一元二次方程之判别式法与韦达定理

一元二次方程之判别式法与韦达定理
一元二次方程之判别式法与韦达定理

一元二次方程之判别式法与韦达定理(一)

知识点梳理

一元二次方程ax2+bx+c=0(a 、b 、c 属于R ,a≠0)根的判别,△=b2-4ac ,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

1、一元二次方程根的判别式:ac b 42-=?

(1)当Δ>0时?方程有两个不相等的实数根;

(2)当Δ=0时?方程有两个相等的实数根;

(3)当Δ< 0时?方程没有实数根,无解;

(4)当Δ≥0时?方程有两个实数根

(5)根的判别式△=b 2-4ac 的意义,在于不解方程可以判别根的情况,还可以根据根的情况确定未知系数的取值范围。

2、一元二次方程根与系数的关系(韦达定理):

(1)若21,x x 是一元二次方程02=++c bx ax 的两个根,那么:a b x x -=+21,a

c x x =?21 (2)以两个数21,x x 为根的一元二次方程(二次项系数为1)是:0)(21212=++-x x x x x x

3、一元二次方程的两根和与两根积和系数的关系在以下几个方面有着广泛的应用:

(1)已知方程的一根,求另一个根和待定系数的值。

(2)不解方程,求某些代数式的值。

(3)已知两个数,求作以这两个数为根的一元二次方程。

(4)已知两数和与积,求这两个数。

(5)二次三项式的因式分解。

注意:在应用根与系数的关系时,不要忽略隐含条件。?≥≠???00a

例题讲解

例1、当k 为何值时,关于x 的方程()22

2123x k x k k --=-++: ⑴ 两个不相等的实数根; ⑵有两个相等的实数根; ⑶没有实数根。

例2、m x mx mx m 为何值时,关于的方程有两个相等的实数根?并2350-++=

求出这时方程的根。

例3、已知方程的两实数根为、,不解方程求下列各式的值。x x 2310+-=αβ

()()();();();();();()12341156343223322αβαβαββααβ

αβαβαββ+++---++

例4、 ()已知关于的方程x x k x k 2220-++=

(1)求证:无论k 取任何实数值,方程总有实数根。

(2)若等腰三角形的一边长为1,另两边长恰是这个方程的两个根,求三角形的周长。

走进中考专题训练

一、填空题:

1.关于x 的一元二次方程ax 2+bx+c=0的两根为x 1,x 2,则x 1+x 2= ,x 1x 2= ;若方程x 2+px+q=0的两根为,,βα则αβ= ,=+βα 。

2.若方程2x(x+3)=1的两根分别为x 1,x 2,则x 1+x 2= ,x 1x 2= ,x 12x 2+ x 1x 22= ,x 12+ x 22= ,2

144x x += 。 3.关于x 的一元二次方程013222=+--a x x 的一个根为2,则a 的值为 。

4.已知一元二次方程022=--a ax x 的两根之和为4a -3,则两根之积为 。

5.当m 时,一元二次方程042=--m x x 有实根;当m 时,两根同为正;当m 时,两根异号。

6.以3

1,21--为根的一元二次方程为 。 7.已知x 1,x 2是方程0362=++x x 的两个实数根,则2

112x x x x +的值为 。 8.如果一元二次方程062=+-mx x 的两个根分别比一元二次方程062=++my y 的两

个根均大5,则m 的值为 。

二、解答题:

9.不解方程,求下列各方程的两根之和与两根之积:

(1) 0322=+-x (2) 0372=--x x (3) 5)2(3=-x x

10.k 取何值时,方程kx 2-(2k+1)x+k=0,(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)无实数根.

11.已知关于x 的方程012)2(2=-+++m x m x .

(1)求证:方程有两个不相等的实数根;

(2)当m 为何值时,方程的两根互为相反数?并求出此时方程的解。

12.已知关于x 的方程04)12(22=-++-m x m x ,如果方程的两个不相等的实数根的平方和等于15,求m 的值。

13.已知关于x 的一元二次方程022=--a x x .

(1)如果此方程有两个不相等的实数根,求a 的取值范围;

(2)如果此方程有两个实数根为x 1,x 2,且满足

3

21121-=+x x ,求a 的值。

14.设x 1,x 2是关于x 的一元二次方程024222=-+++a a ax x 的两个实数根,当a 为何值时,2

221x x +有最小值?最小值是多少?

自我检测

1.方程(m+2)x |m |

+3mx+1=0是关于x 的一元二次方程,则( )

A .m≠±2

B .m=2

C .m=-2

D .m=±2 2.已知关于x 的方程4

1x 2-(m -3)x+m 2=0有两个不相等的实数根,则m 的最大整数值是( )

A .2

B .1

C .0

D .-1

3.k 为实数,则关于x 的方程x 2+2(k+1)x+k -1=0的根的情况是( )

A .有两个不相等的实数根

B .有两个相等的实数根

C .无实数根

D .不能确定

4.已知关于x 的方程(2m -1)x 2-8x+4=0有两个实数根,则非负整数m 的值为( )

A .1

B .2

C .1或2

D .0、1、2

5.对任意实数m ,关于x 的方程(m 2+1)x 2-2mx+m 2+4=0一定( )

A .有两个不相等的实数根

B .有两个相等的实数根

C .无实数根

D .不能确定

6.若关于x 的一元二次方程kx 2-2x+1=0有实数根,则k 的取值范围是( )

A .k <1

B .k≤1

C .k <1且k≠0

D .k≤1且k≠0

7.若方程0232=+-b ax x 的两根和为4,积为-2,则a ,b 分别为( )

A .-12与-3

B .4与-3

C .12与-3

D .-4与-3

8.已知一元二次方程02=++c bx ax ,若0=++c b a ,则该方程一定有一个根为( )

A .0

B .1

C .-1

D .2

9.试证明:关于x 的方程(a2-8a+20)x2+2ax+1=0,不论a 取何值,该方程都是一元二次方程.

