实验15椭圆偏振仪测量薄膜厚度和折射率.

实验15椭圆偏振仪测量薄膜厚度和折射率.
实验15椭圆偏振仪测量薄膜厚度和折射率.

实验15 椭圆偏振仪测量薄膜厚度和折射率

在近代科学技术的许多部门中对各种薄膜的研究和应用日益广泛.因此,更加精确和迅速地测定一给定薄膜的光学参数已变得更加迫切和重要.在实际工作中虽然可以利用各种传统的方法测定光学参数(如布儒斯特角法测介质膜的折射率、干涉法测膜厚等),但椭圆偏振法(简称椭偏法)具有独特的优点,是一种较灵敏(可探测生长中的薄膜小于0.1nm的厚度变化)、精度较高(比一般的干涉法高一至二个数量级)、并且是非破坏性测量.是一种先进的测量薄膜纳米级厚度的方法.它能同时测定膜的厚度和折射率(以及吸收系数).因而,目前椭圆偏振法测量已在光学、半导体、生物、医学等诸方面得到较为广泛的应用.这个方法的原理几十年前就已被提出,但由于计算过程太复杂,一般很难直接从测量值求得方程的解析解.直到广泛应用计算机以后,才使该方法具有了新的活力.目前,该方法的应用仍处在不断的发展中.

实验目的

(1)(1)了解椭圆偏振法测量薄膜参数的基本原理;

(2)(2)初步掌握椭圆偏振仪的使用方法,并对薄膜厚

度和折射率进行测量.

实验原理

椭偏法测量的基本思路是,起偏器产生的线偏振光经取向一定的1/4波片后成为特殊的椭圆偏振光,把它投射到待测样品表面时,只要起偏器取适当的透光方向,被待测样品表面反射出来的将是线偏振光.根据偏振光在反射前后的偏振状态变化,包括振幅和相位的变化,便可以确定样品表面的许多光学特性.

1 椭偏方程与薄膜折射率和厚度的测量

图15.1

图15.1所示为一光学均匀和各向同性的单层介质膜.它有

两个平行的界面,通常,上部是折射率为n1的空气(或真空).中

间是一层厚度为d折射率为n2的介质薄膜,下层是折射率为n3

的衬底,介质薄膜均匀地附在衬底上,当一束光射到膜面上时,

在界面1和界面2上形成多次反射和折射,并且各反射光和折射

光分别产生多光束干涉.其干涉结果反映了膜的光学特性.

设φ1表示光的入射角,φ2和φ3分别为在界面1和2上的折

射角.根据折射定律有

n1sinφ1=n2sinφ2=n3sinφ3

(15.1)

光波的电矢量可以分解成在入射面内振动的P分量和垂直

于入射面振动的s分量.若用E ip和E is分别代表入射光的p和s

分量,用E rp及E rs分别代表各束反射光K0,K1,K2,…中电矢量

的p分量之和及s分量之和,则膜对两个分量的总反射系数R p

和R s定义为

R P=E rp/E ip , R s=E rs/E is

(15.2)

经计算可得

式中,r1p或r1s和r2p或r2s分别为p或s分量在界面1和界面2

上一次反射的反射系数.2δ为任意相邻两束反射光之间的位相

差.根据电磁场的麦克斯韦方程和边界条件,可以证明

r1p=tan(φ1-φ2)/ tan(φ1+φ2), r1s=-sin (φ1-φ

2)/ sin(φ1+φ2);

r2p=tan(φ2-φ3)/tan(φ2+φ3), r2s =-sin (φ2-φ3)/

sin(φ2+φ3). (15.4)

式(15.4)即著名的菲涅尔(Fresnel)反射系数公式.由相邻

两反射光束间的程差,不

难算出

. (15.5)

式中,λ为真空中的波长,d和n2为介质膜的厚度和折射率.在椭圆偏振法测量中,为了简便,通常引入另外两个物理量ψ和Δ来描述反射光偏振态的变化.它们与总反射系数的关系定义为

上式简称为椭偏方程,其中的ψ和Δ称为椭偏参数(由于具有角度量纲也称椭偏角).

由式(15.1),式( 15.4),式( 15.5)和上式可以看出,参数ψ和Δ是n1,n2,n3,λ和d的函数.其中n1,n2,λ和φ1可以是已知量,如果能从实验中测出ψ和Δ的值,原则上就可以算出薄膜的折射率n2和厚度d.这就是椭圆偏振法测量的基本原理.实际上,究竟ψ和Δ的具体物理意义是什么,如何测出它们,

以及测出后又如何得到n2和d,均须作进一步的讨论.

2 ψ和Δ的物理意义

用复数形式表示入射光和反射光的p和s分量

E ip=|E ip|exp(iθip),E is=|E is|exp(iθis);

E rp=|E rp|exp(iθrp) ,E rs=|E rs|exp(iθrs).(15.6)

式中各绝对值为相应电矢量的振幅,各θ值为相应界面处的位相.

由式(15.6),式(15.2)和式(15.7)式可以得到

.(1 5.7)

比较等式两端即可得

tanψ=|E rp||E is|╱|E rs||E ip| (15.8)Δ=(θrp–θrs)- (θip–θis) (15.9)式(15.8)表明,参量ψ与反射前后p和s分量的振幅比有关.而(15.9)式表明,参量Δ与反射前后p和s分量的位相差有关.可见,ψ和Δ直接反映了光在反射前后偏振态的变化.一般规定,ψ和Δ的变化范围分别为0≤ψ<π /2和0≤Δ<2π.

当入射光为椭圆偏振光时,反射后一般为偏振态(指椭圆的形状和方位)发生了变化的椭圆偏振光(除开ψ<π/4且Δ=0的情况).为了能直接测得ψ和Δ,须将实验条件作某些限制以使问题简化.也就是要求入射光和反射光满足以下两个条件:(1)要求入射在膜面上的光为等幅椭圆偏振光(即P和S 二分量的振幅相等).这时,|E ip|/|E is|=1,式(15.9)则简化为

tanψ

=|E rp|/|E rs| .(15.10)

(2)要求反射光为一线偏振光.也

就是要求θrp–θrs=0(或π),式(15.

9)则简化为

(15.15)

满足后一条件并不困难.因为对某图 15.2

一特定的膜,总反射系数比R p/R s是一定值.式(15.6)决定了⊿也是某一定值.根据(15.9)式可知,只要改变入射光二分量的位相差(θip–θis),直到其大小为一适当值(具体方法见后面的叙述),就可以使(θip–θis)=0(或π),从而使反射光变成一线偏振光.利用一检偏器可以检验此条件是否已满足.

以上两条件都得到满足时,式(15.10)表明,tan ψ恰好是反射光的p和s分量的幅值比,ψ是反射光线偏振方向

与s方向间的夹角,如图15.2所示.式(15.15)则表明,Δ恰好是在膜面上的入射光中s和s分量间的位相差.

3 ψ和Δ的测量

实现椭圆偏振法测量的仪器称为椭圆偏振仪(简称椭偏仪).它的光路原理如图15.3所示.氦氖激光管发出的波长为 632. 8 nm的自然光,先后通过起偏器Q,1/4波片C入射在待测薄膜F上,反射光通过检偏器R射入光电接收器T.如前所述,p和s分别代表平行和垂直于入射面的二个方向.快轴方向f,对于负是指平行于光轴的方向,对于正晶体是

图15.3 从Q,C和R用虚线引下的三个插图都是迎光线看去的

指垂直于光轴的方向.t代表Q的偏振方向,f代表C的快轴方向,t r 代表R的偏振方向.慢轴方向l,对于负晶体是指垂

直于光轴方向,对于正晶体是指平等于光轴方向.无论起偏器的方位如何,经过它获得的线偏振光再经过1/4波片后一般成为椭圆偏振光.为了在膜面上获得p和s二分量等幅的椭圆偏振光,只须转动1/4波片,使其快轴方向f与s方向的夹角α=土π/4即可(参看后面).为了进一步使反射光变成为一线偏振光E,可转动起偏器,使它的偏振方向t与s方向间的夹角P1为某些特定值.这时,如果转动检偏器R使它的偏振方向t r与E r垂直,则仪器处于消光状态,光电接收器T接收到的光强最小,检流计的示值也最小.本实验中所使用的椭偏仪,可以直接测出消光状态下的起偏角P1和检偏方位角ψ.从式(15.15)可见,要求出Δ,还必须求出P1与(θip–θis)的关系.

