Correlations among magnetic, electrical and magneto-transport properties of NiFe nanohole arrays

Correlations among magnetic, electrical and magneto-transport properties of NiFe nanohole arrays
Correlations among magnetic, electrical and magneto-transport properties of NiFe nanohole arrays

Home Search Collections Journals About Contact us My IOPscience

Correlations among magnetic, electrical and magneto-transport properties of NiFe nanohole arrays

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2013 J. Phys.: Condens. Matter 25 066007

(https://www.360docs.net/doc/ea11193638.html,/0953-8984/25/6/066007)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 202.207.14.58

The article was downloaded on 12/03/2013 at 07:46

Please note that terms and conditions apply.

IOP P UBLISHING J OURNAL OF P HYSICS:C ONDENSED M ATTER J.Phys.:Condens.Matter25(2013)066007(9pp)doi:10.1088/0953-8984/25/6/066007

Correlations among magnetic,electrical and magneto-transport properties of NiFe nanohole arrays

D C Leitao1,J Ventura2,J M Teixeira2,C T Sousa2,S Pinto2,J B Sousa2,

J M Michalik3,4,5,J M De Teresa3,4,5,M Vazquez6and J P Araujo2

1INESC-MN and IN,Rua Alves Redol9,1000-029Lisboa,Portugal

2IFIMUP and IN,Departamento de F′?sica e Astronomia,Faculdade de Ci?e ncias da Universidade do

Porto,Rua do Campo Alegre,678,4169-007,Porto,Portugal

3Instituto de Ciencia de Materiales de Aragon(ICMA),CSIC—Universidad de Zaragoza,E-50009

Zaragoza,Spain

4Laboratorio de Microcopias Avanzadas(LMA),Instituto de Nanociencia de Arag′o n(INA),

Universidad de Zaragoza,E-50018Zaragoza,Spain

5Departamento de F′?sica de la Materia Condensada,Universidad de Zaragoza,E-50009Zaragoza,Spain

6Instituto de Ciencia de Materiales de Madrid CSIC,E-28049Madrid,Spain

E-mail:dleitao@inesc-mn.pt

Received8August2012,in?nal form17December2012

Published11January2013

Online at https://www.360docs.net/doc/ea11193638.html,/JPhysCM/25/066007

Abstract

In this work,we use anodic aluminum oxide(AAO)templates to build NiFe magnetic

nanohole arrays.We perform a thorough study of their magnetic,electrical and

magneto-transport properties(including the resistance R(T),and magnetoresistance MR(T)),

enabling us to infer the nanohole?lm morphology,and the evolution from granular to

continuous?lm with increasing thickness.In fact,different physical behaviors were observed

to occur in the thickness range of the study(2nm

insulator-to-metallic crossover was visible in R(T),pointing to a granular?lm morphology,

and thus being consistent with the presence of electron tunneling mechanisms in the

magnetoresistance.Then,for10nm

anisotropic magnetoresistance suggests the onset of morphological percolation of the granular

?lm.Finally,for t>50nm,a metallic R(T)and only anisotropic magnetoresistance behavior

were obtained,characteristic of a continuous thin?lm.Therefore,by combining simple

low-cost bottom-up(templates)and top-down(sputtering deposition)techniques,we are able

to obtain customized magnetic nanostructures with well-controlled physical properties,

showing nanohole diameters smaller than35nm.

(Some?gures may appear in colour only in the online journal)

1.Introduction

The introduction of voids into a thin?lm signi?cantly alters the characteristics of the medium,leading to exotic and interesting physical properties.In fact,such voids can lead to quantum effects in the conductivity[1,2],enhanced optical transmission[3],arti?cial vortex pinning sites in superconductors[4]and magnonic crystals[5,6],facilitating research and technological applications.Regarding magnetic materials,the inclusion of these arti?cial defects becomes an easy way to engineer their properties at micrometer and nanometer scales[7,8].The voids alter the stray ?eld distribution(compared to a continuous?lm)and pin domain walls(DWs),thus in?uencing the coercivity and remanence[9,10]while at the same time tailoring the magnetization switching processes[11].Therefore,nanohole

Figure 1.AFM images of the (a)as-grown AAO substrate and (b)25nm thick NiFe nanohole array.

arrays embedded in a magnetic thin ?lm have been pointed out as a promising route to obtaining future data storage media [7].The main advantage of these structures resides in the absence of the superparamagnetic limit for small bit size,since there is no isolated magnetic volume.

Nowadays,researchers focus mainly on understanding the physical properties of nanohole arrays with nanometer dimensions,where the magnetic domain morphology and reversal processes are very much distinct from those of the widely studied micrometer-period structures [11–15].Studies on exchange-biased systems provide an example where the inter-hole distance (D int )and hole diameter (D h )can be comparable to the characteristic domain lengths of the ferromagnetic and/or antiferromagnetic layers [16,17].

Nevertheless,the main challenge regarding such nm-size arrays still lies in the fabrication processes.Most of the published works rely on lithography-based processes such as electron-beam and lift-off [7],focused-ion-beam [16]and deep ultraviolet [18]methods.As an alternative,one may chose a bottom-up approach consisting of self-assembly procedures [19–21].One reliable method resorts to anodic aluminum oxide (AAO)as a pre-patterned substrate for template-assisted growth of the nanohole arrays,with major advantages regarding process simplicity and cost [12,13,9,22,23].

In this work,we study in detail the magnetic,electrical and magneto-transport properties of NiFe nanohole arrays with thicknesses (t )ranging from 2to 100nm,sputter deposited on top of AAO.NiFe is a well-characterized alloy,with extensive literature concerning the magnetic and transport properties for continuous thin ?lms and micrometer-size nanohole arrays.It provides an excellent starting point for addressing different physical aspects such as the morphology of thin ?lms grown on top of nanopatterned and rough substrates such as AAO templates.In addition,NiFe is also relevant in a wide number of applications ranging from motor cores to magnetic recording [24,25].Using temperature dependent resistance (R (T ))and magnetoresistance (MR (T ))measurements together with room temperature magnetic characterizations (M (H )),we were able to address the morphology of the NiFe nanohole array.An evolution from an island-like morphology towards a continuous thin ?lm with increasing t was observed.Also,Hall resistivity (ρH )measurements show an increase of the planar Hall effect

contribution with thickness,here ascribed to the in-plane magnetic anisotropy induced during growth.

2.Experimental details

For the growth of magnetic nanohole arrays we used anodic aluminum oxide (AAO)templates obtained by a standard two-step method of anodization of high-purity (99.997%)Al foils [26].After an electropolishing pre-treatment,the Al foils were anodized in a 0.3M oxalic acid solution at ~4?C and under an applied potential of 40V [27].The ?rst anodization was carried out for 24h while the second lasted 1h.These anodization conditions resulted in nanopores disposed in an ordered hexagonal lattice (?gure 1(a)),with an average diameter of ~35nm,separation of ~105nm and length of ~2.5μm.

On top of the AAO we deposited a NiFe (80:20)thin ?lm using a 1160L four-target ion-beam deposition (IBD)system from Commonwealth Scienti?c Corporation with a base pressure of ~8×10?7Torr [28].A beam voltage of 1000V and a beam current of 15mA were used,giving a NiFe deposition rate of 0.035nm s ?1for an Ar ?ow of 5sccm with the working pressure of ~2×10?4Torr.During deposition a magnetic ?eld of 250Oe was applied in the sample plane,inducing an uniaxial magnetic easy axis.We varied the nominal thickness (t )of the NiFe thin ?lms within the 2nm ≤t ≤100nm range.Continuous control samples were also deposited on Si/SiO 2substrates in the same batch.

The surface of the samples was analyzed with a low-vacuum FEI Quanta 400FEG scanning electron microscope (SEM)and a nanoscope multimode atomic force microscope (AFM)from Veeco Instruments operating in tapping mode.Magnetic characterization was performed with a commercial VSM magnetometer (KLA-Tencor EV7VSM)at room temperature.The measurements were performed with the magnetic ?eld applied in the sample’s plane,both parallel ( )and transverse (⊥)to the uniaxial direction induced during growth.In addition,temperature dependent magnetic properties (M (T ))were also studied with a Quantum Design SQUID magnetometer (5–350K)and the zero-?eld-cooled/?eld-cooled (ZFC/FC)curves were measured with a ?eld (H )of 50Oe applied along the growth-induced uniaxial direction.The R (T )and MR (T )measurements were performed with a pseudo-four-probe DC method from 20

Figure2.(a)Average D h dependence on t showing a quasi-linear trend.(b)Gaussian distribution of D h sizes for the nanohole sample with t=30nm.SEM top-surface images of(c)AAO and(d)a30nm thick nanohole array.

to300K and applied magnetic?elds up to6kOe.The MR properties were characterized in the longitudinal( ) and transverse(⊥)geometries(with magnetic?eld always applied in the sample’s plane)and the current?owing parallel to the induced uniaxial direction.Electrical contacts were placed on the sides of the samples enclosing the width of the nanohole arrays,and de?ned by sputtering using a shadow mask.ForρH measurements,the samples were patterned by optical lithography into a well-de?ned geometry,consisting of a300μm electrode where current?ows,sided with pads for the measurement of voltage drop,and this allows one to minimize offset voltages in the Hall measurements[29].

3.Experimental results

3.1.Morphology of the nanohole arrays

Figure1compares AFM topography images of the AAO substrate and a25nm thick NiFe nanohole array.As expected, the AAO hexagonal pattern is replicated by the thin?lm deposited on top.The latter grows mainly on the surface between the nanopores,giving rise to holes embedded in the continuous?lm[12,22].Furthermore,six hills(height of ~10–15nm)surrounding each nanopore are also replicated by the covering?lm.