第十课判别式与韦达定理

第10课 判别式与韦达定理 〖知识点〗 一元二次方程根的判别式、判别式与根的个数关系、判别式与根、韦达定理及其逆定理 〖大纲要求〗 1.掌握一元二次方程根的判别式,会判断常数系数一元二次方程根的情况。对含有字母系数的由一元二次方程,会根据字母的取值范围判断根的情况,也会根据根的情况确定字母的取值范围; 2.掌握韦达定理及其简单的应用; 3.会在实数范围内把二次三项式分解因式; 4.会应用一元二次方程的根的判别式和韦达定理分析解决一些简单的综合性问题。 内容分析 1.一元二次方程的根的判别式 一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2-4ac 当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根, 当△<0时,方程没有实数根. 2.一元二次方程的根与系数的关系 (1)如果一元二次方程ax 2+bx+c=0(a ≠0)的两个根是x 1,x 2,那么a b x x -=+21,a c x x =21 (2)如果方程x 2 +px+q=0的两个根是x 1,x 2,那么x 1+x 2=-P ,x 1x 2=q (3)以x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x+x 1x 2=0. 3.二次三项式的因式分解(公式法) 在分解二次三项式ax 2+bx+c 的因式时,如果可用公式求出方程ax 2+bx+c=0的两个根 是x 1,x 2,那么ax 2+bx+c=a(x-x 1)(x-x 2). 〖考查重点与常见题型〗 1.利用根的判别式判别一元二次方程根的情况,有关试题出现在选择题或填空题中,如: 关于x 的方程ax 2-2x +1=0中,如果a<0,那么梗的情况是( ) (A )有两个相等的实数根 (B )有两个不相等的实数根 (C )没有实数根 (D )不能确定 2.利用一元二次方程的根与系数的关系求有关两根的代数式的值,有关问题在中考试题中出现的频率非常高,多为选择题或填空题,如: 设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值是( ) (A )15 (B )12 (C )6 (D )3 3.在中考试题中常出现有关根的判别式、根与系数关系的综合解答题。在近三年试题中又出现了有关的开放探索型试题,考查了考生分析问题、解决问题的能力。 考查题型 1.关于x 的方程ax 2-2x +1=0中,如果a<0,那么根的情况是( ) (A )有两个相等的实数根 (B )有两个不相等的实数根 (C )没有实数根 (D )不能确定 2.设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值是( ) (A )15 (B )12 (C )6 (D )3 3.下列方程中,有两个相等的实数根的是( ) (A ) 2y 2+5=6y (B )x 2+5=2 5 x (C ) 3 x 2- 2 x+2=0(D )3x 2-2 6 x+1=0

一元二次方程根的判别式与韦达定理

一元二次方程根的判别式和韦达定理 知识点一、一元二次方程根的判别式 一元二次方程)0(02 ≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02 ≠=++a c bx ax 的根的判别式,通常用“?”来表示,即ac b 42-=?. (1)当△>0?一元二次方程有2 个不相等的实数根;1x = 2x = (2)当△=0?一元二次方程有2个相等的实数根;122b x x a ==- (3)当△<0?一元二次方程没有实数根. 例1:下列一元二次方程没有实数根的是( ) A .x 2+2x +1=0 B .x 2+x +2=0 C .x 2﹣1=0 D .x 2﹣2x ﹣1=0 【变式一】不解方程,判断一元二次方程2210x ax a -++=的根的情况是( ). A .没有实数根 B .只有一个实数根 C .有两个相等的实数根 D .有两个不相等的实数根 例2.关于x 的一元二次方程(k ﹣1)x 2﹣2x +1=0有两个不相等的实数根,则实数k 的取值范围是 . 【变式一】关于x 的方程()22210m x x ++-=有两个不等的实根,则m 的取值范围是 知识点二、韦达定理 1.如果一元二次方程2 0(0)ax bx c a ++=≠的两根为12x x 、,那么有:1212b x x a c x x a ? +=-????=?? . 例3:已知α,β是一元二次方程220x x +-=的两个实数根,则α+β-αβ的值是( ) A .3 B .1 C .-1 D .-3 知识点&例题

