高考数学组合问题

高考数学组合问题
高考数学组合问题

集 合

重难点:集合的含义与表示方法,用集合语言表达数学对象或数学内容;区别元素与集合等概念及其符号表示;用集合语言(描述法)表达数学对象或数学内容;集合表示法的恰当选择. 考纲要求:①了解集合的含义、元素与集合的“属于”关系;

②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题. 经典例题:若x ∈R ,则{3,x ,x2-2x }中的元素x 应满足什么条件?

当堂练习

1.下面给出的四类对象中,构成集合的是( )

A .某班个子较高的同学

B .长寿的人

C

D .倒数等于它本身的数 2下面四个命题正确的是( )

A .10以内的质数集合是{0,3,5,7}

B .由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}

C .方程2

210x

x -+=的解集是{1,1} D .0与{0}表示同一个集合

3. 下面四个命题: (1)集合N 中最小的数是1; (2)若 -a ?Z ,则a ∈Z ; (3)所有的正实数组成集合R+;(4)由很小的数可组成集合A ; 其中正确的命题有( )个

A .1

B .2

C .3

D .4

4.下面四个命题: (1)零属于空集; (2)方程x2-3x+5=0的解集是空集; (3)方程x2-6x+9=0的解集是单元集; (4)不等式 2 x-6>0的解集是无限集; 其中正确的命题有( )个

A .1

B .2

C .3

D .4 5. 平面直角坐标系内所有第二象限的点组成的集合是( ) A . {x,y 且0,0

x y <>} B . {(x,y)

0,0

x y <>}

C. {(x,y)

0,0

x y <>} D. {x,y 且

0,0

x y <>}

6.用符号∈或?填空:

0__________{0}, a__________{a}, π__________Q , 21

__________Z ,-1__________R ,

0__________N , 0 Φ. 7.由所有偶数组成的集合可表示为{x x =

}.

8.用列举法表示集合D={

2

(,)8,,x y y x x N y N

=-+∈∈}为 .

9.当a 满足 时, 集合A ={

30,x x a x N +

-<∈}表示单元集.

10.对于集合A ={2,4,6}, 若a ∈A ,则6-a ∈A ,那么a 的值是__________. 11.数集{0,1,x2-x}中的x 不能取哪些数值?

12.已知集合A ={x ∈N|12

6x

-∈N },试用列举法表示集合A .

13.已知集合A={

2

210,,x ax x a R x R

++=∈∈}.

(1)若A 中只有一个元素,求a 的值; (2)若A 中至多有一个元素,求a 的取值范围.

14.由实数构成的集合A 满足条件:若a ∈A, a ≠1,则1

1A

a

∈-,证明:

(1)若2∈A ,则集合A 必还有另外两个元素,并求出这两个元素; (2)非空集合A 中至少有三个不同的元素。

§1.2 子集、全集、补集

重难点:子集、真子集的概念;元素与子集,属于与包含间的区别;空集是任何非空集合的真子集的理解;补集的概念及其有关运算.

考纲要求:①理解集合之间包含与相等的含义,能识别给定集合的子集; ②在具体情景中,了解全集与空集的含义;

③理解在给定集合中一个子集的补集的含义,会求给定子集的补集. 经典例题:已知A={x|x=8m+14n ,m 、n ∈Z },B={x|x=2k ,k ∈Z },问: (1)数2与集合A 的关系如何? (2)集合A 与集合B 的关系如何?

当堂练习:

1.下列四个命题:①Φ={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集

是任何一个集合的子集.其中正确的有( ) A .0个 B .1个 C .2个

D .3个

2.若M ={x |x >1},N ={x |x ≥a},且N ?M ,则( ) A .a >1 B .a ≥1 C .a <1 D .a ≤1

3.设U 为全集,集合M 、N U ,且M ?N ,则下列各式成立的是( )

A .u M ?u N

B .u M ?M

C .

u M ?

u N D .

u M ?N

4. 已知全集U ={x |-2≤x ≤1},A ={x |-2<x <1 =,B ={x |x2+x -2=0},C ={x |-2≤x <1 =,则( )

A .C ?A

B .

C ?u A

C .

u B =C D .

u A =B

5.已知全集U ={0,1,2,3}且u A ={2},则集合A 的真子集共有( )

A .3个

B .5个

C .8个

D .7个

6.若A B ,A C ,B ={0,1,2,3},C ={0,2,4,8},则满足上述条件的集合A 为________. 7.如果M ={x |x =a2+1,a ∈N*},P ={y |y =b2-2b +2,b ∈N +},则M 和P 的关系为M_________P . 8.设集合M ={1,2,3,4,5,6},A ?M ,A 不是空集,且满足:a ∈A ,则6-a ∈A ,则满足条件的集合A 共有_____________个.

9.已知集合A={13x -≤

≤},

u A={|37x x <≤},

u B={12

x -≤

<},则集合B= .

10.集合A ={x|x2+x -6=0},B ={x|mx +1=0},若B A ,则实数m 的值是 .

11.判断下列集合之间的关系:

(1)A={三角形},B={等腰三角形},C={等边三角形}; (2)A={2

|20

x x x --=},B={

|12

x x -≤≤},C={

2

|44x x x

+=};

(3)A={

10

|110

x x ≤≤},B={

2

|1,x x t t R

=+∈},C={|213x x +≥};

(4)11{|,},{|,}.

2

4

4

2

k k A x x k Z B x x k Z ==

+∈==

+∈

12. 已知集合{}2

|(2)10A x x

p x x R

=

+++=∈,,且?A {负实数},求实数p 的取值范围.

13..已知全集U={1,2,4,6,8,12},集合A={8,x,y,z},集合B={1,xy,yz,2x},其中6,12

z ≠,若A=B,

求u A..

14.已知全集U ={1,2,3,4,5},A ={x ∈U|x2-5qx +4=0,q ∈R}. (1)若u A =U ,求q 的取值范围; (2)若

u A 中有四个元素,求

u A 和q 的值;

(3)若A 中仅有两个元素,求u A 和q 的值.

§1.3 交集、并集

重难点:并集、交集的概念及其符号之间的区别与联系.

考纲要求:①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; ②能使用韦恩图(Venn )表达集合的关系及运算.

经典例题:已知集合A=

{}2

,x

x x -= B={}2

240

,x

a x x -+=且A ?B=B ,求实数a 的取值范围.

当堂练习: 1.已知集合{}{}{}

2

2

20

,0

,2M x

x px N x

x x q M

N =

++==--=?=

且,则q p ,的值为 ( ).

A .

3,2

p q =-=- B .

3,2

p q =-= C .

3,2

p q ==- D .3,2

p q ==

2.设集合A ={(x ,y )|4x +y =6},B ={(x ,y )|3x +2y =7},则满足C ?A ∩B 的集合C 的个数是( ).

A .0

B .1

C .2

D .3 3.已知集合

{}{}|35|141A x x B x a x a =

-≤≤=+≤

≤+,,A B B

?=且,

B φ

≠,则实数a 的取值范围是( ).

