高中数学第2章随机变量及其分布2.2.1条件概率学业分层测评新人教A版选修2_3

高中数学第2章随机变量及其分布2.2.1条件概率学业分层测评新人教A版选修2_3
高中数学第2章随机变量及其分布2.2.1条件概率学业分层测评新人教A版选修2_3

【课堂新坐标】2016-2017学年高中数学 第2章 随机变量及其分布

2.2.1 条件概率学业分层测评 新人教A 版选修2-3

(建议用时:45分钟)

[学业达标]

一、选择题

1.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( )

A.1

8 B.14 C.25

D.12

【解析】 ∵P (A )=C 2

2+C 2

3C 25=410,P (AB )=C 2

2C 25=1

10,

∴P (B |A )=

P AB P A =14

.

【答案】 B

2.下列说法正确的是( ) A .P (B |A )<P (AB ) B .P (B |A )=

P B

P A

是可能的 C .0<P (B |A )<1

D .P (A |A )=0

【解析】 由条件概率公式P (B |A )=

P AB

P A

及0≤P (A )≤1知P (B |A )≥P (AB ),故A

选项错误;当事件A 包含事件B 时,有P (AB )=P (B ),此时P (B |A )=P B

P A

,故B 选项正确,由于0≤P (B |A )≤1,P (A |A )=1,故C ,D 选项错误.故选

B.

【答案】 B

3.(2014·全国卷Ⅱ)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )

A .0.8

B .0.75

C .0.6

D .0.45

【解析】 已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P =0.60.75

=0.8.

【答案】 A

4.(2016·泉州期末)从1,2,3,4,5中任取两个不同的数,事件A 为“取到的两个数之和为偶数”,事件B 为“取到的两个数均为偶数”,则P (B |A )等于( )

A.18

B.14

C.25

D.12

【解析】 法一:P (A )=C 2

3+C 2

2C 25=2

5,

P (AB )=C 2

2C 25=110,P (B |A )=P AB P A =1

4

.

法二:事件A 包含的基本事件数为C 2

3+C 2

2=4,在A 发生的条件下事件B 包含的基本事件为C 2

2=1,因此P (B |A )=14

.

【答案】 B

5.抛掷两枚骰子,则在已知它们点数不同的情况下,至少有一枚出现6点的概率是( )

A.13

B.118

C.16

D.19

【解析】 设“至少有一枚出现6点”为事件A ,“两枚骰子的点数不同”为事件B ,则n (B )=6×5=30,n (AB )=10,

所以P (A |B )=n AB n B =1030=1

3

.

【答案】 A 二、填空题

6.已知P (A )=0.2,P (B )=0.18,P (AB )=0.12,则P (A |B )=________,P (B |A )=________.

【解析】 P (A |B )=P AB P B =0.120.18=23;P (B |A )=P AB P A =0.120.2=3

5

.

【答案】 23 3

5

7.设A ,B 为两个事件,若事件A 和B 同时发生的概率为3

10,在事件A 发生的条件下,

事件B 发生的概率为1

2

,则事件A 发生的概率为________. 【导学号:97270038】

【解析】 由题意知,P (AB )=310,P (B |A )=1

2

.

由P (B |A )=

P AB P A ,得P (A )=P AB P B |A =3

5

.

【答案】 3

5

8.有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任取出两瓶,若取出的两瓶中有一瓶是蓝色,则另一瓶是红色或黑色的概率是________.

【解析】 设事件A 为“其中一瓶是蓝色”,事件B 为“另一瓶是红色”,事件C 为“另一瓶是黑色”,事件D 为“另一瓶是红色或黑色”,

则D =B ∪C ,且B 与C 互斥, 又P (A )=C 12C 1

3+C 2

2C 2

5=710, P (AB )=C 1

2·C 11C 25=1

5,

P (AC )=C 12C 12C 25=2

5,

故P (D |A )=P (B ∪C |A ) =P (B |A )+P (C |A ) =

P AB P A +P AC P A =6

7

.

【答案】 67

三、解答题

9.甲、乙两个袋子中,各放有大小、形状和个数相同的小球若干.每个袋子中标号为0的小球为1个,标号为1的2个,标号为2的n 个.从一个袋子中任取两个球,取到的标号都是2的概率是1

10

.

(1)求n 的值;

(2)从甲袋中任取两个球,已知其中一个的标号是1的条件下,求另一个标号也是1的概率.

【解】 (1)由题意得:C 2

n

C 2n +3

n n -n +

n +

1

10

,解得n =2. (2)记“其中一个标号是1”为事件A ,“另一个标号是1”为事件B ,所以P (B |A )=

n AB n A =C 2

2C 25-C 23=1

7

.

10.任意向x 轴上(0,1)这一区间内掷一个点,问:

(1)该点落在区间? ??

??0,13内的概率是多少?