Figure2(a)displays the dependence of the hole diameter (D h)on the thickness(t)of the deposited?lm obtained from statistical analysis of SEM images(?gures2(c)and (d)).For low t,the magnetic?lm retains the size of the nanopores underneath;however,with increasing t,the hole diameter is reduced until a continuous?lm is formed.In fact,a quasi-linear D h(t)dependence is observed and a critical thickness of t c≈52nm can be extrapolated for the closure of the nanopores.The latter occurs due to deposition of material around the pore entrance which progressively leads to its closure.In fact,Rahman et al observed that for high-aspect-ratio AAO(like that used here),deposition occurs only on the top surface of the template[11,15].In addition,cross-section images revealed,in particular,closing of pores with conical-like features lying within the nanopore entrances[12–14].

3.2.Magnetic properties

Figure3shows the room temperature M(H)behavior for selected nanohole arrays and corresponding continuous thin ?lms(t=2,30and100nm).The continuous?lms show a squared easy-axis M(H)loop consistent with DW nucleation and propagation,while an almost linear M(H)is observed for the hard axis,ascribed to magnetization rotation(?gures 3(a2)–(c2))[12].In contrast,the nanohole arrays display an almost isotropic M(H)behavior with an overall increase in coercivity(H c)and decrease in remanence(m r)(?gures 3(a1)–(c1))[9,30],as predicted by the inclusion theory[31]. The inset of?gure3(b1)displays the angular dependence of H c for the t=30nm sample.H c(θ)reveals a small change (~4Oe)between the(expected growth-induced)easy and hard axes.In this case,the substantial roughness and particular topography of the AAO substrates are crucial and may lead to irregular growth of the magnetic?lm,thus smearing the

Figure3.Room temperature M(H)curves for nanohole arrays and corresponding continuous thin?lms with(a)t=2nm(thin),

(b)t=30nm(intermediate)and(c)t=100nm(thick).Note the distinct magnetic?eld magnitudes of the nanohole and thin?lm samples. The and⊥symbols correspond to the direction of H relative to the growth-induced axis.The inset of(a1)shows a wide?eld range of

M(H)for the2nm sample.The inset of(b1)shows the angular dependence of H c for30nm nanohole arrays.

de?nition of an average preferential magnetic direction[32]. Since a hexagonal multidomain[27]hole structure is present in these AAO cases,no clear in?uence from the underlying lattice is observed in M(H).

Notice the particular M(H)shape for nanohole samples with t=30and100nm.When the?eld reverses (?gure3(c1)),we observe an abrupt jump of M(H) characteristic of DW motion;the magnetic moments are therefore reversed in the continuous zones between holes.However,at sites where the anisotropy is stronger (surrounding the holes;accentuated hills),the spins still show an angle relative to H.With further H increase a smoother M(H)behavior approaching magnetic saturation is seen.Such behavior was previously predicted[32],but never observed.In contrast,the thinner sample(t=2nm)shows an M(H)behavior resembling that of nanogranular systems (?gure3(a1))[33,34],with H ,⊥

c 80Oe,whereas for

100nm samples an H ,⊥

c 15Oe was obtaine

d instead.

Furthermore,an increase in m r with t is visible for the nanohole arrays.This effect is a consequence of the stray ?elds arising from the dipoles around the nanoholes,and becomes increasingly important for reducing thickness.The inclusion of a small percentage of?lm around the entrance of the nanopores also leads to reduced in-plane H c and m r[32,35],due to the appearance of a small out-of-plane magnetization component.

3.3.Transport properties

Figure4shows normalized R(T)curves for selected nanohole arrays(t=2,6,100nm)representative of the entire deposited thickness range.For t<10nm,a pronounced minimum is visible in R(T)at temperatures(T?)of130and65K for t=2 and6nm,respectively.Above T?a metallic-like behavior is present(d R/d T>0),while below T?an insulator-like R(T) characterized by d R/d T<0is obtained.In particular,the

Figure 4.R (T )curves for selected nanohole array samples and corresponding continuous thin ?lms with values of t of (a)2nm,(b)6.5nm and (c)100nm.(d)Sheng–Abeles law ?t to the insulator R (T )part of the nanohole array with t =2nm.The inset of

(c)shows the ZFC–FC M (T )curve for the nanohole array sample with t =2.8nm.

insulator part of R (T )for the nanohole array with t =2nm follows the Sheng–Abeles law [36](?gure 4)expected for discontinuous ?lms [33,36–38],

R =R 0exp 2

C

k B T 1/2

,where C and k B are the activation energy and Boltzmann constants,respectively.A rather low Sheng–Abeles activation energy of C =7.6×10?3meV was obtained from our results.We note that in CoFe (t )/Al 2O 3discontinuous multilayers,activation energies ranging from ~0.1meV for t =1.6nm to ~8meV for t =1.2nm were found [33,37].The ?rst value was obtained for samples close to morphological percolation and displaying an insulator R (T )behavior over the entire measurement temperature range (20–300K).Interestingly,the sample with t =2nm displayed an R (T )behavior similar to the one presented here,although no values of C were given for this case [33].The observed transition from tunnel to metallic-like transport suggests that these thinner samples are composed of tunnel bridges connecting continuous magnetic clusters of large size,the latter being part of a metallic network within the NiFe nanohole array.Additional ZFC/FC curves

for a nanohole array with t =2.8nm display a bifurcation at low temperatures (~162K),characteristic of materials with large magnetic anisotropies and consistent with island-like morphologies.Furthermore,two mean blocking temperatures (T B )of ~29and ~120K are observed,indicating the presence of a distinctive size distribution for magnetic domains,as suggested from transport measurements.

On the other hand,for t ≥10nm a typical metallic R (T )is observed for the nanohole arrays.In particular,the R (T )behavior is similar for t =100nm thin ?lm and nanohole samples,corroborating our hypothesis that the holes start to close and the samples approach the (continuous)thin ?lm condition.

Figure 5shows the MR behavior at 100K for the same set of samples (t =2,6and 100nm).Here,we de?ne the MR ratio as

MR ,⊥=

R (H )?R (H max )

R (H max ),where H max is the maximum applied ?eld (=6kOe).Overall,the measured values of MR are consistently smaller than for the corresponding continuous samples.Such an accentuated decrease originates mainly from the nanoholes introduced,which con?ne and locally alter the electrical current paths [18,32].

Notice that the thinner sample (t =2nm)displays an almost isotropic MR behavior,with similar magnitudes for the two H con?gurations (?gures 5(a)and (b)).This triangular shape curve is typically observed for systems of discontinuous magnetic multilayers and attributed to the presence of TMR [33,39](‘T’standing for tunnel).Such a contribution is further corroborated by the crossover between insulator and metallic transport observed in R (T )(?gure 4(a)).Moreover,and although no distinguishable peaks are visible near the origin,the sharper feature at H =0in MR may be a consequence of easier magnetization reversal due to a reminiscent growth-induced magnetic anisotropy,mainly in regions where large magnetic clusters are present.Figure 6(b)displays the Hall resistivity (ρH )measurements for the t =2nm nanohole array sample.In this case,a planar Hall effect contribution is observed in ρH ,consistent with the presence of an in-plane magnetization component.

With increasing t an in-plane AMR (‘A’standing for anisotropic)behavior is observed (?gures 5(c)–(f))[8],in agreement with the larger planar Hall effect contribution observed for t =100nm,as compared with t =2nm (?gure 6(d)).For such a thickness range,the MR curves display two peaks at low ?elds ascribed to the switching ?eld of the magnetization (H sw ),followed by an almost linear MR dependence at moderate ?elds (0.5kOe

geometries.The insets show details near H sw.

Figure6.(a)Optical image of the sample used to measureρH.Room temperatureρH for(b)t=2nm and(c)t=100nm nanohole arrays.

(d)Comparison between the shapes of the twoρH signals;due to the differentρH magnitudes,the data were normalized.For magnetic

materials,ρH=R Oμ0H+R Aμ0M,the ordinary Hall effect being proportional to H and the anomalous Hall effect,to the out-of-plane M.

induced by the underlying substrate(embedded holes and hills surrounding each hole)[40].

We would also like to remark that for t=100nm, two bumps appear close to H=0(?gures5(e)and(f)). Similar features were observed in the out-of-plane MR curves[41],con?rming the presence of a local out-of-plane magnetization component,probably resulting from material deposited around the entrance of the nanoholes,or from the pronounced AAO topography mimicked by the?lm.

4.Discussion

The resistivity(ρ)value at a?xed temperature is usually an easy and straightforward parameter to extract as a ?gure of merit for a sample’s properties.However,the particular geometry of an array of nanoholes makes such a?gure of merit hard to obtain.The holes,together with the complex topography of the AAO and the changes in the?lm morphology with increasing thickness,lead to an extraordinarily complex interpretation being required to reliably obtain a cross-sectional area and an effective current path between electrical contacts for each sample.In analogy,one can introduce a pseudo-resistivity parameter (ρ?),obtained from

ρ?=R wt

L

,(1) where R is the measured resistance,t(w)is the thickness (width)of the?lm and L is the spacing between the electrical contacts.ρ?relates to the realρof the nanohole?lm system throughρ=F(w,t,L)ρ?,where F represents a form factor (effective cross-sectional area and electrical contact distance) correlated with the?lm morphology.

Figure7(a)shows the room temperatureρ?(t)depen-dence for the nanohole array samples.Initially,ρ?(t)has a similar trend to the continuous thin?lms,decreasing rapidly as t increases(inset of?gure7(a))[28,42]. However,a minimum is visible around t 50nm,which is close to our extrapolated thickness for the closure of the nanopores(?gure2(a)).In contrast to the case for NiFe continuous?lms,a change in the effective(conductive) cross-section and current paths of these samples is expected as the?lm approaches the continuous regime,modulated by the underlying AAO topography.We emphasize that the anomalous increase visible inρ?above50nm is not directly related to a higher intrinsic resistivity of the material,but more probably to complicated geometrical features arising as the nanohole closes,which are re?ected in F(w,t,L)[13,14].