.1.01

A a

B a ≤≤≤

.0

.41

C a

D a ≤-≤≤

4.设全集U=R ,集合

{}{}()()0,()0,0

()

f x M x f x N x

g x g x =

====则方程

的解集是( ).

A .M

B . M ∩(u N )

C . M ∪(

u N ) D .M N

?

5.有关集合的性质

:(1) u(A ?B)=(

u A)

∪(

u B ); (2)

u(A ?B)=(

u A)?(

u B )

(3) A ? (

uA)=U (4) A ? (uA)=Φ 其中正确的个数有( )个.

A.1 B . 2 C .3 D .4

6.已知集合M ={x |-1≤x <2=,N ={x |x —a ≤0},若M ∩N ≠Φ,则a 的取值范围是 .

7.已知集合A ={x |y =x2-2x -2,x ∈R },B ={y |y =x2-2x +2,x ∈R },则A ∩B = . 8.已知全集{}1,2,3,4,5,U

A =

?

且(

u B){

}1,2,

=

u A){}

4,5B

?=

,

,

A B φ?≠ 则A= ,B= .

9.表示图形中的阴影部分 .

10.在直角坐标系中,已知点集A=

{}2

(,)

2

1

y x y x -=-,B={

}

(,)2x y y x =,则

(

uA) ? B= .

11.已知集合M=

{}{}{}

2

2

2

2,2,4

,3,2,46

,2a a

N a a

a a M

N +-=++-+?=

且,求实数a 的的值.

12.已知集合{}{}2

2

,60

,,A x

x bx c B x

x m x A B

B A

=

++==++=?=且B

?=

{}

2,求实数b,c,m 的值.

13. 已知A ?

B={3}, (uA)∩B={4,6,8}, A ∩(

uB)={1,5},(u A)∪

(uB)={

*

10,,3

x x x N x <∈≠},试求u(A ∪

B),A ,B .

A

B

C

14.已知集合A=

}{2

40

x R

x x ∈+=,B=}{22

2(1)10

x R

x a x a ∈+++-=,且A ∪B=A ,试求a 的取值范围.

第1章 集 合 §1.4 单元测试 1.设A={x|x ≤4},

a=

(A ){a} A (B )a ?A (C ){a}∈A (D )a ?A 2.若{1,2} A ?{1,2,3,4,5},则集合A 的个数是( ) (A )8 (B )7 (C )4 (D )3

3.下面表示同一集合的是( )

(A )M={(1,2)},N={(2,1)} (B )M={1,2},N={(1,2)} (C )M=Φ,N={Φ} (D )M={x|2

210}x x -+=,N={1} 4.若P ?U ,Q ?U ,且x ∈CU (P ∩Q ),则( )

(A )x ?P 且x ?Q (B )x ?P 或x ?Q (C )x ∈CU(P ∪Q) (D )x ∈CUP 5. 若M ?U ,N ?U ,且M ?N ,则( )

(A )M ∩N=N (B )M ∪N=M (C )CUN ?CUM (D )CUM ?CUN 6.已知集合M={y|y=-x2+1,x ∈R},N={y|y=x2,x ∈R},全集I=R ,则M ∪N 等于( )

(A )

{(x,y)|x=

1,,}

22

y x y R ±

=

∈ (B )

{(x,y)|x 1,,,}

22

y x y R ≠±

(C ){y|y ≤0,或y ≥1} (D ){y|y<0, 或y>1}

7.50名学生参加跳远和铅球两项测试,跳远和铅球测试成绩分别及格40人和31人,两项测试均不及格的有4人,则两项测试成绩都及格的人数是( )

(A )35 (B )25 (C )28 (D )15

8.设x,y ∈R,A={}

(,)x y y x =,B=

{}(,)

1

y x y x

=,则A 、B 间的关系为( )

(A )A

B (B )B

A (C )A=

B (D )A ∩B=Φ 9. 设全集为R ,若M={}1x x ≥ ,N=

{}

05x x ≤<,则(CUM )∪(CUN )是( )

(A )

{}

0x x ≥ (B )

{}

15x x x <≥或 (C )

{}

15x

x x ≤>或 (D )

{}

05x x x <≥或

10.已知集合{|31,},{|32,}M x x m m Z N y y n n Z ==+∈==+∈,若0

0,,

x

M y N ∈∈ 则00y x 与集合

,M N

的关系是 ( )

? ≠

? ≠

(A )00y x M ∈但N ?(B )00y x N ∈但M ?(C )00y x M ?且N ?(D )00y x M ∈且N ∈ 11.集合U ,M ,N ,P

(A )M ∩(N ∪P ) (B )M ∩CU (N ∪P ) (C )M ∪CU (N ∩P ) (D )M ∪CU (N ∪P ) 12.设I 为全集,A ?I,B A,则下列结论错误的是( ) (A )CIA

CIB (B )A ∩B=B (C )A ∩CIB =Φ (D ) CIA ∩B=Φ

13.已知x ∈{1,2,x2},则实数x=__________.

14.已知集合M={a,0},N={1,2},且M ∩N={1},那么M ∪N 的真子集有 个. 15.已知A={-1,2,3,4};B={y|y=x2-2x+2,x ∈A},若用列举法表示集合B ,则B= . 16.设{

}

1,2,3,4

I

=

,A 与B 是I 的子集,若{

}

2,3

A B

=

,则称(,)A B 为一个“理

想配集”,那么符合此条件的“理想配集”的个数是 .(规定(,)A B 与(,)B A 是两个不同的 “理想配集”)

17.已知全集U={0,1,2,…,9},若(CUA)∩(CUB)={0,4,5},A ∩(CUB)={1,2,8},A ∩B={9}, 试求A ∪B .

18.设全集U=R,集合A={}

14x x -<<,B=

{}

1,y y x x A =+∈,试求CUB, A ∪B, A ∩B,A ∩(CUB), ( CU A) ∩

(CUB).

19.设集合A={x|2x2+3px+2=0};B={x|2x2+x+q=0},其中p ,q ,x ∈R ,当A ∩B={}12

时,求p 的值

和A ∪B .

20.设集合A=

{}

2

(,)

46

2x y y x x b a

=++-±,B=

{}

(,)2x y y x a =+,问:

(1) a 为何值时,集合A ∩B 有两个元素; (2) a 为何值时,集合A ∩B 至多有一个元素.

21.已知集合A=

{}1

234,,,a

a a a ,B=

{}2222

1

234

,,,a

a a a ,其中1

2

34

,,,a a

a a 均为正整数,且

1234

a a a a <<<,A ∩

B={a1,a4}, a1+a4=10, A ∪B 的所有元素之和为124,求集合A 和B .

22.已知集合A={x|x2-3x+2=0},B={x|x2-ax+3a -5},若A ∩B=B ,求实数a 的值.

参考答案 第1章 集 合

§1.1 集合的含义及其表示

经典例题:解:由集合中元素的互异性知 2

2

3,32,2,x x x x x x ≠≠-≠-?????解之得x ≠-1,且x ≠0,且x ≠3.