【变式一】已知一元二次方程22210x x +-=的两个根为1x ,2x ,且1x <2x ,下列结论正确的是( ) A .1x + 2x =1 B .1x ?2x =-1 C .|1x |<|2x | D .21112 x x += 【变式二】已知1x ,2x 是关于x 的方程230x bx +-=的两根,且满足121235x x x x +-=,那么b 的值为( ) A .4 B .-4 C .3 D .-3 2、利用根与系数的关系求值,要熟练掌握以下等式变形 ①()2 221212122x x x x x x +=+-; 例4:设1x 、2x 是一元二次方程22410x x --=的两实数根,则的2212x x +值是( ) A .2 B .4 C .5 D .6 【变式一】设1x ,2x 是一元二次方程x 2﹣2x ﹣3=0的两根,则2212x x + = . 【变式二】若α、β是一元二次方程x 2+2x ﹣6=0的两根,则α2+β2= . ②()()2 21212124x x =x x x x -+-; 例5:设1x 、2x 是一元二次方程x 2﹣5x ﹣1=0的两实数根,则()2 12x x -的值为 . 【变式一】设1x ,2x 是一元二次方程x 2﹣5x ﹣6=0的两根,则()212x x - = . 【变式二】若α、β是一元二次方程x 2+7x ﹣6=0的两根,则()2 α-β= . ③12x x =-± 例6:设1x 、2x 是一元二次方程23450x x -+=的两实数根,则12x x -的值为 . 【变式一】设1x ,2x 是一元二次方程21 5102 x x --=的两根,则12x x - = . 【变式二】若α、β是一元二次方程2250x x +-=的两根,则α-β= .

判别式韦达定理题型讲解

根的判别式 【典例1】.关于x 的方程10422 =-+kx x 的一个根是-2,则方程的另一根是 _____;k =______。 【典例2】.1x 、2x 是方程05322 =--x x 的两个根,不解方程,求下列代数式 的值: (1)2 2 2 1x x +(2) 2 1x x -(3)22 22133x x x -+ 【典例3】.已知关于x 的一元二次方程与 有一个相同的根,求k 的值。 【典例4】已知方程032=++k x x (1)若方程两根之差为5,求k 。 (2)若方程一根是另一根2倍,求这两根之积。 【典例5】已知方程 两根之比为1:3,判别式值为16,求a 、b 的值。

韦达定理 [典例1]因式分解6x y+7xy-3=___________ [典例2]解方程组 [典例3]如果直角三角形三条边a,b,c,都满足方程x-mx+=0,求三角形的面积。 [典例4]已知方程2x-8x-1=0的两个根为α,β,不解方程,求解以+,(α-1)(β-1)为根的一元二次方程。 [典例5]已知某二次项系数为1的一元二次方程的两个实数根为p,q,且满足关系式,试求这个一元二次方程。

[典例6]已知α,β是一元二次方程4kx-4kx+k+1=0的两个实根 (1)是否存在实数根k,使(2α-β)(α-2β)=- 成立?若存在,求出k 的值;若不存在,请说明理由。 (2)求使+-2的值为整数的实数k的整数值。 训练题 1、(海淀中考)已知:关于x的一元二次方程ax2+2ax+c=0的两个实数根之差的平方为m. (1)试分别判断当a=1,c=-3与a=2,c=时,m≥4是否成立,并说明理由; (2)若对于任意一个非零的实数a,m≥4总成立,求实数c及m的值. 2、已知下列n(n为正整数)个关于x的一元二次方程:①x2-1=0,②x2+x-2=0, ③x2+2x-3=0,…(n)x2+(n-1)x-n=0. (1)请解上述一元二次方程①、②、③、(n); (2)请你指出这n个方程的根具有什么共同特点,写出一条即可. 3、(02海淀)(1)求证:若关于x的方程(n-1)x2十mx十1=0①有两个相等的实数根.则关于y的方程m2y2-2my-m2-2n2+3=0②必有两个不相等的实数根; (2)若方程①的一根的相反数恰好是方程②的一个根,求代数式m2n十12n 的值.

判别式与韦达定理

第三讲判别式与韦达定理 教学容:判别式与韦达定理 教学目标: 1、熟练掌握判别式的概念以及判别式与方程根的情况; 2、能熟练运用△求方程中的参数值或取值围; 3、理解并掌握韦达定理的定义; 4、熟练掌握一些常用代数式的变形; 5、能利用韦达定理构造一元二次方程; 6、经过本章的学习,体会一元二次方程根与系数的关系,以及加深对一元二次方程的理解。 教学重点: 1、△与方程根的关系; 2、韦达定理; 3、常用代数式的变形; 教学难点: 1、运用△求方程中参数的值或取值围; 2、常用代数式的变形; 教学方法:探究法、讲授法; 教学过程: 8:20~8:30:考勤,收发作业 8:30~8:50:进门考 第一课时8:50~9:20 一、讲评作业 二、导入新课 子曰:“温故而知新,可以为师矣!”所以在学习今天的新知识前我们先一起

来温习一下昨天我们学了什么? 1、引导学生复习一元二次方程: 定义 一元二次方程 特点 解 直接开方 解法 配方 公式 因式分解 2、举例复习四种方法: (1) x 2=25 (2) 2x 2+4x-2=0 (3) 2123 0234 x x +-= (4) 2560x x ++= 3、问公式引入判别式 三、探索新知: 1、回顾得出判别式的概念:24b ac ?=-作用:判别一元二次方程根的个数. 要先化为一般式 2、算出下列一元二次方程的判别式 2223720230410 x x x x x x -+=-=++= 3、判别式与方程的根的关系 1,2120020x b x x a ?>?= -?=?==?

