大总结L298N的详细资料驱动直流电机和步进电机

大总结L298N的详细资料驱动直流电机和步进电机
大总结L298N的详细资料驱动直流电机和步进电机

大总结

L298N的详细资料驱动直流电机和步进电机

电机驱动电路;电机转速控制电路(PWM信号)

主要采用L298N,通过单片机的I/O输入改变芯片控制端的电平,即可以对电机进行正反转,停止的操作,输入引脚与输出引脚的逻辑关系图为

驱动原理图

L298N电机驱动模块图???

1.1 实物图??

1.2 原理图???

1.3 各种电机实物接线图???

1.4 各种电机原理图???

1.5 模块接口说明???

L298N电机驱动模块图

1.1 实物图

正面背面1.2 原理图

1.3 各种电机实物接线图

直流电机实物接线图

4相步进电机实物接线图

3相步进电机实物接线图

1.4各种电机原理图

直流电机原理图步进电机原理图

1.5 模块接口说明

+5V:芯片电压5V。

VCC:电机电压,最大可接50V。

GND:共地接法。

A-~D-:输出端,接电机。

A~D+ :为步进电机公共端,模块上接了VCC。

EN1、EN2:高电平有效,EN1、EN2分别为IN1和IN2、IN3和IN4的使能端。

IN1~ IN4:输入端,输入端电平和输出端电平是对应的。

1和15和8引脚直接接地,

4管脚VS接2.5到46的电压,它是用来驱动电机的,

9引脚是用来接4.5到7V的电压的,它是用来驱动L298芯片的,

记住,L298需要从外部接两个电压,一个是给电机的,另一个给L298芯片的

6和11引脚是它的使能端,一个使能端控制一个电机,至于那个控制那个你自己焊接,你可以把它理解为总开关,只有当它们都是高电平的时候两个电机才有可能工作,

5,7,10,12是298的信号输入端和单片机的IO口相连,

2,3,13,14是输出端,

输入5和7控制输出2和3, 输入的10,12控制输出的13,14

L298N型驱动器的原理及应用

L298N是SGS公司的产品,内部包含4通道逻辑驱动电路。是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准TTL逻辑电平信号,可驱动46V、2A以下的电机。其引脚排列如图1中U4所示,1脚和15脚可单独引出连接电流采

样电阻器,形成电流传感信

L298N的恒压恒流桥式2A驱动芯片L298N说明及应用

L298是SGS公司的产品,比较常见的是15脚Multiwatt封装的L298N,内部同样包含4通道逻辑驱动电路。可以方便的驱动两个直流电机,或一个两相步进电机。L298N芯片可以驱动两个二相电机,也可以驱动一个四相电机,输出电压最高可达50V,可以直接通过电源来调节输出电压;可以直接用单片机的IO口提供信号;而且电路简单,使用比较方便。L298N 可接受标准TTL逻辑电平信号V SS,V SS可接4.5~7 V电压。4脚VS接电源电压,VS电压范围VIH为+2.5~46 V。输出电流可达2.5 A,可驱动电感性负载。1脚和15脚下管的发射极分别单独引出以便接入电流采样电阻,形成电流传感信号。L298可驱动2个电动机,OUT1,OUT2和OUT3,OUT4之间可分别接电动机,本实验装置我们选用驱动一台电动机。5,7,10,12脚接输入控制电平,控制电机的正反转。EnA,EnB接控制使能端,控制电机的停转。表1是L298N功能逻辑图。

In3,In4的逻辑图与表1相同。由表1可知EnA为低电平时,输入电平对电机控制起作用,当EnA为高电平,输入电平为一高一低,电机正或反转。同为低电平电机停止,同为高电平电机刹停。

L298N控制器原理如下:图3是控制器原理图,由3个虚线框图组成。

下面是3个虚线框图功能:

(1)虚线框图1控制电机正反转,U1A,U2A是比较器,VI来自炉体压强传感器的电压。当VI>VRBF1时,U1A输出高电平,U2A输出高电平经反相器变为低电平,电机正转。同理VI <VRBF1时,电机反转。电机正反转可控制抽气机抽出气体的流量,从而改变炉体压强。(2)虚线框图2中,U3A,U4A两个比较器组成双限比较器,当VB<VI<VA时输出低电平,当VI>VA,VI<VB时输出高电平。VA,VB是由炉体压强转感器转换电压的上下限,即反应炉体压强控制范围。根据工艺要求,我们可自行规定VA,VB的值,只要炉体压强在VA,VB 所确定范围之间电机停转(注意VB<VRBF1<VA,如果不在这个范围内,系统不稳定)。(3)虚线框图3是一个长延时电路。U5A是一个比较器,Rs1是采样电阻,VRBF2是电机过流电压。Rs1上电压大于VREF2,电机过流,U5A输出低电平。由上面可知,框图1控制电机正反转,框图2控制炉体压强的纹波大小。当炉体压强太小或太大时,电动机转到两端固定位置停止,根据直流电机稳态运行方程[3]:

U=CeФN+RaIa

其中:Ф为电机每极磁通量;Ce为电动势常数; N为电机转数; Ia为电枢电流;

Ra电枢回路电阻。

电机转数N为0,电机的电流急剧增加,时间过长将会使电机烧坏。但电机起动时,电机中线圈中的电流也急剧变大,因此我们必须把这两种状态分开。长延时电路可把这两种状态区分出来。长延时电路工作原理:当Rs1过流U5A产生一个负脉冲经过微分后,脉冲触发555的2脚,电路置位,3脚输出高电平,由于放电端7脚开路,C1,R5及U6A组成积分器开始积分,电容C1上的充电电压线性上升,延时运放积分常数为100R5C1。当C1上充电电压,即6脚电压超过2/3 VCC,555电路复位,输出低电平。电机启动时间一般小于0.8 s,C1充电时间一般为0.8~1 s。U5A输出电平与555的3脚输出电平经U7相或,如果U5A 输出低电平大于C1充电时间,U7在C1充电后输出低电平由与门U8输入到L298N的6脚ENA 端使电机停止。如果U5A的输出电平小于C1充电时间,6脚不动作电机的正常启动。长延时电路吸收电机启动过流电压波形,从而使电机正常启动。

下图是其引脚图:

1、15脚是输出电流反馈引脚,其它与L293相同。

在通常使用中这两个引脚也可以直接接地。上图是其与51单片机连接的电路图。

凯歌文化公司

L298应用实例

实例一:用L298驱动两台直流减速电机的电路。引脚6,9可用于PWM控制。如果机器人项目只要求直行前进,则可将5,10和7,12两对引脚分别接高电平和低电平,仅用单片机的两个端口给出PWM信号控制6,11即可实现直行、转弯、加减速等动作。