下面就上述的等幅椭圆偏振光的获得及P1与Δ的关系作进一步的说明.如图15.4所示,设已将1/4波片置于其快轴方向f与s方向间夹角为π/4的方位.E0为通过起偏器后的电矢量,P1 为E0与s方向间的夹角(以下简称起偏角).令γ表示椭圆的开口角(即两对角线间的夹角).由晶体光学可知,通过1/4波片后,E0沿快轴的分量E f与沿慢轴的分量E l比较,位相上超前π/2.用数学式可以表达成

.(15.12)

.(15.13)

从它们在p和s两个方向的投影可得到p和s的电矢量分别为:

图15.4

.(15.14)

.(15.15)由式(15.14)和式(15.15)看出,当1/4波片放置在+π/4角位置时,的确在p和s二方向上得到了幅值均为E0/2的椭圆偏振入射光.p和s的位相差为

θip–θis =π/2-2P1.(15.16)另一方面,从图15.4上的几何关系可以得出,开口角γ与起偏角P1的关系为

γ/2=π/4-P1

γ=π/2-2P1 (15.17)

则(15.16)式变为

θip–θis=γ(15.18)

由式(15.15)可得

Δ=—(θip -θis)= -γ(15.19)

至于检偏方位角ψ,可以在消光状态下直接读出.

在测量中,为了提高测量的准确性,常常不是只测一次消光状态所对应的P1和ψ1值,而是将四种(或二种)消光位置所对应的四组(P1,ψ1)),(P2,ψ2),(P3,ψ3)和(P4,ψ

4)值测出,经处理后再算出Δ和ψ值.其中,(P1,ψ1)和(P2,ψ2)

所对应的是1/4波片快轴相对于S方向置+π/4时的两个消光位置(反射后P和S光的位相差为0或为π时均能合成线偏振光).而(P3,ψ3)和(P4,ψ4)对应的是1/4波片快轴相对于s方向置-π/4的两个消光位置.另外,还可以证明下列关系成立:|p1-p2|=90?,ψ2=-ψ1.|p3-p4|=90?,ψ4=-ψ3.求Δ和ψ的方法如下所述.

(1) 计算Δ值.将P1,P2,P3和P4中大于π/2的减去π/2,不大于π/2的保持原值,并分别记为< P1>,< P2>,< P3>和< P4>,然后分别求平均.计算中,令

和, (15.

20)

而椭圆开口角γ与和的关系为

. (15.21) 由式(15.22)算得ψ后,再按表15.1求得⊿值.利用类似于图15.4的作图方法,分别画出起偏角P1在表15.1所指范围内的椭圆偏振光图,由图上的几何关系求出与公式(15.18)类似

的γ与P1的关系式,再利用式(15.20)就可以得出表15.1中全部Δ与γ的对应关系.

1

(2)(2)计算ψ值:应按公式(15.22)进行计算

. (15.22) 4折射率n2和膜厚d的计算

尽管在原则上由ψ和Δ能算出n2和d,但实际上要直接解出(n2,d)和(Δ,ψ)的函数关系式是很困难的.一般在n1和n2均为实数(即为透明介质的),并且已知衬底折射率n3(可以为复数)的情况下,将(n2,d)和(Δ,ψ)的关系制成数值表或列线图而求得n2和d值.编制数值表的工作通常由计算机来完成.制作的方法是,先测量(或已知)衬底的折射率n2,取定一个入射角φ1,设一个n2的初始值,令δ从0变到180°(变化步长可取π/180,π/90,…等),利用式(15.4),式(15.5)和式(15.6),便可分别算出d,Δ和ψ值.然后将n2增加一个小量进行类似计算.如此继续下去便可得到(n2,d)~(Δ,ψ)的数值表.为了使用方便,常将数值表绘制成列线图.用这种查表(或查图)求n2和d的方法,虽然比较简单方便,但误差较大,故目前日益广泛地采用计算机直接处理数据.另外,求厚度d时还需要说明一点:当n1和n2为实数时,式(15.4)中的φ2为实数,两相邻反射光线间的位相差“亦为实数,其周期为2π.2δ可能随着d的变化而处于不同的周期中.若令2δ=2π时对应的膜层厚度为第一个周期厚度d0,由(15.4)式可以得到

由数值表,列线图或计算机算出的d值均是第一周期内的数值.若膜厚大于d0,可用其

它方法(如干涉法)确定所在的周期数j,则总膜厚是

D = (j -1) d0+d.

5金属复折射率的测量

以上讨论的主要是透明介质膜光学参数的测量,膜对光的吸收可以忽略不计,因而

折射率为实数.金属是导电媒质,电磁波在导电媒质中传播要衰减.故各种导电媒质中

都存在不同程度的吸收.理论表明,金属的介电常数是复数,其折射率也是复数.现表

示为

=n2 -iκ

式中的实部n2并不相当于透明介质的折射率.换句话说,n2的物理意义不对应于光在真空中速度与介质中速度的比值,所以也不能从它导出折射定律.式中κ称为吸收系数.

这里有必要说明的是,当为复数时,一般φ1和φ2也为复数.折射定律在形式上

仍然成立,前述的菲涅尔反射系数公式和椭偏方程也成立.这时仍然可以通过椭偏法求

得参量d,n2和k,但计算过程却要繁复得多.

本实验仅测厚金属铝的复折射率.为使计算简化,将式(15.25)改写成以下形式

=n2-i nκ

由于待测厚金属铝的厚度d与光的穿透深度相比大得多,在膜层第二个界面上的反射光可以忽略不计,因而可以直接引用单界面反射的菲涅尔反射系数公式(15.4).经推算后得

公式中的n1,φ1和κ的意义均与透明介质情况下相同.

实验内容

关于椭偏仪的具体结构和使用方法,请参看仪器说明书.实验时为了减小测量误差,不但应将样品台调水平,还应尽量保证入射角φ1放置的

准确性,保证消光状态的灵敏判别.

另外,以下的测量均是在波长为632.8nm时的参数.而且,所有测量均是光从空气介质入射到膜面.

1 测厚铝膜的复折射率

取入射角φ1=π/3.按已述方法测得Δ和ψ.由式(15.26)和式(15.27)式算出n和κ值,并写出折射率的实部和虚部. 2 测硅衬底上二氧化硅膜的折射率和厚度

已知衬底硅的复折射率为n3=3.85-i0.02,取入射角φ1=7π/18.二氧化硅膜只有实部.膜厚在第一周期内.测出Δ和ψ后,利用列线图(或数值表)和计算机求出n2和d,将两种方法的结果进行对比.并计算膜的一个周期厚度值d0.

3 测量κ0玻璃衬底上氟化镁(MgF2)膜层的折射率和厚度 (1) 测κ0玻璃的折射率

首先测出无膜时K0玻璃的Δ和ψ值,然后代入n3=n3(Δ,ψ,φ1)的关系式中算出n3值,测量时入射角φ1取7π/18.关于n3与三个参量的关系式,根据式(15.1),式(15.4),式(15.5)和式(15.6),并令膜厚d=0,便可以算出n3的实部n0的平方值和n3的虚部κ值为

(15.28)

(15.29)

(2)测透明介质膜氟化镁的折射率和厚度

仍取入射角φ1=7π/18.膜厚在第一周期内.测出Δ和ψ后也用列线图和计算机求出结果.

思考题

(1) 用椭偏仪测薄膜的厚度和折射率时,对薄膜有何要求?

(2) 在测量时,如何保证φ1较准确?

(3) 试证明:|P1-P2| =π/2,|P3-P4| =π/2.

(4) 若须同时测定单层膜的三个参数(折射率n2,厚度d 和吸收系数κ),应如何利

用椭偏方程?

