅到眼睛里;玻璃纤维布注意最好买毡,因为毡是丝状的,可以一根根抽出来,便于修复修平汽车保险杠表面。两者都买好了,开始修理了:拿个容器另外装树脂,少装些,别一次倒完了,然后再放几滴固化剂,注意搅拌均匀,固化剂可以少放,因为他起固化作用,少放固化慢一些就是了,放多了几分钟就完全固化了,你还没来的及修补呢!用个毛刷刷到到损坏的地方,然后贴些玻璃纤维毡,再刷些树脂上去,刷一次贴一次就可以了!干了以后打磨表面,最后喷漆就可以了!做玻璃这行看起来简单,其实也是技术活,要熟练才刷的平,没有空隙才行!液体是不饱和聚酯树脂【型号一般时191和196】但是要加固化剂和促进剂【俗称红水和白水】比例根据温度而不同,调和后要在规定时间内糊完,否则就会固化 2.买玻璃丝布,环氧树脂,固化剂和柔软剂,先把破口处理一下,再刷环氧树脂混合液,后铺玻璃丝布,这样做三脂两布,固化后,打磨平整。 玻璃钢(FRP)亦称作GFRP,即纤维强化塑料,一般指用玻璃纤维增强不饱和聚酯、环氧树脂与酚醛树脂基体。以玻璃纤维或其制品作增强材料的增强塑料,称谓为玻璃纤维增强塑料,或称谓玻璃钢,注意与钢化玻璃区别开来。由于所使用的树脂品种不同,因此有聚酯玻璃钢、环氧玻璃钢、酚醛玻璃钢之称。质轻而硬,不导电,性能稳定.机械强度高,回收利用少,耐腐蚀。可以代替钢材制造机器零件和汽车、船舶外壳等。 3.树脂和纤维都是玻璃钢的原材料,在混合固化剂和促进剂、在一定温度作用下,粘有树脂的玻璃纤维,因树脂的固化而被粘合在一起,就形成了玻璃钢材质。玻璃钢具有高强、轻质、耐腐蚀的特点,属于复合材料,也就是集合了多种材料的优点而制作出的一种材料。玻璃钢有狭义范畴和广义范畴的说法,狭义就是指玻璃纤维和树脂制作而成的,而广义的玻璃钢,还包括树脂和其它纤维制作成的复合材料,比如碳纤维玻璃钢(比如多数钓鱼竿)、涤纶纤维玻璃钢等等。 4.玻璃钢开裂怎么办 沿着裂缝周围用粗砂纸磨成粗糙,后用树脂和玻璃钢纤维补上 那如果非要修的话,也不是没有办法。树脂选用好点的,一般的也行,还有促进剂、固化剂、优质玻璃纤维布。粉子就不要放了。现在是秋季,温度低,所以固化剂要比夏天时多放,至于精确的比例,我随便估摸一下应该是:固化剂、促进剂、树脂;1:1.5:8 配合玻璃纤维缠在管道上,要让配好的玻璃钢迅速的涂在玻璃纤维布上,要让玻璃钢把玻璃纤维布充分浸透,等待玻璃钢充分固化后,再反复做上几层。就会结实了 航空复合材料结构修理方法 --------------------------------------------------------------------------------------适用于整流罩和玻璃纤维蒙皮1. 1复合材料的缺陷/ 损伤与修理容限