当堂练习:

1. D;

2. B;

3. A;

4. C;

5. B;

6.∈、∈、?、?、∈、∈、?;

7. {2,x x n n Z

=∈};

8. {(0,8),(1,7),(2,4)};9.

36a <≤;10. 2或

4;

11.因为数集中的元素是互异的,所有2

2

01x x x x ≠≠???-,-. ∵x2-x =0的解是x =0或x =1, ∴x2-x ≠0的

解是x ≠0或x ≠1; ∵x2-x =1的解是x

12

或x

12

, ∴x2-x ≠1的解为x

12

x

12; 因此,x 不能取的数值是0,1

,12

±

12.∵12

6x -∈N (x ∈N ), ∴6-x =1,2,3,4,6(x ∈N ),即x =5,4,3,2,0.故A ={0,2,3,4,

5}. 13.(1)当a=0时,方程2x+1=0只有一根

12

x =-

;当a ≠0时,△=0,即4-4a=0,所以a=1,这时

121

x x ==-.所以,当a=0或a=1时,A 中只有一个元素分别为12

-

或-1.(2)A 中至多有一元素包括两种

情形即A 中有一个元素和A 是空集.当A 是空集时,则有0440a a ≠?=-

?,解得a>1;结合(1)知,当a=0

或a ≥1时,A 中至多有一个元素. 14.(1)1

,2

1-; (2)集合A 非空,故存在a ∈A, a ≠1,∴

1

1A

a

∈-且1

11a

≠-,即0a ≠时,有

A

a

a a

∈-=--

11111

,且

1

1

a a

-≠,∴

1

11a A

a a

=∈--

,∴三个数为

11,

,

1a a a

a

--,再

证这三数两两互不相等即可.

§1.2 子集、全集、补集 经典例题:解:(1)2=8×2+14×(-1),且2∈Z ,-1∈Z , 2=8×(-5)+14×3,且-5∈Z ,3∈Z 等.所以2∈A .

(2)任取x0∈B ,则x0=2k ,k ∈Z .∵2k=8×(-5k )+14×3k ,且-5k ∈Z ,3k ∈Z ,∴2k ∈A ,即B ?A . 任取y0∈A ,则y0=8m+14n ,m 、n ∈Z ,∴y0=8m+14n=2(4m+7n ),且4m+7n ∈Z.∴8m+14n ∈B ,即A ?B . 由B ?A 且A ?B ,∴A=B . 当堂练习:

1. B ;

2. A ;

3. A ;

4. D ;

5. D ;

6. Φ,{0},{2},{0,2};

7. M

P;8. 7. 9. {|27x x ≤≤};10. m =0 或1

3或-1

2;

11. (1

)A ?B ?C.(2){12},{2}A C =-= ,,∴C A B.

(3){|1},{|1}B x x C x x =≥=≥ , ∴A B=C.

(4)

12112

,.244424k k k k +++=

+= ∴当z k

∈时,2k+1是奇数,k+2是整数,

∴A B.

12. (1){}

A

φ=?负实数,符合条件

2

(2)4040

p p ?=+-<<<解得-

(2)004p ?==-当时,或

01{}41{}

p x A p x A p ==-?=-=?∴=当时,解得,满足负实数当时,解得,不满足负实数

12120000

x x p x x ?>+

<>?>??

???解得

13.显然0≠x

,若x=1,则z=2x=2, 从而2 y=8, y=4,得A={8,1,2,4},u A={6, 12};若y=1,则2x=8, x=4, 从而z=2, 得A={8,1,2,4},u A={6, 12};若z=1, 则xy=8, x=2x,不可能.综上所述,

u A={6, 12}.

14.(1)∵

u A =U ,∴A =φ,那么方程x2-5qx +4=0的根x ≠1,2,3,4,5或无解.

x ≠1时,q ≠1,x ≠2,q ≠4

5;x ≠3,4,5时,q ≠13

15,1,25

29.若△<0,即-54<q <54

时,方程无实

根,当然A 中方程在全集U 中无实根.综上,q 的取值范围是{q|-

4

5<q <4

5或q ≠1,4

5,13

15,29

25.(2)

因为u A 中有四个元素,所有A 为单元集合,由上一问知q =4

5时,A ={2},u A ={1,3,4,5};q =13

1

5

时,A ={3},

u A ={1,2,4,5};q =29

25时,A ={5}

u A ={1,2,3,4}.(3)因为A 为双元素集合,

由(1)知q =1时,A ={1,4},u A ={2,3,5}.

§1.3 交集、并集

经典例题:解: A= {}1,0,∵A ?B=B , ∴B ? A.

若B= φ,则

14160,4

a a ?=-??

;若B=

{}

0,则02-0+4=0,a ?φ;若B={}1,

则a ·12-2·1+4=0,a=-

2,-22

240x x -+=,{}2

20,2,1.2,1,x x x B +-==-=-不合;若B={}0,1,2

01401a a

=+=?????

???,φ?a . ∴14a ?.

当堂练习:

1. B ;

2. C ;

3. B ;

4. B ;

5. D ;

6.[-1,+∞];

7.{y |-3≤y ≤3};

8.{}{}1,2,3,3,4,5;

A B ==

9.()A B C ??; 10.{(1,2)}; 11. ∵

{}2M N ?=

, ∴2,N ∈

若 32, 1.a a +==-这时{}{}2,1,3,2,3,11.M N

=

-=

若2

22,0.a

a +==

这时22,a +=不符合集合中元素的互异性.若2

2

462,440, 2.

a a a a a -+=-+==

这时M={}{}2,4,0,5,6,2N =

∴1, 2.

a

a =-=或

12.∵

{}2,A B ?=

∴2B ∈ ∴2

2

260, 5.m m +?+==- ∴{}{}2

560

2,3B x

x x =

-+==

∵,A B B ?=

∴.A

B ?

又 ∵

{}

2A B ?=

{}

2A =

∴(22)4,224b C =-+=-=?= ∴4,4,5

b

c m =-==-.

13. 利用韦恩图求解得U={1,2,3,4,5,6,7,8,9},从而u(A ∪B)= {2,7,9}, A={1,3,5},B={3,4,6,8}.

14. (1)当B=A 时,可得a=1;(2)当B={0}时,得a=-1; (3)当B={-4}时,不合题意; (4)当B=Φ时,由0

?

<得1

a

<-,

综上所述, 1a ≤-或a=1.