Figure7(b)shows MR⊥(t)for the nanohole arrays at 100and300K.For a homogeneous and continuous thin ?lm one obtains a monotonic increase of MR⊥(t),towards an almost constant value(inset of?gure7(a)).However, for the nanohole samples,a completely different trend is observed(?gure7(b)).First,an increase of MR⊥from2to 10nm is visible,which is then followed by a decrease up to t<50nm;?nally an increase is again observed.Such behavior is inconsistent with the presence of only AMR for t<50nm.In fact,Krzyk et al systematically

studied Figure7.(a)ρ?and(b)MR⊥dependence on t for the nanohole arrays.The inset showsρ(t)and MR⊥(t)for the continuous NiFe thin?lms.The lines are guides to the eye.

continuous ultrathin NiFe?lms(0.5

(i)For t≤3nm the transport properties indicate the pres-

ence of a signi?cant tunnel contribution,corroborated by the insulator/metallic crossover observed in R(T)at low temperatures(?gure4(a)).Furthermore,for the t= 2nm nanohole arrays,the data closely follow the ln R∝2(C/k B T)1/2dependence observed in granular systems and characteristic of the limit of low electric?eld for tunneling(?gure4).The almost isotropic MR behavior observed in?gures5(a)and(b),together with the lack of distinguishable H sw peaks,is expected if the?lm is composed by islands of magnetic material[39].These characteristics point to a granular morphology,facilitated by the accentuated topography of the underlying AAO substrate,which in turn explains the particular M(H) behavior(?gure3(a)).The NiFe nanohole array sample is then composed of tunnel bridges connecting continuous parts of a metallic network(i.e.ordered magnetic clusters of large size)[33].

(ii)In the3nm

Nevertheless,a contribution from the AMR starts to appear,as supported by the visible changes in the shape of the MR(H)cycles(?gures5(c)and(d)).

(iii)For10nm

(iv)Finally for t>50nm only the AMR is present.MR increases with t,following the same tendency as for thin ?lms[28,42].

The fact that MR⊥shows a particular dependence on t, suggesting the presence of TMR and AMR contributions,is here attributed to the substrate dependent growth morphology of the?lm,and thus of the nanohole arrays.

5.Conclusions

We observed that NiFe thin?lms deposited on top of AAO conform to its surface,reproducing the underlying hexagonal pattern.In addition,the pronounced topography of the AAO characterized by the presence of hills surrounding each nanopore was also transferred to the nanohole array.

By correlating the magnetic,electrical and magneto-transport properties of the nanohole arrays,we inferred the nanohole?lm morphology,which depended strongly on the deposited?lm thickness and particular AAO topography. For small t a granular-like?lm is formed,promoted by the high roughness and the particular topography of the AAO substrates(?gure1(a)).With increasing t,morphological percolation occurs and the contribution from TMR decreases. Therefore,when the?lm coalesces and the bulk-like part starts to dominate the conduction mechanisms,the TMR vanishes and only AMR is present.Interestingly,this coincides with the t value( 50nm)obtained for the closure of the nanopores.

This work opens new doors to the growth of more complex nanostructured materials on AAO substrates obtained from the anodization of thick Al foils,with well-controlled physical properties,the latter being a crucial aspect for facilitating further technological advances. Acknowledgments

The authors thank Dr Andre M Pereira for valuable discussions concerning the manuscript.The work was supported in part by project FEDER/POCTI/n2-155/94. DCL,CTS and JMT are grateful for FCT grants (SFRH/BPD/72359/2010,SFRH/BD/82010/2011and SFRH/BPD/72329/2010).M Vazquez thanks the Spanish Ministry of Economia y Competitividad,MEC,for assistance under project MAT2010-20798-C05-01.

References

[1]Nakanishi T and Ando T1996Quantum interference effects in

antidot lattices in magnetic?elds Phys.Rev.B548021

[2]Uryu S and Ando T1998Numerical study of localization in

antidot lattices Phys.Rev.B5810583

[3]Ruan Z and Qiu M2006Enhanced transmission through

periodic arrays of subwavelength holes:the role of

localized waveguide resonances Phys.Rev.Lett.96233901 [4]Van de V ondel J,de Souza Silva C C,Zhu B Y,Morelle M and

Moshchalkov V V2005V ortex-recti?cation effects in?lms

with periodic asymmetric pinning Phys.Rev.Lett.

94057003

[5]Neusser S and Grundler D2009Magnonics:spin waves on the

nanoscale Adv.Mater.212927–32

[6]Neusser S,Botters B and Grundler D2008Localization,

con?nement,and?eld-controlled propagation of spin waves

in Ni80Fe20antidot lattices Phys.Rev.B78054406

[7]Cowburn R P,Adeyeye A O and Bland J A C1997Magnetic

domain formation in lithographically de?ned antidot

Permalloy arrays Appl.Phys.Lett.702309–11

[8]Adeyeye A O,Bland J A C and Daboo C1997Magnetic

properties of arrays of holes in Ni80Fe20?lms Appl.Phys.

Lett.703164–6

[9]Barnard J A,Fujiwara H,Inturi V R,Jarratt J D,

Scharf T W and Weston J L1996Nanostructured magnetic

networks Appl.Phys.Lett.692758–60

[10]Wang C C,Adeyeye A O,Singh N,Huang Y S and

Wu Y H2005Magnetoresistance behavior of nanoscale

antidot arrays Phys.Rev.B72174426

[11]Rahman M T,Dumas R K,Eibagi N,Shams N N,Wu Y-C,

Liu K and Lai C-H2009Controlling magnetization reversal

in Co/Pt nanostructures with perpendicular anisotropy Appl.

Phys.Lett.94042507

[12]Merazzo K J,Leitao D C,Jimenez E,Araujo J P,Camarero J,

del Real R P,Asenjo A and Vazquez M2011

Geometry-dependent magnetization reversal mechanism in

ordered Py antidot arrays J.Phys.D:Appl.Phys.44505001 [13]Xiao Z L et al2002Nickel antidot arrays on anodic alumina

substrates Appl.Phys.Lett.812869–71

[14]Navas D,Ilievski F and Ross C A2009CoCrPt antidot arrays

with perpendicular magnetic anisotropy made on anodic

alumina templates J.Appl.Phys.105113921

[15]To?zur Rahman M et al2008A large-area mesoporous array

of magnetic nanostructure with perpendicular anisotropy

integrated on Si wafers Nanotechnology19325302 [16]Kovylina M,Erekhinsky M,Morales R,Villegas J E,

Schuller I K,Labarta A and Batlle X2009Tuning exchange

bias in Ni/FeF2heterostructures using antidot arrays Appl.

Phys.Lett.95152507

[17]Rahman M T,Shams N N,Wang D S and Lai C-H2009

Enhanced exchange bias in sub-50-nm IrMn/CoFe

nanostructure Appl.Phys.Lett.94082503

[18]Wang H,Wu Y,Wang M,Zhang Y,Li G and Zhang L2006

Fabrication and magnetotransport properties of ordered

sub-100nm pseudo-spin-valve element arrays

Nanotechnology171651

[19]Ho C-C,Hsieh T-W,Kung H-H,Juan W-T,Lin K-H and

Lee W-L2010Reduced saturation magnetization in cobalt

antidot thin?lms prepared by polyethylene oxide-assisted

self-assembly of polystyrene nanospheres Appl.Phys.Lett.

96122504

[20]Zhukov A A,Goncharov A V,de Groot P A J,

Bartlett P N and Ghanem M A2003Magnetic antidot

arrays from self-assembly template methods J.Appl.Phys.

937322–4

[21]Wei Q,Zhou X,Joshi B,Chen Y,Li K-D,Wei Q,Sun K and

Wang L2009Self-assembly of ordered semiconductor

nanoholes by ion beam sputtering Adv.Mater.212865–9 [22]Leitao D C,Ventura J,Pereira A M,Sousa C T,Moreira J M,

Carpinteiro F C,Sousa J B,Vazquez M and

Araujo J P2010Study of nanostructured array of antidots

using pulsed magnetic?elds J.Low Temp.Phys.159245–8

[23]Navas D,Hernandez-Velez M,Vazquez M,Lee W and

Nielsch K2007Ordered Ni nanohole arrays with

engineered geometrical aspects and magnetic anisotropy

Appl.Phys.Lett.90192501

[24]Wang C C,Adeyeye A O and Singh N2006Magnetic antidot

nanostructures:effect of lattice geometry Nanotechnology

171629

[25]Tannous C and Gieraltowski J2008The Stoner–Wohlfarth

model of ferromagnetism Eur.J.Phys.29475

[26]Masuda H and Fukuda K1995Ordered metal nanohole arrays

made by a2-step replication of honeycomb structures of

anodic alumina Science2681466–8

[27]Leitao D C,Apolinario A,Sousa C T,Ventura J,Sousa J B,

Araujo J P and Vazquez M2011Nanoscale topography:a

tool to enhance pore order and pore size distribution in

anodic aluminum oxide J.Phys.Chem.C1158567 [28]Fermento R,Leitao D C,Teixeira J M,Pereira A M,

Carpinteiro F,Ventura J,Araujo J P and Sousa J B2008

Structural,magnetic and transport properties of ion beam

deposited Co thin?lms J.Non-Cryst.Solids3545279–81 [29]De Teresa J M,Fern′a ndez-Pacheco A,Morell′o n L,Orna J,

Pardo J A,Serrate D,Algarabel P A and Ibarra M R2007

Magnetotransport properties of Fe3O4thin?lms for

applications in spin electronics Microelectron.Eng.