实验三 干涉显微镜测量薄膜厚度

实验三干涉显微镜测量薄膜厚度 一、实验目的 1. 掌握干涉显微镜的工作原理及使用方法; 2. 用干涉显微镜测量薄膜厚度。 二、实验说明 2.1 实验原理 把显微镜和光波干涉仪结合起来设计而成的显微镜为干涉显微镜。干涉显微镜的类型很多,常用的干涉显微镜是以迈克耳逊干涉仪为原型,其原理却都是以劈尖干涉为基础的,下图1为劈尖干涉的示意图: 若在两块平面玻璃间垫一细丝,即形成一个空气劈尖(为便于说明问题图中夸大了细丝的直径)。当一束单色光射入时,则在空气劈尖(n=1)上下两表面所引起的反射光线将相互干涉。若这两束光的光程差恰为半波长的奇数倍时,则发生相消干涉而呈现暗色条纹;若光程差为半波长的偶数倍时,发生加强干涉而得到明亮条纹。一定的明暗条纹对应一定的厚度,所以这些干涉条纹也叫等厚条纹。条纹间的距离l ,随劈尖的夹角而变化,越小,l 越大。 在迈克耳逊干涉仪中,只要某一光程差发生变化,就要引起干涉场中条纹移动,光程差每改变半个波长(),则干涉条纹移动一个条纹间距。故待测样品表面若存在局部不平, 结果会导致干涉条纹发生弯曲, 条纹弯曲的程度是样品表面微观凹凸不平程度的反映, 只要测出条纹的弯曲量就可以求出样品表面的凹凸量。根据这一原理, 可借助该仪器来测量镀膜膜层的厚度. 设M 1、M 2是两个不严格垂直的理想平面,则得到等厚干涉直线条纹。若表面M 2上有沟槽,干涉条纹将发生弯曲或断折,如图2所示。沟槽的深度h 由式(4—1)决定。 (4—1) θθ2λe H h ?= 2λ 图 1 劈尖干涉的示意图图2表面沟槽及干涉条纹的形状图3薄膜与其干涉条纹的形状

式中,H为干涉条纹曲折量,e 为条纹的间距。若用白光照明,e 是指两根接近黑色的干涉条纹中心间的距离。这时λ取540nm (绿光λ=0.53μm=5300?)。若被测件的部分表面镀有厚度为h 的薄膜,则只要测量出干涉条纹间距e 和因镀膜而引起的干涉条纹位移量H,就可算出该薄膜的厚度。如图3所示。 2.26JA 型干涉显微镜的光学系统及构造 2.2.1 6JA 型干涉显微镜的光学系统 本实验用的是6JA 型干涉显微镜, 其光学系统如图1所示, 属于双光束干涉系统。光源1发出的光经聚光镜2投射到孔径光阑4平面上, 视场光阑5不在照明物镜6的前焦面上, 光经分光板7, 被分成两部分: 一部分反射, 另一部分透射. 被反射的光经物镜8射向标准反射镜M1, 再由M1 反射, 射向目镜14; 而从分光板上透射的光线通过补偿板9、物镜10射向工件表面M2, 再由M2反射, 射向目镜14. 在目镜分划板13上两束光产生干涉. 从目镜中可以观察到干涉条纹. 若样品表面平滑,则干涉条纹是平直的. 图五 6JA 型干涉显微镜构造 11a 5b 5a 105 131113 2 2a 2b 2c 14897a 44a 3 15 8 7 16 1b 1c 图4 6JA 型干涉显微镜光学系统 1-光源 2-聚光镜 3,11,15-反光镜 4-孔径光阑 5-视场光阑 6-照明物镜 7-分光板 8,10-物镜 9-补偿板 12-转向棱镜 13-分划板 14-目镜 16-摄影物镜

椭偏仪测量薄膜厚度与折射率

椭偏仪测量薄膜厚度和折射率 近代科学技术中对各种薄膜的研究和应用日益广泛。因此,能够更加迅速和精确地测量薄膜的光学参数例如厚度和折射率已变得非常迫切。 在实际工作中可以利用各种传统的方法来测定薄膜的光学参数,如布儒斯特角法测介质膜的折射率,干涉法测膜。另外,还有称重法、X 射线法、电容法、椭偏法等等。其中,椭圆偏振测量(椭偏术)是研究两媒质界面或薄膜中发生的现象及其特性的一种光学方法,其原理是利用偏振光束在界面或薄膜上的反射或透射时出现的偏振变换。因为椭偏法具有测量精度高,灵敏度高,非破坏性等优点,已广泛用于各种薄膜的光学参数测量,如半导体、光学掩膜、圆晶、金属、介电薄膜、玻璃(或镀膜)、激光反射镜、大面积光学膜、有机薄膜等,也可用于介电、非晶半导体、聚合物薄膜、用于薄膜生长过程的实时监测等测量。 实验目的 了解椭圆偏振测量的基本原理,并掌握一些偏振光学实验技术。 实验原理 光是一种电磁波,是横波。电场强度E 、磁场强度H 和光的传播方向构成一个右旋的正交三矢族。光矢量存在着各种方位值。与光的强度、频率、位相等参量一样,偏振态也是光的基本量之一。 在一光学材料上镀各向同性的单层介质膜后,光线的反射和折射在一般情况下会同时存在的。通常,设介质层为n 1、n 2、n 3,φ1为入射角,那么在1、2介质交界面和2、3介质交界面会产生反射光和折射光的多光束干涉。 这里我们用2δ表示相邻两分波的相位差,其中222cos /dn δπφλ=,用r 1p 、 r 1s 表示光线的p 分量、s 分量在界面1、2间的反射系数, 用r 2p 、r 2s 表示光线的p 分量、s 分量在界面2、3间的反射系数。 由多光束干涉的复振幅计算可知: 2122121i p p rp ip i p p r r e E E r r e ?δ --+= + (1) 2122121i s s rs is i s s r r e E E r r e ? δ --+=+ (2) 其中E ip 和E is 分别代表入射光波电矢量的p 分量和s 分量,E rp 和E rs 分别代表反射光波电矢量的p 分量和s 分量。现将上述E ip 、E is 、E rp 、E rs 四个量写成一个量G ,即:

椭圆偏振侧厚仪实验原理

实验原理 使一束自然光经起偏器变成线偏振光。再经1/4波片,使它变成 椭圆偏振光入射在待测的膜面上。反射时,光的偏振状态将发生变化。 通过检测这种变化,便可以推算出待测膜面的某些光学参数。 1、椭偏方程与薄膜折射率和厚度的测量 如右图所示为一光学均匀和Array各向同性的单层介质膜。它有两 个平行的界面。通常,上部是折 射率为n1的空气(或真空)。中间 是一层厚度为 d折射率为n2的介 质薄膜,均匀地附在折射率为n3 的衬底上。当一束光射到膜面上时,在界面1和界面2上形成多次反 射和折射,并且各反射光和折射光分别产生多光束干涉。其干涉结果 反映了膜的光学特性。 设φ1表示光的入射角,φ2和φ3分别为在界面1和2上的折射角。 根据折射定律有 n1sinφ1= n2sinφ2= n3sinφ 3 (1 ) 光波的电矢量可以分解成在入射面内振动的p分量和垂直于入射 面振动的s分量。若用Eip和Eis分别代表入射光的p和s分量,用 Erp及Ers分别代表各束反射光K0, K1,K2,…中电矢量的p分量之和及

s分量之和,则膜对两个分量的总反射系数Rp 和Rs定义为 Rp=Erp/Eip 和Rs=Ers/Eis (2) 经计算可得 Erp=(r1p+r2p e-i2δ) (1+ r1p r2p e-i2δ)Eip和 Ers=(r1s+r2s e-i2δ)/(1+ r1s r2s e-i2δ)Eis (3) 式中r1p或r1s和r2p或r2s分别为p或s分量在界面1和界面2上一 次反射的反射系数。2δ为任意相邻两束反射光之间的位相差。 根据电磁场的麦克斯韦方程和边界条件可以证明 r1p=tan(φ1-φ2)/ tan(φ1+φ2), r1s= -sin(φ1-φ2)/sin(φ1+ φ2) r2p=tan(φ2-φ3)/ tan(φ2+φ3) ,r2s= -sin(φ2-φ3)/sin(φ2+ φ3)(4) 式(4)即有名的菲涅尔反射系数公式。由相邻两反射光束间的程 差,不难算出 2δ=4πd/λn2cosφ2=4πd/λ(n22-n12sin2φ1)1/2 (5) 式中λ为真空中的波长,d和n2为介质膜的厚度和折射率,各φ 角的意义同前。 在椭圆偏振法测量中,为了简便,通常引入另外两个物理量ψ和 Δ来描述反射光偏振态的变化。它们与总反射系数的关系定义如下:

椭偏仪测量薄膜厚度和折射率实验报告

椭偏仪测量薄膜厚度与折射率实验报告 组别:69组院系:0611 姓名:林盛学号:PB062104 45 实验题目:椭偏仪测量薄膜厚度与折射率 实验目得:了解椭偏仪测量薄膜参数得原理,初步掌握反射型椭偏仪得使用方法。 实验原理: 椭圆偏振光经薄膜系统反射后,偏振状态得变化量与薄膜得厚度与折射率有关,因此只要测量出偏振状态得变化量,就能利用计算机程序多次 逼近定出膜厚与折射率。参数描述椭圆偏振光得P波与S波间得相位差经薄膜系统关系后发生得变化,描述椭圆偏振光相对振幅得衰减。有超越方程: ? 为简化方程,将线偏光通过方位角得波片后,就以等幅椭圆偏振光出射,;改变起偏器方位角就能使反射光以线偏振光出射,,公式化简为: 这时需测四个量,即分别测入射光中得两分量振幅比与相位差及反射光中得两分量振幅比与相位差,如设法使入射光为等幅椭偏光,, 则;对于相位角,有: 因为入射光连续可调,调整仪器,使反射光成为线偏光,即=0或(),则或,可见只与反射光得p波与s波得相位差有关,可从起偏器得方位角算 出、对于特定得膜,就是定值,只要改变入射光两分量得相位差,肯定会 找到特定值使反射光成线偏光, =0或(). 实验仪器:椭偏仪平台及配件、He-Ne激光器及电源、起偏器、检偏器、四分之一波片、待测样品、黑色反光镜等。

实验内容: 1.按调分光计得方法调整好主机. 2.水平度盘得调整。 3.光路调整。 4.检偏器读数头位置得调整与固定. 5.起偏器读数头位置得调整与固定。 6.波片零位得调整。 7.将样品放在载物台中央,旋转载物台使达到预定得入射角70即望远镜转过 40,并使反射光在白屏上形成一亮点。 8.为了尽量减小系统误差,采用四点测量. 9.将相关数据输入“椭偏仪数据处理程序”,经过范围确定后,可以利用逐次逼 近法,求出与之对应得d与n ;由于仪器本身得精度得限制,可将d得误差 控制在1埃左右,n得误差控制在0、01左右. 实验数据: 将表格中数据输入“椭偏仪数据处理程序",利用逐次逼近法,求出与之对 应得厚度d与折射率n分别为: 误差分析: 实验测得得折射率比理论值偏大,厚度比理论值偏小,其可能原因有: 1.待测介质薄膜表面有手印等杂质,影响了其折射率。 2.在开始得光路调整时,没有使二者严格共轴,造成激光与偏振片、1/4波片之 间不就是严格得正入射,导致测量得折射率与理论值存在偏差。 3.消光点并非完全消光,所以消光位置只能由人眼估测,所以可能引入误差。 4.由于实验中需多次转动及调节、安装仪器,会破坏仪器得共轴特性.虽经多次 调节,但还就是会产生误差.

大学物理实验光的偏振

实验27 光的偏振 一、实验目的 1、观察光的偏振现象,加深对光的偏振的理解。 2、了解偏振光的产生及其检验方法。 3、观测布儒斯特角,测定玻璃折射率。 4、观测椭圆偏振光与圆偏振光。 5、了解1/2波片和1/4波片的用途。 二、实验原理 1、光的偏振状态 光是电磁波,它是横波。通常用电矢量E表示光波的振动矢量。 (1)自然光其电矢量在垂直于传播方向的平面内任意取向,各个方向的取向概率相等,所以在相当长的时间里(10-5秒已足够了),各取向上电矢量的时间平均值是相等的,这样的光称为自然光,如图27-l所示。 (2)平面偏振光电矢量只限于某一确定方向的光,因其电矢量和光线构成一个平面而称其为平面偏振光。如果迎着光线看,电矢量末端的轨迹为一直线,所以平面偏振光也称为线偏振光,如图27-2所示。 (3)部分偏振光电矢量在某一确定方向上较强,而在和它正交的方向上较弱,这种光称为部分偏振光,如图27-3所示。部分偏振光可以看成是线偏振光和自然光的混合。 (4)椭圆偏振光迎着光线看,如果电矢量末端的轨迹为一椭圆,这样的光称为椭圆偏振光。椭圆偏振光可以由两个电矢量互相垂直的、有恒定相位差的线偏振光合成得到。 (5)圆偏振光迎着光线看,如果电矢量末端的轨迹为一个圆,则这样的光称为圆偏振光。圆偏振光可视为长、短轴相等的椭圆偏振光。 图27-4 椭圆偏振光

2、布儒斯特定律 反射光的偏振与布儒斯特定律 如图27-5所示,光在两介质(如空气和玻璃片等)界面上,反射光和折射光(透射光)都是部分偏振光。当反射光线与折射光线的夹角恰为90°时,反射光为线偏振光,其电矢量振动方向垂直于入射光线与界面法线所决定的平面(入射面)。此时的透射光中包含平行于入射面的偏振光的全部以及垂直于入射面的偏振光的其余部分,所以透射光仍为部分偏振光。由折射定律很容易导出此时的入射角 α 满足关系 1 2 tan n n = α (27-1) (27-1)式称为布儒斯特定律,入射角 α 称为布儒斯特角,或称为起偏角。若光从空气入射到玻璃(n 2约为1.5),起偏角约56°。 3、偏振片、起偏和检偏、马吕斯定律 (1)由二向色性晶体的选择吸收所产生的偏振 自然光 偏振光 1I 0 起偏器 检偏器 自然光 I ' 图a 偏振片起偏 图b 起偏和检偏 图27-6 偏振片 有些晶体(如电气石)、长链分子晶体(如高碘硫酸奎宁),对两个相互垂直振动的电矢量具有不同的吸收本领,这种选择吸收性称为二向色性。在两平板玻璃间,夹一层二向色性很强的物质就制成了偏振片。自然光通过偏振片时,一个方向的电矢量几乎完全通过(该方向称为偏振片的偏振化方向),而与偏振化方向垂直的电矢量则几乎被完全吸收,因此透射光就成为线偏振光。根据这一特性,偏振片既可用来产生偏振光(起偏),也可用于检验光的偏振状态(检偏)。 (2)马吕斯定律 用强度为I 0的线偏振光入射,透过偏振片的光强为I ,则有如下关系 θ 20cos I I = (27-2) (27-2)式称为马吕斯定律。θ 是入射光的E 矢量振动方向和检偏器偏振化方向之间的夹角。以入射光线为轴转动偏振片,如果透射光强 I 有变化,且转动到某位置时I =0,则表明入射 光为线偏振光,此时 θ =90°。 4、波片 (1)两个互相垂直的、同频率的简谐振动的合成 设有两各互相垂直且同频率的简谐振动,它们的运动方程分别为 )cos() cos(2211?ω?ω+=+=t A y t A x (27-3) 合运动是这两个分运动之和,消去参数t ,得到合运动矢量末端运动轨迹方程为 )(sin )cos(2122 12212 2 2212????-=--+A A xy A y A x (27-4) 上式表明,一般情况下,合振动矢量末端运动轨迹是椭圆,该椭圆在2122A A ?的矩形范围内。如果(27-3)式表示的是两线偏振光,则叠加后一般成为椭圆偏振光。下面讨论相位 差 12???-=?为几种特殊值的情况。 ①当π?k 2=?( k =0, ±1, ±2, …)时,(27-4)式变为