§1.4 单元测试

1.D;

2.B;

3.D;

4.B;

5.C;

6.D;

7.B ;

8.B ;

9.B; 10.B; 11.B; 12.C; 13.0或2; 14.7; 15.{2,5,10}; 16. 9;

17.由韦恩图易得:A={1,2,8,9} B={3,6,7,9} A ∪B={1,2,3,6,7,8,9} 18.由条件得B={}

05y y <<,从而CUB=

{}

05y y y ≤≥或, A ∪B=

{}

15y y -<<,

A ∩B=

{}

04y y <<,A ∩(CUB)=

{}

10y y -<≤, (CU A) ∩(CUB)=

{}

15y y y ≤-≥或

19.∵A ∩B={12},∴1

2∈A ,代入得p=-5

3 ∴A={

12

,2}

又∵A ∩B={1

2},∴

12

∈B ,代入得q=-1 ∴B={1

2,-1}

则A ∪B={-1,1

2,2}

20. (1)由方程组2

462y x x y x a

=++=+???得2

260x x a ++-=,由0?>得5a >;

(2)由(1)可知5a ≤.

21.由条件得a1= a12,从而a1=1, a4=9, 若 a22= a4=9,则a2=3,所以a3+ a32=124-10-3-81=30,

a3=5,符合题意; 若a32== a4=9,则a3=3,得a2=2,这与"A∪B的所有元素之和为124"这一条件矛盾,所以A={1,3,5,9},B={1,9,25,81}.

22.A={x|x2-3x+2=0}={1,2} 由x2-ax+3a-5=0,知Δ=a2-4(3a-5)=a2-12a+20=(a-2)(a-10)

(1)当2

(2)当a≤2或a≥10时,Δ≥0,则B≠φ

若x=1,由1-a+3a-5=0得a=2此时B={x|x2-2x+1=0}={1}?A;

若x=2,由4-2a+3a-5=0,得a=1此时B={2,-1}?A.

综上所述,当2≤a<10时,均有A∩B=B

1.排列组合题的求解策略

(1)排除:对有限条件的问题,先从总体考虑,再把不符合条件的所有情况排除,这是解决排列组合题的常用策略.

(2)分类与分步

有些问题的处理可分成若干类,用加法原理,要注意每两类的交集为空集,所有各类的并集是全集;有些问题的处理分成几个步骤,把各个步骤的方法数相乘,即得总的方法数,这是乘法原理.

(3)对称思想:两类情形出现的机会均等,可用总数取半得每种情形的方法数.

(4)插空:某些元素不能相邻或某些元素在特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后将有限制条件的元素按要求插入到排好的元素之间.

(5)捆绑:把相邻的若干特殊元素“捆绑”为一个“大元素”,然后与其它“普通元素”全排列,然后再“松绑”,将这些特殊元素在这些位置上全排列.

(6)隔板模型:对于将不可辨的球装入可辨的盒子中,求装的方法数,常用隔板模型.如将12个完全相同的球排成一列,在它们之间形成的11个缝隙中任意插入3块隔板,把球分成4堆,分别装入4个不同的盒子中的方法数应为,这也就是方程的正整数解的个数.

2.圆排列

(1)由的个元素中,每次取出个元素排在一个圆环上,叫做一个圆排列(或叫环状排列).

(2)圆排列有三个特点:(i)无头无尾;(ii)按照同一方向转换后仍是同一排列;(iii)两个圆排列只有在元素不同或者元素虽然相同,但元素之间的顺序不同,才是不同的圆排列.

(3)定理:在的个元素中,每次取出个不同的元素进行圆排列,圆排列数为.

3.可重排列

允许元素重复出现的排列,叫做有重复的排列.

在个不同的元素中,每次取出个元素,元素可以重复出现,按照一定的顺序那么第一、第二、…、第位是的选取元素的方法都是种,所以从个不同的元素中,每次取出个元素的可重复的排列数为.

4.不尽相异元素的全排列

如果个元素中,有个元素相同,又有个元素相同,…,又有个元素相同(),这个元素全部取的排列叫做不尽相异的个元素的全排列,它的排列数是

5.可重组合

(1)从个元素,每次取出个元素,允许所取的元素重复出现次的组合叫从个元素取出个有重复的组合.

(2)定理:从个元素每次取出个元素有重复的组合数为:.

6.二项式定理

(1)二项式定理().

(2)二项开展式共有项.

(3)()叫做二项开展式的通项,这是开展式的第项.

(4)二项开展式中首末两端等距离的两项的二项式系数相等.

(5)如果二项式的幂指数是偶数,则中间一项的二项式系数最大;如果是奇数,则中间两项的二项式

系数与最大.

(6)二项式开展式中奇数项的二项式系数之和等于偶数项系数之和,即

7.数学竞赛中涉及二项式定理的题型及解决问题的方法

二项式定理,由于结构复杂,多年来在高考中未能充分展示应有的知识地位,而数学竞赛的命题者却对其情有独钟.

(1)利用二项式定理判断整除问题:往往需要构造对偶式;

(2)处理整除性问题:构造对偶式或利用与递推式的结合;

(3)求证不等式:通过二项式展开,取展开式中的若干项进行放缩;

(4)综合其他知识解决某些综合问题:有些较复杂的问题看似与二项式定理无关,其实通过观察、分析题目的特征,联想构造合适的二项式模型,便可使问题迅速解决.

例题分析

例1.数1447,1005,1231有某些共同点,即每个数都是首位为1的四位数,且每个四位数中恰有两个数字相同,这样的四位数共有多少个?

例2.有多少个能被3整除而又含有数字6的五位数?

例3.有个人参加收发电报培训,每两人结为一对互发互收,有多少种不同的结对方式?

例4.将个不同的小球放入个不同的盒子中,要使每个盒子都不空,共有多少种放法?

例5.在正方体的8个顶点,12条棱的中点,6个面的中心及正方体的中心共27个点中,共线的三点组的个数是多少个?

例6.用8个数字1,1,7,7,8,8,9,9可以组成不同的四位数有多少个?

例7.用五种颜色给正方体的各个面涂色,并使相邻面必须涂不同的颜色,共有多少种不同的涂色方式?例8.某种产品有4只次品和6只正品(每只产品可区分),每次取一只测试,直到4只次品全部测出为止.求最后一只次品在第五次测试时被发现的不同情形有多少种?

例9.在平面上给出5个点,连结这些点的直线互不平行,互不重合,也互不垂直,过每点向其余四点的连线作垂线,求这此垂线的交点最多能有多少个?

例10。.8位政治家举行圆桌会议,两位互为政敌的政治家不愿相邻,其入坐方法有多少种?

例11.某城市有6条南北走向的街道,5条东西走向的街道.如果有人从城南北角(图点)走到东南角中点最短的走法有多少种?

例12.用4个1号球,3个2号球,2个3号球摇出一个9位的奖号,共有多少种可能的号码?

例13.将个相同的小球,放入个不同的盒子().

(1)有多少种不同的放法?

(2)如果不允许空盒应有多少种不同的放法?

例14.8个女孩和25个男孩围成一圈,任意两个女孩之间至少站着两个男孩.(只要把圆旋转一下就重合的排列认为是相同的)

例15.设,求的值.

例16.当时,的整数部分是奇数还是偶数?证明你的结论.

例17.已知数列()满足:

求证:对于任意正整数,

是一次多项式或零次多项式.

例18.若(),求证:.

例19.设的整数部分,求的个数数字.