高中数学随机变量分布列知识点

第二章随机变量及其分布 内容提要: 一、随机变量的定义 设是一个随机试验,其样本空间为,若对每一个样本点,都有唯一确定的实数 与之对应,则称上的实值函数是一个随机变量(简记为)。 二、分布函数的概念和性质 1.分布函数的定义 设是随机变量,称定义在上的实值函数 为随机变量的分布函数。 2.分布函数的性质 (1) , (2)单调不减性:, (3) (4)右连续性:。 注:上述4个性质是函数是某一随机变量的分布函数的充要条件。在不同的教科书上,分布函数的定义可能有所不同,例如,其性质也会有所不同。 (5) 注:该性质是分布函数对随机变量的统计规律的描述。 三、离散型随机变量 1.离散型随机变量的定义 若随机变量的全部可能的取值至多有可列个,则称随机变量是离散型随机变量。 2.离散型随机变量的分布律 (1)定义:离散型随机变量的全部可能的取值以及取每个值时的概率值,称为离散型随机变量的分布律,表示为 或用表格表示:

或记为 ~ (2)性质:, 注:该性质是是某一离散型随机变量的分布律的充要条件。 其中。 注:常用分布律描述离散型随机变量的统计规律。 3.离散型随机变量的分布函数 =,它是右连续的阶梯状函数。 4.常见的离散型分布 (1)两点分布(0—1分布):其分布律为 即 (2)二项分布 (ⅰ)二项分布的来源—重伯努利试验:设是一个随机试验,只有两个可能的结果 及,,将独立重复地进行次,则称这一串重复的独立试验为重伯努利试验。 (ⅱ)二项分布的定义 设表示在重伯努利试验中事件发生的次数,则随机变量的分布律为 ,, 称随机变量服从参数为的二项分布,记作。 注:即为两点分布。

新编高中数学人教A版必修一 学业分层测评(一) 含答案

新编人教版精品教学资料 学业分层测评(一) 集合的含义 (建议用时:45分钟) [学业达标] 一、选择题 1.下列对象能构成集合的是() ①NBA联盟中所有优秀的篮球运动员,②所有的钝角三角形,③2015年诺贝尔经济学奖得主,④大于等于0的整数,⑤莘县第一中学所有聪明的学生.A.①②④B.②⑤ C.③④⑤D.②③④ 【解析】由集合中元素的确定性知,①中“优秀的篮球运动员”和⑤中“聪明的学生”不确定,所以不能构成集合. 【答案】 D 2.已知集合M中的元素a,b,c是△ABC的三边,则△ABC一定不是() A.锐角三角形B.钝角三角形 C.直角三角形D.等腰三角形 【解析】因为集合中元素具有互异性,所以a,b,c互不相等,因此选D. 【答案】 D 3.下面有三个命题:①集合N中最小的数是1;②若-a?N,则a∈N;③若a∈N,b∈N,则a+b的最小值是2. 其中正确命题的个数是() A.0个B.1个 C.2个D.3个 【解析】因为自然数集中最小的数是0,而不是1,所以①错;对于②,取a=2,则-2?N,2?N,所以②错;对于③,a=0,b=0时,a+b取得最小

值是0,而不是2,所以③错. 【答案】 A 4.下列正确的命题的个数有( ) ①1∈N ;②2∈N *;③12∈Q ;④2+2?R ;⑤42?Z . A .1个 B .2个 C .3个 D .4个 【解析】 ∵1是自然数,∴1∈N ,故①正确;∵2不是正整数,∴2?N *,故②不正确; ∵12是有理数,∴12∈Q ,故③正确;∵2+2是实数,∴2+2∈R ,所以④不正确; ∵42=2是整数,∴42∈Z ,故⑤不正确. 【答案】 B 5.给出下列说法,其中正确的个数为( ) (1)由1,32,64,??????-12,12 这些数组成的集合有5个元素; (2)方程(x -3)(x -2)2=0的解组成的集合有3个元素; (3)由一条边为2,一个内角为30°的等腰三角形组成的集合中含有4个元素. A .0 B .1 C .2 D .3 【解析】 (1)不正确.对于一个给定的集合,它的元素必须是互异的,即集 合中的任意两个元素都是不同的,而32与64相同,???? ??-12与12相同,故这些数组成的集合只有3个元素. (2)不正确.方程(x -3)(x -2)2=0的解是x 1=3,x 2=x 3=2,因此写入集合时只有3和2两个元素. (3)正确.若2为底边长,则30°角可以是顶角或底角;若2为腰长,则30°角也可以是顶角或底角,故集合中有4个元素.