一元二次方程根与系数的关系(韦达定理)

一元二次方程根与系数的关系(韦达定理) 【学习目标】 1、学会用韦达定理求代数式的值。 2、理解并掌握应用韦达定理求待定系数。 3、理解并掌握应用韦达定理构造方程,解方程组。 4、能应用韦达定理分解二次三项式。 知识框图 求代数式的值 求待定系数 一元二次 韦达定理 应用 构造方程 方程的求 解特殊的二元二次方程组 根公式 二次三项式的因式分解 【内容分析】 韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么 说明:(1)定理成立的条件0?≥ (2)注意公式重12b x x a +=- 的负号与b 的符号的区别 根系关系的三大用处 (1)计算对称式的值 例 若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值: (1) 2212x x +; (2) 1211x x +; (3) 12(5)(5)x x --; (4) 12||x x -. 解:由题意,根据根与系数的关系得:12122,2007x x x x +=-=- (1) 2222121212()2(2)2(2007)4018x x x x x x +=+-=---= (2) 121212112220072007 x x x x x x +-+===- (3) 121212(5)(5)5()2520075(2)251972x x x x x x --=-++=---+=- (4) 22212121212||()()4(2)4(2007)22008x x x x x x x x -=-=+-=---=说明:利用根与系数的关系求值,要熟练掌握以下等式变形: 222121212()2x x x x x x +=+-, 12121211x x x x x x ++=,22121212()()4x x x x x x -=+-, 2121212||()4x x x x x x -=+-2212121212()x x x x x x x x +=+,

判别式与韦达定理的应用

【学习课题】 九上 补充内容 综合应用根的判别式和韦达定理 龙泉二中 范积慧 【学习目标】 1、掌握一元二次方程根与系数的符号关系 2、利用韦达定理并结合判别式,求参数的值 【学习重点】一元二次方程根与系数的符号关系 【学习难点】利用韦达定理并结合判别式,求参数的值 【学习过程】 学习准备:(1)一元二次方程ax 2+bx+c=0 (a ≠0) 的判别式△=__________ △>0?__________△=0 ?_____________△<0 ?__________ (2)一元二次方程ax 2+bx+c=0 (a ≠0)的两根分别为x 1和x 2 x 1+x 2=____________, x 1x 2=_____________ 解读教材:由根的判别式及韦达定理可得如下结论: (1)若a 、c 异号 ? ax 2+bx+c=0 (a ≠0)必有两个不相等的实数根; (2)有一个根为1 ? a+b+c=0 ; (3) 有一个根为—1 ? a —b+c=0; (4)有一个根为0 ? c=0 (5)有两个正根 ??????+≥0210210>>△x x x x (6)有两个负根 ? ?? ???+≥0210210><△x x x x (7) 有一正根一负根 ????0021<△>x x (8)两根同号 ????≥002 1>△x x (9)两根互为相反数????=?=+0 0021b x x △> (10)两根互为倒数????=≥102 1x x △ (11)一根为正,一根为0 ??????=?=+00002 121c x x x x >△> (12)一根为负,一根为0 ??????=?=+00002 121c x x x x <△> (13)两根均为0?b=c=0 (14) 一根比a 大,一根比a 小????--0))(021 <(△>a x a x 例1 已知方程(k+1)x 2—4kx+3k —1=0 的两个实数根均为正,求k 的值。 思路点拨:因为原方程两个实数根均为正,有上述结论(5)可得不等式组,解这个不 等式组即可求出k 的值。

根的判别式韦达定理

一元二次方程根的判别式和韦达定理 知识点1.根的判别式 2 1.402 2.0204 3.,22ac b b ac b x x a a ? ?≠-????>???? ?=?????

1、下列方程①012=+x ;②02=+x x ;③012=-+x x ;④02 =-x x 中,无实根的 方程是 。 2、已知关于x 的方程022 =+-mx x 有两个相等的实数根,那么m 的值是 。 3、下列方程中,无实数根的是( ) A 、011=-+-x x B 、 762=+y y C 、021=++x D 、0232=+-x x 4、若关于x 的一元二次方程01)12()2(2 2 =+++-x m x m 有两个不相等的实根,则m 的取值范围是( ) A 、43< m B 、m ≤43 C 、4 3>m 且m ≠2 D 、m ≥43 且m ≠2 5、在方程02 =++c bx ax (a ≠0)中,若a 与c 异号,则方程( ) A 、有两个不等实根 B 、有两个相等实根 C 、没有实根 D 、无法确定 6、关于x 的一元二次方程x 2 +kx -1=0的根的情况是 ( ) A 、有两个不相等的同号实数根 B 、有两个不相等的异号实数 C 、有两个相等的实数根 D 、没有实数根 7、 m 取何值时,方程()0112)2(2 2 =++--x m x m (1)有两个不相等的实数根 (2) 有两个相等的实数根;(3)没有实数根 8、试证:关于x 的方程1)2(2 -=+-x m mx 必有实根。 9、已知关于x 的方程022 =-+-n m mx x 的根的判别式为零,方程的一个根为1,求m 、 n 的值。

韦达定理及其应用

韦达定理及其应用 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则 ,。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b为实数,且,,求的值。 思路注意a,b为方程的二实根;(隐含)。 说明此题易漏解a=b的情况。根的对称多项式,, 等都可以用方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。