例20.已知()求的个位数字.

例21.试证大于的最小整数能被整除().

例22.求证:对任意的正整数,不等式.

例23.设,且.求证对于每个,都有

排列组合问题的解法第三计

每周一计第三计——排列组合问题的解法 解决排列组合问题要讲究策略,用顺口溜概括为:审明题意,排(组)分清;合理分类,用准加乘;周密思考,防漏防重;直接间接,思路可循;元素位置,特殊先行;一题多解,检验真伪。 (一).特殊元素、特殊位置的“优先安排法” 对于特殊元素的排列组合问题,一般先考虑特殊元素,再考虑其他元素的安排。在操作时,针对实际问题,有时“元素优先”,有时“位置优先”。 例1 : 0、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有几个? 解法一:(元素优先)分两类:第一类,含0:0在个位有 种,0在十位有 种; 第二类,不含0:有1 223A A 种。 故共有( 24A +1123A A )+1223A A =30种。 注:在考虑每一类时,又要优先考虑个位。 解法二:(位置优先)分两类:第一类,0在个位有 种;第二类,0不在个位,先从两个偶数中选一个 放个位,再选一个放百位,最后考虑十位,有 种。 故共有 练习:甲、乙、丙、丁、戊、己六位同学选四人组队参加4*100m 接力赛,其中甲、乙不跑最后一棒,共有多少种不同的安排方法?(此题可有元素优先和位置优先两个角度两种解法,但位置优先则更简单) (二).排除法 对于含有否定词语的问题,还可以从总体中把不符合要求的除去. 例2:5个人从左到右站成一排,甲不站排头,乙不站第二个位置,不同的站法有543543 2A A A -+=78种. (三).相邻问题“捆绑法” 对于某些元素要求相邻.. 排列的问题,可先将相邻元素捆绑成整体并看作一个元素再与其它元素进行排列,同时对相邻元素内部进行自排。 例3: 5个男生3个女生排成一列,要求女生排一起,共有几种排法? 解:先把3个女生捆绑为一个整体再与其他5个男生全排列。同时,3个女生自身也应 全排列。由乘法原理共有6365A A 种。 (四)。不相邻问题“插空法” 对于某几个元素不相邻的排列问题,可先将其他可相邻元素排好,再将不相邻的元素在已排好的元素之间及两端的空隙之间插入即可(注意有时候两端的空隙的插法是不符合题意的) 例4: 5个男生3个女生排成一列,要求女生不相邻且不可排两头,共有几种排法? 解:先排无限制条件的男生,女生插在5个男生间的4个空隙,由乘法原理共有 种。 注意:①分清“谁插入谁”的问题。要先排可相邻的元素,再插入不相邻的元素; ②数清可插的位置数;③插入时是以组合形式插入还是以排列形式插入要把握准。 例5: 马路上有编号为1、2、3、…、9的9盏路灯,现要关掉其中的三盏,但不能同时关掉相邻的两盏或三盏,也不能关两端的路灯,则满足要求的关灯方法有几种? 解:由于问题中有6盏亮3盏暗,又两端不可暗,故可在6盏亮的5个间隙中插入3个暗的即可,有3 5 C 种。 (五)。定序问题选位不排 对于某几个元素顺序一定的排列问题,可先在总位置中选出顺序一定元素的位置而不参加排列,然后对其它元素进行排列。 例6: 5人参加百米跑,若无同时到达终点的情况,则甲比乙先到有几种情况? 解:先在5个位置中选2个位置放定序元素(甲、乙)有 种,再排列其它3人有 ,由乘法原理得共有 =60种。 1345240A A =5354A A 25C 3 3 A 25C 3 3A 24 A 1123A A 111233 A A A 2111423330 A A A A +=24A

高考数学专题之排列组合小题汇总

温馨提示:(每题4分满分100分时间90分钟)姓名________________ 一、单选题 1.某种植基地将编号分别为1,2,3,4,5,6的六个不同品种的马铃薯种在如图所示的 A B C D E F 这六块实验田上进行对比试验,要求这六块实验田分别种植不同品种的马铃薯,若种植时要求编号1,3,5的三个品种的马铃薯中至少有两个相邻,且2号品种的马铃薯不能种植在A 、F这两块实验田上,则不同的种植方法有 ( ) A. 360种 B. 432种 C. 456种 D. 480种 2.甲、乙、丙、丁、戊五位妈妈相约各带一个小孩去观看花卉展,她们选择共享电动车出行,每辆电动车只能载两人,其中孩子们表示都不坐自己妈妈的车,甲的小孩一定要坐戊妈妈的车,则她们坐车不同的搭配方式有() A.种 B.种 C.种 D.种 3.已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.若顾客甲没有银联卡,顾客乙只带了现金,顾客丙、丁用哪种方式结账都可以,这四名顾客购物后,恰好用了其中的三种结账方式,那么他们结账方式的可能情况有()种 A. 19 B. 26 C. 7 D. 12 4.有张卡片分别写有数字,从中任取张,可排出不同的四位数个数为() A . B. C. D. 5.我市拟向新疆哈密地区的三所中学派出5名教师支教,要求每所中学至少派遣一名教师,则不同的派出方法有() A. 300种 B. 150种 C. 120种 D. 90种 6.一只小青蛙位于数轴上的原点处,小青蛙每一次具有只向左或只向右跳动一个单位或者两个单位距离的能力,且每次跳动至少一个单位.若小青蛙经过5次跳动后,停在数轴上实数2位于的点处,则小青蛙不同的跳动方式共有( )种. A. 105 B. 95 C. 85 D. 75 7.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在前三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同排课顺序共有() A.种 B.种 C.种 D.种 8.郑州绿博园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,其中的小李和小王不在一起,不同的安排方案共有() A. 168种 B. 156种 C. 172种 D. 180种 9.用6种不同的颜色对正四棱锥的8条棱染色,每个顶点出发的棱的颜色各不相同,不同的染色方案共有多少种() A.14400 B.28800 C.38880 D.43200 10.《红海行动》是一部现代海军题材影片,该片讲述了中国海军“蛟龙突击队”奉命执行撤侨任务的故事.撤侨过程中,海军舰长要求队员们依次完成六项任务,并对任务的顺序提出了如下要求:重点任务A 必须排在前三位,且任务E、F必须排在一起,则这六项任务的不同安排方案共有() A. 240种 B. 188种 C. 156种 D. 120种 11.定义“有增有减”数列{}n a如下:* t N ?∈,满足 1 t t a a + <,且* s N ?∈,满足 1 S S a a + >.已知“有增有减”数列{}n a共4项,若{}() ,,1,2,3,4 i a x y z i ∈=,且x y z <<,则数列{}n a共有() 序号 1 2 3 4 5 6 7 8 9 10 11 12 选项 13 14 15 16 17 18 19 20 21 22 23 24 25

【智博教育原创专题】排列组合的常见题型及其解法大全(包含高中所有的题型)