841660–4

[30]Vavassori P,Gubbiotti G,Zangari G,Yu C T,Yin H,

Jiang H and Mankey G J2002Lattice symmetry and

magnetization reversal in micron-size antidot arrays in

Permalloy?lm J.Appl.Phys.917992–4

[31]Hilzinger H R and Kronmuller H1975Statistical theory of the

pinning of Bloch walls by randomly distributed defects

J.Magn.Magn.Mater.211–7

[32]Castano F J,Nielsch K,Ross C A,Robinson J W A and

Krishnan R2004Anisotropy and magnetotransport in

ordered magnetic antidot arrays Appl.Phys.Lett.852872–4 [33]Kakazei G N,Pogorelov Yu G,Lopes A M L,Sousa J B,

Cardoso S,Freitas P P,Pereira de Azevedo M M and

Snoeck E2001Tunnel magnetoresistance and magnetic

ordering in ion-beam sputtered Co80Fe20/Al2O3

discontinuous multilayers J.Appl.Phys.904044–8 [34]Sousa J B et al2004Peculiar magnetic and electrical

properties near structural percolation in metal–insulator

granular layers J.Appl.Phys.963861

[35]Chuang V P,Jung W,Ross C A,Cheng J Y,Park O-H and

Kim H-C2008Multilayer magnetic antidot arrays from

block copolymer templates J.Appl.Phys.103074307 [36]Sheng P,Abeles B and Arie Y1973Hopping conductivity in

granular metals Phys.Rev.Lett.3144–7

[37]Silva H G et al2010Magnetic?eld strength and orientation

effects on Co–Fe discontinuous multilayers close to

percolation Phys.Rev.B82144432

[38]Garcia-Garcia A,V ovk A,Strichovanec P,Pardo J A,

Magan C,Algarabel P A,De Teresa J M,Morellon L and

Ibarra M R2010Determination of the percolation threshold

in Fe/MgO magnetic granular multilayers J.Phys.:

Condens.Matter22056003

[39]Dieny B,Sankar S,McCartney M R,Smith D J,

Bayle-Guillemaud P and Berkowitz A E1998

Spin-dependent tunneling in discontinuous metal/insulator

multilayers J.Magn.Magn.Mater.185283–92

[40]Leitao D C,Ventura J,Sousa C T,Teixeira J M,Sousa J B,

Jaafar M,Asenjo A,Vazquez M,De Teresa J M and

Araujo J P2012Tailoring the physical properties of thin

nanohole arrays grown on?at anodic aluminum oxide

templates Nanotechnology23425701

[41]Badini Confalonieri G A,Pirota K R,Vazquez M,

Nemes N M,Garcia-Hernandez M,Knobel M and

Batallan F2010Magnetic and transport properties in

ordered arrays of permalloy antidots and thin?lms J.Appl.

Phys.107083918

[42]Gehanno V,Freitas P P,Veloso A,Ferreira J,Almeida B,

Sousa B,Kling A and Da Suva M F1999Ion beam

deposition of Mn–Ir spin valves IEEE Trans.Magn.

354361–7

[43]Krzyk S,Schmidsfeld A,Klaui M and Rudiger U2010

Magnetotransport effects of ultrathin Ni80Fe20?lms probed

in situ New J.Phys.12013001

电源磁芯尺寸功率参数.doc

电源磁芯尺寸功率参数

常用电源磁芯参数 MnZn 功率铁氧体 EPC 功率磁芯 特点:具有热阻小、衰耗小、功率大、工作频率宽、重量 轻、结构合理、易表面贴装、屏蔽效果好等优点,但散热 性能稍差。 用途:广泛应用于体积小而功率大且有屏蔽和电磁兼容要 求的变压器,如精密仪器、程控交换机模块电源、导航设 备等。 EPC型功率磁芯尺寸规格 磁芯型号Type 尺寸Dimensions(mm) A B C D Emin F G Hmin EPC10/8 10.20±0.20 4.05±0.30 3.40±0.20 5.00±0.20 7.60 2.65±0.20 1.90±0.20 5.30 EPC13/13 13.30±0.30 6.60±0.30 4.60±0.20 5.60±0.20 10.50 4.50±0.30 2.05±0.20 8.30 EPC17/17 17.60±0.50 8.55±0.30 6.00±0.30 7.70±0.30 14.30 6.05±0.30 2.80±0.20 11.50 EPC19/20 19.60±0.50 9.75±0.30 6.00±0.30 8.50±0.30 15.80 7.25±0.30 2.50±0.20 13.10 EPC25/25 25.10±0.50 12.50±0.30 8.00±0.30 11.50±0.30 20.65 9.00±0.30 4.00±0.20 17.00 EPC27/32 27.10±0.50 16.00±0.30 8.00±0.30 13.00±0.30 21.60 12.00±0.30 4.00±0.20 18.50 EPC30/35 30.10±0.50 17.50±0.30 8.00±0.30 15.00±0.30 23.60 13.00±0.30 4.00±0.20 19.50 EPC39/39 39.00±0.50 19.60±0.30 15.60±0.30 18.00±0.30 30.70 14.00±0.30 10.00±0.30 24.50 EPC42/44 42.40±1.00 22.00±0.30 15.00±0.40 17.00±0.30 33.50 16.00±0.30 7.40±0.30 26.50

公路电动栏杆机控制模块维修简述

公路电动栏杆机控制模块维修简述 目前,公路自动栏杆机控制模块主要是Magnetic的自动栏杆机控制模块,这种控制模块采用了先进的微处理器技术和可靠的开关控制技术,系统集成度高,逻辑功能强,满足公路环境下的应用。 下面简单介绍栏杆机控制模块面板的功能与接线,栏杆机控制模块中的数字代表意义和接法如下: “1”表示接电源L(火线)220V AC; “2”表示接电源N(零线); “3”表示电源线地线; “4”表示电机接地线PE; “5”表示电机公共绕组U,接电机公共绕组U; “6”表示电机落杆绕组V,接电机绕组V; “7”表示电机升杆绕组W,接电机绕组W; “8、9”表示降压减速阻容(R=5Ω/25W C=2uF/AC450V,电阻和电容串联); “10、11”表示电机运行电容(4uF/AC450V); “17”表示电源输出24VDC接地线; “18”表示电源输出 24VDC正极; “19”表示控制信号共用线(+24VDC); “20”表示开脉冲,和控制信号共用线(+24VDC)短接有效; “21”表示环路感应器2输入(用于车辆到时自动抬杆,用于6、8模式); “22”表示关脉冲,和控制信号共用线(+24VDC)短接有效; “23”表示抬杆、落杆限位开关输入信号; “24”表示安全开关,接常闭触点;断开时,系统不会执行落杆动作; “25”表示控制信号共用线(+24VDC),同“19”功能一样; “26”表示档杆状态输出公共触点; “27、28”完全等同于“20、22”,常开触点(300ms); “29”表示抬杆状态输出触点; “30”表示落杆状态输出触点; “31、32”表示报警输出,为常开触点。 栏杆机控制模块长期处于工作状态,每天控制栏杆上下达几千次以上,是栏杆机易损元件之一,下面简单介绍几点常见的故障和维修方法,供大家参考: 首先,在维修栏杆机控制模块之前,务必将故障设备的灰尘清除干净,养成这个习惯可以让你检查和维修故障更快速、准确。 故障一控制模块无电现象 控制模块电源长期处于带电中,供电系统元件容易老化,容易出现无供电现象。这种情况一般先观察,所谓观察就是用眼睛看。注意观察栏杆机控制模块的外观、形状上有无什么异常,电器元件(如变压器、电容、电阻等)有无出现变形、断裂、松动、磨损、冒烟、腐蚀等情况。 其次是鼻子闻,一般轻微的气昧是正常的,如果有刺鼻的焦味,说明某个元器件被烧坏或击穿,应替换相应的元器件。最后用手试,当然是触摸绝缘的部分,有无发热或过热,用手去试接头有无松动,以确定设备运行状况以及发生故障的性质和程度。 如某站01#车道出现控制模块无电,经测试是电源保险管(250V 4A)烧毁。在更换前

各种开关电源变压器各种高频变压器参数EEEEEEEIEI等等的参数

功率铁氧体磁芯 常用功率铁氧体材料牌号技术参数 EI型磁芯规格及参数

PQ型磁芯规格及参数 EE型磁芯规格及参数 EC、EER型磁芯规格及参数

1,磁芯向有效截面积:Ae 2,磁芯向有效磁路长度:le 3,相对幅值磁导率:μa 4,饱和磁通密度:Bs 1磁芯损耗:正弦波与矩形波比较 一般情况下,磁芯损耗曲线是按正弦波+/-交流(AC)激励绘制的,在标准的和正常的时候,是不提供极大值曲线的。涉及到开关电源电路设计的一个共同问题是正弦波和矩形波激励的磁芯损耗的关系。对于高电阻率的磁性材料如类似铁氧体,正弦波和矩形波产生的损耗几乎是相等的,但矩形波的损耗稍微小一些。材料中存在高的涡流损耗(如大 一般情况下,具有矩形波的磁芯损耗比具有正弦波的磁芯损耗低一些。但在元件存在铜损的情况下,这是不正确的。在变压器中,用矩形波激励时的铜损远远大于用正弦波激励时的铜损。高频元件的损耗在铜损方面显得更多,集肤效应损耗比矩形波激励磁芯的损耗给人们的印象更深刻。举个例子,在 20kHz、用17#美国线规导线的绕组时,矩形波激励的磁芯损耗几乎是正弦波激