(完整版)第七章损伤容限要求-2009汇总

第七章损伤容限设计要求 第1节概述 1、设计思想的转变 飞机结构安全性的要求, 主要依赖于结构的损伤容限设计技术。 损伤容限设计成为保证结构安全、防止发生灾难性破坏事故的重要设计原则和方法。 损伤容限是在“安全寿命”和“破损—安全”之后发展起来的一项工程技术。它是以断裂力学为基础,以保证结构安全为目标,以损伤检查为手段。涉及结构设计、载荷、强度、材料、工艺、试验质量控制、使用维修和组织管理各环节的系统工程。在各环节中的重要改变对传统理论和方法是一 个巨大的冲击和革新。表现在: (1) 设计思想承认损伤不可避免, 不断发展新的设计准则; (2) 结构提出新的结构设计概念, 进行结构分类, 完善结构总体安排和细节设计要求; (3) 载荷和环境要求飞—续—飞载荷谱,强调温度、湿度和介质环境,考虑离散源损伤; ——载荷谱的谱型分为“等幅谱”、程序块谱、飞—续—飞谱3种简化的排列形式。 ——飞—续—飞载荷谱是以一次飞行接一次飞行地排列飞机所经历的载荷—时间历程。每次飞行代表飞机一种特定的典型使用任务,该谱一般以一定的时间作为循环周期,在一个循环周期内,各次飞行之间的载荷历程有差别,但它们的总和代表飞机所有典型使用任务。飞机将周而复始地依次重复该周期内的各次飞行,直至飞机的总寿命结束为止。

(4) 材料大量增加了对材料性能的严格要求, 增加裂纹扩展及断裂、腐蚀的十余个材料常数,提出新的选材准则; (5)强度贯彻损伤容限准则和新的分析方法; (6)工艺对损伤容限重要结构件实施工艺控制; (7)试验增加全尺寸损伤容限试验(裂纹扩展和剩余强度试验); (8)质量控制无损检验,重要结构件跟踪控制; (9)使用和维修制定并实施结构维修大纲,机队监测监控; (10) 组织管理要实现损伤容限需要设计方(设计、分析、制造、用户保证)、使用方(检查、维护、修理、报告)和适航管理部门(管理条例、机队监控)三方明确分工,紧密合作,才可能实现。 安全性 在整个预期使用寿命期内, 每架飞机的飞行结构的安全性将达到和保持规定的剩余强度水平(存在未发现的损伤)的保证。 在任何结构材料可能出现失效的情况中, 裂纹状缺陷的存在只会加大失效的危险性。因此, 从飞行安全的立场出发, 假定结构可能而且总是经常含有初始损伤是谨慎的。 2、基本思想 损伤容限 结构在规定的未修使用周期内, 抵抗由缺陷、裂纹或其它损伤而导致破坏的能力。 ——在规定的寿命增量内,结构能成功地遏制损伤而无损于飞行安全的能力。 ——在遭受疲劳、腐蚀、意外或离散源引起的定量损伤后,在一定使用期内,结构保持其剩余强度的能力。