★绝密 备战2014专题 主编:冷世平

排列组合的常见题型及其解法排列组合问题,通常都是出现在选择题或填空题中,问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口,实践证明,解决问题的有效方法是:题型与解法归类、识别模式、熟练运用。 ◆处理排列组合应用题的一般步骤为: ①明确要完成的是一件什么事(审题);②有序还是无序;③分步还是分类。 ◆处理排列组合应用题的规律 ⑴两种思路:直接法,间接法;⑵两种途径:元素分析法,位置分析法。 排列组合知识,广泛应用于实际,掌握好排列组合知识,能帮助我们在生产生活中,解决许多实际应用问题。同时排列组合问题历来就是一个老大难的问题。因此有必要对排列组合问题的解题规律和解题方法作一点归纳和总结,以期充分掌握排列组合知识。首先,谈谈排列组合综合问题的一般解题规律: ⑴使用“分类计数原理”还是“分步计数原理”要根据我们完成某件事时采取的方式而定,可以分类来完成这件事时用“分类计数原理”,需要分步来完成这件事时就用“分步计数原理”;那么,怎样确定是分类,还是分步骤?“分类”表现为其中任何一类均可独立完成所给的事件,而“分步”必须把各步骤均完成才能完成所给事件,所以准确理解两个原理强调完成一件事情的几类办法互不干扰,相互独立,彼此间交集为空集,并集为全集,不论哪类办法都能将事情单独完成,分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成这件事,步与步之间互不影响,即前步用什么方法不影响后面的步骤采用的方法。 ⑵排列与组合定义相近,它们的区别在于是否与顺序有关。 ⑶复杂的排列问题常常通过试验、画“树图”、“框图”等手段使问题直观化,从而寻求解题途径,由于结果的正确性难于检验,因此常常需要用不同的方法求解来获得检验。 ⑷按元素的性质进行分类,按事件发生的连续性进行分步是处理排列组合问题的基本思想方法,要注意“至少、至多”等限制词的意义。 ⑸处理排列、组合综合问题,一般思想是先选元素(组合),后排列,按元素的性质进行“分类”和按事件的过程“分步”,始终是处理排列、组合问题的基本原理和方法,通过解题训练要注意积累和掌握分类和分步的基本技能,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏。 ⑹在解决排列组合综合问题时,必须深刻理解排列组合的概念,能熟练地对问题进行分类,牢记排列数与组合数公式与组合数性质,容易产生的错误是重复和遗漏计数。 总之,解决排列组合问题的基本规律,即:分类相加,分步相乘,排组分清,加乘明确;有序排列,无序组合;正难则反,间接排除等;其次,我们在抓住问题的本质特征和规律,灵活运用基本原理和公式进行分析解答的同时,还要注意讲究一些解题策略和方法技巧,使一些看似复杂的问题迎刃而解。下面介绍几种常用的解题方法和策略。 【策略1】特殊元素(位置)用优先考虑 把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。 【例1】6人站成一横排,其中甲不站左端也不站右端,有种不同站法。 【分析】解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。 【法一】(优先考虑特殊元素)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有4种站法;第二步再让其余的5人站在其他5个位置上,有120种站法,故站法共有480种; A种方法;剩下四【法二】(优先考虑特殊位置)先从除甲外的五个元素中任取两个站在两端,有2 5 A种方法,共计有480种。 个人作全排列有4 4 用0,2,3,4,5五个数字,组成没有重复数字的三位数,其中偶数共有个。30 【策略2】相邻问题用捆绑法 将相邻的元素内部进行全排列,绑成一捆,看作一个整体,视为一个元素,与其他元素进行排列。

2020年高考理科数学易错题《排列组合》题型归纳与训练

2020年高考理科数学《排列组合》题型归纳与训练 【题型归纳】 题型一 计数原理的基本应用 例1 某校开设A 类选修课2门,B 类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有 A .3种 B .6种 C .9种 D .18种 【答案】 C . 【解析】 可分以下2种情况:①A 类选修课选1门,B 类选修课选2门,有 62312=?C C 种不同的选法;②A 类选修课选2门,B 类选修课选1门,有31322=?C C 种不同的选法.所以根据分类计数原理知不同的选法共有6+3=9种.故要求两类课程中各至少选一门,则不同的选法共有9种.故选:C 【易错点】注意先分类再分步 【思维点拨】两类课程中各至少选一门,包含两种情况:A 类选修课选1门,B 类选修课选2门;A 类选修课选2门,B 类选修课选1门,写出组合数,根据分类计数原理得到结果. 题型二 特殊元素以及特殊位置 例 1 将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法有( )种.(用数字作答) 【答案】 480 【解析】考虑到C B A ,,要求有顺序地排列,所以将这三个字母当作特殊元素对待。先排F E D ,,三个字母,有12036 =A 种排法;再考虑C B A ,,的情况:C 在最左端有2种排法,最右端也是2种排法,所以答案是4804120=?种. 【易错点】注意特殊元素的考虑 【思维点拨】对于特殊元素与特殊位置的考量,需要瞻前顾后,分析清楚情况,做到“不重复不遗漏”;如果情况过于复杂,可以考虑列举法,虽然形式上更细碎一些,但是情况分的越多越细微,每种情况越简单,准确度就越高. 题型三 捆绑型问题以及不相邻问题 例1 由1,2,3,4,5,6组成没有重复数字且1,3都不与5相邻的六位偶数的个数是( )个.

高中数学-排列组合解法大全

排列组合解法大全 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有3 4A 由分步计数原理得1 1 3434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有 多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元 素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有5 2 2 522480A A A =种不同的排法 C 1 4 A 3 4 C 1 3 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件

高考数学专题之排列组合综合练习

高考数学专题之排列组 合综合练习 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1.从中选个不同数字,从中选个不同数字排成一个五位数,则这些五位数中偶数的个数为() A. B. C. D. 2.五个同学排成一排照相,其中甲、乙两人不排两端,则不同的排法种数为()A.33 B.36 C.40 D.48 3.某校从8名教师中选派4名同时去4个边远地区支教(每地1名教师),其中甲和乙不能都去,甲和丙只能都去或都不去,则不同的选派方案有() A.900种 B.600种 C.300种 D.150种 4.要从甲、乙等8人中选4人在座谈会上发言,若甲、乙都被选中,且他们发言中间恰好间隔一人,那么不同的发言顺序共有__________种(用数字作答). 5.有五名同学站成一排照毕业纪念照,其中甲不能站在最左端,而乙必须站在丙的左侧(不一定相邻),则不同的站法种数为__________.(用数字作答) 6.有个座位连成一排,现有人就坐,则恰有个空位相邻的不同坐法是 __________. 7.现有个大人,个小孩站一排进行合影.若每个小孩旁边不能没有大人,则不同的合影方法有__________种.(用数字作答) 8.(2018年浙江卷)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答) 9.由0,1,2,3,4,5这6个数字共可以组成______.个没有重复数字的四位偶数. 10.将四个编号为1,2,3,4的小球放入四个编号为1,2,3,4的盒子中. (1)有多少种放法