实例二:用L298实现二相步进电机控制。

步进电机原理及其使用说明

一、前言

步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。

虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。

目前,生产步进电机的厂家的确不少,但具有专业技术人员,能够自行开发,研制的厂家却非常少,大部分的厂家只一、二十人,连最基本的设备都没有。仅仅处于一种盲目的仿制阶段。这就给用户在产品选型、使用中造成许多麻烦。签于上述情况,我们决定以广泛的感应子式步进电机为例。叙述其基本工作原理。望能对广大用户在选型、使用、及整机改进时有所帮助。

二、感应子式步进电机工作原理

(一)反应式步进电机原理

由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。

1、结构:

电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)下面是定转子的展开图:

2、旋转:

如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。

如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。

如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。

如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て。

这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。

由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。

不过,出于对力矩、平稳、噪音及减少角度等方面考虑。往往采用A-AB-B-BC-C-CA-A

这种导电状态,这样将原来每步1/3て改变为1/6て。甚至于通过二相电流不同的组合,使其1/3て变为1/12て,1/24て,这就是电机细分驱动的基本理论依据。

不难推出:电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移1/m,2/m……(m-1)/m,1。并且导电按一定的相序电机就能正反转被控制——这是步进电机旋转的物理条件。只要符合这一条件我们理论上可以制造任何相的步进电机,出于成本等多方面考虑,市场上一般以二、三、四、五相为多。

3、力矩:

电机一旦通电,在定转子间将产生磁场(磁通量Ф)当转子与定子错开一定角度产生力F与(dФ/dθ)成正比

其磁通量Ф=Br*S ;Br为磁密;S为导磁面积; F与L*D*Br成正比;L为铁芯有效长度;D为转子直径;Br=N·I/RN·I为励磁绕阻安匝数(电流乘匝数)R为磁阻。

力矩=力*半径力矩与电机有效体积*安匝数*磁密成正比(只考虑线性状态)

因此,电机有效体积越大,励磁安匝数越大,定转子间气隙越小,电机力矩越大,反之亦然。

(二)感应子式步进电机

1、特点:

感应子式步进电机与传统的反应式步进电机相比,结构上转子加有永磁体,以提供软磁材料的工作点,而定子激磁只需提供变化的磁场而不必提供磁材料工作点的耗能,因此该电机效率高,电流小,发热低。因永磁体的存在,该电机具有较强的反电势,其自身阻尼作用比较好,使其在运转过程中比较平稳、噪音低、低频振动小。

感应子式步进电机某种程度上可以看作是低速同步电机。一个四相电机可以作四相运行,也可以作二相运行。(必须采用双极电压驱动),而反应式电机则不能如此。例如:四相,八相运行(A-AB-B-BC-C-CD-D-DA-A)完全可以采用二相八拍运行方式.不难发现其条件

为C=,D=。

一个二相电机的内部绕组与四相电机完全一致,小功率电机一般直接接为二相,而功率大一点的电机,为了方便使用,灵活改变电机的动态特点,往往将其外部接线为八根引线(四相),这样使用时,既可以作四相电机使用,可以作二相电机绕组串联或并联使用。

2、分类

感应子式步进电机以相数可分为:二相电机、三相电机、四相电机、五相电机等。以机座号(电机外径)可分为:42BYG(BYG为感应子式步进电机代号)、57BYG、86BYG、110BYG、(国际标准),而像70BYG、90BYG、130BYG等均为国内标准。

3、步进电机的静态指标术语

相数:产生不同对极N、S磁场的激磁线圈对数,常用m表示。

拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运

行方式即 A-AB-B-BC-C-CD-D-DA-A。

步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。θ=360度(转子齿数J*运行拍数),以常规二、四相,转子齿为50齿电机为例。四拍运行时步距角为θ=360度/(50*4)=1.8度(俗称整步),八拍运行时步距角为θ=360度/(50*8)=0.9度(俗称半步)。

定位转矩:电机在不通电状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的)

静转矩:电机在额定静态电作用下,电机不作旋转运动时,电机转轴的锁定力矩。此力矩是衡量电机体积(几何尺寸)的标准,与驱动电压及驱动电源等无关。

虽然静转矩与电磁激磁安匝数成正比,与定齿转子间的气隙有关,但过份采用减小气隙,增加激磁安匝来提高静力矩是不可取的,这样会造成电机的发热及机械噪音。

4、步进电机动态指标及术语

1、步距角精度:步进电机每转过一个步距角的实际值与理论值的误差。用百分比表示:误差/步距角*100%。不同运行拍数其值不同,四拍运行时应在5%之内,八拍运行时应在15%以内。

2、失步:电机运转时运转的步数,不等于理论上的步数。称之为失步。

3、失调角:转子齿轴线偏移定子齿轴线的角度,电机运转必存在失调角,由失调角产生的误差,采用细分驱动是不能解决的。

4、最大空载起动频率:电机在某种驱动形式、电压及额定电流下,在不加负载的情况下,能够直接起动的最大频率。

5、最大空载的运行频率:电机在某种驱动形式,电压及额定电流下,电机不带负载的最高转速频率。

6、运行矩频特性:电机在某种测试条件下测得运行中输出力矩与频率关系的曲线称为运行矩频特性,这是电机诸多动态曲线中最重要的,也是电机选择的根本依据。如下图所示:

其它特性还有惯频特性、起动频率特性。

电机一旦选定,电机的静力矩确定,而动态力矩却不然,电机的动态力矩取决于电机运行时的平均电流(而非静态电流),平均电流越大,电机输出力矩越大,即电机的频率特性越硬。

如下图所示:

其中,曲线3电流最大、或电压最高;曲线1电流最小、或电压最低,曲线与负载的交点为负载的最大速度点。

要使平均电流大,尽可能提高驱动电压,使采用小电感大电流的电机。

7、电机的共振点:步进电机均有固定的共振区域,二、四相感应子式步进电机的共振区一般在180-250pps之间(步距角1.8度)或在400pps左右(步距角为0.9度),电机驱动电压越高,电机电流越大,负载越轻,电机体积越小,则共振区向上偏移,反之亦然,为使电机输出电矩大,不失步和整个系统的噪音降低,一般工作点均应偏移共振区较多。

8、电机正反转控制:当电机绕组通电时序为AB-BC-CD-DA或()时为正转,通电时序为DA-CA-BC-AB或()时为反转。

三、驱动控制系统组成

使用、控制步进电机必须由环形脉冲,功率放大等组成的控制系统,其方框图如下:

1、脉冲信号的产生

脉冲信号一般由单片机或CPU产生,一般脉冲信号的占空比为0.3-0.4左右,电机转速越高,占空比则越大.