损伤容限设计方法和设计数据

文章编号:1001-2354(2000)05-0004-04 损伤容限设计方法和设计数据Ξ 赵少汴 (机械工业部郑州机械研究所先进制造技术研究中心,河南郑州 450052) 摘要:论述了损伤容限设计方法,研究了长裂纹的疲劳裂纹扩展寿命估算方法和初始裂纹尺寸a0的确定方法。并提供了常用国产机械材料的疲劳裂纹扩展速率和疲劳裂纹扩展门槛值的试验数据。 关键词:疲劳裂纹扩展速率;剩余寿命;疲劳裂纹扩展门槛值 中图分类号:TH123 文献标识码:A 1 引言 常规疲劳设计方法和局部应力应变法都是以材料的完整性为前提的。但是,实际零构件在加工制造过程中,由于种种原因,往往存在这样那样的缺陷或裂纹。为了考虑初始缺陷或裂纹对疲劳寿命的影响,便在断裂力学和破损-安全设计原理的基础上,提出了一种新的疲劳设计方法———损伤容限设计。 简单说来,损伤容限设计就是以断裂力学为理论基础,以无损检验技术和断裂韧度的测量技术为手段,以有初始缺陷或裂纹零构件的剩余寿命估算为中心,以断裂控制为保证,确保零构件在其服役期内能够安全使用的一种疲劳设计方法。 损伤容限设计,允许零构件在使用期内有初始缺陷,或在服役期内出现裂纹,发生破损,但在下次检修前要保持一定的剩余强度,能够安全使用,直至下次检修时能够发现,予以修复或更换。因此,损伤容限设计的关键问题是正确估算剩余寿命。 2 疲劳裂纹扩展速率 疲劳裂纹扩展速率d a/d N是剩余寿命估算的基础。它又可分为长裂纹的疲劳裂纹扩展速率与短裂纹的疲劳裂纹扩展速率。短裂纹的疲劳裂纹扩展速率尚在研究阶段,这里仅介绍长裂纹的疲劳裂纹扩展速率。 长裂纹的疲劳裂纹扩展速率d a/d N通常用以下的Paris公式表达: d a d N=C (ΔK)m(1)式中:ΔK———应力强度因子范围。 表1 某些国产材料的疲劳裂纹扩展速率参数材料热处理 应力 比 试验频 率(Hz) 最大载 荷(kN) Paris公式中的参数 C(×10-10)m 00Cr17Ni14Mo2油淬0.21109.26 1.0138 4.1694 0Cr19Ni9固溶处理0.21049.2646.104 3.0456 10Cr2Mo1调质0.110011.300.7240 2.9200 10Ti热轧0.1540-3170.0 1.3600 12Cr2Ni4调质0.256713.33814.14 2.2413 13MnNiMoNb调质0.1 6.013.00 1.3850 4.1700 15MnV正火0.11408.410.54165 4.6900 16Mn热轧0.115010.420.00106 4.6631 16MnCr5淬火后低温回火0.161709.810.11537 3.4737 16MnL热轧0.2095 2.459.8000 3.5220 16MnL热轧0.2095 2.450.02020 4.0430 16MnL热轧0.2095 2.45 4.6200 3.7650 16MnR热轧0.205010.78 1.7400 3.9900 16MnR热轧0.205010.78 3.9000 3.8900 16MnR热轧0.205010.78 1.2600 4.1600 16Mng热轧0.201457.60 2.1449 3.8492 18Cr2Ni4WA调质0.20150 6.5741.100 3.2108 19Mn5①正火0.10 6.012.014.900 3.5000 19Mn5①正火0.10 6.012.016.000 3.5400 1Cr17Ni2调质0.20115 5.931793.7 2.0559 1Cr18Ni9Ti淬火后时效0.101757.46 6.4535 4.0300 20正火0.100.00 6.800.21160 3.4576 20Cr2Ni4A淬火后低温回火0.10170 5.4044.771 2.0639 20CrMnSi调质0.2567 3.92148.92 2.7999 20CrMnCr5淬火后低温回火0.1017011.7724.806 2.9047 20Ni2Mo调质0.1083 4.910.01100 2.8500 20R-0.2016011.77256.10 2.3966 20R-0.2015011.77525.10 2.1849 20R-0.2016011.77677.10 2.0852 25Cr2MoV调质0.1092 4.913017.9 1.2203 25Cr2Ni3MoV调质0.10120 6.700.36300 3.2600 2Cr13调质0.2018010.87 5.5600 2.7878 28CrNiMoV调质0.20150 6.87173.90 2.7903 30Cr1Mo1V调质0.1060-0.04200 2.9800 35CrMo调质0.20200 6.8435.700 2.7800 4 可靠性与失效分析设计领域综述《机械设计》2000年5月№5 Ξ收稿日期:1999-09-06 作者简介:赵少汴(1932-),男,教授级高级工程师。曾多次获得国家、省部级科技进步奖。研究方向:疲劳设计研究。