(完整word版)高中数学选修2-3第二章随机变量及其分布教案

第二章 随机变量及其分布 2.1.1离散型随机变量 第一课时 思考1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢? 掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和 0分别表示正面向上和反面向上(图2.1一1 ) . 在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化. 定义1:随着试验结果变化而变化的变量称为随机变量(random variable ).随机变量常用字母 X , Y ,ξ,η,… 表示. 思考2:随机变量和函数有类似的地方吗? 随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域. 例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } . 利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品” , {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出 3 件以上次品”又如何用 X 表示呢? 定义2:所有取值可以一一列出的随机变量,称为离散型随机变量 ( discrete random variable ) . 离散型随机变量的例子很多.例如某人射击一次可能命中的环数 X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y 也是一个离散型随机变量,它的所有可能取值为0, 1,2,…. 思考3:电灯的寿命X 是离散型随机变量吗? 电灯泡的寿命 X 的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以 X 不是离散型随机变量. 在研究随机现象时,需要根据所关心的问题恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否超过1000 小时,那么就可以定义如下的随机变量: ?? ≥?0,寿命<1000小时; Y=1,寿命1000小时. 与电灯泡的寿命 X 相比较,随机变量Y 的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易. 连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 如某林场树木最高达30米,则林场树木的高度ξ是一个随机变量,它可以取(0,30]内的一切值 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验

高二数学《随机变量的方差(第2课时)》教案

§2.3.2离散型随机变量的方差(第2课时) 一、教材分析: 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示了随机变量在随机实验中取值的平均值,所以又常称为随机变量的平均数、均值.今天,我们将对随机变量取值的稳定与波动、集中与离散的程度进行研究.其实在初中我们也对一组数据的波动情况作过研究,即研究过一组数据的方差. 回顾一组数据的方差的概念:设在一组数据1x ,2x ,…, n x 中,各数据与它 们的平均值x 得差的平方分别是21)(x x -,2 2)(x x -,…,2)(x x n -,那么 [1 2n S = 21)(x x -+2 2)(x x -+…+])(2x x n -叫做这组数据的方差 。 二、学情分析: 学生学习本节应该比较轻松,定义比较简单,初中已经接触过方差,高中阶段是将原先学得知识进一步提升。主要学生能将离散型随机变量的分布列列出来,进行套公式运算就可以,应注意的是要求学生在计算过程中细心。有过探究、交流的课堂教学的尝试。 三、教学目标: 1、知识与技能 了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。 2、过程和方法: 通过教师指导下的探究活动,经历数学思维过程,熟悉理解“观察—归纳—猜想—证明”的思维方法,养成合作的意识,获得学习和成功的体验.了解方差公式“D (a ξ+b )=a 2 D ξ”,以及“若ξ~Β(n ,p ),则D ξ=np (1—p )”,并会应用上述公式计算有关随机变量的方差 。 3、情感和价值: 承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。

人教A版高中数学必修五学业分层测评5

高中数学学习材料 金戈铁骑整理制作 学业分层测评(五) (建议用时:45分钟) [学业达标] 一、选择题 1.已知方程x2sin A+2x sin B+sin C=0有重根,则△ABC的三边a,b,c 的关系满足() A.b=ac B.b2=ac C.a=b=c D.c=ab 【解析】由方程有重根,∴Δ=4sin2B-4sin A sin C=0,即sin2B=sin A sin C,∴b2=ac. 【答案】 B 2.在△ABC中,A=60°,b=1,S△ABC=3,则角A的对边的长为() A.57 B.37 C.21 D.13 【解析】∵S △ABC = 1 2bc sin A= 1 2×1×c×sin 60°=3,∴c=4.由余弦定理 a2=b2+c2-2bc cos 60°=1+16-2×1×4×1 2=13. ∴a=13. 【答案】 D 3.在△ABC中,a=1,B=45°,S△ABC=2,则此三角形的外接圆的半径R =() A.1 2B.1

C .2 2 D .522 【解析】 S △ABC =12ac sin B =2 4c =2,∴c =4 2. b 2=a 2+c 2-2ac cos B =1+32-82×2 2=25, ∴b =5.∴R =b 2sin B =5 2×22=522. 【答案】 D 4.在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( ) A.32 B.332 C. 3+62 D . 3 +39 4 【解析】 在△ABC 中,由余弦定理可知: AC 2=AB 2+BC 2-2AB ·BC cos B , 即7=AB 2+4-2×2×AB ×12. 整理得AB 2-2AB -3=0. 解得AB =-1(舍去)或AB =3. 故BC 边上的高AD =AB ·sin B =3×sin 60°=33 2 . 【答案】 B 5.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,若三边的长为连续的三个正整数,且A >B >C,3b =20a cos A ,则sin A ∶sin B ∶sin C 为( ) A .4∶3∶2 B .5∶6∶7 C .5∶4∶3 D .6∶5∶4

高中理科数学离散型随机变量及分布列

理科数学复习专题 统计与概率 离散型随机变量及其分布列 知识点一 1、离散型随机变量:随着实验结果变化而变化的变量称为随机变量,常用字母,X,Y ,表示,所有取值可以一一列出的随机变量,称为离散型随机变量。 2、离散型随机变量的分布列及其性质: (1)定义:一般的,若离散型随机变量X 可能取的不同值为12,,,,,,i n x x x x X 取每一个值(1,2,,)i x i n 的概率为()i i P X x p ,则表 (2)分布列的性质:①0,1,2,,i p i n ;②11n i i p (3)常见离散型随机变量的分布列: ①两点分布:若随机变量X 的分布列为, 则称X 服从两点分布,并称(1)p P x 为成功概率 ②超几何分布:一般的,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则()(0,1,2,,k n k M N M n N C C P X k k m C 其中min{,}m M n ,且*,,,,)n N M N n M N N ,称分布列为超几何分布列。如果随机变量X 的分布列题型一 由统计数据求离散型随机变量的分布列 【例1】已知一随机变量的分布列如下,且E (ξ)=6.3,则a 值为( ) A. 5