2、信号分配

我厂生产的感应子式步进电机以二、四相电机为主,二相电机工作方式有二相四拍和二相八

拍二种,具体分配如下:二相四拍为,步距角为 1.8度;二相八拍为

,步距角为0.9度。四相电机工作方式也有二种,四相四拍为AB-BC-CD-DA-AB,步距角为1.8度;四相八拍为AB-B-BC-C-CD-D-AB,(步距角为0.9度)。

3、功率放大功率放大是驱动系统最为重要的部分。步进电机在一定转速下的转矩取决于它的动态平均电流而非静态电流(而样本上的电流均为静态电流)。平均电流越大电机力矩越大,要达到平均电流大这就需要驱动系统尽量克服电机的反电势。因而不同的场合采取不同的的驱动方式,到目前为止,驱动方式一般有以下几种:恒压、恒压串电阻、高低压驱动、恒流、细分数等。为尽量提高电机的动态性能,将信号分配、功率放大组成步进电机的驱动电源。我厂生产的SH系列二相恒流斩波驱动电源与单片机及电机接线图如下:

说明:

CP 接CPU脉冲信号(负信号,低电平有效)

OPTO 接CPU+5V

FREE 脱机,与CPU地线相接,驱动电源不工作

DIR 方向控制,与CPU地线相接,电机反转

VCC 直流电源正端

GND 直流电源负端

A 接电机引出线红线

接电机引出线绿线

B 接电机引出线黄线

接电机引出线蓝线

步进电机一经定型,其性能取决于电机的驱动电源。步进电机转速越高,力距越大则要求电机的电流越大,驱动电源的电压越高。电压对力矩影响如下:

4、细分驱动器

在步进电机步距角不能满足使用的条件下,可采用细分驱动器来驱动步进电机,细分驱动器的原理是通过改变相邻(A,B)电流的大小,以改变合成磁场的夹角来控制步进电机运转的。

四、步进电机的应用

(一)步进电机的选择

步进电机有步距角(涉及到相数)、静转矩、及电流三大要素组成。一旦三大要素确定,步进电机的型号便确定下来了。

1、步距角的选择

电机的步距角取决于负载精度的要求,将负载的最小分辨率(当量)换算到电机轴上,每个当量电机应走多少角度(包括减速)。电机的步距角应等于或小于此角度。目前市场上步进电机的步距角一般有0.36度/0.72度(五相电机)、0.9度/1.8度(二、四相电机)、1.5度/3度(三相电机)等。

2、静力矩的选择

步进电机的动态力矩一下子很难确定,我们往往先确定电机的静力矩。静力矩选择的依据是电机工作的负载,而负载可分为惯性负载和摩擦负载二种。单一的惯性负载和单一的摩擦负载是不存在的。直接起动时(一般由低速)时二种负载均要考虑,加速起动时主要考虑惯性负载,恒速运行进只要考虑摩擦负载。一般情况下,静力矩应为摩擦负载的2-3倍内好,静力矩一旦选定,电机的机座及长度便能确定下来(几何尺寸)

3、电流的选择

静力矩一样的电机,由于电流参数不同,其运行特性差别很大,可依据矩频特性曲线图,判断电机的电流(参考驱动电源、及驱动电压)

综上所述选择电机一般应遵循以下步骤:

4、力矩与功率换算

步进电机一般在较大范围内调速使用、其功率是变化的,一般只用力矩来衡量,力矩与功率换算如下:

P= Ω·M Ω=2π·n/60 P=2πnM/60

其P为功率单位为瓦,Ω为每秒角速度,单位为弧度,n为每分钟转速,M为力矩单位为牛顿·米

P=2πfM/400(半步工作)

其中f为每秒脉冲数(简称PPS)

(二)、应用中的注意点

1、步进电机应用于低速场合---每分钟转速不超过1000转,(0.9度时6666PPS),最好在1000-3000PPS(0.9度)间使用,可通过减速装置使其在此间工作,此时电机工作效率高,噪音低。

2、步进电机最好不使用整步状态,整步状态时振动大。

步进电机及其驱动系统简介中英文翻译

步进电机及其驱动系统简介中英文翻译Step characteristics for machine for angular displacement for entering the electrical engineering is first kind will give or get an electric shocking the pulse signal conversion cowgirl or line potential moving battery carry outing a piece, having the fast stopping, accurate step entering and directly accepting the arithmetic figure measuring, because of but got the extensive application.Such as in the drafting machine, print the machine and optical instrument inside, and all adopt the inside of a place control system for entering the electrical engineering to positioning to paint the pen print head or optical prinipal, especially indrstry process the type control, and move to spread to feel the to can immediately attain the precision fixed position because of its precision and need not potential, and control the technique along with the calculator of continuously deveolp, applied to would be more and more extensive. Control and can is divided into the simple control sum the complicacy to control to motor two kind.The simple control points to proceeds to start to motor, the system move, positive and negative revolution and sequential https://www.360docs.net/doc/e510463702.html,plicacy the control point to the motor's revolving speed, screw angle, turning moment, tension, electric current etc. physics quantisty progress control.Control technique that the