其中n为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。 ★★★例2若,且,试求代数式的值。 思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。 ★★★★例3设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以和为根的一元二次方程仍为。求所有这样的一元二次方程。 3.证明等式或不等式 根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。 ★★★例4已知a,b,c为实数,且满足条件:,,求证a=b。

说明由“不等导出相等”是一种独特的解题技巧。另外在求得c=0后,由恒等式可得,即a=b。此方法较第一种烦琐,且需一定的跳跃性思维。 4.研究方程根的情况 将韦达定理和判别式定理相结合,可以研究二次方程根的符号、区间分布、整数性等。关于方程的实根符号判定有下述定理: ⑴方程有二正根,ab<0,ac>0; ⑵方程有二负根,ab>0,ac>0; ⑶方程有异号二根,ac<0; ⑷方程两根均为“0”,b=c=0,; ★★★例5设一元二次方程的根分别满足下列条件,试求实数a的范围。 ⑴二根均大于1; ⑵一根大于1,另一根小于1。 思路设方程二根分别为,,则二根均大于1等价于和同时为正;一根大于1,另一根小于是等价于和异号。

二次函数根的判别式韦达定理

一元二次方的应用及根的判别式、韦达定理 一、根的判别式 1.一元二次方程根的判别式的定义: 运用配方法解一元二次方程过程中得到 222 4()24b b ac x a a -+=,显然只有当240b ac -≥时,才能直接开平方得:22 424b b ac x a a -+=± 也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ?=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式. 2.判别式与根的关系: 在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ?=-确定. 判别式:设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ?=-则 ①0?>?方程2 0(0)ax bx c a ++=≠有两个不相等的实数根21,24b b ac x -±-=. ②0?=?方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a ==-. ③0?;有两个相等的实数根时,0?=;没有实数根时,0?<. (2)在解一元二次方程时,一般情况下,首先要运用根的判别式24b ac ?=-判定方程的根的情况 (有两个不相等的实数根,有两个相等的实数根,无实数根).当240b ac ?=-=时,方程有两个相等的实数根(二重根),不能说方程只有一个根. ① 当0a >时?抛物线开口向上?顶点为其最低点; ② 当0a <时?抛物线开口向下?顶点为其最高点. 3.一元二次方程的根的判别式的应用: 一元二次方程的根的判别式在以下方面有着广泛的应用: (1)运用判别式,判定方程实数根的个数; (2)利用判别式建立等式、不等式,求方程中参数值或取值范围; (3)通过判别式,证明与方程相关的代数问题; (4)借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题,最值问题. 二、韦达定理 如果一元二次方程20ax bx c ++=(0a ≠)的两根为12x x , ,那么,就有 ()()212ax bx c a x x x x ++=-- 比较等式两边对应项的系数,得 1212 b x x a c x x a ? +=-??? ??=??? ①,② ①式与②式也可以运用求根公式得到.人们把公式①与②称之为韦达定理,即根与系数的关系. 因此,给定一元二次方程20ax bx c ++=就一定有①与②式成立.反过来,如果有两数1x ,2x 满足①与②,那么这两数12x x , 必是一个一元二次方程20ax bx c ++=的根.利用这一基本知识常可以简捷地处理问题. 利用根与系数的关系,我们可以不求方程20ax bx c ++=的根,而知其根的正、负性. 在24b ac ?=-≥0的条件下,我们有如下结论: 当0c a <时,方程的两根必一正一负.若0b a -≥,则此方程的正根不小于负根的绝对值;若0b a -<,

一元二次方程之韦达定理

一对一个性化辅导教师授课学案 学生姓名年级初三科目数学授课老师相老师总课时数第几次课 3 授课时间审核人 本次课课题一元二次方程根与系数的关系应用例析及训练 教学目标韦达定理 授课内容 教学内容 对于一元二次方程,当判别式△= 时,其求根公式为:;若两根为,当△≥0时,则两根的关系为:;,根与系数的这种关系又称为韦达定理;它的逆定理也是成立的,即当,时,那么 则是的两根。一元二次方程的根与系数的关系,综合 性强,应用极为广泛,在中学数学中占有极重要的地位,也是数学学习中的重点。学习中,老师除了要求同学们应用韦达定理解答一些变式题目外,还 常常要求同学们熟记一元二次方程根的判别式 存在的三种情况,以及应用求根公式求出方程 的两个根,进而分解因式,即 。下面就对应用韦达定理可能出现的问题举例 做些分析,希望能给同学们带来小小的帮助。 一、根据判别式,讨论一元二次方程的根。 例1:已知关于的方程(1)有两个不相等的实数根,且关于的方程(2)没有实数根,问取什么整数时,方程(1)有整数解?