【变式1】某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果: 则该公司一年后估计可获收益的期望是________. 题型二由古典概型求离散型随机变量的分布列(超几何分布) 【例2】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求: (1)该顾客中奖的概率; (2)该顾客获得的奖品总价值X元的概率分布列. 【变式2】某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X表示此人选对A饮料的杯数.假设此人对A和B两种饮料没有鉴别能力. (1)求X的分布列;(2)求此员工月工资的期望. 知识点二 1.条件概率及其性质 对于两个事件A和B,在已知事件B发生的条件下,事件A发生的概率叫做条件概率,用 符号P(A|B)来表示,其公式为P(A|B)=P(AB) P(B) (P(B)>0). 在古典概型中,若用n(B)表示事件B中基本事件的个数,则P(A|B)=n(AB) n(B) . 2.相互独立事件 (1)对于事件A、B,若事件A的发生与事件B的发生互不影响,称A、B是相互独立事件. (2)若A与B相互独立,则P(AB)=P(A)P(B). (3)若A与B相互独立,则A与B,A与B,A与B也都相互独立. (4)若P(AB)=P(A)P(B),则A与B相互独立. 3.二项分布

高中数学人教a版高二选修2-3_第一章_计数原理_1.2-1.2.2-第1课时学业分层测评_word版有答案

学业分层测评 (建议用时:45分钟) [学业达标] 一、选择题 1 ?以下四个命题,属于组合问题的是() A ?从3个不同的小球中,取出2个排成一列 B ?老师在排座次时将甲、乙两位同学安排为同桌 C .在电视节目中,主持人从100位幸运观众中选出2名幸运之星 D .从13位司机中任选出两位开同一辆车往返甲、乙两地 【解析】 从100位幸运观众中选出2名幸运之星,与顺序无关,是组合问题. 【答案】 C 2. 某新农村社区共包括8个自然村,且这些村庄分布零散,没有任何三个村庄在一条直 线上,现要在该社区内建“村村通”工程,共需建公路的条数为 ( ) A . 4 B . 8 C . 28 D . 64 【解析】 由于“村村通”公路的修建,是组合问题.故共需要建 C 8 = 28条公路. 【答案】 C 3. 组合数 c n (n>r > 1,n , r € N )恒等于( ) 【答案】 D 4 .满足方程Cx 2 —X 16= C 6— 5的x 值为() C . 1,3,5 D . 3,5 【解析】 依题意,有 x — x = 5x — 5 或 x 2 — x + 5x — 5= 16,解得 x = 1 或 x = 5; x = — 7 或 A . 1,3,5,— 7 B . 1,3 A. r + 1 r — 1 B . (n + 1)(r + 1)c n — C . n rC n —11 n r —1 D F —1 【解析】 ?C n —1 n (n — 1)! r 'r — 1 ! n — r ! n !

x= 3,经检验知,只有x= 1或x= 3符合题意. 【答案】B

随机变量及其分布知识点整理

随机变量及其分布知识点整理 一、离散型随机变量的分布列 一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ??????,X 取每一个值(1,2,,)i x i n =???的概率()i i P X x p ==,则称以下表格 为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1 ,2,,i P i n =???≥ (2)121n p p p ++???+= 1.两点分布 如果随机变量X 的分布列为 则称X 服从两点分布,并称=P(X=1)p 为成功概率. 2.超几何分布 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为: (),0,1,2,3,...,k n k M N M n N C C P X k k m C --=== {}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。 注:超几何分布的模型是不放回抽样 二、条件概率 一般地,设A,B 为两个事件,且()0P A >,称()(|)() P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤ 如果B 和C 互斥,那么[()|](|)(|)P B C A P B A P C A =+ 三、相互独立事件 设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即()()()P AB P A P B =),则称事件A 与事件B 相互独立。()()()A B P AB P A P B ?=即、相互独立 一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概

学业分层测评(十六)

学业分层测评(十六) Ⅰ.单句语法填空 1.The audience applauded loudly because the dancers had danced so (graceful). 2. The young man was praised for his (brave) of saving the boy from the big fire. 3.It is very (move) to see how much strangers can care for each other. 4.-It is four years since Jack (fall) in love with Mary. -But they are not (marry) yet. 5.-Why does Lily have few friends? -Because she thinks only of herself and doesn't care other people. 6.It is Yang Liwei circled the earth more than 21 hours in the capsule. 7.The car (belong) to Mr Smith was seriously broken in a traffic accident last night. 8.He is very popular among his students as he always tries to make them (interest) in his lecture. 9.Although the main (character)in this movie are so true to life, they are imaginary. 10. After five days of the fantastic space trip, the two astronauts walked out of the spaceship, (tire) but happy. 【答案】 1.gracefully 2.bravery 3.moving 4.fell;married 5.about 6.hat/who7.belonging8.interested9.characters 10tired Ⅱ.单句改错 1.The first attempt may fail,but we don't care for that. 2.Much to us surprise,the old man survived the big fire.