直流电机VS交流电机VS步进电机VS伺服电机-如何正确选择步进电机和伺服电机

什么是直流电机,什么是交流电机,什么是步进电机,什么是伺服电机? (1) 一般直流电机与直流伺服电机的区别 (2) 直流伺服电动机工作原理是什么? (2) 伺服马达的工作原理 (4) 伺服马达和步进马达的区别 (5) 如何正确选择伺服电机和步 (5) 1,如何正确选择伺服电机和步进电机? (5) 2,选择步进电机还是伺服电机系统? (5) 3,如何配用步进电机驱动器? (6) 4,2相和5相步进电机有何区别,如何选择? (6) 5,何时选用直流伺服系统,它和交流伺服有何区别? (6) 6,使用电机时要注意的问题? (7) 7,步进电机启动运行时,有时动一下就不动了或原地来回动,运行时有时还会失步,是什么问题? (7) 8,我想通过通讯方式直接控制伺服电机,可以吗? (8) 9,用开关电源给步进和直流电机系统供电好不好? (8) 10,我想用±10V或4~20mA的直流电压来控制步进电机,可以吗? (8) 11,我有一个的伺服电机带编码器反馈,可否用只带测速机口的伺服驱动器控制? (8) 12,伺服电机的码盘部分可以拆开吗? (8) 13,步进和伺服电机可以拆开检修或改装吗? (8) 14,几台伺服电机可以作同步运行吗? (8) 15,伺服控制器能够感知外部负载的变化吗? (8) 16,可以将国产的驱动器或电机和国外优质的电机或驱动器配用吗? (8) 17,使用大于额定电压值的直流电源电压驱动电机安全吗? (8) 18,我如何为我的应用选择适当的供电电源? (9) 19,对于伺服驱动器我可以选择那种工作方式? (9) 20,驱动器和系统如何接地? (10) 21,减速器为什么不能和电机正好相配在标准转矩点? (10) 22,我如何选择使用行星减速器还是正齿轮减速器? (10) 23,何为负载率(duty cycle)? (11) 24,标准旋转电机的驱动电路可以用于直线电机吗? (12) 25,直线电机是否可以垂直安装,做上下运动? (12) 26,在同一个平台上可以安装多个动子吗? (12) 27,是否可以将多个无刷电机的动子线圈安装于同一个磁轨道上? (12) 28,AMS的直线电机是否可以用于特殊环境,如水溅、真空、洁净室、辐射等环境? (12) 29,使用直线电机比滚珠丝杆的线性电机有何优点? (12) 30,你们的滑台可以做多个组合一起使用吗? (12) 什么是直流电机,什么是交流电机,什么是步进电机,什么是伺服电机? 1、什么是直流电机? 答:输出或输入为直流电能的旋转电机,称为直流电机 2、什么是交流电机

实用的步进电机驱动电路图

实用的步进电机驱动电路(图) 概述 步进电机是一种将电脉冲转化为角位移的执行机构,可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 目前,对步进电机的控制主要有由分散器件组成的环形脉冲分配器、软件环形脉冲分配器、专用集成芯片环形脉冲分配器等。本设计选用第三种方案,用PMM8713三相或四相步进电机的脉冲分配器、SI-7300A 两相或四相功率驱动器,组成四相步进电机功率驱动电路,以提高集成度和可靠性,步进电机控制框图见图1。 图1 步进电机控制系统框图 硬件简介 ● PMM8713原理框图及功能 PMM8713是日本三洋电机公司生产的步进电机脉冲分配器,适用于控制三相或四相步进电机。控制三相或四相步进电机时都可以选择3种励磁方式,每相最小吸入与拉出电流为20mA,它不仅满足后级功率放大器的输入要求,而且在其所有输入端上均内嵌施密特触发电路,抗干扰能力强,其原理框图如图2所示。

图2 PMM8713的原理框图 在PMM8713的内部电路中,时钟选通部分用于设定步进电机的正反转脉冲输入发。PMM8713有两种脉冲输入法:双脉冲输入法和单脉冲输入法。采用双脉冲输入法时,CP、CU两端分别输入步进电机正反转的控制脉冲。当采用单脉冲输入时,步进电机的正反转方向由U/D的高、低电位决定。 激励方式控制电路用来选择采用何种励磁方式。激励方式判断电路用于输出检测;而可逆环形计数器则用于产生步进电机在选定的励磁方式下的各相通断时序信号。 ● SI-7300A的结构及功率驱动原理 SI-7300A是日本三青公司生产的高性能步进电机集成功率放大器,该器件为单极性四相驱动,采用SIP18封装。 步进电机功率驱动级电路可分为电压和电流两种驱动方式。电流驱动方式最常用的是PWM恒流斩波驱动电路,也是最常用的高性能驱动方式,其中一相的等效电路图如图3所示。

直流无刷与有刷电机与直流减速电机与步进电机

直流无刷与有刷电机直流减速电机步进电机 直流无刷电机的原理是在有刷电机的基础上开发和演变的。在未来的一段时间里将是有刷的替代品随着世界各地发起的保护地球的口号有刷终终究会被无刷所取代。无刷直流电机的基本原理去掉了碳刷用电子元器件代替。用电子元器件的开关特性取代机械碳刷使换向变得无机械接触。无刷相对有刷的电机来说有如下优点一、运行声音小这将是我们这个文明社会必将行进的方向。另何工具它都要求降低噪声来保护我们的声音环境。现在最关键的是用在一些需要安静的地方如医院、银行、机场学校等等安静的场所。二、无火花在一些场合就可以大显身手了有一些易燃易爆的地方。三、寿命长因为它用控制器代替了换向器和碳刷是有刷电机的几倍甚至十几倍。碳刷的寿命是有一定的限度的比如一千个小时碳刷就会磨损殆尽只能更换电刷可是更换电机。四、速度高因为采用了磁场感应没有实质的接触速度可以做的更快。有了这么多的优点但是也有不好的地方一、造价高控制器的成本增加至少百元拿微电机来说。原来的换向器和碳刷的成本要低的多。二、如果使用的环境是在高磁场的地方或曾经接触或和高磁场很近电机将失去 作用。因为电机本身的转子部件是磁体所作是经过充磁才有磁性的经过高磁场将改变转子的磁场或是消掉了部分的磁性电机都将不能正常工作。再给你补全一点 1 有位置传感器控制方式优点①因为有霍尔位置传感器所以电机换相准确转子位置

检测的准确度不受电机转速的影响②不需要外加的转子位置检测电路硬件电路简单③电机换相控制编程简单不需要处理滤波延迟等问题。缺点①增大了电机的体积。安装了位置传感器后一方面电机结构变复杂了另一方面电机的体积相对来说变大了妨碍了电机的小型化②增加了电机成本。容量在数百瓦以下的小容量方波型无刷直流电机常用的霍尔位置传感器的成本相对于电机本体来说所占比例比较大③传感器的输出信号易受到干扰。传感器的输出信号都是弱电信号在高温、冷冻、湿度大、有腐蚀物质、空气污浊等工作环境及振动、高速运行等工作条件下都会降低传感器的可靠性。若传感器损坏还可能连锁反应引起逆变器等器件的损坏④传感器的安装精度对电机的运行性能影响很大相对增加了生产工艺的难度。 2 无位置传感器控制方式优点①降低成本减小电机的体积②抗干扰能力强能在高温、湿度大、有腐蚀物质、空气污浊的环境中工作③无传感器安装的问题减小电机的生产难度。缺点①如反电势法等转子位置检测方法在低速时检测准确度都不高需要其他方法辅助电机起动②由于各种滤波、比较电路引起的相位延迟必须在算法中加以补偿所以算法编程难度较大③由于架构了转子位置检测电路所以增加了硬件的复杂性。 直流减速电机,即齿轮减速电机,是在普通直流电机的基础上,加上配套齿轮减速箱。齿轮减速箱的作用是,提供较低的转速,较大的力矩。同时,齿轮箱不同的减速比可以提供不同的转速和力矩。这大大提高了,直流电机在自动化行业中的使用率。减速电机是指减速机和电机(马达)的集成体。这种集成体通常也可称为