高考数学排列组合常见题型

选修2-3:排列组合常见题型 可重复的排列(求幂法) 重复排列问题要区分两类元素:一类可以重复,另一类不能重复。 在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数。 【例1】 (1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)4 3(2)34 (3)3 4 相邻问题(捆绑法) 相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 【例1】,,,,A B C D E 五人站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种 练习:(2012辽宁)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为 (A)3×3! (B) 3×(3!)3 (C)(3!)4 (D) 9! 【解析】:C 相离问题(插空法 ) 元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是 52563600A A = 【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法 【解析】: 111789A A A =504 【例3】.马路上有编号为1,2,3…,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种? 【解析】:把此问题当作一个排队模型,在6盏亮灯的5个空隙中插入3盏不亮的灯3 5C = 10 种方法。

排列组合解法大全

排列组合解法大全 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花 盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素, 再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪, 4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出 场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排 好的6个元素中间包含首尾两个空位共有种4 6A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进 行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法 种数是:73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有4 7A 种方法,其余的三个位

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

高中数学排列组合难题十一种方法

高考数学排列组合难题解决方法 1. 分类计数原理(加法原理) 完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,…,在第类办法中有种不同的方法,那么完成这件事共有: N = mi + m2 j + m n 种不同的方法. 2. 分步计数原理(乘法原理) 完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,做第步有种不同的方法,那么完成这件事共有: N = mi江m2汇川X m n 种不同的方法. 3. 分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1. 认真审题弄清要做什么事 2. 怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进 行,确定分多少步及多少类。 3. 确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略

解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有 然后排首位共有 最后排其它位置共有 由分步计数原理得 练习题:7种不同的花种在排成一列的xx,若两种葵花不种在中间,也不种在两端的xx,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有种不同的排法 练习题1.用1,2,3,4,5 组成没有重复数字的五位数其中恰有两个偶数夹1, 5在两个奇数之间,这样的五位数有多少个? 解:把1,5,2,4当作一个小集团与3排队共有种排法,再排小集团内部共有种排法,由分步计数原理共有种排法. 1524

超全超全的排列组合的二十种解法

排列有两种定义,但计算方法只有一种,凡是符合这两种定义的都用这种方法计算。定义的前提条件是m≦n,m与n均为自然数。①从n个不同元素中,任取m个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。②从n个不同元素中,取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。 ③用具体的例子来理解上面的定义:4种颜色按不同颜色,进行排列,有多少种排列方法,如果是6种颜色呢。从6种颜色中取出4种进行排列呢。 解:A(4,4)=4x(4-1)x(4-2)x(4-3)x(4-4+1)=4x1x2x3x1=24。 A(6,6)=6x5x4x3x2x1=720。 A(6,4)=6!/(6-4)!=(6x5x4x3x2x1)/2=360。 [计算公式] 排列用符号A(n,m)表示,m≦n。 计算公式是:A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)! 此外规定0!=1,n!表示n(n-1)(n-2) (1) 例如:6!=6x5x4x3x2x1=720,4!=4x3x2x1=24。 组合的定义及其计算公式 1 组合的定义有两种。定义的前提条件是m≦n。 ①从n个不同元素中,任取m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。 ②从n个不同元素中,取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。 ③用例子来理解定义:从4种颜色中,取出2种颜色,能形成多少种组合。 解:C(4,2)=A(4,2)/2!={[4x(4-1)x(4-2)x(4-3)x(4-4+1)]/[2x(2-1)x(2-2+1)]}/[2x(2-1)x(2-2+1)]=[( 4x3x2x1)/2]/2=6。 [计算公式] 组合用符号C(n,m)表示,m≦n。 公式是:C(n,m)=A(n,m)/m! 或C(n,m)=C(n,n-m)。

(完整版)高考数学专题之排列组合小题汇总

5.我市拟向新疆哈密地区的三所中学派出5名教师支教,要求每所中学至少派遣一名教师,则不同的派出方法有( ) A . 300种 B . 150种 C . 120种 D . 90种 6.一只小青蛙位于数轴上的原点处,小青蛙每一次具有只向左或只向右跳动一个单位或者两个单位距离的能力,且每次跳动至少一个单位.若小青蛙经过5次跳动后,停在数轴上实数2位于的点处,则小青蛙不同的跳动方式共有( )种. A . 105 B . 95 C . 85 D . 75 7.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在前三节, 且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同排课顺序共有( ) A . 120种 B . 156种 C . 188种 D . 240种 8.郑州绿博园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,其中的小李和小王不在一起,不同的安排方案共有( ) A . 168种 B . 156种 C . 172种 D . 180种 9.用6种不同的颜色对正四棱锥的8条棱染色,每个顶点出发的棱的颜色各不相同,不同的染色方案共有多少种( ) A . 14400 B . 28800 C . 38880 D . 43200 10.《红海行动》是一部现代海军题材影片,该片讲述了中国海军“蛟龙突击队”奉命执行撤侨任务的故事.撤侨过程中,海军舰长要求队员们依次完成六项任务,并对任务的顺序提出了如下要求:重点任务A 必须排在前三位,且任务E 、F 必须排在一起,则这六项任务的不同安排方案共有( ) A . 240种 B . 188种 C . 156种 D . 120种 11.定义“有增有减”数列{}n a 如下: *t N ?∈,满足1t t a a +<,且*s N ?∈,满足1S S a a +>.已知“有增有

完整版排列组合的二十种解法最全的排列组合方法总结

教学目标 1. 进一步理解和应用分步计数原理和分类计数原理。 2. 掌握解决排列组合问题的常用策略 ;能运用解题策略解决简单的综合应用题。提高学生解决问题分 析问题的能力 3. 学会应用数学思想和方法解决排列组合问题 复习巩固 1. 分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有 m i 种不同的方法,在第 2类办法中有m 2种不同的方 法,…,在第n 类办法中有m n 种不同的方法,那么完成这件事共有: N m i m 2 L m n 种不同的方法. 2. 分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有叶种不同的方法,做第2步有m 2种不同的方法,… 做第n 步有m n 种不同的方法,那么完成这件事共有: N mi m 2 L m n 种不同的方法. 3. 分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下 : 1. 认真审题弄清要做什么事 2. 怎样做才能完成所要做的事 ,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少 类。 3. 确定每一步或每一类是排列问题 (有序)还是组合(无序)问题,元素总数是多少及取出多少个元素 . 4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数 . 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置 . 先排末位共有C ; 然后排首位共有C 1 最后排其它位置共有 A 3 由分步计数原理得C 4C ;A ; 288 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法 ,若以元素分析为主,需 先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位 置。若 有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件 练习题:7种不同的花种在排成一列的花盆里 多少不同的种法? 二. 相邻元素捆绑策略 例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元 素进行排 A 3 ,若两种葵花不种在中间,也不种在两端的花盆里,冋有 A 5 A 2 A 2 480种不同的