飞机结构耐久性和损伤容限设计

飞机结构耐久性和损伤容限设计 【摘要】飞机结构设计质量的高低直接决定其耐久性与损伤容限特性的优劣。耐久性设计和损伤容限设计互相补充,共同保障飞机结构的安全性、可靠性和经济性,是保证飞机结构完整性的重要手段。本文对飞机结构设计思想的发展,损伤容限的设计原理和设计要素进行了归纳阐述。 【关键词】飞机结构设计;耐久性;损伤容限 1、飞机结构设计思想的发展 飞机设计思想的发展来源于飞机的使用实践和科学技术的不断进步。飞机设计思想的演变,对军用飞机,主要取决于飞行和战斗性能、生存能力以及经济成本等。对民用飞机特别重要的是安全性和经济性。二次大战后的几十年来航空运输市场迅猛发展,飞机的性能迅速提高,对飞机的安全性和经济性提出了越来越高的要求,同时,断裂力学等相关学科逐步发展成熟,促使飞机结构设计思想发生了深刻的变化。几十年来,飞机设计思想经历了从静强度设计、疲劳(安全寿命)设计、安全寿命/破损安全设计、安全寿命/损伤容限设计,到耐久性/损伤容限设计等多次的演变。 2、耐久性和损伤容限设计概论 结构耐久性是结构的一种基本品质,它代表飞机结构在规定的使用期内,结构抵抗疲劳开裂、腐蚀(包括应力腐蚀)和意外损伤引起开裂的能力。在规定的使用期内,不允许出现功能损伤(刚度降低、操纵效率下降、座舱减压、油箱漏油等)。耐久性设计目标是经济寿命,而不是安全寿命,也就是说具有耐久性设计的飞机在整个服役期内,能有效的使用、随时处于良好状态,不需附加的维护和操作费用。损伤容限设计承认飞机结构在使用前就带有初始缺陷,在使用过程中,在重复载荷作用下不断扩展,但必须把这些缺陷或损伤的增长控制在一定的范围内,在规定的检查期内,结构应满足规定的剩余强度要求,以保证飞机结构的安全性和可靠性。利用安全寿命给出飞机的使用寿命,或通过耐久性设计和试验保证飞机结构的经济修理极限和经济寿命满足设计使用寿命要求,用损伤容限设计来保证飞机结构的安全。目前飞机设计主要是采用这个设计思想。 3、损伤容限设计原理 3.1损伤容限工程 (1)损伤容限是在“安全寿命”和“破损—安全”之后发展起来的一项工程技术。它是以断裂力学为基础,以保证结构安全为目标,以损伤检查为手段。涉及结构设计、载荷、强度、材料、工艺、试验质量控制、使用维修和组织管理各环节的系统工程。在各环节中的重要改变对传统理论和方法是一个巨大的冲击和革新。