直流电机控制

(1)直流电机选择 由于本次毕业设计采用的是飞思卡尔公司提供的伺服电机,伺服电机内部的转子是永磁铁,驱动器控制的U/V/W 三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数),而且伺服电机一般是功率小,运行精确,能高速制动,惯量小,适合闭环控制,也就是能检测到实际位置和理论位置的误差,并消除。 (2)直流电机的控制 PWM控制 脉宽调制的全称为:Pulse Width Modulator,简称PWM。由于它的特殊性能,常被用作直流回路中灯具调光或直流电动机调速。这里将要介绍的就是利用脉宽调制(PWM)原理制作的马达控制器。该装置可用于12v或24v直流电路中,两者间只需稍做变动。它主要是通过改变输出方波的占空比,使得负载上的平均接通时间从0-100%变化,以达到调整负载亮度/速度的目的。PWM信号一般可有微控制器产生。如图1

图1 微控制器产生的PWM控制信号 (3)直流电机的反馈与控制 旋转编码器 旋转编码器是用来测量转速的装置。它分为单路输出和双路输出两种。技术参数主要有每转脉冲数(几十个到几千个都有),和供电电压等。单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。编码器若以信号原理来分,有增量型编码器,绝对型编码器。增量型编码器(旋转型)由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z

伺服电机工作原理及和步进电机的区别

伺服电机工作原理及和步进电机の区别 2010-03-30 17:14 伺服电机内部の转子是永磁铁,驱动器控制のU/V/W三相电形成电磁场,转子在此磁场の作用下转动,同时电机自带の编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动の角度。伺服电机の精度决定于编码器の精度(线数)。 什么是伺服电机?有几种类型?工作特点是什么? 答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到の电信号转换成电动机轴上の角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩の增加而匀速下降.。 请问交流伺服电机和无刷直流伺服电机在功能上有什么区别? 答:交流伺服要好一些,因为是正弦波控制滚珠丝杆,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。永磁交流伺服电动机20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术の发展,永磁交流伺服驱动技术有了突出の发展,各国著名电气厂商相继推出各自の交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统の主要发展方向,使原来の直流伺服面临被淘汰の危机。90年代以后,世界各国已经商品化了の交流伺服系统是采用全数字控制の正弦波电动机伺服驱动。交流伺服驱动装置在传动领域の发展日新月异。 永磁交流伺服电动机同直流伺服电动机比较,主要优点有:⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。⑵定子绕组散热比较方便。⑶惯量小,易于提高系统の快速性波纹管联轴器。⑷适应于高速大力矩工作状态。⑸同功率下有较小の体积和重量。 伺服和步进电机 伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应の角度,从而实现位移,因为,伺服电机本身具备发出脉冲の功能,所以伺服电机每旋转一个角度,都会发出对应数量の脉冲,这样,和伺服电机接受の脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确の控制电机の转动,从而实现精确の定位,可以达到0.001mm。 步进电机是一种离散运动の装置,它和现代数字控制技术有着本质の联系。在目前国内の数字控制系统中,步进电机の应用十分广泛。随着全数字式交流伺服系统の出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制の发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号)弹性联轴器,但在使用性能和应用场合上存在着较大の差异。现就二者の使用性能作一比较。 一、控制精度不同 两相混合式步进电机步距角一般为 3.6°、 1.8°,五相混合式步进电机步距角一般为

直流电机转速控制

. 直流电机转速控制 课程设计

姓名: 学号: 班级: 目录 1.直流电机转速控制方案设计 (2) 1.1设计要求 (2) 1.2设计框图 (2) 2.直流电机转速控制硬件设计 (3) 2.1主要器件功能 (3) 2.2硬件原理图 (6)

3.直流电机转速控制软件设计 (7) 4.调试 (8) 4.1硬件测试 (8) 4.2软件调试……………………………………………………………(11 1.直流电机转速控制方案设计 1.1设计要求 通过设计了解如何运用电子技术来实现直流电机转速控制,完成直流电机转向和转速的控制,提高分析电路设计、调试方面问题和解决问题的能力。

1、用按键1控制旋转方向,实现正转和反转。 2、电机的设定转速与电机的实际转速在数码管上显示。 3、旋转速度可实时改变。 1.2设计框图 本课题中测量控制电路组成框图如下所示: 图1

2.直流电机转速控制硬件设计 2.1主要器件功能 1、L298N 是专用驱动集成电路,属于H 桥集成电路,与L293D 的差别是其输出电流增大,功率增强。其输出电流为2A,最高电流4A,最高工作电压50V,可以驱动感性负载,如大功率直流电机,步进电机,电磁阀等,特别是其输入端可以与单片机直接相联,从而很方便地受单片机控制。当驱动直流电机时,可以直接控制步进电机,并可以实现电机正转与反转,实现此功能只需改变输入端的逻辑电平。此外可能通过使能端的高低电平的变换,从而使电机通断,来控制电机的转速。 图2 板上的EN1 与EN2 为高电平时有效,这里的电平指的是TTL 电平。EN1 为IN1 和IN2 的使能端,EN2为IN3 和IN4 的使能端。POWER 接直流电源,注意正负,电