高考数学排列组合常见方法

排列组合中的常用方法 1.排列数:)! (! )1()2)(1(m n n m n n n n P m n -= +-???--=,(其中m ≤n ,m 、n ∈N ). 注意:为了使m=n 时,!)! (! n n n n P P n n m n =-= =公式成立,我们规定10=!(同时11=!). 2.组合数:)! (!! 123)2)(1()1()2)(1(m n m n m m m m n n n n P P C m m m n m n -?= ?????--+-???--==),,(n m N m n ≤∈*且 m n n m n C C -= ),,(n m N m n ≤∈*且. 注意:为了使m=n 时,0n n n C C =公式成立,我们规定10 =n C , 所以11 10 10 ====+++k k k k k k C C C C ; 3.排列组合问题联系生活实际,生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题还是组合问题或是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 4.排列组合中的常用方法如下: (1)特殊元素和特殊位置问题——优限法 (2)多元问题——合理分类与分步法 (3)相邻问题——捆绑法 (4)不相邻问题——插空法 (5)定序问题——倍缩法 (6)重排问题——求幂法 (7)平均分组问题——除序法 (8)分组问题——隔板法 (9)分配问题——先分组后排列法 (10)球盒问题 (11)区域涂色问题——分步与分类综合法 (12)“至少”“至多”问题或者部分符合条件问题——排除法或分类法(“正难则反”策略) (13)元素个数较少的排列组合问题——枚举法 (14)复杂的排列组合问题——分解与合成法

高考数学复习系列-排列组合专题

高考数学复习系列,排列组合专题,共两篇文章: 一、排列组合中“重复”的产生与纠正 二、排列组合应用问题的九种求解策略 一、排列组合中“重复”的产生与纠正 有些类型的排列、组合应用题是较容易出现错误解法的,其中产生错误原因之一是由于重复造成的。在解题时,应做到既不出现重复,又能判断出解题的正误,并加以剖析、纠正,这样对于提高解排列、组合应用题及分析解决问题能力均有很大益处。重复出现在下面几种情况中: 1、分步违反“无关”而产生重复 例1:假设在200件产品中,有3件次品,现在从中任意抽出5件,其中至少有2件次品的抽法有多少种? 分析:“至少有件次品”是指“恰有2件次品或恰有3件次品”,因此可分成两类求解。 解法1:(直接法)第一类,2件次品3件合格品,有种;第二类,3件次品2件合格品,有种。由分类计数原理得抽法为+=3783976(种)。 解法2:(间接法)不论次品,合格品抽法共有,恰有1件次品的抽法种数有,没有次品的抽法种数为,至少有2件次品的抽法种数为--=3783976(种)。 评注:“至少”或“至多”问题是组合问题中的常见类型,可分成几类用直接法,也可用间接法。当所分的类较多时,用间接法会更简捷。 2、均分组问题易重复 例2:将8个不同的小球分成四堆,每堆2个,共有多少种不同的分堆方法? 解法1:分四步完成。首先,从8个不同的小球中任意取出2个作为一堆有种取法;然后从其余的6个小球中任取2个有种取法;再从剩下的4个小球中任取2个有种取法;最后留下的2个小球作为一堆有种取法,根据分步计数原理,共有不同的分堆方法种数为=2520种。

解法2:首先从8个不同的小球中任意取出2个作为一堆有种取法;然后从其余的6个小球中任取2个有种取法;再从剩下的4个小球中任取2个有种取法;最后留下的2个小球作为一堆有种取法,根据分步计数原理,共有种取法,再除以均分堆的重复次,所以共有不同的分堆方法有=105种。 评注:解法1是错误的,比如将8个不同的小球编号,对应号码分别为1,2,…,8。第一种取法:第一次取出1,2号球,第二次取出3,4号球,第三次取出5,6号球,第四次取出7,8号球,分成了四组。第二种取法:第一次取出7,8号球,第二次取出1,2号球,第三次取出3,4号球,第四次取出5,6号球,分成了四组,不难看出这两种取法是同一种分组方法,因此解法1出现重复,导致错误。 3、多个位置要求兼顾的排列问题易重复 例3:6人排成一排照相,甲不排在左端,乙不排在右端,共有多少种不同的排法? 解法1:6个人任意排成一排排法总数为种,其中不合题意的排法分两类。 ①甲排在左端,其余5人排在剩下的5个位置上,有种;②乙排在右端,其余5人排在剩下的位置上,有种。所以适合题意的排法有-2=480(种)。 解法2:6人全排列为种,减去不符合题意的两种:甲在左端有种;乙在右端有种,再补上多减去的甲在左端且乙在右端的一类排法种,所以适合题意的排法有-2+=504(种)。 评注:解法1错误,解法2正确。 原因:解法1第一类中,甲在左端乙在右端有种;第二类中,乙在右端甲在左端有种; 故在“全部减去不符”中,甲在左端乙在右端的情况重复被减去,因而导致错误。 二、排列组合应用问题的九种求解策略 解排列组合问题的基本策略有:特殊元素优先安排的策略;合理分类与准确分步的策略;正难则反,等价转化的策略;相邻问题捆绑处理,不相邻问题插空处理的策略;元素定序,先排后除的策略等.

排列组合的二十种解法(最全的排列组合方法总结)

教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有 2m 种不同的方 法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有3 4A 由分步计数原理得113 434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有 多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元 素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522 522480A A A =种不同的 排法

高考数学排列组合、概率统计专项练习题

排列组合、概率统计 一、选择题 1.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( ) A .12种 B .18种 C .24种 D .36种 2.如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( ) A .24 B .18 C .12 D .9 3.从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对11(,)x y ,22(,)x y ,…,(,)n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A .4n m B .2n m C .4m n D .2m n 4.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨) 柱形图,以下结论中不正确的是( ) A .逐年比较,2008年减少二氧化硫排放量的效果最显著. B .2007年我国治理二氧化硫排放显现成效. G ? F ? E ?

C.2006年以来我国二氧化硫年排放量呈减少趋势. D.2006年以来我国二氧化硫年排放量与年份正相关. 5.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75, 连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是() A.0.8 B.0.75 C.0.6 D.0.45 6.将2名教师,4名学生分成两个小组,分别安排到甲、乙两地参加社会实 践活动,每个小组由一名教师和2名学生组成,不同的安排方案共有()A. 12种 B. 10种 C. 9种 D. 8种 7.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参 加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 ()A.1 3B.1 2 C.2 3 D.3 4 二、填空题 1.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽 取100次,X表示抽到的二等品件数,则D X=. 2.有三张卡片,分别写有1和2,1和3,2和 3. 甲,乙,丙三人各取走一 张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是. 3.从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和 等于5的概率为1 14 ,则n=______. 4.某一部件由三个电子元件按下图方式连接而成, 元件1或元件2正常工作,且元件3正常工作, 则部件正常工作. 设三个电子元件的使用寿命 (单位:小时)服从正态分布N(1000,502), 且各元件能否正常工作互相独立,那么该部件的使用寿命超过1000小时的概率为.

相关文档
最新文档