结构损伤与修理重点

当构件受压时,存在两种可能破坏情况:构件受纯压破坏和受压失去稳定性。 结构件的抗拉强度极限与材料的抗拉强度极限区别:构件的抗拉强度极限小于材料的抗拉强度极限。 影响铆钉力分布的主要因素是:1、铆钉数量越多,铆钉力分布的不均匀性越大;2、铆钉间距和铆钉刚度越大,铆钉力分布的不均匀性越大;3、在被连接件的宽度和材料都相同的情况下,两被连接件的厚度相等,铆钉力的分布是对称的,若两被连接件的厚度不相等,则最大的铆钉力产生在拉伸刚度较大的被连接件端头处的铆钉上;4、若被连接件的横截面积向端头逐渐减小,则铆钉力分布的不均匀性可以减小,在塑性范围内时,铆钉力的分布趋于均匀化。 铆钉的剪切强度: 飞机结构中,相比其他形式通常传递很大的载荷的接头形式是:耳片连接的结构形式通常传递很大的载荷,是飞机结构的重要受力部位。 在飞机结构中,有一些接头往往采用耳片连接的结构形式。在飞机结构设计过程中,要做那方面的连接强度计算:耳片的拉伸强度计算、耳孔的挤压强度计算。 局部等强度修理准则的基本思想是:构件损伤部位经修理以后,该部位的静强度基本等于原构件在该部位处的静强度。 总体等强度修理准则的基本思想是:根据总体结构的构造特点和受力情况,找出最严重的受力部位;然后根据受力最严重部位的极限受力状态,确定该总体结构能够承受的最大载荷;最后,以受力最严重部位的承载能力所确定的最大载荷,考核修理部位的强度储备。 什么时候使用:当总体结构的受力最严重部位达到极限受载状态而破坏,而修理部位却没有达到极限受载状态 防止机翼弯扭颤振的方法:提高机翼弯扭颤振临界速度,缩短压心到重心的距离,尽量使重心前移,通常在翼尖前缘加配重 安全寿命设计思想:要求飞机结构在一定使用期内不发生疲劳破坏。构件出现裂纹就看作是一种破坏。构件形成可检裂纹的这段时间就是构件的疲劳寿命。到了寿命的构件需进行修理或更换。 破损安全:一个构件破坏之后,它承担的载荷可能由其他结构件继续承担,以防止飞机的破坏,或造成刚度的降低过多而影响飞机的正常使用。这种设计思想允许飞机有局部破损,但必须保证飞机的安全。 损伤容限设计基本含义:承认结构中存在着一定程度的未被发现的初始缺陷、裂纹或其他损伤。通过损伤容限特性分析与实验,对可检结构给出检查周期,对不可检结构给出最大允许初始损伤 结构损伤容限设计的核心:承认结构中存在初始缺陷、裂纹及其他缺陷的可能性,并设法控制损伤的扩展。 结构分类:缓慢裂纹增长结构;破损安全止裂结构;破损安全多传力结构 耐久性设计的含义:在规定的时间内,飞机结构抗疲劳开裂、腐蚀、热退化、剥离、磨损和外来物损伤作用的能力。 耐久性的基本要求:飞机结构应具有大于一个使用寿命的经济寿命。 耐久性设计和损伤容限设计之间的联系与区别:损伤容限设计是保证飞机结构安全性和可靠性,确定安全极限。耐久性设计是使飞机结构具有良好的经济维修性,确定飞机结构的经济极限,提供经济寿命。损伤容限设计与耐久性设计是相互联系,互相补充的。损伤容限设计的可靠性保证要以耐久性为前提。通常把损伤容限设计与耐久性设计科学的结合起来,从b 2 jq 4d p τπ=

热塑性复合材料

热塑性复合材料 一、热塑性复合材料的现状和发展趋势 热塑性复合材料可在熔融状态下可成为无定形状的制品,并可再加热熔融而制成另一种形状的制品,还可重复多次再生使用而其物理机械性能不发生显著的变化。另外,它可一次性制成形状十分复杂而尺寸十分精密的制品,生产周期仅需数分钟。由于热塑性塑料经过增强后,性能大为提高,有些机械性能已跨进了金属强度的范围,从而大大扩展了复合材料的使用范围,可以代替金属和木材。 热塑性复合材料抗冲击损伤容限高,冲击后残余压缩强度比热固性复合材料大,并且热塑性复合材料具有好的热压缩强度。由于热塑性复合材料加工中的高温和高粘度,所使用的模具成本高,而且热塑性树脂高温强度和化学稳定性不如热固性树脂,加上使用经验不足,应用还不十分广泛。 在过去5年里,全球热塑性复合材料(TPC)市场需求显著增长,预计未来5年全球TPC出货量将以5.9%的速度增长,2014年TPC市场将达到62亿美元。 全球领先的管理咨询和市场研究机构Lucintel公司对世界TPC市场进行全面分析后,发表了一份题为《2009~2014年全球热塑性复合材料市场的机遇:趋势、展望与机会分析》的研究报告。按照这项研究,最近5年TPC的热点是LFT 即长纤维增强TPC应用。运输行业成为TPC最大的市场,超过了消费品市场。为了获得竞争优势,材料供应商已经将技术开发重点放在客户定制解决方案上,秉承以客户需求为导向、以创新为推动的发展战略,从而实现更广泛的市场渗透。文中还指出,TPC供应商必须理顺价格,改善加工性能、产品性能,提高生产效率以及产品回收率。 二、热塑性复合材料的应用 (1)作为金属材料的取代物 多年以来,热塑性复合材料正在替代轿车和轻型货车上的金属部件,这不仅仅是为了获得美观的外壳,更主要的是集成起来的组件可以降低重量和成本,并且大大简化了生产线的操作。具体说来其优点如下: 降低成本—用热塑性复合材料制造零件部件,使原先需组合的零件简化成一个整体部件,从而提高生产效率,降低废/次品率,最终降低成本。 降低重量—热塑性复合材料的密度一般为0.9g/cm^3-1.6g/cm^3,大大低于金属材料,用这种材料制造汽车零配件,可减轻汽车重量,节省燃料,提高燃料使用率,亦符合环保要求,减轻汽车重量100Kg,可降低燃料消耗8-11.5L;减轻200Kg,则可降低燃料消耗21-26L,效果明显。 提高生产效率—采用热塑性复合材料制造零部件,从设计到投产所需的时间缩短,原先需花4年作一个小的设计变动,用8年来引进一个新的工艺,现在更新一条生产线平均只需24个月。 降低噪音,增加舒服感—顾客需要汽车内部的舒适,这就需要更多的塑料制品(包括仪表板,座椅,汽车内部装潢部件)。热塑性复合材料的内部阻尼很高,消音效果良好;并且着色容易,如可连续染色、涂漆、镀金属等。