椭圆偏振法测量薄膜厚度实验的小结和心得

椭圆偏振法测量薄膜厚度实验的小结和心得 摘要:椭圆偏振测量是一种通过分析偏振光在待测薄膜样品表面反射前后偏振状态的改变来获得薄膜材料的光学性质和厚度的一种光学方法。由于椭圆偏振测量术测量精度高,具有非破坏性和非扰动性,该方法被广泛应用于物理学、化学、材料学、摄影学,生物学以及生物工程等领域。 关键词:误差、改进、小结、实验感受 引言:椭圆偏振法是根据测量其反射光的偏振来确定薄膜厚度及各种光学参数。这种方法已成功应用于测量介质膜、金属膜、有机膜和半导体膜的厚度、折射率、消光系数和色散等。本实验是采用消光型的椭圆偏振测厚仪,具有简单、精度高、慢等特点。 正文: 1、实验目的和原理 通过实验,了解椭偏法的基本原理,学会用椭偏法测量纳米级薄膜的厚度和折射率,以及金属的复折射率。椭偏法测量的基本思路是,起偏器产生的线偏振光经取向一定的1/4 波片后成为特殊的椭圆偏振光,把它投射到待测样品表面时,只要起偏器取适当的透光方向,被待测样品表面反射出来的将是线偏振光。根据偏振光在反射前后的偏振状态变化(包括振幅和相位的变化),便可以确定样品表面的许多光学特性。 2、实验的误差来源 通过实验,我们发现本实验最大的误差是来源于对消光位置的判定。实验中,由于仪器不能完全被消光,所以消光位置的确定就显得有些困难。虽然经过多次调节光路,到最后确定位置的时候也不能确定完全消光,这会直接影响实验的精度,给实验带来较大误差。除此之外,由于本实验中,各种状态的判定均靠人眼判断,例如:样品台是否水平、消光状态、起偏器和检偏器的位置

读数等,使实验存在较多的人为误差,这些都是不可避免的。 3、实验的改进 由上述的误差分析,我们可以知道实验的主要误差来源。对于最主要的误差“消光位置的确定”,是由于靠人眼来判断消光位置的所致的。因此,我们在实验中应该尽量避免更多的不确定因素,我们可以使光学量通过电学量来表示,即可以在仪器的末端安装一个光电接收电流表,通过电流表的读数可以直观地反映出仪器的消光状况,使得测量更加精确。虽然电流表的读数也是靠人眼来读取,但是通过这种方式会减少误差。还有一些关于次要误差的减少,例如:我们在调节载物台水平时,可以用精度高一些的水平仪,以确保我们实验的条件更加好。而且,我们应该尽量多地读取更多组数据,以便求平均值来减少误差。 4、实验小结 本实验是光学实验。对于光学实验,最为重要的是光路的调节,光路的调节准确与否,直接影响了实验的精度。因此,在实验前要准确调节光路,使起偏器和检偏器保持光线同轴。 学习本实验中简化问题的方法。从实验原理看,本实验中,实际计算的量很多,而且需要求解很烦的超越方程。但通过适当的变换以及光学仪器的运用可使问题简化。如通过1/4波片之后,光变成等幅椭圆偏振光,使得 1/=E E is ip ,使得||||E E E E is ip rs rp tg --=ψ变为||E E rs rp tg -=ψ,计算可以大大简化。通过调整仪器,使反射光成为线偏光,即0=-ββrs rp 或(π),则)ββ is ip --=?(或)(ββπis ip --=?,可使问题简化。 5、近代物理实验课的感受 上完这个学期的近代物理实验课,我们大学阶段的物理实验课就结束了。这个学期的实验课,和以往一样都是那么的生动有趣。一方面是,这学期的物理实验课教学方法与上一个学期一样。在做实验之前,老师不仅要求我们课前

用椭偏仪测薄膜厚度与折射率

103 实验十二 用椭偏仪测薄膜厚度与折射率 随着半导体和大规模集成电路工艺的飞速发展,薄膜技术的应用也越加广泛。因此,精确地测量薄膜厚度与其光学常数就是一种重要的物理测量技术。 目前测量薄膜厚度的方法很多。如称重法、比色法、干涉法、椭圆偏振法等。其中,椭圆偏振法成为主要的测试手段,广泛地应用在光学、材料、生物、医学等各个领域。而测量薄膜材料的厚度、折射率和消光系数是椭圆偏振法最基本,也是非常重要的应用之一。 实验原理 由于薄膜的光学参量强烈地依赖于制备方法的工艺条件,并表现出明显的离散性,因此,如何准确、快速测量给定样品的光学参量一直是薄膜研究中一个重要的问题。椭圆偏振法由于无须测定光强的绝对值,因而具有较高的精度和灵敏度,而且测试方便,对样品无损伤,所以在光学薄膜和薄膜材料研究中受到极大的关注。 椭圆偏振法是利用椭圆偏振光入射到样品表面,观察反射光的偏振状态(振幅和位相)的变化,进而得出样品表面膜的厚度及折射率。 氦氖激光器发出激光束波长为632.8nm 的单色自然光,经平行光管变成单色平行光束,再经起偏器P 变成线偏振光,其振动方向由起偏器方位角决定,转动起偏器,可以改变线偏振光的振动方向,线偏振光经1/4波片后,由于双折射现象,寻常光和非寻常光产生π/2的位相差,两者的振动方向相互垂直,变为椭圆偏振光,其长、短轴沿着1/4波片的快、慢轴。椭圆的形状由起偏器的方位角来决定。椭圆偏振光以一定的角度入射到样品的表面,反射后偏振状态发生改变,一般仍为椭圆偏振光,但椭圆的方位和形状改变了。从物理光学原理可 以知道,这种改变 与样品表面膜层厚 度及其光学常数有 关。因而可以根据 反射光的特性来确 定膜层的厚度和折 射率。图1为基本 原理光路。 图2为入射光 由环境媒质入射到单层薄膜上,并在环境媒质——薄膜——衬底的两个界面上发生多次折射和反射。此时,折射角满足菲涅尔折射定律 332211sin sin sin ???N N N == (1)

关于椭圆偏振光测不准的分析

关于椭圆偏振光测不准的分析 西南交通大学土木09詹班 20090023 陈曦 摘要:在光学实验中,用GSZF-3实验系统检测椭圆偏振光时,测得的振幅与角度在极坐标 中划出的并不是椭圆,而是一个类肾脏线.本文分析了产生的原因. 关键词: 椭圆偏振光;类肾脏线;波的独立性原理. 椭圆偏振光可用两列频率相同,振动方向互相垂直,且沿同一方向传播的平面偏振光 的叠加得到。在光波沿:方向传播的情况下,便有: )c o s (kz t A E x x -=ω ) cos(?ω?+-=kz t A E y y 由此可得合成波的表达式为 y kz t A x kz t A y E x E E y x y x ?)cos(?)cos(???ωω?+-+-=+= ……(a ) 上式表明,任意一个场点电矢量端点的轨迹是一个椭圆,椭圆的方程为: ???=?-+ 2 22 22 sin cos ))( ( 2y y x x y y x x A E A E A E A E 由于x E 和y E 的总值是在Ax ±和Ay ±之间变化。电矢量端点的轨迹是与以 x x A E ±=,y y A E ±=为界的矩形框相内切,如图1所示。一般来说,它的主轴(长轴或短 轴)与x 轴构成α角。 α值可以由下式求出: ?α?-= cos 2tan 22y x y x A A A A 图1

显然椭圆主轴的大小和取向与两列光波的振幅x A 、y A ,及它们的位相差??都有关。 如图2可知,一块表面平行的单轴晶体,其光轴与晶体表面平行时o 光和e 光沿同一方向传播,我们把这样的晶体叫做波晶片。当一束振幅为o A 的平行光垂直地人射到波晶片上时,在人射点分解成o 光和e 光的位相是相等的。但光一进人晶体,由于o 光和e 光的传播速度不同,所以二者的波长也不同,就逐渐形成位相不同的两束光。 当晶片的厚度d 满足 2 )12()(λ +±=-k d n n e o k=0,1,2…… 说明波长为λ的光通过该晶片后o 光和e 光的位相差 2 )12(π ?+±=?k 即晶片的厚度使两束光引人的光程差为 4 )12(λ +±k 这种波片称为四分之一波片,线偏振光通过它以后会变成椭圆偏振光。 图2 光程原理图 晶轴方向 P1 P2 1/4波片 硅光电池接收器 图3 实验装置及各方向之间的关系 偏振化方向