分析:在同时满足方程(1),(2)条件的的取值范围中筛选符合条件的的整数值。 说明:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定的取值范围,并依靠熟练的解不等式的基本技能和一定的逻辑推理,从而 筛选出,这也正是解答本题的基本技巧。 二、判别一元二次方程两根的符号。 例1:不解方程,判别方程两根的符号。 分析:对于来说,往往二次项系数,一次项系数,常数项皆为已知,可据此求出根的判别式△,但△只能用于判定根的存在与否,若判定根的正负,则需要确定或的正负情况。因此解答此题的关键是:既要求出判别式的值,又要确定或的正负情况。 说明:判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,另外由于本题中<0,所以可判定方程的根为一正一负;倘若>0,仍需考虑的正负,方可判别方程是两个正根还是两个负根。

初二.判别式与韦达定理

[文件] sxjsck0006 .doc [科目] 数学 [关键词] 初二/ 判别式/韦达定理/方程 [标题] 判别式与韦达定理 [内容] 判别式与韦达定理 根的判别式和韦达定理是实系数一元二次方程的重要基础知识,利用它们可进一步研究根的性质,也可以将一些表面上看不是一元二次方程的问题转化为一元二次方程来讨论. 1. 判别式的应用 例1 (1987年武汉等四市联赛题)已知实数a 、b 、c 、R 、P 满足条件PR >1,Pc+2b+Ra=0. 求证:一元二次方程ax 2+2bx+c=0必有实根. 证明 △=(2b )2-4ac.①若一元二次方程有实根, 必须证△≥0.由已知条件有2b=-(Pc+Ra ),代入①,得 △ =(Pc+Ra )2-4ac =(Pc )2+2PcRa+(Ra )2-4ac =(Pc-Ra )2+4ac (PR-1). ∵(Pc-Ra )2≥0,又PR >1,a ≠0, (1)当ac ≥0时,有△≥0; (2)当ac <0时,有△=(2b )2-4ac >0. (1)、(2)证明了△≥0,故方程ax 2+2bx+c=0必有实数根. 例2 (1985年宁波初中数学竞赛题)如图21-1,k 是实数,O 是数轴的原点,A 是数 轴上的点,它的坐标是正数a.P 是数轴上另一点,坐标是x,x <a ,且OP 2=k ·PA ·OA. (1) k 为何值时,x 有两个解x1,x2(设x 1<x 2); 此处无图 (2) 若k >1,把x 1,x 2,0,a 按从小到大的顺序排列,并用不等号“<”连接. 解 (1)由已知可得x 2=k ·(a-x )·a ,即 x 2+kax-ka 2=0,当判别式△>0时有两解,这时 △ =k 2a 2+4ka 2=a 2k (k+4)>0. ∵a >0, ∴k (k+4)>0,故k <-4或k >0. (2)x 1<0<x 2<a. 例3(1982年湖北初中数学竞赛题)证明y x y xy x +++-2 2不可能分解为两个一次因式之积. 分析 若视原式为关于x 的二次三项式,则可利用判别式求解. 证明 ).()1(2222y y x y x y x y xy x ++-+=+++- 将此式看作关于x 的二次三项式,则判别式 △ =.163)(4)1(222+--=+--y y y y y 显然△不是一个完全平方式,故原式不能分解为两个一次因式之积. 例3 (1957年北京中学生数学竞赛题)已知x ,y ,z 是实数,且x+y+z=a ,①.2 12222a z y x =++ ②

根的判别式与韦达定理

根的判别式ac b 42- 根的判别式的作用: ①判定根的个数;②求待定系数的值;③应用于其它。 例1、若关于x 的方程0122=-+x k x 有两个不相等的实数根,则k 的取值范围是 。 例2、已知方程022=+-mx mx 有两个不相等的实数根,则m 的值是 . 例3、关于x 的方程()0212=++-m mx x m 有实数根,则m 的取值范围是( ) A.10≠≥且m m B.0≥m C.1≠m D.1>m 例4、已知关于x 的方程()0222=++-k x k x (1)求证:无论k 取何值时,方程总有实数根; (2)若等腰?ABC 的一边长为1,另两边长恰好是方程的两个根,求?ABC 的周长。 例5、已知二次三项式2)6(92-++-m x m x 是一个完全平方式,试求m 的值. 例6、已知关于x 的方程0k x 4k 2x 2=++-有两个不相等的实数根, (1)求k 的取值范围。 (2)化简4k 4k 2k 2+-+-- 针对练习: 1、当k 时,关于x 的二次三项式92++kx x 是完全平方式。 2、当k 取何值时,多项式k x x 2432+-是一个完全平方式?这个完全平方式是什么? 3.关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足( )

A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠5 4.对任意实数m ,求证:关于x 的方程042)1(222=++-+m mx x m 无实数根. 5.k 为何值时,方程0)3()32()1(2=+++--k x k x k 有实数根. 6. 已知a 、b 、c 是ABC ?三条边的长,那么方程()04 2=+ ++c x b a cx 的根的情况是 考点五、方程类问题中的“分类讨论” 典型例题: 例1、关于x 的方程()03212=-++mx x m ⑴有两个实数根,则m 为 , ⑵只有一个根,则m 为 。 例2、如果关于x 的方程022=++kx x 及方程022=--k x x 均有实数根,问这两方程是否有相同的根?若有,请求出这相同的根及k 的值;若没有,请说明理由。 考点六、根与系数的关系 ⑴前提:对于02=++c bx ax 而言,当满足①0≠a 、②0≥?时, 才能用韦达定理。 ⑵主要内容: ⑶应用:整体代入求值。 几种常见的关于21x ,x 的对称式的恒等变形 ①()212212221x x 2x x x x -+=+ ②()21212 21221x x x x x x x x +?=?+? ③()()()2212121a x x a x x a x a x +++?=++