励磁芯损耗的两倍。例如,对于许多开关电源来说,具有矩形波激励磁芯的 5V、20A和30A输出的电源,必须采用多股绞线或利兹(Litz)线绕制线圈,不能使用粗的单股导线。 2Q值曲线 所有磁性材料制造厂商公布的Q值曲线都是低损耗滤波器用材料的典型曲线。这些测试参数通常是用置于磁芯上的最适用的绕组完成的。对于罐形磁芯,Q值曲线指出了用作生成曲线时的绕组匝数和导线尺寸,导线是常用的利兹线,并且绕满在线圈骨架上。 对于钼坡莫合金磁粉芯同样是正确的。用最适合的绕组,并且导线绕满了磁芯窗口时测试,则Q值曲线是标准的。Q值曲线是在典型值为5高斯或更低的低交流(AC)激励电平下测量得出的。由于在磁通密度越高时磁芯的损耗越大,故人们警告,在滤波电感器工作在高磁通密度时,磁芯的Q值是较低的。3电感量、AL系数和磁导率 在正常情况下,磁芯制造厂商会发布电感器和滤波器磁芯的AL系数、电感量和磁导率等参数。这些AL的极限值建立在初始磁导率范围或者低磁通密度的基础上。对于测试AL系数,这是很重要的,测试AL系数是在低磁通密度下实施的。 某些质量管理引入检验部门,希望由他们用几匝绕组检查磁芯,并用不能控制频率或激励电压的数字电桥测试磁芯。几乎毫不例外,以几百高斯、若干

磁芯参数参看

z变压器基础知识 1、变压器组成: 原边(初级primary side ) 绕组 副边绕组(次级secondary side ) 原边电感(励磁电感)‐‐magnetizing inductance 漏感‐‐‐leakage inductance 副边开路或者短路测量原边 电感分别得励磁电感和漏感 匝数比:K=Np/Ns=V1/V2 2、变压器的构成以及作用: 1)电气隔离 2)储能 3)变压 4)变流 ●高频变压器设计程序: 1.磁芯材料 2.磁芯结构 3.磁芯参数 4.线圈参数 5.组装结构 6.温升校核 1.磁芯材料 软磁铁氧体由于自身的特点在开关电源中应用很广泛。 其优点是电阻率高、交流涡流损耗小,价格便宜,易加 工成各种形状的磁芯。缺点是工作磁通密度低,磁导率 不高,磁致伸缩大,对温度变化比较敏感。选择哪一类 软磁铁氧体材料更能全面满足高频变压器的设计要求, 进行认真考虑,才可以使设计出来的变压器达到比较理 想的性能价格比。 2.磁芯结构 选择磁芯结构时考虑的因数有:降低漏磁和漏感, 增加线圈散热面积,有利于屏蔽,线圈绕线容易,装配 接线方便等。 漏磁和漏感与磁芯结构有直接关系。如果磁芯不需 要气隙,则尽可能采用封闭的环形和方框型结构磁芯。 3.磁芯参数: 磁芯参数设计中,要特别注意工作磁通密度不只是受磁化曲线限制,还要受损耗的限制,同时还与功率传送的工作方式有关。 磁通单方向变化时:ΔB=Bs‐Br,既受饱和磁通密度限制,又更主要是受损耗限制,(损耗引起温升,温升又会影响磁通密度)。工作磁通密度Bm=0.6~0.7ΔB 开气隙可以降低Br,以增大磁通密度变化值ΔB,开气隙后,励磁电流有所增加,但是可以减小磁芯体积。对于磁通双向工作而言: 最大的工作磁通密度Bm,ΔB=2Bm。在双方向变化工作模式时,还要注意由于各种原因造成励磁的正负变化的伏秒面积不相等,而出现直流偏磁问题。可以在磁芯中加一个小气隙,或者在电路设计时加隔直流电容。 4.线圈参数: 线圈参数包括:匝数,导线截面(直径),导线形式,绕组排列和绝缘安排。 导线截面(直径)决定于绕组的电流密度。通常取J为2.5~4A/mm2。导线直径的选择还要考虑趋肤效应。如必要,还要经过变压器温升校核后进行必要的调整。 4.线圈参数: 一般用的绕组排列方式:原绕组靠近磁芯,副绕组反馈绕组逐渐向外排列。下面推荐两种绕组排列形式: 1)如果原绕组电压高(例如220V),副绕组电压低,可以采用副绕组靠近磁芯,接着绕反馈绕组,原绕组在最外层的绕组排列形式,这样有利于原绕组对磁芯的绝缘安排; 2)如果要增加原副绕组之间的耦合,可以采用一半原绕组靠近磁芯,接着绕反馈绕组和副绕组,最外层再绕一半原绕组的排列形式,这样有利于减小漏感。 5.组装结构:

栏杆机说明书

MAGSTOP MIB 2O/3O/40 栏杆机 及MAGTRONIC MLC 控制器 操作指导 @1999年马格内梯克控制系统(上海)有限公司 地址:上海浦东新区宁桥路999号二幢底西层邮编:201206 电话:(21)58341717 传真:(21)58991233

目录 1. 系统概述 2 1.1 停车场系统的布局 2 1. 2 系统组件概述 2 2 安全 3 2.1一般安全信息3 2.2 建议用途 3 2.3 本手册中使用的安全标志3 2.4 操作安全 4 2.5 技术发展 4 2.6 质量保证 4 3. 装配及安装 5 3.1 构筑安装地基 5 3.2 安装感应线圈 6 3.3 安装机箱 8 3.4 安装栏杆机臂 8 3.5 基本机械结构 9 3.6 设置及校准弹簧 9 3.7 校准栏杆机臂位置 10 4. 电源连接 10 5. MLC控制器 11 5.1 命令发生器:在不同操作模式下的连接及功能 12 5.2 MLC控制器的操作 14 5.3 MLC控制器显示信息的解释 14 5.4 MLC控制器的复位 14 5.5 栏杆机的操作 15 5.6 编制及读取操作数据 16 5.7 校准感应线圈 18 6. 初始化操作 19 6.1 委托程序 19 6.2 在启动过程中显示的信息 19 7. 技术数据 21 7.1 栏杆机 21 7.2 控制器 21 8. 附录 22 8.1校准角度传感器及优化栏杆机的动作22 8.2 校准安全设备的角度 24 8.3 读取时间计数器 25 8.4 读取操作循环计数器 25 8.5 读取制动设置 25 8.6 复位情况的说明 26 8.7 测试模式 27 8.8 校准传感器 28 9. 技术支持 28 10. 备用零部件 29

单端反激式开关电源磁芯尺寸和类型的选择

单端反激式开关电源磁芯尺寸和类型的选择字体大小:大|中|小2008-08-28 12:53 - 阅读:1655 - 评论:1 单端反激式开关电源磁芯尺寸和类型的选择徐丽红王佰营wbymcs51.blog.bokee .net A、InternationalRectifier 公司--56KHz 输出功率推荐磁芯型号 0---10WEFD15 SEF16 EF16 EPC17 EE19 EF(D)20 EPC25 EF(D)25 10-20WEE19 EPC19 EF(D)20 EE,EI22 EF(D)25 EPC25 20-30WEI25 EF(D)25

EPC25 EPC30 EF(D)30 ETD29 EER28(L) 30-50WEI28 EER28(L) ETD29 EF(D)30 EER35 50-70WEER28L ETD34 EER35 ETD39 70-100WETD34 EER35 ETD39 EER40 E21 摘自 InternationalRectifier,AN1018- “应用 IRIS40xx 系列单片集成开关 IC 开关电源的反激式变压器设计” B、ELYTON公司https://www.360docs.net/doc/ea11193638.html, 型号输出功率( W) <5 5-10 10-20 20-50 50-100 100-200 200-500 500-1K

EI EI12.5 EI16 EI19 EI25 EI40 -- EI50 EI60 EE EE13 EE16 EE19 EE25 EE40 EE42 EE55 EE65 EF EF12.6 EF16 EF20 EF25 EF30 EF32 EFD -- EFD12 EFD15 EFD20 EFD25 EFD30 EPC -- EPC13 EPC17 EPC19 EPC25 EPC30 EER EER9.5 EER11 EER14.5 EER28 EER35 EER42 EER49 -- ETD ETD29 ETD34 ETD44 ETD49 ETD54 -- EP EP10 EP13 EP17 EP20 -- RM RM4 RM5 RM6 RM10 RM12 POT POT1107 POT1408 POT1811 POT2213POT3019 POT3622 POT4229 -- PQ -- -- -- PQ2016 PQ2625 PQ3230 PQ3535 PQ4040 EC ---------------------------- -- EC35 EC41 EC70 摘自 PowerTransformers OFF-LINE Switch Mode APPLICATION NOTES