如何正确选择步进电机和伺服电机

步进电机和伺服电机的区别与正确选择 在行走定位系统中,常用的电机就是步进电机和伺服电机两种,其中步进电机主要有2相、 5相和微步进几种,伺服电机主要有交流伺服电机和直流伺服电机,以及有刷和无刷电机的分类。 2相、5相和微步步进电机主要是驱动器所表现出来解析度不同, 2相步进系统电机每转最细可分为400 格, 五相则为1000 格, 微步进则可从200 ~ 5000(或以上)格, 表现出来的特性以微步进最好, 加减速时间较短, 动态惯性较低. AC 和DC 伺服电机主要的分别为DC伺服比AC伺服电机多了一个碳刷, 会有维护上的问题, 而AC 伺服电机因没有碳刷, 所以后续并不会有太大维护上的问题. 所以基本上来说AC伺服系统是较DC 伺服系统为优, 但DC 伺服系统主要的优势则是价位上比AC 伺服系统较便宜. 而此两种系统的控制精度皆为相同. 以下为伺服电机与步进电机的特征介绍 步进电机: ◎特征 ●具保持力 由于步进电机在激磁状态停止时,具有很大的保持力,因此即使不使用机械式刹车亦可以保持停止位置(具有激磁状态停止时,与电机电流成比例的保持力)。 在停电时步进电机不具有保持力,因此停电时若需有保持力,请使用附电磁刹车机种。 藉由电机的高精度加工,可实现步进电机高精度定位功能。解析度是取决于电机的构造,一般的HYPRID型5相步进电机为1步级0.72°精度是取决于电机的加工精度而定,无负载时的停止精度误差为±3分(±0.05°)。 ● 角度控制、速度控制简单 步进电机为与输入的脉波成正比,一次以一步级角运转(0.72度)。 ●高转矩,高响应性 步进电机虽然体积小但在低速运转时皆可获得高转矩输出。因此在加速性、响应性、频繁的起动及停止皆可发挥很大的威力。

步进电机及其驱动电路

第三节步进电动机及其驱动 一、步进电机的特点与种类 1.步进电机的特点 步进电机又称脉冲电机。它是将电脉冲信号转换成机械角位移的执行元件。每当输入一个电脉冲时,转子就转过一个相应的步距角。转子角位移的大小及转速分别与输入的电脉冲数及频率成正比,并在时间上与输入脉冲同步。只要控制输入电脉冲的数量、频率以及电机绕组通电相序即可获得所需的转角、转速及转向。 步进电动机具有以下特点: ?工作状态不易受各种干扰因素(如电压波动、电流大小与波形变化、温度等)的影响; ?步进电动机的步距角有误差,转子转过一定步数以后也会出现累积误差,但转子转过一转以后,其累积误差变为“零” ; ?由于可以直接用数字信号控制,与微机接口比较容易; ?控制性能好,在起动、停止、反转时不易“丢步”; ?不需要传感器进行反馈,可以进行开环控制; ?缺点是能量效率较低。 就常用的旋转式步进电动机的转子结构来说,可将其分为以下三种: (1)可变磁阻(VR-Variable Reluctance),也叫反应式步进电动机 (2)永磁(PM-Permanent Magnet)型 (3)混合(HB-Hybrid)型 (1)可变磁阻(VR-Variable Reluctance) 结构原理:该类电动机由定子绕组产生的反应电磁力吸引用软磁钢制成的齿形转子作步进驱动,故又称作反应式步进电动机。其结构原理如图3.5定子1 上嵌有线圈,转子2朝定子与转子之间磁阻最小方向转动,并由此而得名可变磁阻型。

图3.6 可变式阻步进电机 可变磁阻步进电机的特点: 反应式电动机的定子与转子均不含永久磁铁,故无励磁时没有保持力; 需要将气隙作得尽可能小,例如几个微米; 结构简单,运行频率高,可产生中等转矩,步距角小(0.09~9°) 制造材料费用低; 有些数控机床及工业机器人上使用。 (3)混合(HB-Hybrid)型 结构原理 这类电机是PM式和VR式的复合形式。其定子与VR类似,表面制有小齿,转子由永磁铁和铁心构成,同样切有小齿,为了减小步距角可以在结构上增加转子和定子的齿数。其结构如图3.7所示。 混合式步进电机特点: HB兼有PM和VR式步进电机的特点: 步距角可以做得较小(0.9~3.6°); 无励磁时具有保持力; 可以产生较大转矩,应用较广。

直流电机与步进电机同步实现方案

重庆邮电大学研究生堂下考试答卷 2012-2013学年第1学期 考试科目机电系统控制理论 姓名 年级 专业 2012年12 月31 日

目录 1 设计任务书------------------------------------------------------------------------------------1 1.1功能介绍--------------------------------------------------------------------------------1 1.2技术指标--------------------------------------------------------------------------------1 2 技术书明书-----------------------------------------------------------------------------------2 2.1 设计方案-------------------------------------------------------------------------------2 2.1.1 MCU的选择-------------------------------------------------------------------2 2.1.2 步进电机的驱动模块--------------------------------------------------------2 2.1.3 直流电机的驱动模块--------------------------------------------------------2 2.1.4 测速模块-----------------------------------------------------------------------2 2.1.5 显示模块-----------------------------------------------------------------------2 2.2 原理图设计----------------------------------------------------------------------------2 2.3 PCB图设计-----------------------------------------------------------------------------2 2.4 元件类型-------------------------------------------------------------------------------2 3 程序代码-------------------------------------------------------------------------------------3

步进电机驱动程序(汇编)

附件: ORG 0000H LJMP MAIN ORG 0003H LJMP Speed_Up ORG 0013H LJMP Speed_Down ORG 0100H MAIN: ;打开外部中断IT0/IT1 SETB EA SETB EX0 SETB EX1 SETB IT0 SETB IT1 ;扫描键盘,无键按下显示0,并继续扫描 MAKEY: MOV DPTR,#TAB MOV A,#0 MOVC A,@A+DPTR MOV P0,A MOV P3,#0FFH MOV A,P3 CPL A JZ MAKEY LCALL D10MS JZ MAKEY ;当有键按下时,启动步行电机转动 Speed EQU 20H Num EQU 21H MOV Speed,#60 ;Speed初始化,Speed控制延时的时间,即脉冲的频率 MOV Num,#1 ;Num初始化,Num存放数码管显示的转速数值 JNB ACC.4,TO_TWO ;默认设置为正向转动,转速为1,当有反向键按下,按反向转动 ;------------------------ 1号程序:控制步行电机正转-------------------------------- TO_ONE:

MOV R7,#4 MOV A,#01H MOV P3,#0FFH LP1: MOV P1,A LCALL DELAY LCALL DISPLAY RL A ; 正向输入脉冲信号 DJNZ R7,LP1 JNB P3.4,TO_TWO ; 有反向键按下,跳转到2号程序 LJMP TO_ONE ;------------------------2号程序:控制步行电机反转---------------------------------- TO_TWO: MOV R7,#4 MOV A,#08H MOV P3,#0FFH LP2: MOV P1,A LCALL DELAY LCALL DISPLAY RR A ; 反向输入脉冲信号 DJNZ R7,LP2 JNB P3.5,TO_ONE ;有正向键按下,跳转到1号程序 LJMP TO_TWO ;----------------------------中断服务程序----------------------------------------------- Speed_Up: ; 外部中断IT0,控制加速 PUSH ACC LCALL D10MS MOV A,Speed CJNE A,#12,L1 ; 最大速度时,速度不再增加 LJMP L2 L1: ; 速度加1(减小脉冲周期) SUBB A,#12 MOV Speed,A INC Num L2: POP ACC RETI Speed_Down: ;外部中断IT1,控制减速 PUSH ACC