高中数学《随机变量及其分布》单元测试

数学选修2-3第二章《随机变量及其分布》单元测试 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分 第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟 第Ⅰ卷(选择题共60分) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一 项是符合题目要求的) 1.设X~B(n,p),E(X)=12,D(X)=4,则n,p的值分别为() A.18, B.36, C.36, D.18, 2.10张奖劵中只有3张有奖,若5个人购买,每人1张,则至少有1个人中奖的概率为() A. B. C. D. 3.设随机变量X等可能地取值1,2,3,…,10.又设随机变量Y=2X-1,则P(Y<6)的值为() A.0.3 B.0.5 C.0.1 D.0.2 4.在区间(0,1)内随机取一个数x,若A=,B=,则P(B|A)等于() A. B. C.D. 5.若离散型随机变量X的分布列为 X123 P

则X的数学期望E(X)=() A. B.2 C. D.3 6.已知某离散型随机变量X的分布列如下表,则随机变量X的方差D(X)等于() X01 P m2m A. B. C. D. 7.同时抛掷两枚质地均匀的硬币10次,设两枚硬币出现不同面的次数为X,则D(X)=() A. B. C. D.5 的值分别为() 8.已知随机变量ξ服从正态分布N(3,4),则E(2ξ+1) 与D(2ξ+1) A.13,4 B.13,8 C.7,8 D.7,16 9.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是的事件为() A.恰有1只是坏的 B.4只全是好的 C.恰有2只是好的 D.至多有2只是坏的 10.节日期间,某种鲜花进货价是每束 2.5元,销售价是每束5元,节日后没卖出的鲜花以每束1.6元的价格处理.根据前五年销售情况预测,节日期间这种鲜花的需求量X的分布列为 X200300400500 P0.200.350.300.15 若进这种鲜花500束,则利润Y的均值是() A.706 B.690 C.754 D.720 11.现有甲,乙两个靶,某射手向甲靶射击一次,命中的概率为;向乙靶射击两次,每次命中的概率为.该射手每次射击的结果相互独立.假设该射手完成以上三次射击,该射手恰好命中一次的概率为()

第二章__随机变量及其概率分布_考试模拟题答案范文

第二章 随机变量及其概率分布 考试模拟题 (共90分) 一.选择题(每题2分共20分) 1.F(X)是随机变量X 的分布函数,则下列结论不正确的是( B ) A.≤0F(x )1≤ B.F(x )=P{X=x } C.F(x )=P{X x ≤} D.F(∞+)=1, F(∞-)=0 解析: A,C,D 都是对于分布函数的正确结论,请记住正确结论!B 是错误的。 2.设随机变量X 的分布函数律为如下表格:F(x)为其分布函数,则F(5)=( C ) A.0.3 B.0.5 C.0.6 D.0.4 解析:由分布函数定义F(5)=P{X ≤5}=P{X=0}+P{X=2}+P{X=4}=0.1+0.2+0.3=0.6 3.下列函数可以作为随机变量分布函数的是( D ) 4x 01≤≤x 2x 10<≤x A.F(x)= B.F(x)= 1 其它 2 其它 -1 x<0 0 x<0 C.F(x)= 2x 10<≤x D.F(x)= 2x 5.00<≤x 1 其它 1 x ≥0.5 解析:由分布函数F(x)性质:01)(≤≤x F ,A,B,C 都不满足这个性质,选D 4 x 31<<-x 4.设X 的密度函数为f(x)= 则P{-2

A. 0 B.83 C. 43 D. 85 解析:P{-2

选修2-3随机变量及其分布知识点总结典型例题

2-3随机变量及其分布 -- HW) T数字特征11 …. --- L-W Array「(两点分布〕 5店殊分布列)--憊几何分祠 -(二项分利 十[并件相互独立性)一価立重复试劇 5J ~(条件概率) ”、r<正态分布密度曲绚 f正态分布)一 要点归纳 一、离散型随机变量及其分布列 1.⑴随机变量:在随机试验中,我们确定了一个对应关 系,使得每一个试验结果都用一个确定的数字表示?在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量?通常用字母X, Y, E, n等表示. (2) 离散型随机变量:所有取值可以一一列出的随机变量称为离散型随 机变量. (3) 离散型随机变量的分布列: 一般地,若离散型随机变量 X可能取的不同值为X i, X2…,X i,…X n,X取每一个值X i(i = 1,2,…,n)的概率 P(X= X)= p i,以表格的形式表示如下: X的分布列.有时为了简单起见,也用等式P(X = X i) = p i, i = 1,2,…,n表示X的分布列. (4)离散型随机变量的分布列的性质: ①P i>0,i = 1,2,…,n; n ②P i = 1. i = 1