高速公路自动栏杆机控制模块维修

高速公路自动栏杆机控制模块维修实例【转贴】 本人在成绵高速公路长期的维护工作中收集、总结的一些关于自动栏杆机控制模块的维护心得,供大家参考。成绵高速公路自动栏杆机控制模块主要是恒富威和magnetic专业设计的自动栏杆机控制模块,主要用于栏杆机的控制。采用了先进的微处理器技术和可靠的开关控制技术,系统集成度高,逻辑功能强,满足高速公路环境下的应用。下面我介绍下栏杆机控制模块面板的功能与接线栏杆机控制模块中的数字代表意义货接法如 下:“1”表示接电源L(火线)220V。“2”表示接电源N (零线)。“3”表示电源线地线。“4”表示电机接地线PE。“5”表示电机公共绕组U;接电机公共绕组U。“6”表示电机落杆绕组V;接电机绕组V。“7”表示电机升杆绕组W;接电机绕组W。“8、9”表示降压减速阻容(R=5Ω/25W C=2uF/AC450V,电阻和电容串联)。“10、11”表示电机运行电容 (4uF/AC450V)。“17”表示24V接地线。“18”表示表示电源+24V。“19”表示控制信号共用线(+24V)。“20”表示开脉冲,和控制信号共用线(+24V)短接有效。“21”表示环路感应器2输入(用于车辆到时自动提杆,用于6、8模式)。“22”表示关脉冲,和控制信号共用线(+24V)短接有效。“23”表示抬杆、落杆限位开关输入信号。“24”示安全开关,接常闭触点;断开时,系统不会执行落杆动作。“25”表示控制信号共用线(+24V),同“19”功能一样。“26”表示档杆状态输出公共触点。“27、28”完全等同于“20、22”表示计数输出,常开触点 (300ms)。“29”表示抬杆状态输出触点。“30”表示落杆状态输出触点。“30、31”表示报警输出,常开触点。栏杆机控制模块长期处于工作状态,每天控制栏杆上下达千次以上;是栏杆机易坏元件之一,下面我介绍常见几点常见的故障和实用的维修方法,供大家参 考。首先,维修设备之前,务必将故障设备的灰尘清除掉,养成这个习惯可以让你维修和检查故障起来轻松、准确许多。 故障一控制模块无电现象控制模块电源长期处于带电中,供电系统元件容易老化,容易出现无供电现象。这种情况一般先观察,所谓观察就是用眼睛看。注意观察栏杆机控制模块的外观、形状上有无什么异常,电器元件,如变压器,电容,电阻等有无出现变形,断裂,松动,磨损,冒烟,腐蚀等情况。其次是鼻子闻,一般轻微的气昧是正常的,如果有刺鼻的焦味,说明某个元器件被烧坏或击穿,应替换相应的元器件。最后用手试,当然是触摸绝缘的部分,有无发热或过热,用手去试接头有无松动;以确定设备运行状况以及发生故障的性质和程度。如某站一道出现控制模块无电,经测试是电源保险管(250V 4A)烧毁。我在更换前观察其他元件外表是否变形断裂,用手触摸电容、电感等接头有无松动。其次我就用万用表跑线,看是否有短路现象。经我检查后初步判定为保险丝被击穿,准备替换。替换前应认清被替换元器件的型号和规格。(同时替换某些元件时还应该注意方向。)最后我将同一型号的保险丝替换上并加电,控制模块工作灯亮起,用外用表测试控制模块,修复。有时,无电现象还由变压器(PIN9 0-115V PIN16 115V-0)损坏造成的。控制模块

Magnetic TOLL栏杆机中文说明书

9 电气连接 9.1 安全 请参照18页,第2.6节“专业安全和特殊危险”中的安全注意事项。 电压 危险 一般 警告

热的表面 小心 电磁干扰 个人保护装备

在施工过程中,必须穿戴以下几种保护装备: ■工作服 ■保护手套 ■安全鞋 ■保护头盔。 9.2安装电保护设备 根据地区或当地的规定,安全设备需要提供给客户。通常有以下几种:■漏电保护器 ■断路器 ■ EN 60947-3的可锁定的2极开关。 9.3连接电源线 电压 危险 注意! 电源线的导线截面在1.5到4mm2 之间。要遵守国家关于 导线长度和相关电缆截面积的规定.

危险! 电压有致命的危险! 1.断开栏杆机系统电源。确保系统断电。确保机器不会再启动。 接线的准备—剥电缆外皮和铁芯绝缘 2.照下图剥开电源线和磁芯 图37:剥电源供应线。 1 电位 2 零线 3 地线 安置电源线 3.照下图,把电源线正确安装在相应的终端线夹上。也可参照,163页,第17.1节的“接线图”。 ■在机箱中正确安装电源线。此电源线不可连接移动部件。 ■用两个束线带固定电源线。 图38 安置电源线 1 电源线

2 束线带 3 束线带的金属突出物 连接电源线 图39:连接电源线 1 电源线的终端线夹 2 电位L 3 零线 N 4 地线 PE 9.4连接控制线路(信号设备) 以下连接对控制和反馈端有效: ■控制栏杆机的8个数码输入 ■反馈信息的4个数码输出 ■反馈信息的6个继电器输出。3个常开,3个转换触点。 危险! 电压有致命危险! 1.断开栏杆机系统电源。确保系统断电并不会重启。 连接控制线 2.将控制线穿过穿线孔。 ■在机箱中合理的放置控制线。控制线不可进入可移动部件。 ■安装控制线夹和绑线。通过轻微按压或移动,线夹可以在轨道上移动到预期的位置。绑线可以绑扎在金属突出物上。 3. 根据接线图连接控制线。请参照163页,第17.1节的“接线图”。

磁芯参数表

常用磁芯参数表 【EER磁芯】 ■ 用途:高频开关电源变压器、匹配变压器、扼流变压器等。 【EE磁芯】 ■ 用途:电源转换用变压器及扼流圈、通讯及其他电子设备变压器、滤波器、电感器及扼流圈、脉冲变压器等。

【ETD磁芯】 ■ 用途:电源转换用变压器及扼流圈、通讯及其他电子设备变压器、滤波器。 【EI 磁芯】 ■ 用途:高频开关电源变压器、功率变压器、整流变压器、电压互感器等。 【ET 磁芯】 ■ 用途:滤波变压器 【EFD 磁芯】 ■ 用途:高频开关电源变压器器、整流变压器、开关变压器等。

【UF 磁芯】 ■ 用途:整流变压器、脉冲变压器、扼流变压器、电源变压器等。 【PQ 磁芯】 ■ 用途高频开关电源变压器、整流变压器等。 【RM 磁芯】 ■ 用途:高频开关电源变压器、整流变压器、屏蔽变压器、脉冲变压器、脉冲功率变压器、扼流变压器、滤波变压器。 【EP 磁芯】 ■ 用途:功率变压器、宽频变压器、屏蔽变压器、脉冲变压器等。

【H 磁芯】 ■ 用途:宽带变压器、脉冲变压器、脉冲功率变压器、隔离变压器、滤波变压器、扼流变压器、匹配变压器等。 软磁铁氧体磁芯形状与尺寸标准(一) 软磁铁氧体磁芯形状 软磁铁氧体是软磁铁氧体材料和软磁铁氧体磁芯的总称。软磁铁氧体磁芯是用软磁铁氧体材料制成的元件或零件,或是由软磁铁氧体材料根据不同形式组成的磁路。磁芯的形状基本上由成型(形)模具决定,而成型(形)模具又根据磁芯的形状进行设计与制造。 磁芯按磁力线的路径大致可分两大类;磁芯按具体形状分,有各种各样: 磁芯按磁力线路径分类 磁芯按使用时磁化过程所产生磁力线的路径可分为开路磁芯和闭路磁芯两类。 第一类为开路磁芯。这类磁芯的磁路是开启的(open magnetic circuits),通过磁芯的磁通同时要通过周围空间(气隙)才能形成闭合磁路。开路磁芯的气隙占磁路总长度的相当部分,磁阻很大,磁路中的部分磁通在达到气隙以前就已离开磁芯形成漏磁通。因而,开路磁芯在磁路各个截面上的磁通不相等,这是开路磁芯的特点。由于开路磁芯存在大的气隙,磁路受到退磁场作用,使磁芯的有效磁导率μe比材料的磁导率μi有所降低,降低的程度决定于磁芯的几何形状及尺寸。 开路磁芯有棒形、螺纹形、管形、片形、轴向引线磁芯等等。IEC 1332《软磁铁氧体材料分类》标准中称开路磁芯为OP类磁芯。 第二类磁芯为闭路磁芯。这类磁芯的磁路是闭合的(closed magnetic circuits),或基本上是闭合的。IEC 1332称闭路磁芯为CL类磁芯。磁路完全闭合的磁芯最典型的是环形磁芯。此外,还有双孔磁芯、多孔磁芯等等。

栏杆机控制器

MLC 580C N ,5131/04.02Phone:+49 7622/695-5Fax:+49 7622/695-602 e-mail:info@ac-magnetic.de https://www.360docs.net/doc/ea11193638.html,

Magnetic Control Systems Sdn.Bhd.No.16, Jalan Kartunis U1/47Temasya Ind.Park, Section U140150 Shah Alam, Selangor Darul Ehsan, Malaysia Phone:(+60) 3 / 55691718eMail: info@https://www.360docs.net/doc/ea11193638.html,.my Magnetic Control Systems (Shanghai) Co. Ltd.999 Ning-qiao Road, Bldg. 2W/1F Pudong New Area Shanghai 201206, China Phone:(+86) 21/ 58 341717eMail: magnetic@https://www.360docs.net/doc/ea11193638.html, Magnetic Automation Pty. Ltd.19 Beverage Drive Tullamarine, Victoria 3043, Australia Phone:(+61) 3 / 93 30 10 33eMail: info@https://www.360docs.net/doc/ea11193638.html, Magnetic Automation Corp.3160 Murrell Road Rockledge, FL 32955, USA Phone:(+1) 321/ 635 85 85eMail: info@https://www.360docs.net/doc/ea11193638.html, Magnetic Autocontrol Pvt.Ltd.Calve Chateau, 2B, IInd Floor Kilpauk 322 Poonamallee High Road IND Chennai, 600010 / India Phone:(+91) 44 6400 443eMail: magneticsales@https://www.360docs.net/doc/ea11193638.html,

德国magnetic栏杆机常见故障分析

德国Magnetic栏杆机的常见故障分析德国Magnetic自动栏杆机的核心部分是MLC控制器,控制器设置的正确与否直接影响栏杆机的正常工作。当栏杆机工作不正常时,请先确认是否是栏杆机的问题,是栏杆机哪个部分出现问题(如机械部分或控制部分),建议先将其他车道工作正常栏杆机控制器换到本车道,以确认是否是控制器出现问题;如果互换控制器后栏杆机工作正常,那么就确认本车道控制器有问题,请参照工作正常的控制器设置即可;如控制器重新设置后仍不能解决问题,请将控制器返回厂家维修。 以下是德国Magnetic自动栏杆机控制器的几种常见设置,可供参考。 1、控制器黑色按键和白色按键的作用: ?黑键:1)、手动控制抬杆; 2)、控制器编程时改变数值; 3)、控制器编程完毕后保存 ?白键:1)、手动控制落杆; 2)、控制器编程时确认数值; 3)、控制器编程完毕后不保存。 ?编程时,同时按下黑键和白键后数值下边出现光标。 ?同时按下黑键和白键持续四秒钟,控制器重启。 2、MLC控制器复位: ?同时按下黑键和白键持续四秒钟; ?将圆盘转至F,确认后可恢复到出厂设置; ?详见中文说明书第14页。 3、控制器圆盘开关各位置的功能 位置0:普通操作模式 位置1:程序代码 1—8