步进电机与伺服电机的区别

步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件,在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲个数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机安设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的,同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到高速的目的。 伺服电机又称执行电机,在自动控制系统中,用作执行元件,把收到的电信号转换成电机轴上的角位移或角速度输出。伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)也就是说伺服电机本身具备发出脉冲的功能,它每旋转一个角度,都会发出对应数量的脉冲,这样伺服驱动器和伺服电机编码器的脉冲形成了呼应,所以它是闭环控制,步进电机是开环控制。 步进电机和伺服电机的区别在于:1、控制精度不同。步进电机的相数和拍数越多,它的精确度就越高,伺服电机取块于自带的编码器,编码器的刻度越多,精度就越高。2、控制方式不同;一个是开环控制,一个是闭环控制。3、低频特性不同;步进电机在低速时易出现低频振动现象,当它工作在低速时一般采用阻尼技术或细分技术来克服低频振动现象,伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点便于系统调整。4、矩频特性不同;步进电机的输出力矩会随转速升高而下降,交流伺服电机为恒力矩输出,5、过载能力不同;步进电机一般不具有过载能力,而交流电机具有较强的过载能力。6、运行性能不同;步进电机的控制为开环控制,启动频率过高或负载过大易丢步或堵转的现象,停止时转速过高易出现过冲现象,交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。7、速度响应性能不同;步进电机从静止加速到工作转速需要上百毫秒,而交流伺服系统的加速性能较好,一般只需几毫秒,可用于要求快速启停的控制场合。 综上所述,交流伺服系统在许多性能方面都优于步进电机,但是价格比就不一样了。

直流电机转速控制(DOC)

直流电机转速控制 课程设计 姓名: 学号: 班级:

目录 1.直流电机转速控制方案设计 (2) 1.1设计要求 (2) 1.2设计框图 (2) 2.直流电机转速控制硬件设计 (3) 2.1主要器件功能 (3) 2.2硬件原理图 (6) 3.直流电机转速控制软件设计 (7) 4.调试 (8) 4.1硬件测试 (8) 4.2软件调试……………………………………………………………(11

1.直流电机转速控制方案设计 1.1设计要求 通过设计了解如何运用电子技术来实现直流电机转速控制,完成直流电机转向和转速的控制,提高分析电路设计、调试方面问题和解决问题的能力。 1、用按键1控制旋转方向,实现正转和反转。 2、电机的设定转速与电机的实际转速在数码管上显示。 3、旋转速度可实时改变。 1.2设计框图 本课题中测量控制电路组成框图如下所示: 图1

2.直流电机转速控制硬件设计 2.1主要器件功能 1、L298N 是专用驱动集成电路,属于H 桥集成电路,与L293D 的差别是其输出电流增大,功率增强。其输出电流为2A,最高电流4A,最高工作电压50V,可以驱动感性负载,如大功率直流电机,步进电机,电磁阀等,特别是其输入端可以与单片机直接相联,从而很方便地受单片机控制。当驱动直流电机时,可以直接控制步进电机,并可以实现电机正转与反转,实现此功能只需改变输入端的逻辑电平。此外可能通过使能端的高低电平的变换,从而使电机通断,来控制电机的转速。 图2 板上的EN1 与EN2 为高电平时有效,这里的电平指的是TTL 电平。EN1 为IN1 和IN2 的使能端,EN2为IN3 和IN4 的使能端。POWER 接直流电源,注意正负,电源正端为VCC,电源地为GND。 2、ZLG7290的核心是一块ZLG7290B芯片,它采用I2C接口,能直接驱动8位共阴式数码管,同时可扫描管理多达64只按键,实现人机对话的功能资源十分丰富。除具有自动消除抖动功能外,它还具有段闪烁、段点亮、段熄灭、

伺服电机工作原理及和步进电机的区别

伺服电机工作原理及和步进电机的区别 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 什么是伺服电机?有几种类型?工作特点是什么? 答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降.。 请问交流伺服电机和无刷直流伺服电机在功能上有什么区别? 答:交流伺服要好一些,因为是正弦波控制滚珠丝杆,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。永磁交流伺服电动机20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。交流伺服驱动装置在传动领域的发展日新月异。 永磁交流伺服电动机同直流伺服电动机比较,主要优点有:⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。⑵定子绕组散热比较方便。⑶惯量小,易于提高系统的快速性波纹管联轴器。⑷适应于高速大力矩工作状态。 ⑸同功率下有较小的体积和重量。 伺服和步进电机 伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。 步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号)弹性联轴器,但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。 一、控制精度不同 两相混合式步进电机步距角一般为3.6°、1.8°,五相混合式步进电机步距角一般为0.72 °、0.36°。也有一些高性能的步进电机步距角更小。如四通公司生产的一种用于慢走丝机床的步进电机,其步距角为0.09°;德国百格拉公司(BERGER LAHR)生产的三相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。 交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以松下全数字式交流伺服电机为例,对于带标准2500线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/10000=0.036°。对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为360°/131072=9.89秒。是步距角为1.8°的步进电机的脉冲当量的1/655。 二、低频特性不同 步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。 交流伺服电机运转非常平稳膜片联轴器,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。 三、矩频特性不同

步进电机驱动器的技术发展

将“电机固有步距角”细分成若干小步的驱动方法,称为细分驱动,细分是通过驱动器精确控制步进电机的相电流实现的,与电机本身无关。其原理是,让定子通电相电流并不一次升到位,而断电相电流并不一次降为0(绕组电流波形不再是近似方波,而是N级近似阶梯波),则定子绕组电流所产生的磁场合力,会使转子有N个新的平衡位置(形成N个步距角)。 最新技术发展: 国内外对细分驱动技术的研究十分活跃,高性能的细分驱动电路,可以细分到上千甚至任意细分。目前已经能够做到通过复杂的计算使细分后的步距角均匀一致,大大提高了步进电机的脉冲分辨率,减小或消除了震荡、噪声和转矩波动,使步进电机更具有“类伺服”特性。 采用细分技术与步进电机精度提高的关系:步进电机的细分技术实质上是一种电子阻尼技术,其主要目的是减弱或消除步进电机的低频振动,提高电机的运转精度只是细分技术的一个附带功能。 步电机系统解决方案