台阶仪测试薄膜厚度实验

东南大学材料科学与工程 实验报告 学生姓名班级学号实验日期2014.9.5 批改教师 课程名称电子信息材料专业方向大型实验批改日期 实验名称台阶仪测试薄膜厚度实验报告成绩 一、实验目的: 掌握测试薄膜厚度原理和方法,了解台阶仪操作技术。 二、实验原理: LVDT是线性差动变压器的缩写,为机电转换器的一种。利用细探针扫描样品表面,当检测到一个高度差别则探针做上下起伏之变化,此变化在仪器内部的螺旋管先圈内造成磁通量的变化,再有内部电子电路转换成电压讯号,进而求出膜厚。LVDT线性位置感应器,可测量的位移量小到几万分之一英寸至几英寸。 LVDT的工作原理是由振荡器产生一高频的参考电磁场,并内建一支可动的铁磁主轴以及两组感应线圈,当主轴移动造成强度改变由感应线圈感应出两电压值,相比较后即可推算出移动量。三、实验步骤: (1)开机准备 (2)放置样品 (3)参数设置 (4)扫描结果分析 (5)数据保存 四、实验内容: Si基底上沉积金属Cr薄膜的厚度的测量 五、实验结果与分析: 样品:硅片上镀铬薄膜; 实验参数:长度1000μm;持续时间40s;针压力3mg;表面轮廓是Hills and Valleys.

由实验曲线及数据,可得薄膜厚度约为(868.8-617.0)=251.8μm。 六、思考题: 1、对于用台阶仪对非完美薄膜的厚度测量,Step Hight的M和R Cursor点 的选择? 两个点分别选在图线中的拐点处,这样倾斜的曲线会水平,比较容易得到薄膜的厚度 2、怎么样才能得到一个比较shape的台阶? 在制备时在衬底上覆盖一个形状规则比如长方形的陪片,且覆盖片要尽量薄,边缘应整齐,这样产生的台阶才会陡峭,方便测量

薄膜厚度和消光系数的透射光谱测量方法

薄膜厚度和消光系数的透射光谱测量方法 项目完成单位:国家建筑材料测试中心 项目完成人:刘元新 鲍亚楠 孙宏娟 王廷籍 摘 要 本文提出薄膜厚度和消光系数的标准曲线测量法,论述了方法的测量原理和测量程序。该法的膜厚的测量范围为~80nm 到2000nm ;膜厚的测量误差大约为13nm 。 关键词 薄膜、厚度、消光 自洁净玻璃的自洁净性能、低幅射玻璃的低幅射性能都与其膜层的厚度、折射率和消光系数有着密切的关系[1]。近代微电子学装置,如成像传感器、太阳能电池、薄膜器件等都需要这些参数[2] 。这些参数的数据是薄膜材料、薄膜器件设计的必不可少的基础性数据。 通常都是单独测量这些参数,薄膜厚度用原子力显微镜、石英震荡器、台阶仪、椭偏仪、干涉法来测量。薄膜折射率的测量就比较麻烦,因为它是波长的函数,它可以用基于干涉、反射原理的方法测量。从薄膜的吸收谱就可测量其消光系数。显然,取得这些数据是很麻烦、很费时、成本也很高,特别是对于纳米级薄膜。 2000年,美国Princeton 等大学提出[2] ,从物理角度建立透射光谱模型,调整模型中的未知的参数,即薄膜厚度、折射率、消光系数,使透射光谱的理论曲线同实验曲线重合,这就同时取得薄膜的厚度、折射率、消光系数等数据。他们用这种方法同时测量了“玻璃-薄膜” 系统的薄膜的厚度、折射率、消光系数等数据。显然,这是取得这些数据的简便、快速、低成本的方法,是这领域的一个发展趋势。 镀膜玻璃的透射光谱既包含玻璃参数的信息,也包含薄膜参数的信息,如果能从中解析出薄膜参数的信息,也就得到了薄膜参数的测量值,这就是透过光谱法测量薄膜参数的基本思路。本文基于这个基本思路提出测量薄膜参数的另一方法,姑且称为标准曲线法,方法的原理是基于这样的实验现象,即薄膜的吸收越强,镀膜玻璃的透过率越低;在薄膜吸收的光谱区内,薄膜越厚,镀膜玻璃的透过率也越低;这就是说,镀膜玻璃在指定波长处的透过率T 是薄膜厚度t 和薄膜消光系数 的函数, ),,(λκt T T = 但镀膜玻璃透过率和薄膜参数有什么函数关系?这就是本文要研究的问题。知道这函数关系之后,如何利用这函数关系测量薄膜参数?这也是本文要研究的问题。

椭偏仪测折射率和薄膜厚度

物理实验报告 实验名称:椭偏仪测折射率和薄膜厚度 学院:xx 学院专业班级:xxx 学号:xxx 学生姓名:xxx 实验成绩 预习题(一空一分,共10 分) 1.(单选题)起偏器和检偏器的刻度范围为多少?(B) A.0 ° ~180° B.0 ° ~360° 2.(单选题)黑色反光镜在仪器调整中起什么作用?

实验预习题成绩: (B) A. 确定起偏器的方位 B. 确定检偏器的方位 C.确定波片的方位 3.(单选题)在椭偏仪实验中坐标系是选在待测薄膜的(B)上。 A 入射面 B 表面 4.(单选题)椭偏仪的数据处理方法有三种,即查图法、查表 法、迭代法解非线性超越方程,本实验中使用(B) A 查图法 B 查表法 5.(填空题))调整椭偏仪光路的步骤是,首先使激光光线与分光计仪器主轴垂直,并通过载物台中心,然后确定(C)的0 刻度位置,这要利用(A)的布鲁斯特角特性,然后再确定(B)0 刻度位置,最后调整1/4 波片,使其快轴与(C)成± 45° 选择答案: A 黑色反光镜 B 检偏器 C 起偏器

6.(填空题)将起偏器套在平行光管上,使0°位置朝上,从载物台上取下黑色反射镜,将检偏器管转到共轴位置,整体调节起偏器使检流计(A),固定起偏器螺钉。此时起偏器与检偏器通光方向(C)。选择答案: A 光强最小 B 光强最大 C 平行 D 垂直

原始数据记录 成绩: 1/4 玻片起偏器角度检偏器角度+45°(> 90°)103.4 91.7 +45°(< 90°)21.2 51.6 -45 °(> 90°)106.5 98.6 -45 °(< 90°)21.2 51.6 薄膜厚度: 110.0000 折射率: 1.4800

椭圆偏振法测量薄膜厚度及折射率

深圳大学实验报告课程名称:近代物理实验 实验名称:椭圆偏振法测量薄膜厚度及折射率学院:物理科学与技术学院 组号指导教师: 报告人:学号: 实验地点实验时间: 实验报告提交时间:

一、实验目的 1、利用椭偏仪测量硅衬底薄膜的折射率和厚度;提高物理推理与判别处理能力。 2、用自动椭偏仪再测量,进行比对;分析不同实验仪器两种方式的测量。提高误差分析与分配能力。 二、实验原理 椭偏法测量的基本思路是,起偏器产生的线偏振光经取向一定的1/4波片后成为特殊的椭圆偏振光,把它投射到待测样品表面时,只要起偏器取适当的透光方向,被待测样品表面反射出来的将是线偏振光。根据偏振光在反射前后的偏振状态变化(包括振幅和相位的变化),便可以确定样品表 面的许多光学特性。 设待测样品是均匀涂镀在衬底上的透明同性膜层。如图3.5.1 所示,n1,n2和n3分别为环境介质、薄膜和衬底的折射率, d是薄膜的厚度,入射光束在膜层上的入射角为φ1,在薄膜 及衬底中的折射角分别为φ2和φ3。按照折射定律有 (3.5.1) 光的电矢量分解为两个分量,即在入射面内的P分量及垂直 于入射面的S分量。根据折射定律及菲涅尔反射公式,可求 得P分量和S分量在第一界面上的复振幅反射率分别为 而在第二个界面处则有 从图3.5.1可以看出,入射光在两个界面上会有很多次的反射和折射,总反射光束将是许多反射光束干涉的结果,利用多光束干涉的理论,得p分量和s分量的总反射系数 其中 是相邻反射光束之间的相位差,而λ为光在真空中的波长。 光束在反射前后的偏振状态的变化可以用总反射系数比(Rp/Rs)来表征。在椭偏法中,用椭偏参量ψ和Δ来描述反 射系数比,其定义为 分析上述格式可知,在λ,φ1,n1,n3确定的条件下,ψ和Δ只是薄膜厚度d和折射率n2的函数,只要测量出ψ和Δ,原则上应能解出d和n2。然而,从上述格式却无法解析出d=(ψ,Δ)和n2=(ψ,Δ)的具体形式。因此,只能先按以上各式用电子计算机算出在λ,φ1,n1和n3一定的条件下(ψ,Δ)~(d,n)的关系图表,待测出某一薄膜的ψ和Δ后再从图表上查出相应的d和n(即n2)的值。 测量样品的ψ和Δ的方法主要有光度法和消光法。下面介绍用椭偏消光法确定ψ和Δ的基本原理。设入射光束和反射光束电矢量的p分量和s分量分别为 Eip,Eis,Erp,Ers,则有 于是 为了使ψ和Δ成为比较容易测量的物理量,应该设法满足下面的两个条件: 1.使入射光束满足

薄膜厚度的测量

薄膜厚度的测量 ——台阶仪安装操作说明 一、台阶仪的安装 1、硬件的安装 1)打开电脑机箱盖,将台阶仪自带的电视卡插入PCI扩展槽,插好后将电脑机箱盖合上; 2)接上台阶仪电源线,将台阶仪上的USB线和视频线与电脑箱连接; 2、软件的安装 1)打开电脑机箱和显示器,将台阶仪自带的光盘插入电脑光驱; 2)将光盘上所有的内容都复制到电脑C盘根目录下; 3)安装光盘中的两个驱动程序,安装完成后重启计算机; 4)计算机重启后将拷入C盘中的注册表文件导入,导入成功后将台阶仪操作软件图标发送到桌面; 二、台阶仪的操作 1、台阶仪的标定 1)打开电脑机箱和显示器,打开台阶仪电源,等待10秒后将电脑桌面上的操作软件打开,几秒后自动弹出两个对话框,点击确认后进入操作界面; 2)拿出标定用的标准样品,拿出样品后立即合上盒盖,防止灰尘进入;

3)打开台阶仪保护盖,将标准样品贴紧样品台滑到台中央; 4)调节样品台位置,使标样在探针正下方; 5)点击操作软件上的“Setup”按键,设置扫描参数,将Speed设置为0.07mm/sec,Length设置为0.6mm,Range设置为10microns,Stylus Force设置为1mg,Filter Level设置为4,点击OK进行确认; 6)点击Engage,观察标准样品与探针所处的位置,如果样品台阶中央不在探针下方,点击Z+将探针升高,通过调节样品台使标准样品处于探针的正下方,合上保护盖,点击Engage,继续观察标准样品与探针的位置,如此反复操作,直到标准样品的台阶在探针的正下方;7)点击Scan,并点击确认扫描对话框,台阶仪自动进行扫描,扫描结束后,探针自动复位,测出的数据会自动弹出来; 8)用鼠标引动R,M光标,(R为参照光标,M为测量光标)到台阶的两侧,点击Level Date将台阶的曲线调平; 9)在曲线图窗口中点击鼠标右键,选择Size Cursors,将R,M光标线进行展开到适合宽度,然后点击鼠标右键将M光标移动到台阶上,窗口的右上角就会显示出台阶的平均高度; 10)重复7-9的步骤,反复测量几次,带测量数据稳定后,在曲线图窗口点击右键,选择Calibrate Height,在弹出的对话框中填写1063?,点击确定; 11)重复7-9的步骤,将测量出的台阶数据和标准样品给出的数据对比,一般来说只有几个?的差别; 12)台阶仪标定完成;

椭偏测厚仪主要参数与工作原理

“椭偏测厚仪”有关情况介绍 一、引言: 1、椭偏法是一种测量光在样品表面反射后偏振状态改变的广西方 法,它可以同时测得样品薄膜的厚度和折射率。由于此法具有非接触性、非破坏性以及高灵敏度、高精度等优点,鼓广泛用于薄膜厚度及材料的光学常数的测定。 2、椭偏法测量数据可在短时间快速采集,可对各类薄膜的生长和工 艺过程进行实时监测,故已成为半导体行业重要的在线监测设备之一。 3、纳米技术是当今科技的发展热点,能精确测得纳米级薄膜厚度和 折射率的椭偏测量技术受到人们的高度重视和关注。 二、椭偏测厚仪发展概况: 1、椭偏测厚仪在我国起步较晚,70年代我国自行设计生产的椭偏 测厚仪只有“TP-77型椭偏测厚仪”和“WJZ型椭偏测厚仪”。基本上是手动测量,仅配一种入射角和衬底材料的薄膜(n,d)~(Ψ,Δ)函数表(如SiO2,70°入射角,波长632.8nm)。 2、 90年代末,华东师大学研制并生产了“HST-1型”和“HST-2型” 多功能智能椭偏测厚仪。该仪器使用计算机技术,利用消光法自动完成,测量薄膜的厚度和折射率。 3、进入二十一世纪,国生产自动椭偏测厚仪的厂家逐渐多起来。如: 天津港东科技发展生产的“SGC-1型椭圆偏振测厚仪”、“SGC-2型自动椭圆偏振测厚仪”。天津拓普仪器生产的“TPY-1型椭圆偏振测厚

仪”和“TPY-2型自动椭圆偏振测厚仪”等。 现将目前国生产的几种自动椭圆偏振测厚仪,其性能指标等参数列表如下,供参考: 国几种“椭圆偏振测厚仪”的性能参数 三、消光法测量薄膜和折射率的计算公式:

1. 在椭偏法测量中,为了简便,通常引入两个物理量——Ψ,Δ来 描述反射光偏振态的变化,它们与总反射系数p R (p 分量,在入射面),s R (s 分量,在垂直于入射面)之间的关系,定义如下: tan Ψi e ?=p R /s R ————————— 偏振方程 ○ 1 式中:Ψ,Δ —— 椭偏参数(均为角度度量) Ψ —— 相对振幅衰减 Δ —— 相位移动之差 在固定实验条件下:~ 1n 和~ 3n 为已知,则Ψ=Ψ(d ,~ 2n ), Δ=Δ(d ,~ 2n ) 2122121i p p p i p p r r e R r r e δδ--+?= +??,2122121i s s s i s s r r e R r r e δ δ --+?=+?? 式中:2δ——相邻两光束的相位差,设膜厚为d ,光波长为λ, 则有: 122~~~22221122()d n Cos d n n Sin ππ δ??λλ =???=??-?——— ○2 若:P-起偏角,A-检偏角 则:Ψ=A ,Δ=k ×180°+90°-2p (当0°≤p ≤135°时,k=1;当 135°≤p ≤180°时,k=3) 综上:通过测得起偏角P 和检偏角A ,即可求得Ψ,Δ,还可反求 d ,~ 2n 。 1) 对于透明膜,~ 2n 只有实部,上述椭偏方程(复数方程)只有d , ~ 2n 两个未知数,由两个已知实测的Ψ,Δ原则上可解出d , ~ 2n ,