一元二次方程韦达定理、应用

一元二次方程韦达定理、应用 一.选择题(共12小题) 1.(2020?邵阳)设方程x2﹣3x+2=0的两根分别是x1,x2,则x1+x2的值为()A.3B.﹣C.D.﹣2 2.若x1、x2是方程x2﹣5x+6=0的两个解,则代数式(x1+1)(x2+1)的值为()A.8B.10C.12D.14 3.关于x的一元二次方程x2﹣5x+2p=0的一个根为1,则另一根为() A.﹣6B.2C.4D.1 4.(2020?雅安)如果关于x的一元二次方程kx2﹣3x+1=0有两个实数根,那么k的取值范围是()A.k B.k且k≠0C.k且k≠0D.k 5.关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A.﹣1B.﹣4C.﹣4或1D.﹣1或4 6.(2020?如东县二模)若x1,x2是方程x2﹣3x﹣2=0的两个根,则x1+x2﹣x1?x2的值是()A.﹣5B.﹣1C.5D.1 7.(2020?仁寿县模拟)已知m、n是一元二次方程x2﹣3x﹣1=0的两个实数根,则=()A.3B.﹣3C.D.﹣ 8.(2020?烟台模拟)已知a、b是一元二次方程x2+x﹣c=0的两根,且a+b﹣2ab=5,那么c等于()A.3B.﹣3C.2D.﹣2 9.(2019秋?潮州期末)已知x1,x2是一元二次方程x2+2x=0的两个实数根,下列结论错误的是()A.x1≠x2B.x12+2x1=0C.x1x2=﹣2D.x1+x2=﹣2 10.(2020?广州)直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个 11.(2020?泰兴市一模)一元二次方程x2﹣4x+2=0根的情况是() A.无实数根B.有两个正根C.有一个正根,一个负根D.有两个负根12.(2020?文登区模拟)已知a,b是方程x2+3x﹣5=0的两个实数根,则a2﹣3b+2020的值是()A.2016B.2020C.2025D.2034 二.填空题(共4小题) 13.(2020?泰州)方程x2+2x﹣3=0的两根为x1、x2,则x1?x2的值为. 14.(2020春?崇川区期末)若方程x2﹣3x+2=0的两根是α、β,则α+αβ+β=. 15.(2020春?九龙坡区校级期末)已知α、β是方程x2+3x﹣8=0的两个实数根,则α2+β2的值为.16.(2020?眉山)设x1,x2是方程2x2+3x﹣4=0的两个实数根,则+的值为. 三.解答题(共6小题) 17.解下列方程(1)x2﹣8x+15=0;(2)﹣=1.

二次函数与根的判别式韦达定理

二次函数与根的判别式、韦达定理讲点1:公共点问题 【例1】如图,抛物线y=-x2+4x-3的顶点为M,直线y=-2x-9与y轴交于点C,与直线MO交于点D,现将抛物线的顶点在直线OD上平移,平移后的抛物线与射线CD(含顶点C)只有一个公共点,求它的顶点横坐标的值或取值范围. 【练】如图,已知抛物线y=-x2+2x+8与x轴交于点A,B两点,与y轴交于点C,点D为抛物线的顶点,直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度? 讲点2:距离问题 【例2】如图,抛物线y=a(x-1)2+4与x轴交于A,B两点,与y轴交于点C,点D ,在抛物线上共有三个点到直线BC的距离为m,求m 是抛物线的顶点,已知CD 的值. 【练】如图,抛物线y=ax2-6ax+5a与x轴交于A,B两点(A左,B右),若抛物 线与直线y=2x的最近点之间的距离为,求a的值. 讲点3:隐藏判别式

【例3】如图,点P是直线l:y=-2x-2上的点,过点P的另一条直线m交抛物线y=x2与A,B两点,试证明:对于直线l上任意给定的一点P,在抛物线上都能找到点A,使得PA=AB成立. 【练】如图,已知二次函数y=a(x2-6x+8)(a>0)的图象与x轴分别交于点A,B,与y轴交于点C,点D是抛物线的顶点.当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是否存在一个正数a,使得四条线段PA,PB,PC,PD 与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由. 讲点4:交点间的距离 【例4】已知二次函数y=x2-2mx+m2+m的图象与函数y=kx+1的图象交于A(x 1 , y 1),B(x 2 ,y 2 )(x 1 <x 2 )两点. (1)如图1,当k=1,m取不同值时,猜想AB的长是否不变?并证明你的猜想;(2)如图2,当m=0,k取不同值时,猜想△AOB的形状,并证明你的猜想. 【例5】如图,抛物线y=x2-4x+5与y轴交于点C,过点N(1,2)作直线l,交抛物线于点P,交y轴于点E,连接PC,若PE=PC,求直线l的解析式. 【练】如图,抛物线C 1 :y=x2+4x+3交x轴于A,B两点,交y轴于点C,将抛物 线C 1沿y轴翻折得新抛物线C 2 ,过点C作直线l交抛物线C 1 于点M,交抛物线C 2 于 点N,若MN=,求直线l的解析式.三、对称问题