飞机结构的损伤容限及其耐久性分析

飞机结构的损伤容限及其耐久性分析 【摘要】随着航空航天技术的发展,飞机结构设计的理论与思想也不断更新,从静强度、动强度、疲劳强度及断裂强度的进化,而损伤容限/耐久性分析也已成为目前飞机结构设计的重要规范。本文将从飞机结构设计的发展历史说起,详细介绍飞机损伤容限与耐久性分析的设计思想、理论和基本方法,为飞机结构设计提供理论基础。 【关键词】飞机结构设计思想;耐久性分析;损伤容限 1、前言 随着航空技术的快速进步,基础力学包括结构力学,断裂力学等基础理论的发展,飞机结构设计的方法也日新月异。飞机结构的损伤容限及耐久性分析在理论的基础上,以及长期的飞机结构设计经验和服役工作历史的数据积累上,国际航空届以标准设计规范的形式确立下来的一种飞机设计方法。基于损伤容限和耐久性分析的飞机结构设计方法延续以往的设计方法的优点,并相应的补充发展,经过不断的实践发展,目前已具备实用性和形成了相对完整的设计系统。目前各国的适航认证规定最新设计的民用飞机必须按照损伤容限设计,这充分说明了损伤容限及耐久性分析设计方法的重要性,因此其在国内的推广与应用是必然。 2、飞机结构设计理论的进程 从飞机诞生以来,飞机的飞行实践应用推动者飞机设计思想的不断进化。飞机分为军用机和民用机,民用飞机注重安全与成本,军用机则更加注重飞机的战斗能力和存活性能等方面。 因此飞机结构设计思想随着对飞机要求的不断变化而更新,目前正向着高机动、高稳定性、低成本、长使用寿命的全面设计方法方向进步。 飞机结构最初是采用目前熟知的静强度分析,即对飞机结构的抗拉、压、扭转等各种强度与载荷进行设计计算,引入一定的安全余量系数,使其满足各种结构强度设计的规范。这是最早期的设计方法,静强度设计的要求主要考虑的飞机结构强度,但相对来说过于简单不够全面。 随着第一次世界大战的进行,在飞机使用的过程中发现,飞机的结构设计不断要有强度上的要求,而且在刚度方面也要满足,这对于飞机的振动有很大的影响。并确保飞机的振颤速度满足设计的规范。当引入对于飞机的气动弹性要求后,飞机的结构设计必须进行目前熟知的飞机模型风动实验和相关的振颤校核。 在20世纪60年代末,对于飞机的寿命也提出了一定的要求,因此对于飞机的疲劳安全寿命的设计方法应运而生。把飞机在使用周期内的安全问题作为飞机结构设计的目标,即保证飞机在使用过程中,不会产生疲劳裂纹。但是由于当时

相关文档
最新文档