细分后电机运转时对每一个脉冲的分辨率提高了,但运转精度能 否达到或接近脉冲分辨率还取决于细分驱动器的细分电流控制精度 等其它因素。不同厂家的细分驱动器精度可能差别很大;细分数越大精度越难控制。 真正的细分对驱动器要有相当高的技术要求和工艺要求,成本亦会较高。国内有一些驱动器采用对电机相电流进行“平滑”处理来取代细分,属于“假细分”,“平滑”并不产生微步,会引起电机力矩的下降。真正的细分控制不但不会引起电机力矩的下降,相反,力矩会有所增加。 对实际步距角的作用:在没有细分驱动器时,用户主要靠选择不同相数的步进电机来满足自己对步距角的要求。如果使用细分驱动器,则用户只需在驱动器上改变细分数,就可以大幅度改变实际步距角,步进电机的‘相数’对改变实际步距角的作用几乎可以忽略不计。 深圳市维科特机电有限公司成立于2005年,是步进电机产品的销售、系统集成和应用方案提供商。我们和全球产品性价比高的生产 厂家合作,结合本公司专家团队多年的客户服务经验,给客户提供有 步电机系统解决方案

步进电机及其驱动

步进电机及其驱动 1.步进电机的特点与种类 (1)步进电机的特点 步进电机又称脉冲电动机。它是将电脉冲信号转换成机械角位移的执行元件。其输入一个电脉冲就转动一步,即每当电动机绕组接受一个电脉冲,转子就转过一个相应的步距角。转子角位移的大小及转速分别与输入的电脉冲数及频率成正比,并在时间上与输入脉冲同步,只要控制输入电脉冲的数量、频率以及电动机绕组通电相序即可获得所需的转角、转速及转向、很容易用微机实现数字控制。步进电机具有如下特点: 1)步进电机的工作状态不易受各种干扰因素(如电源电压的波动、电流的大小与波形的变化、温度等)的影响,只要在它们的大小未引起步进电机产生“丢步”现象之前,就不影响其正常工作; 2)步进电机的步距角有误差,转子转过一定步数以后也会出现累积误差,但转子转过一转以后,其累积误差变为“零”,因此不会长期积累; 3)控制性能好,在启动、停止、反转时不易“丢步”。因此,步进电机被广泛应用于开环控制的机电一体化系统,使系统简化,并可靠地获得较高的位置精度。 (2)步进电机的种类 步进电机的种类很多,有旋转式步进电机,也有直线步进电机;从励磁相数来分有三相、四相、五相、六相等步进电机。就常用的旋转式步进电机的转子结构来说,可将其分为以下三种: 1)可变磁阻(VR-VariableReluctance)型 该类电动机由定子绕组产生的反应电磁力吸引用软磁钢制成的齿形转子作步进驱动,故又称反应式步进电机。其结构原理如下图所示。其定子1与转子2由铁心构成,没有永久磁铁,定子上嵌有线圈,转子朝定子与转子之间磁阻最小方向转动,并由此而得名可变磁型。 此类电动机的转子结构简单、转子直径小,有利于高速响应。由于VR型步进电机的铁心无极性,故不需改变电流极性,因此多为单极性励磁。

直流电机控制设计

河南科技大学 课程设计说明书 课程名称现代电子系统课程设计题目直流电机控制设计 学院电子信息工程学院 班级电子信息科学与技术062班学生姓名**** 指导教师齐晶晶,张雷鸣 日期___2010年1月10号____

摘要 使用直流电源的电机叫做直流电机。只要把直流电机的端子接到直流电源上就可以简单使其运转。直流电机是一种具有优良控制特性的电机。因此,在角位移控制和速度控制的伺服系统中有着广泛的应用。为了调整直流电机的转速和输出转矩,可以采用改变电枢直流电压的方法来实现,主要的控制方法有线性控制方式和PWM(脉宽调制)控制方式。一般小功率电机平滑转速控制常采用线性控制方式,而大功率电机高效控制时,则常使用PWM控制方式。本文介绍的是利用FPGA实现PWM脉宽调制信号的产生和相应的用数字电路的方法实现的换档、正反向控制等。直流电机的转动速度调节则归结于对驱动脉宽的占空比的调节上,通过调节占空比而改变单位时间内直流电机的通电时间长短,即改变了电机的转速。转动方向可用功率放大电路和H 桥组成的正反向功率驱动电路来实现 直流电机控制电路主要由五部分组成: ●PWM脉宽调制信号产生电路:主要功能是产生pwm信号,并控制转速。 ●FPGA中正/反转方向控制:用2选1数据选择器控制电机的pwm信号的输入端,从而实现正反转。 ●由功率放大电路和H桥组成的正反转功率驱动电路: ●分频和去抖电路模块:通过两个维持阻塞D触发器实现消抖。 ●测量转速模块:通过红外线测量电机每转一周产生的脉冲实现转速测量。 关键词:速度调节、旋转方向控制、去抖动电路、数字显示转速、PWM、占空比、FPGA

伺服电机和步进电机有什么区别

伺服电机和步进电机有什么区别 伺服电机和步进电机有什么区别在于开环闭环之分,不进不带位置反馈伺服有位置反馈。电机上有编码器。 步进电机是驱动器发出的电脉冲转化为动能。步进电机接到一个脉冲信号,电机就会转动一个固定的角度,(步距角)它的位移和定位是一步一步来完成的。控制脉冲个数来完成唯一,定位。 伺服,有一个永磁的转子,UVW来控制磁场。在磁场作用

下完成位移,并且电机的编码器把实际位移量反馈给驱动器。驱动器再进行比较在做进一步调整。 步进电机和交流伺服电机性能比较 步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进

电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。 伺服电机和步进电机的控制精度不同 两相混合式步进电机步距角一般为3.6°、1.8°,五相混合式步进电机步距角一般为0.72 °、0.36°。也有一些高性能的步进电机步距角更小。 3 / 56

伺服电机和步进电机的低频特性不同 步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。 伺服电机和步进电机的过载能力不同 步进电机一般不具有过载能力。交流伺服电机具有较强的过载能力。以松下交流伺服系统为例,它具有速度过载和转矩过载能力。其最大转矩为额定转矩的三倍,可用于克

相关文档
最新文档