椭偏仪测量薄膜厚度和折射率

椭偏仪测量薄膜厚度和折射率 □实验背景介绍 椭圆偏振测量(椭偏术)是研究两媒质界面或薄膜中发生的现象及其特性的一种光学方法,其原理是利用偏振光束在界面或薄膜上的反射或透射时出现的偏振变换。椭圆偏振测量的应用范围很广,如半导体、光学掩膜、圆晶、金属、介电薄膜、玻璃(或镀膜)、激光反射镜、大面积光学膜、有机薄膜等,也可用于介电、非晶半导体、聚合物薄膜、用于薄膜生长过程的实时监测等测量。结合计算机后,具有可手动改变入射角度、实时测量、快速数据获取等优点。 □实验原理 在一光学材料上镀各向同性的单层介质膜后,光线的反射和折射在一般情况下会同时存在的。通常,设介质层为n1、n2、n3,φ1为入射角,那么在1、2介质交界面和2、3介质交界面会产生反射光和折射光的多光束干涉,如图(1-1) 图(1-1) 这里我们用2δ表示相邻两分波的相位差,其中δ=2πdn2cosφ2/λ ,用r1p、r1s 表示光线的p分量、s分量在界面1、2间的反射系数,用r2p 、r2s表示光线的p分、s分量在界面2、3间的反射系数。由多光束干涉的复振幅计算可知:其中Eip和Eis 分别代表入射光波电矢量的p分量和s分量,Erp和Ers分别代表反射光波电矢量的p分量和s分量。现将上述Eip、Eis 、Erp、Ers四个量写成一个量G,即: 我们定义G为反射系数比,它应为一个复数,可用tgψ和Δ表示它的模和幅角。上述公式的过程量转换可由菲涅耳公式和折射公式给出: G是变量n1、n2、n3、d、λ、φ1的函数(φ2 、φ3可用φ1表示) ,即ψ=tg-1f,Δ=arg| f |,称ψ和Δ为椭偏参数,上述复数方程表示两个等式方程: [tgψe iΔ]的实数部分= 的实数部分 [tgψe iΔ]的虚数部分= 的虚数部分 若能从实验测出ψ和Δ的话,原则上可以解出n2和d (n1、n3、λ、φ1已知),根据公式(4)~(9),推导出ψ和Δ与r1p、r1s、r2p、r2s、和δ的关系: 由上式经计算机运算,可制作数表或计算程序。这就是椭偏仪测量薄膜的基本原理。若d是已知,n2为复数的话,也可求出n2的实部和虚部。那么,在实验中是如何测定ψ和Δ的呢?现用复数形式表示入射光和反射光:

薄膜厚度和消光系数的透射光谱测量方法

262 薄膜厚度和消光系数的透射光谱测量方法 项目完成单位:国家建筑材料测试中心 项目完成人:刘元新 鲍亚楠 孙宏娟 王廷籍 摘 要 本文提出薄膜厚度和消光系数的标准曲线测量法,论述了方法的测量原理和测量程序。该法的膜厚的测量范围为~80nm 到2000nm ;膜厚的测量误差大约为±13nm 。 关键词 薄膜、厚度、消光 自洁净玻璃的自洁净性能、低幅射玻璃的低幅射性能都与其膜层的厚度、折射率和消光系数有着密切的关系[1]。近代微电子学装置,如成像传感器、太阳能电池、薄膜器件等都需要这些参数[2] 。这些参数的数据是薄膜材料、薄膜器件设计的必不可少的基础性数据。 通常都是单独测量这些参数,薄膜厚度用原子力显微镜、石英震荡器、台阶仪、椭偏仪、干涉法来测量。薄膜折射率的测量就比较麻烦,因为它是波长的函数,它可以用基于干涉、反射原理的方法测量。从薄膜的吸收谱就可测量其消光系数。显然,取得这些数据是很麻烦、很费时、成本也很高,特别是对于纳米级薄膜。 2000年,美国Princeton 等大学提出[2] ,从物理角度建立透射光谱模型,调整模型中的未知的参数,即薄膜厚度、折射率、消光系数,使透射光谱的理论曲线同实验曲线重合,这就同时取得薄膜的厚度、折射率、消光系数等数据。他们用这种方法同时测量了“玻璃-薄膜” 系统的薄膜的厚度、折射率、消光系数等数据。显然,这是取得这些数据的简便、快速、低成本的方法,是这领域的一个发展趋势。 镀膜玻璃的透射光谱既包含玻璃参数的信息,也包含薄膜参数的信息,如果能从中解析出薄膜参数的信息,也就得到了薄膜参数的测量值,这就是透过光谱法测量薄膜参数的基本思路。本文基于这个基本思路提出测量薄膜参数的另一方法,姑且称为标准曲线法,方法的原理是基于这样的实验现象,即薄膜的吸收越强,镀膜玻璃的透过率越低;在薄膜吸收的光谱区内,薄膜越厚,镀膜玻璃的透过率也越低;这就是说,镀膜玻璃在指定波长λ处的透过率T 是薄膜厚度t 和薄膜消光系数κ的函数, ),,(λκt T T = 但镀膜玻璃透过率和薄膜参数有什么函数关系?这就是本文要研究的问题。知道这函数关系之后,如何利用这函数关系测量薄膜参数?这也是本文要研究的问题。

实验15椭圆偏振仪测量薄膜厚度和折射率讲解

实验15 椭圆偏振仪测量薄膜厚度和折射率 在近代科学技术的许多部门中对各种薄膜的研究和应用日益广泛.因此,更加精确和迅速地测定一给定薄膜的光学参数已变得更加迫切和重要.在实际工作中虽然可以利用各种传统的方法测定光学参数(如布儒斯特角法测介质膜的折射率、干涉法测膜厚等),但椭圆偏振法(简称椭偏法)具有独特的优点,是一种较灵敏(可探测生长中的薄膜小于0.1nm的厚度变化)、精度较高(比一般的干涉法高一至二个数量级)、并且是非破坏性测量.是一种先进的测量薄膜纳米级厚度的方法.它能同时测定膜的厚度和折射率(以及吸收系数).因而,目前椭圆偏振法测量已在光学、半导体、生物、医学等诸方面得到较为广泛的应用.这个方法的原理几十年前就已被提出,但由于计算过程太复杂,一般很难直接从测量值求得方程的解析解.直到广泛应用计算机以后,才使该方法具有了新的活力.目前,该方法的应用仍处在不断的发展中. 实验目的 (1)(1)了解椭圆偏振法测量薄膜参数的基本原理; (2)(2)初步掌握椭圆偏振仪的使用方法,并对薄膜厚 度和折射率进行测量. 实验原理 椭偏法测量的基本思路是,起偏器产生的线偏振光经取向一定的1/4波片后成为特殊的椭圆偏振光,把它投射到待测样品表面时,只要起偏器取适当的透光方向,被待测样品表面反射出来的将是线偏振光.根据偏振光在反射前后的偏振状态变化,包括振幅和相位的变化,便可以确定样品表面的许多光学特性. 1 椭偏方程与薄膜折射率和厚度的测量

图15.1 图15.1所示为一光学均匀和各向同性的单层介质膜.它有 两个平行的界面,通常,上部是折射率为n1的空气(或真空).中 间是一层厚度为d折射率为n2的介质薄膜,下层是折射率为n3 的衬底,介质薄膜均匀地附在衬底上,当一束光射到膜面上时, 在界面1和界面2上形成多次反射和折射,并且各反射光和折射 光分别产生多光束干涉.其干涉结果反映了膜的光学特性. 设φ1表示光的入射角,φ2和φ3分别为在界面1和2上的折 射角.根据折射定律有 n1sinφ1=n2sinφ2=n3sinφ3 (15.1) 光波的电矢量可以分解成在入射面内振动的P分量和垂直 于入射面振动的s分量.若用E ip和E is分别代表入射光的p和s 分量,用E rp及E rs分别代表各束反射光K0,K1,K2,…中电矢量 的p分量之和及s分量之和,则膜对两个分量的总反射系数R p 和R s定义为 R P=E rp/E ip , R s=E rs/E is (15.2) 经计算可得 式中,r1p或r1s和r2p或r2s分别为p或s分量在界面1和界面2 上一次反射的反射系数.2δ为任意相邻两束反射光之间的位相

相关文档
最新文档