一元二次方程、韦达定理

一元二次方程及韦达定理 一、 求解一元二次方程的过程就是一个因式分解的过程 一元二次方程如果有解的话一定可以表示成:))((0212 x x x x a c bx ax --==++)0(≠a 其中:21,x x 就是方程的两个根;如果21x x =,就说方程有两个相等的根。 二、 一元二次方程求根的几种办法: 1. 十字相乘法: 2. 配方法: 3. 公式法: 4. 猜根+结合韦达定理。 三、 韦达定理 1、 韦达定理应用的前提是方程有实根! 2、 韦达定理的正向运用: )0(02 ≠=++a c bx ax 如果有两个根21,x x (可以相等),那么: ?? ???=-=+a c x x a b x x 2121 :得到的是各项系数之间的关系。 3、 若两个实数21,x x 满足a b x x - =+21,a c x x =?21, 则21,x x 必为方程)0(02≠=++a c bx ax 的两根。 4、 可以通过韦达定理来判断两个根的符号: 1) 通过21x x ?来判断两根同号还是异号; 2) 通过21x x +来判断两根的正负。

基本题型解法及易错点 一、 求解一元二次方程的根:02=++c bx ax 1. 如果二次项前面有参数,要先讨论参数是否为0; 2. 有根的判断标准是:042 ≥-=ac b ?;所以,0?021x x 两根同号:????>+>?002121x x x x 两正根;????<+>?0 02121x x x x 两负根。 5. ?

一元二次方程判别式及韦达定理

一元二次方程判别式及韦达定理 一、选择题 1.(2013湖北黄冈)已知一元二次方程x 2-6x +c =0有一个根为2,则另一根为( ) A .2 B .3 C .4 D .8 2.(2013四川泸州)若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则实数k 的取值范围是( ) A .1k >- B .1k <且0k ≠ C . 1k ≥-且0k ≠ D . 1k >-且0k ≠ 3. (2013四川泸州,)设12,x x 是方程2330x x +-=的两个实数根,则 2112 x x x x +的值为( ) A .5 B .-5 C .1 D .-1 4. (2013福建福州,)下列一元二次方程有两个相等实数根的是( ) A .x 2+3=0 B .x 2+2x =0 C .(x +1)2=0 D .(x +3)(x -1)=0 5.(2013山东滨州,)对于任意实数k ,关于x 的方程程x 2-2(k +1)x -k 2+2k -1=0的根的情况为 A .有两个相等的实数根 B .没有实数根 C .有两个不相等的实数根 D .无法确定 6.(2013广东广州)若0205<+k ,则关于x 的一元二次方程042=-+k x x 的根的情况是( ) A .没有实数根 B .有两个相等的实数根 C .有两个不相等的实数根 D .无法判断 7.(2013山东日照)已知一元二次方程032=--x x 的较小根为1x ,则下面对1x 的估计准确的是 A .121-<<-x B .231-<<-x C .321<

韦达定理(常见经典题型)

韦达定理(常见经典题型)

一元二次方程知识网络结构图 1.方程中只含有 个未知数,并且整理后未知数的最高次数是 ,这样的方程叫做一元二次方程。 通常可写成如下的一般形式 ( a 、b 、c 、为常数,a )。 2. 一元二次方程的解法: (1)直接开平方法:当一元二次方程的一边是一个含有未知数的 的平 方,而另一边是一个 时,可以根据 的意义,通过开平方法求出这个方程的解。 (2)配方法:用配方法解一元二次方程()02 ≠=++a o c bx ax 的一般步骤是: ①化二次项系数为 ,即方程两边同时除以二次项系数; ②移项,使方程左边为 项和 项,右边为 项; ③配方,即方程两边都加上 的平方; ④化原方程为2 ()x m n +=的形式, 如果n 是非负数,即0n ≥,就可以用 法求出方程的解。 如果n <0,则原方程 。 (3)公式法: 方程20(0)ax bx c a ++=≠,当24b ac -_______ 0时,x = ________ (4)因式分解法:用因式分解法解一元二次方程的一般步骤是: 一元二次 定义:等号两边都是整式,只 含有一个未知数(一 解法直接开平方法 因式分解法 配方法 公式 法 22 240404b ac b ac b ac ?-??-???-?? >方程有两个不相等的实数根=方程有两个相等的实数根<方程无实数根应用一元二次方程解决实际 问题?? ? 步骤 实际问题的答案

①将方程的右边化为 ; ②将方程的左边化成两个 的乘积; ③令每个因式都等于 ,得到两个 方程; ④解这两个方程,它们的解就是原方程的解。 3、韦达定理 一、 一元二次方程的基本概念及解法 1、已知关于x 的方程x 2+bx +a =0有一个根是-a(a≠0),则a -b 的 值为 A .-1 B .0 C .1 D .2 2、 程时。 、当方程为一元二次方程时;、当方程为一元一次方的取值范围。 满足下列条件时,当方程21m 05)3()3(1 =+-++-x m x m m 3、一元二次方程x (x -2)=2-x 的根是( ) A .-1 B .2 C .1和2 D .-1和2 二 一元二次方程根的判别式 4、关于x 的方程2210x kx k ++-=的根的情况描述正确的是( ). A .k 为任何实数.方程都没有实数根 B ,k 为任何实数.方程都有两个不相等的实数根 C .k 为任何实数.方程都有两个相等的实数根 D .根据k 的取值不同.方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种 5、已知关于x 的一元二次方程(a ﹣l )x 2﹣2x+l =0有两个不相等的实

相关文档
最新文档