(5)常见的分布列: 两点分布:如果随机变量X 的分布列具有下表的形式,则 称X 服从两点分布,并称p = P(X = 1)为成功概率. 两点分布又称 0- 1分布,伯努利分布. 超几何分布:一般地,在含有 M 件次品的N 件产品中,任取 X 件次品,则事件{X = k }发生的概率为 P(X = 其中 m= min { M , n },且 n W N , M < N , n , M , N € N *.如 果随机变量X 的分布列具有上表的形式,则称随机变量 X 服从超几何分布. 2 .二项分布及其应用 (1)条件概率:一般地,设 A 和B 是两个事件,且 P(A)>0, p / AB) 称P(BA) = P ((A )为在事件A 发生的条件下,事件B 发生 的条件概率.P(B|A)读作A 发生的条件下B 发生的概率. ⑵条件概率的性质: ① 0 < P(BA)< 1; ② 必然事件的条件概率为1,不可能事件的条件概率为0; ③ 如果 B 和C 是两个互斥事件,则 P(B U C|A)= P(B|A) + P(C|A). (3) 事件的相互独立性:设 A, B 为两个事件,如果 P(AB)= P(A)P(B),则 称事件 A 与事件B 相互独立?如果事件 A 与B 相互独立,那么 A 与-,-与B ,-与-也都相互独立. (4) 独立重复试验:一般地,在相同条件下重复做的 n 次试 验称为n 次独立重复试验. c M c N-/i c N k = 0, 1, 2, ,m,即 n 件,其中恰有 k)=

2016-2017学年高中数学北师大版必修1学业分层测评10 二次函数的性质

学业分层测评(十) (建议用时:45分钟) [学业达标] 一、选择题 1.函数y =3+2x -x 2(0≤x ≤3)的最小值为( ) A .-1 B .0 C .3 D .4 【解析】 y =3+2x -x 2=-(x -1)2+4,∵0≤x ≤3, ∴当x =3时,y min =3+6-9=0. 【答案】 B 2.若抛物线y =x 2-(m -2)x +m +3的顶点在y 轴上,则m 的值为( ) A .-3 B .3 C .-2 D .2 【解析】 由题意知其对称轴为x =--(m -2)2 =m -2 2=0,即m =2. 【答案】 D 3.设函数f (x )=??? 1,x >0, 0,x =0, -1,x <0, g (x )=x 2f (x -1),则函数g (x )的递减区间是 ( ) A .(-∞,0] B .[0,1) C .[1,+∞) D .[-1,0] 【解析】 g (x )=??? x 2,x >1, 0,x =1, -x 2,x <1. 如图所示,其递减区间是[0,1).故选B.

【答案】 B 4.若f (x )=x 2+bx +c 的对称轴为x =2,则( ) A .f (4)<f (1)<f (2) B .f (2)<f (1)<f (4) C .f (2)<f (4)<f (1) D .f (4)<f (2)<f (1) 【解析】 f (x )的对称轴为x =2,所以f (2)最小.又x =4比x =1距对称轴远,故f (4)>f (1),即f (2)<f (1)<f (4). 【答案】 B 5.(2016·资阳高一检测)已知函数f (x )=x 2-2x +4在区间[0,m ](m >0)上的最大值为4,最小值为3,则实数m 的取值范围是( ) A .[1,2] B .(0,1] C .(0,2] D .[1,+∞) 【解析】 f (x )=(x -1)2+3, f (x )的对称轴为x =1,f (x )在(-∞,1]上单调递减,在[1,+∞)上单调递增. 当x =1时,f (x )取到最小值3, 当x =0或2时,f (x )取到最大值4, 所以m ∈[1,2]. 【答案】 A 二、填空题 6.(2016·丹东高一检测)函数y =(m -1)x 2+2(m +1)x -1的图像与x 轴只有一个交点,则实数m 的取值集合为________. 【解析】 当m =1时,f (x )=4x -1,其图像和x 轴只有一个交点? ????14,0, 当m ≠1时,依题意,有Δ=4(m +1)2+4(m -1)=0, 即m 2+3m =0,解得m =-3或m =0, 所以m 的取值集合为{-3,0,1}.

高中理科数学-离散型随机变量及分布列汇编

理科数学复习专题 统计与概率 离散型随机变量及其分布列 知识点一 1、离散型随机变量:随着实验结果变化而变化的变量称为随机变量,常用字母,X,Y ,x h g g g 表示,所有取值可以一一列出的随机变量,称为离散型随机变量。 2、离散型随机变量的分布列及其性质: (1)定义:一般的,若离散型随机变量X 可能取的不同值为12,,,,,,i n x x x x g g g g g g X 取每一个值(1,2,,)i x i n =g g g 的概率为()i i P X x p ==,则表 称为离散型随机变量离散型随机变量X ,简称X 的分布列。 (2)分布列的性质:①0,1,2,,i p i n ?g g g ;②11n i i p ==? (3)常见离散型随机变量的分布列: ①两点分布:若随机变量X 的分布列为, 则称X 服从两点分布,并称(1)p P x ==为成功概率 ②超几何分布:一般的,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则()(0,1,2,,k n k M N M n N C C P X k k m C --===g g g g 其中m i n {,m M n =,且* ,,,,)n N M N n M N N #?,称分布列为超几何分布列。如果随机变量X 的分布列