位置2:转矩时间 1—30秒 位置3:栏杆机开启时间 1—255秒 位置4:感应线圈A灵敏度 O一9 (0最小,9最大) 位置5:感应线圈B灵敏度 0—9(0最小,9最大) 位置6:检测器模式A0—8(见功能说明表) 位置7:检测器模式B0—8(见功能说明表) 位置8:感应线圈A/B频率 1 0,000Hz一90,000Hz 位置9:备用 位置A:计数模式 位置B:备用 位置C:备用 位置D:硬件错误控制器 16进制错误代码 位置E:语种选择德、英、法、西 位置F:出厂设置重设所有操作数据 4、模式设置: 将圆盘转至1,控制器有8种操作模式可供选择;详见中文说明书第16页。 5、控制器编程过程: (1)将圆盘开关转到所需位置; (2)同时按下黑色按键和白色按键; (3)使用黑色按键将数字滚动显示为所需的数值(光标位于正在变化的数字下方); (4)按下白色按键存储选中的数值或者将光标移到右边的一格; (5)按下黑色按键确认最终的数值或者按下白色按键取消输入的数值。 注意:完成编程后,请将圆盘开关转回到“0”位置(即普通操作模式) 6、感应线圈灵敏度设置: 将圆盘转至4或5(设置线圈A转至4,线圈B转至5);一般情况下灵敏度选择4-6,不宜太高或太低。详见中文说明书第16页。 7、检测器A、B的开启和关闭 将圆盘开关转至6和7分别设置检测器A、B的状态,如果A、B线圈都没有使用或只使用了一个检测器,那么就要关闭没有使用的检测器(将检测器A、B的数值设置为0,是关闭状态;检测器开启时数值是应该是1或2,一般用2。) 8、校准传感器/优化栏杆机动作

开关电源参数计算

(1)输入电压:185V AC~240V AC (2)输出电压1:+5VDC ,额定电流1A ,最小电流750mA ; (3)输出电压2:+12VDC ,额定电流1A ,最小电流100mA ; (4)输出电压3:-12VDC ,额定电流1A ,最小电流100mA ; (5)输出电压4:+24VDC ,额定电流1.5A ,最小电流250mA ; (6)输出电压纹波:+5V ,±12V :最大100mV (峰峰值);+24V :最大250mV (峰峰值) (7)输出精度:+5V ,±12V :最大± 5%;+24V :最大± 10%; (8)效率:大于80% 3. 参数计算 (1)输出功率: 5V 112V 1224V 1.565 out P A A A W =?+??+?= (3-1) (2)输入功率: 6581.2580%0.8 out in P W P W = == (3-2) (3)直流输入电压: 采用单相桥式不可控整流电路 (max)240VAC 1.414=340VDC in V =? (3-3) (min)185VAC 1.414=262VDC in V =? (3-4) (4)最大平均电流: (m a x ) (m i n )81.25 0.31262in in in P W I A V V == = (3-5) (5)最小平均电流: (min)(max) 81.250.24340 in in in P W I A V = = = (3-6) (6)峰值电流: 可以采用下面两种方法计算,本文采用式(3-8)的方法。

(min)max (min)(min)225581.25 1.550.4262out out out Pk C in in in P P P W I I A V D V V V ?== ====? (3-7) min 5.5 5.581.25 1.71262out Pk C in P W I I A V V ?== == (3-8) (7)散热: 基于MOSFET 的反激式开关电源的经验方法:损耗的35%是由MOSFET 产生,60%是由整流部分产生的。 开关电源的损耗为: (180%)81.25 20%16.25D in P P W W =?-=?= (3-9) MOSFET 损耗为: 35%16.2535% 5.69D MOSFET D P P W W -=?=?= (3-10) 整流部分损耗: (5)55( )60%()16.2560%0.756565D V D W W P P W W W W +=??=??= (3-11) (12)12122()60%2()16.2560% 3.66565D V D W W P P W W W W ±=???=???= (3-12) (242)3636()60%()16.2560% 5.46565D V D W W P P W W W W +=??=??= (3-13) (8)变压器磁芯: 采用天通的EER40/45,饱和磁通密度Bs 在25℃时大于500mT ,在100℃时大于390mT 。窗口有效截面积Ae=152.42mm 2。 所以,取 max 11 0.390.222 s B B T T = =?≈ (3-14) Ae=152.42mm 2 (3-15) (9)开关电源频率: 40f khz = (3-16) (10)开关电源最大占空比: max 0.4D = (3-17)

磁芯各参数详解

一、磁芯初始磁导率 磁感应强度与磁场强度的比值称为磁导率。 初始磁导率高:相同圈数感值大,反之亦然; 初始磁导率高:相同电流下容易饱和,反之亦然; 初始磁导率高:低频特性好,高频差,反之亦然; 初始磁导率高:相同产品价格高,反之亦然; 1、磁导率的测试仪器功能 磁导率的测量是间接测量,测出磁心上绕组线圈的电感量,再用公式计算出磁心材料的磁导率。所以,磁导率的测试仪器就是电感测试仪。在此强调指出,有些简易的电感测试仪器,测试频率不能调,而且测试电压也不能调。例如某些电桥,测试频率为100Hz 或1kHz,测试电压为0.3V,给出的这个0.3V并不是电感线圈两端的电压,而是信号发生器产生的电压。至于被测线圈两端的电压是个未知数。如果用高档的仪器测量电感,例如Agilent 4284A精密LCR测试仪,不但测试频率可调,而且被测电感线圈两端的电压及磁化电流都是可调的。了解测试仪器的这些功能,对磁导率的正确测量是大有帮助的。 2、材料磁导率的测量方法和原理 说起磁导率μ的测量,似乎非常简单,在材料样环上随便绕几匝线圈,测其电感,

找个公式一算就完了。其实不然,对同一只样环,用不同仪器,绕不同匝数,加不同电压或者用不同频率都可能测出差别甚远的磁导率来。造成测试结果差别极大的原因,并非每个测试人员都有精力搞得清楚。本文主要讨论测试匝数及计算公式不同对磁导率测量的影响。 2.1 计算公式的影响 大家知道,测量磁导率μ的方法一般是在样环上绕N匝线圈测其电感L,因为可推得L的表达式为: L=μ0 μN 2A/l (1) 所以,由(1)式导出磁导率的计算公式为: μ=Ll/μ0N 2A(2)式中:l为磁心的磁路长度,A为磁心的横截面积。 对于具有矩形截面的环型磁芯,如果把它的平均磁路长度l=π(D+d)/2就当作磁心的磁路长度l,把截面积A=h(D-d)/2,μ0=4π×10-7都代入(2)式得 二、饱和磁通密度 1.什么是磁通:磁场中垂直通过某一截面的磁感应线总数,称为磁通量(简称磁通) 2.什么是磁通密度:单位面积垂直通过的磁感应线的总数(磁通量)称为磁通密度,磁通密度即磁感应强度。

电源磁芯尺寸功率参数

常用电源磁芯参数 MnZn 功率铁氧体 EPC功率磁芯 特点:具有热阻小、衰耗小、功率大、工作频率宽、重量 轻、结构合理、易表面贴装、屏蔽效果好等优点,但散热 性能稍差。 用途:广泛应用于体积小而功率大且有屏蔽和电磁兼容要 求的变压器,如精密仪器、程控交换机模块电源、导航设 备等。 EPC型功率磁芯尺寸规格 磁芯型号Type 尺寸Dimensions(mm) A B C D Emin F G Hmin EPC10/8 10.20±0.2 4.05±0.303.40±0.20 5.00±0.207.60 2.65±0.201.90±0.20 5.30 EPC13/13 13.30±0.3 6.60±0.304.60±0.205.60±0.2010.50 4.50±0.302.05±0.208.30 EPC17/17 17.60±0.5 8.55±0.306.00±0.307.70±0.3014.30 6.05±0.302.80±0.2011.50 EPC19/20 19.60±0.5 9.75±0.306.00±0.308.50±0.3015.80 7.25±0.302.50±0.2013.10 EPC25/25 25.10±0.512.50±0.38.00±0.3011.50±0.320.65 9.00±0.304.00±0.2017.00

EPC功率磁芯电气特性及有效参数

注:AL值测试条件为1KHz,0.25v,100Ts,25±3℃ Pc值测试条件为100KHz,200mT,100℃ EE、EEL、EF型功率磁芯

特点:引线空间大,绕制接线方便。适用围广、工作频 率高、工作电压围宽、输出功率大、热稳定性能好 用途:广泛应用于程控交换机电源、液晶显示屏电源、 大功率UPS逆变器电源、计算机电源、节能灯等领域。 EE、EEL、EF型功率磁芯尺寸规格 Dimensions(mm)尺寸 磁芯型号TYP A B C D Emin F EE5/5.3/2 5.25±0.15 2.65±0.15 1.95±0.15 1.35±0.15 3.80 2.00±0.15 EE8.3/8.2/3.6 8.30±0.30 4.00±0.25 3.60±0.20 1.85±0.20 6.00 3.00±0.15 EE10/11/4.8 10.20±0.30 5.60±0.30 4.80±0.25 2.50±0.257.50 4.40±0.30 EE12.8/15/3.6 12.70±0.307.40±0.30 3.60±0.25 3.60±0.258.60 5.50±0.30 EE13/12/6 13.20±0.30 6.10±0.30 5.90±0.30 2.70±0.309.80 4.70±0.30 EE13/13W 13.00±0.40 6.50±0.30 9.80±0.30 3.60±0.209.00 4.60±0.20 EE16/14/5 16.10±0.407.10±0.30 4.80±0.30 4.00±0.3011.70 5.20±0.20 EE16/14W 16.10±0.407.25±0.30 6.80±0.30 3.20±0.3512.50 5.60±0.30 EE19/16/5 19.10±0.408.00±0.30 4.85±0.30 4.85±0.3014.00 5.60±0.30 EE19/16W 19.30±0.408.30±0.307.90±0.30 4.80±0.3014.00 5.70±0.30 EE22/19/5.7 22.00±0.509.50±0.30 5.70±0.30 5.70±0.3015.60 5.70±0.30 EE25/20/6 25.40±0.5010.00±0.30 6.35±0.30 6.35±0.3018.60 6.80±0.30