题型一 由统计数据求离散型随机变量的分布列 【例1】已知一随机变量的分布列如下,且E (ξ)=6.3,则a 值为( ) A. 5 【变式1】 某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果: 则该公司一年后估计可获收益的期望是________. 题型二 由古典概型求离散型随机变量的分布列(超几何分布) 【例2】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求: (1) 该顾客中奖的概率; (2)该顾客获得的奖品总价值X 元的概率分布列.

高中数学离散型随机变量综合测试题(附答案)

高中数学离散型随机变量综合测试题(附答案)选修2-3 2.1.1 离散型随机变量 一、选择题 1.①某机场候机室中一天的旅客数量X;②某寻呼台一天内收到的寻呼次数X;③某篮球下降过程中离地面的距离X; ④某立交桥一天经过的车辆数X.其中不是离散型随机变量的是() A.①中的X B.②中的X C.③中的X D.④中的X [答案] C [解析] ①,②,④中的随机变量X可能取的值,我们都可以按一定次序一一列出,因此,它们都是离散型随机变量; ③中的X可以取某一区间内的一切值,无法按一定次序一一列出,故③中的X不是离散型随机变量. 2.一个袋子中有质量相等的红,黄,绿,白四种小球各若干个,一次倒出三个小球,下列变量是离散型随机变量的是() A.小球滚出的最大距离 B.倒出小球所需的时间 C.倒出的三个小球的质量之和 D.倒出的三个小球的颜色的种数 [答案] D

[解析] A小球滚出的最大距离不是一个随机变量,因为不能明确滚动的范围;B倒出小球所需的时间不是一个随机变量,因为不能明确所需时间的范围;C三个小球的质量之和是一个定值,可以预见,但结果只有一种,不是随机变量,就更不是离散型随机变量;D颜色的种数是一个离散型随机变量. 3.抛掷两枚骰子,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为,则“4”表示的试验结果是() A.第一枚6点,第二枚2点 B.第一枚5点,第二枚1点 C.第一枚2点,第二枚6点 D.第一枚6点,第二枚1点 [答案] D [解析] 只有D中的点数差为6-1=54,其余均不是,应选D. 4.设某项试验的成功率是失败率的2倍,用随机变量描述1次试验的成功次数,则的值可以是() A.2 B.2或1 C.1或0 D.2或1或0 [答案] C [解析] 这里“成功率是失败率的2倍”是干扰条件,对1次试验的成功次数没有影响,故可能取值有两种0,1,故选

高中数学学业分层测评含解析北师大版选修

学业分层测评(十二) (建议用时:45分钟) [学业达标] 一、选择题 1.正方体ABCD -A 1B 1C 1D 1的棱长为a ,点M 在AC 1→ 上且AM →=12MC 1→,N 为B 1B 的中点,则|MN → | 为( ) A. 21 6a B . 66a C.156 a D . 153a 【解析】 以D 为原点建立如图所示的空间直角坐标系,则A (a ,0,0),C 1(0,a ,a ), N ? ?? ??a ,a ,a 2.设M (x ,y ,z ). ∵点M 在AC 1→ 上且AM →=12 MC 1→. ∴(x -a ,y ,z )=1 2(-x ,a -y ,a -z ), ∴x =23a ,y =a 3,z =a 3.于是M ? ????2a 3,a 3,a 3. ∴|MN →| =? ????a -23a 2+? ????a -a 32+? ?? ??a 2-a 32 = 216 a . 【答案】 A 2.已知平面α的法向量为n =(-2,-2,1),点A (x,3,0)在平面α内,则点P (-2,1,4)到平面α的距离为10 3 ,则x =( ) 【导学号:32550053】 A .-1 B .-11

C .-1或-11 D .-21 【解析】 PA →=(x +2,2,-4),而d =??????? ?PA →·n |n |=10 3, 即 |-2x +2-4-4|4+4+1 =10 3,解得x =-1或-11. 【答案】 C 3.已知正方体ABCD -A 1B 1C 1D 1的棱长是1,则直线DA 1与AC 间的距离为( ) A.1 3 B .23 C.33 D . 34 【解析】 建系如图A (1,0,0),A 1(1,0,1),C (0,1,0),AC →=(-1,1,0),DA 1→ =(1,0,1), 设n =(x ,y ,z ),令??? n ·AC →=0n ·DA 1 → =0 , ∴? ?? ?? -x +y =0x +z =0令x =1则n =(1,1,-1) DA → =(1,0,0),DA 1→ 与AC 的距离d =????? ???DA →·n |n|=33. 【答案】 C 4.△ABC 的顶点分别为A (1,-1,2),B (5,-6,2),C (1,3,-1),则AC 边上的高BD 等于( ) A .5 B .41 C .4 D .2 5 【解析】 设AD →=λAC → ,D (x ,y ,z ). 则(x -1,y +1,z -2)=λ(0,4,-3). ∴x =1,y =4λ-1,z =2-3λ,

高中数学选修2-3随机变量及其分布综合测试题

高中数学选修2-3随机变量及其分布综合测试题 一、选择题 1.①某寻呼台一小时内收到的寻呼次数X ;②长江上某水文站观察到一天中的水位X ;③某 超市一天中的顾客量X 其中的X 是连续型随机变量的是 A .① B .② C .③ D .①②③ 2.袋中有2个黑球6个红球,从中任取两个,可以作为随机变量的是 A .取到的球的个数 B .取到红球的个数 C .至少取到一个红球 D .至少取到一个红球的概率 3.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为X ,则 “X >4”表示试验的结果为 A .第一枚为5点,第二枚为1点 B .第一枚大于4点,第二枚也大于4点 C .第一枚为6点,第二枚为1点 D .第一枚为4点,第二枚为1点 4.随机变量X 的分布列为P (X =k )=) 1(+k k c ,k =1、2、3、4,其中c 为常数,则P (15 22X <<) 的值为 A .54 B .65 C .32 D .43 5. 甲射击命中目标的概率是 2 1,乙命中目标的概率是 3 1,丙命中目标的概率是 4 1. 现在三 人同时射击目标,则目标被击中的概率为 10 7 D. 5 4C. 3 2 B. 4 3A. 6.已知随机变量X 的分布列为P (X =k )=3 1,k =1,2,3,则D (3X +5)等于 A .6 B .9 C .3 D .4 7. 口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以X 表示取出球的最大号码,则EX = A .4 B .5 C .4.5 D .4.75 8.某人射击一次击中目标的概率为35 ,经过3次射击,此人至少有两次击中目标的概率为 A . 81125 B . 54125 C . 36125 D . 27125 9.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值为 A. 0 B. 1 C. 2 D. 3 10.已知X ~B (n ,p ),EX =8,DX =1.6,则n 与p 的值分别是 A .100、0.08 B .20、0.4 C .10、0.2 D .10、0.8 11.随机变量2(,)X N μσ ,则随着σ的增大,概率(||3)P X μσ-<将会 A .单调增加 B .单调减小 C .保持不变 D .增减不定 12.某人从家乘车到单位,途中有3个交通岗亭.假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇红灯的次数的期望为: A .0.4 B .1.2 C .3 4.0 D .0.6

联合概率分布:离散与连续随机变量

Joint Distributions,Discrete Case In the following,X and Y are discrete random variables. 1.Joint distribution(joint p.m.f.): ?De?nition:f(x,y)=P(X=x,Y=y) ?Properties:(1)f(x,y)≥0,(2) x,y f(x,y)=1 ?Representation:The most natural representation of a joint discrete distribution is as a distribution matrix,with rows and columns indexed by x and y,and the xy-entry being f(x,y).This is analogous to the representation of ordinary discrete distributions as a single-row table.As in the one-dimensional case,the entries in a distribution matrix must be nonnegative and add up to1. 2.Marginal distributions:The distributions of X and Y,when considered separately. ?De?nition: ?f X(x)=P(X=x)= y f(x,y) ?f Y(y)=P(Y=y)= x f(x,y) ?Connection with distribution matrix:The marginal distributions f X(x)and f Y(y) can be obtained from the distribution matrix as the row sums and column sums of the entries.These sums can be entered in the“margins”of the matrix as an additional column and row. ?Expectation and variance:μX,μY,σ2 X ,σ2 Y denote the(ordinary)expectations and variances of X and Y,computed as usual:μX= x xf X(x),etc. https://www.360docs.net/doc/e110786643.html,putations with joint distributions: ?Probabilities:Probabilities involving X and Y(e.g.,P(X+Y=3)or P(X≥Y)can be computed by adding up the corresponding entries in the distribution matrix:More formally,for any set R of points in the xy-plane,P((X,Y)∈R))= (x,y)∈R f(x,y). ?Expectation of a function of X and Y(e.g.,u(x,y)=xy):E(u(X,Y))= x,y u(x,y)f(x,y).This formula can also be used to compute expectation and variance of the marginal distributions directly from the joint distribution,without?rst computing the marginal distribution.For example,E(X)= x,y xf(x,y). 4.Covariance and correlation: ?De?nitions:Cov(X,Y)=E(XY)?E(X)E(Y)=E((X?μX)(Y?μY))(Covariance of X and Y),ρ=ρ(X,Y)=Cov(X,Y) σXσY (Correlation of X and Y) ?Properties:|Cov(X,Y)|≤σXσY,?1≤ρ(X,Y)≤1 ?Relation to variance:Var(X)=Cov(X,X) ?Variance of a sum:Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)(Note the analogy of the latter formula to the identity(a+b)2=a2+b2+2ab;the covariance acts like a “mixed term”in the expansion of Var(X+Y).) 1

相关文档
最新文档