开关电源磁芯主要参数

第5章开关电源磁芯主要参数 5.1 概述 5.1.1 在开关电源中磁性元件的作用 这里讨论的磁性元件是指绕组和磁心。绕组可以是一个绕组,也可以是两个或多个绕组。它是储能、转换和/或隔离所必备的元件,常把它作为变压器或电感器使用。 作为变压器用,其作用是:电气隔离;变比不同,达到电压升、降;大功率整流副边相移不同,有利于纹波系数减小;磁耦合传送能量;测量电压、电流。 作为电感器用,其作用是:储能、平波、滤波;抑制尖峰电压或电流,保护易受电压、电流损坏的电子元件;与电容器构成谐振,产生方向交变的电压或电流。 5.1.2 掌握磁性元件对设计的重要意义 磁性元件是开关变换器中必备的元件,但又不易透彻掌握其工作情况(包括磁材料特性的非线性,特性与温度、频率、气隙的依赖性和不易测量性)。在选用磁性元件时,不像电子元件可以有现成品选择。为何磁性元件绝大多数都要自行设计呢?主要是变压器和电感器涉及的参数太多,例如:电压、电流、频率、温度、能量、电感量、变比、漏电感、磁材料参数、铜损耗、铁损耗等等。磁材料参数测量困难,也增加了人们的困惑感。就以Magnetics公司生产的其中一种MPP铁心材料来说,它有10种μ值,26种尺寸,能在5种温升限额下稳定工作。这样,便有10×26×5= 1300种组合,再加上前述电压、电流等电参数不同额定值的组合,将有不计其数的规格,厂家为用户备好现货是不可能的。果真有现货供应,介绍磁元件的特性、参数、使用条件的数据会非常繁琐,也将使挑选者无从下手。因此,绝大多数磁元件要自行设计或提供参数委托设计、加工。 本章将介绍磁元件的一般特性,针对使用介绍设计方法。结合线性的具体形式的设计方法,以后还将进一步的介绍。 5.1.3 磁性材料基本特性的描述 磁性材料的特性首先用B-H平面上的一条磁化曲线来描述。以μ表示B/H,数学上称为斜率,表示为tanθ=B/h;电工上称为磁导率,如图5.1所示。由于整条曲线多处弯曲,因此有多个μ值称呼。另外,从不同角度考查也有不同称呼。

栏杆机

栏杆机 3.5基本机械结构 1.栏杆机臂 2.设置弹簧拉力的调节螺丝,带有安全夹 3.凸缘轴的紧固柄 4.橡胶缓冲块 5.连接件 6.电机的紧固柄 警告: 弹簧收紧后,弹簧及栏杆机臂对驱动装置(BDU)是加了相当大的力并因此产生了潜在的发生伤害的危险。 因此任何对于栏杆机臂驱动装置(BDU)的工作,必须在弹簧未被收紧并且栏杆机臂确保安全或被卸下的情况下才可以进行! 3.6测试/校准弹簧 所有栏杆机在生产工厂中都根据原配的栏杆机臂做了设置.但在使用时安装完栏杆机臂后进行栏杆机的第一次操作前,应该检查栏杆机臂的设置。 在栏杆机臂的重量被弹簧施加的拉力所平衡的情况下,栏杆机才可以正确运作。因此任何对于栏杆机臂的变动都必须根据如下步骤进行重新校准。 测试弹簧设置: 1.打开栏杆机箱体的门,卸下安装板,开启并取去封盖。 2.拔下电源插头。 3.手工将栏杆机臂调到约45°C角的位置后放开手。如果栏杆机臂稳定在此位置不动,说明此时 弹簧的调整是正确。 校准弹簧设置: 1.取下两个弹簧调节螺杆上的两个安全夹。同时拧紧或放松左右两根调节螺杆直至栏杆机臂在45°C角的位置保持稳定。 2.重新装上调节螺杆安全夹。 例外情况: 当栏杆机被设置为在发生电源故障的情况下自动打开,就需要比上面提到的更大的弹簧拉力(只有在栏杆机臂长度最大为3.5M 的情况下)。 请注意如果栏杆机在生产工厂中特别设置为这种打开方式,那么栏杆机臂在水平终点位置时不会锁止! 3.7校准栏杆机臂位置 要校准栏杆机臂位置(例如,在施加过度的力之后),请根据如下步骤进行: 1.打开栏杆机箱体的门,卸下安装板,开启并取出封盖。 2.按下黑色按键升起栏杆机臂。 3.将MLC控制器前面板上的旋转选择开关(图S0227)转到位置“1” 4.松开凸缘轴的紧固柄上的两个紧固螺钉,使得可以用手将栏杆机臂重新定位。 5.校准栏杆机臂的位置(垂直位置)。 6.使用扭矩扳手重新拧紧两个紧固螺钉(72Nm). 7.将MLC控制器选择开关(图S0227)转回到位置“0”。 4.电源连接

高速公路自动栏杆机控制模块维修实例

高速公路自动栏杆机控制模块维修实例 本人在成绵高速公路长期的维护工作中收集、总结的一些关于自动栏杆机控制模块的维护心得,供大家参考。 成绵高速公路自动栏杆机控制模块主要是恒富威和magnetic专业设计的自动栏杆机控制模块,主要用于栏杆机的控制。采用了先进的微处理器技术和可靠的开关控制技术,系统集成度高,逻辑功能强,满足高速公路环境下的应用。 下面我介绍下栏杆机控制模块面板的功能与接线 栏杆机控制模块中的数字代表意义货接法如下: “1”表示接电源L(火线)220V。“2”表示接电源N(零线)。“3”表示电源线地线。“4”表示电机接地线PE。“5”表示电机公共绕组U;接电机公共绕组U。“6”表示电机落杆绕组V;接电机绕组V。“7”表示电机升杆绕组W;接电机绕组W。“8、9”表示降压减速阻容(R=5Ω/25W C=2uF/AC450V,电阻和电容串联)。“10、11”表示电机运行电容(4uF/AC450V)。“17”表示24V接地线。“18”表示表示电源+24V。“19”表示控制信号共用线(+24V)。“20”表示开脉冲,和控制信号共用线(+24V)短接有效。“21”表示环路感应器2输入(用于车辆到时自动提杆,用于6、8模式)。“22”表示关脉冲,和控制信号共用线(+24V)短接有效。“23”表示抬杆、落杆限位开关输入信号。“24”示安全开关,接常闭触点;断开时,系统不会执行落杆动作。“25”表示控制信号共用线(+24V),同“19”功能一样。“26”表示档杆状态输出公共触点。“27、28”完全等同于“20、22”表示计数输出,常开触点(300ms)。“29”表示抬杆状态输出触点。“30”表示落杆状态输出触点。“30、31”表示报警输出,常开触点。 栏杆机控制模块长期处于工作状态,每天控制栏杆上下达千次以上;是栏杆机易坏元件之一,下面我介绍常见几点常见的故障和实用的维修方法,供大家参考。 首先,维修设备之前,务必将故障设备的灰尘清除掉,养成这个习惯可以让你维修和检查故障起来轻松、准确许多。 故障一控制模块无电现象 控制模块电源长期处于带电中,供电系统元件容易老化,容易出现无供电现象。这种情况一般先观察,所谓观察就是用眼睛看。注意观察栏杆机控制模块的外观、形状上有无什么异常,电器元件,如变压器,电容,电阻等有无出现变形,断裂,松动,磨损,冒烟,腐蚀等情况。其次是鼻子闻,一般轻微的气昧是正常的,如果有刺鼻的焦味,说明某个元器件被烧坏或击穿,应替换相应的元器件。最后用手试,当然是触摸绝缘的部分,有无发热或过热,用手去试接头有无松动;以确定设备运行状况以及发生故障的性质和程度。 如某站一道出现控制模块无电,经测试是电源保险管(250V 4A)烧毁。我在更换前观察其他元件外表是否变形断裂,用手触摸电容、电感等接头有无松动。其次我就用万用表跑线,看是否有短路现象。经我检查后初步判定为保险丝被击穿,准备替换。替换前应认清被替换元器件的型号和规格。(同时替换某些元件时还应该注意方向。)最后我将同一型号的保险丝替换上并加电,控制模块工作灯亮起,用外用表测试控制模块,修复。 有时,无电现象还由变压器(PIN9 0-115V PIN16 115V-0)损坏造成的。控制模块变压器的13、14脚8V 2.4V A;15、16脚1.8V 5.4V A。首先观察变压器是否变形,有无焦味。再用外用表测试进电是否有电,出电是否和变压器上标示的一样则可判断变压器是否损坏。修复方法同上。 车辆过后栏杆无法下落 有的时候还会出现,自动栏杆在过车以后偶尔无法降杆,这往往也是栏杆机内部的控制模块工作紊乱导致。此时,只要对其进行重新复位,就能够很快恢复正常。操作方法:按下控制模块上RESET红色小键即复位,或者将栏杆机电源重开关一次即可修复。

相关文档
最新文档