Decomposition of aggregate CO2

Decomposition of aggregate CO2
Decomposition of aggregate CO2

Decomposition of aggregate CO 2emissions:A

production-theoretical approach

P.Zhou a,b,?,B.W.Ang b

a

College of Economics and Management,Nanjing University of Aeronautics and Astronautics,

29Yudao Street,Nanjing 210016,P .R.China

b

Department of Industrial and Systems Engineering,National University of Singapore,

10Kent Ridge Crescent,Singapore 119260

Received 24April 2007;received in revised form 18October 2007;accepted 18October 2007

Available online 25October 2007

Abstract

We present a production-theoretical approach to decomposing the change of aggregate CO 2emissions over time using the Shephard input distance functions and the environmental data envelopment analysis (DEA)technology in production theory.Application of the proposed approach requires only some aggregate data and the change of aggregate CO 2emissions can be decomposed into contributions from seven factors.These contributions are obtained through solving a series of DEA models.The key features of the proposed approach are the use of panel data to estimate the production frontier and the inclusion of several production technology related https://www.360docs.net/doc/e012132308.html,ing the proposed approach,we present two application studies on decomposing the CO 2emissions for world regions and OECD countries.A comparison between the proposed approach and other decomposition analysis methods is also presented.?2007Elsevier B.V .All rights reserved.

Keywords:Decomposition analysis;CO 2emissions;Distance function;Data envelopment analysis;Malmquist productivity index

1.Introduction

With the growing concern over the impacts of CO 2emissions on global climate change,many researchers have attempted to identify and quantify the underlying driving forces that affect changes of aggregate CO 2emissions in a country/region.Technically,this can be done by decomposing the change of aggregate emissions into some pre-defined factors using decomposition analysis.In the literature two well-known decomposition techniques,namely the structural decomposition analysis (SDA)and the index decomposition analysis (IDA),have been widely applied.

Available online at https://www.360docs.net/doc/e012132308.html,

Energy Economics 30(2008)1054–

1067

https://www.360docs.net/doc/e012132308.html,/locate/eneco

?Corresponding author.Tel.:+6565162203;fax:+6567771434.E-mail address:g0300220@https://www.360docs.net/doc/e012132308.html,.sg (P.Zhou).

0140-9883/$-see front matter ?2007Elsevier B.V .All rights reserved.doi:10.1016/j.eneco.2007.10.005

SDA is built upon the input –output model in quantitative economics.Rose and Casler (1996)provided a review on its theoretical foundation and major features.Examples of SDA studies on CO 2emission decomposition include Casler and Rose (1998),Chang and Lin (1998),and Munksgaard et al.(2000).

IDA uses index number concept in https://www.360docs.net/doc/e012132308.html,pared to SDA,it is more flexible but more aggregate in application.The studies by Ang and Zhang (2000)and Ang (2004)give details on the IDA methodology and application issues.A large number of studies on CO 2emission decomposition using IDA have been reported,such as Ang and Pandiyan (1997),Ang and Zhang (1999),Sun (1999),Wang et al.(2005),Wu et al.(2005),Diakoulaki et al.(2006),Lin et al.(2006),and Diakoulaki and Mandaraka (2007).A comparison between SDA and IDA can be found in Hoekstra and van den Bergh (2003).In addition to SDA and IDA,several researchers have recently conducted decomposition analysis within the production theory https://www.360docs.net/doc/e012132308.html,ing a joint production framework,Pasurka (2006)proposed a decomposition model to study changes in NO x and SO 2emissions from coal-fired power plants.More recently,Wang (2007)applied the Shephard output distance functions in production economics to decompose energy productivity change into five components.We follow this line of research and present an approach to decomposing the change of aggregate CO 2emissions over time using the Shephard input distance functions in a joint production (both desirable and undesirable outputs)framework.

Our proposed approach allows a change in aggregate CO 2emissions to be decomposed into the contributions from seven factors.These contributions are obtained by solving a series of data en-velopment analysis (DEA)type models.1Compared to Pasurka (2006)and Wang (2007),our proposed approach focuses on a different application area and specifies a different production technology setting.The rest of this paper is organized as follows.In the next section,we describe the proposed production-theoretical approach to decomposing the change of aggregate CO 2emissions over time.It consists of the following three sub-sections:production technology,decomposition method,and estimation https://www.360docs.net/doc/e012132308.html,ing the proposed approach,we present two application studies in Section 3.In Section 4,we compare the proposed decomposition approach with other decomposition analysis methods.Section 5concludes this study.2.The proposed approach 2.1.Production technology

Consider a production process in which aggregate energy consumption (E ),gross domestic product (Y )and energy-related CO 2emissions (C )are respectively taken as input,desirable output,and undesirable output.2The production technology can be described as

T ?E ;Y ;C eT:E can produce Y ;C eTf g

e1T

1

DEA,developed by Charnes et al.(1978),is a nonparametric frontier approach to efficiency evaluation and productivity analysis.Coelli et al.(2005)provided an introduction to some basics of DEA.The more comprehensive DEA expositions can be found in F?re et al.(1994a)and Cooper et al.(2006).Recently,Zhou et al.(in press)provided a literature survey on the application of DEA to energy and energy-related environmental studies.2

It should be pointed out that in addition to energy,capital stock and labor are also often taken as inputs in the literature of production economics.The inclusion of more inputs would result in the same decomposition formula if we simply replace D e (E ,Y ,C )in Section 2.2by a sub-vector distance function for energy input.If we consider the effects of other inputs oriented technical efficiency change in decomposition,the inclusion of more inputs will greatly complicate the decompositions but might yield more insights by giving several other production technology related components.This topic,which is not included in this study,is a potential area for further research.

1055

P .Zhou,B.W.Ang /Energy Economics 30(2008)1054–1067

In production theory,T is often assumed to be a closed and bounded set,which implies that finite amount of input can only produce finite amounts of outputs(F?re and Primont,1995).In addition,E and Y in T are supposed to be strongly or freely disposable,i.e.if(E,Y,C)∈T and E′≥E(or Y′≤Y) then(E′,Y,C)∈T(or(E,Y′,C)∈T).

In order to reasonably model a production process in which both desirable and undesirable outputs are jointly produced,F?re et al.(1989)introduced the following two assumptions.

(i)Outputs are weakly disposable,i.e.,if(E,Y,C)∈T and0≤θ≤1,then(E,θY,θC)∈T.3

(ii)Desirable and undesirable outputs are null-joint,i.e.,if(E,Y,C)∈T and C=0,then Y=0.

Assumption(i)implies that the reduction of CO2emissions is not free and the proportional reduction in GDP and CO2emissions is feasible.Assumption(ii)says that CO2emissions must also be produced when GDP is produced,which implies that the only way to eliminate all the CO2 emissions is to end the production process.

Up to now the reference technology for modeling the joint production of desirable(Y)and undesirable(C)outputs has been conceptually defined.In F?re et al.(2005),this technology is termed a polluting technology.Despite its completeness in concept,the polluting technology needs further characterization within a parametric or a nonparametric framework in empirical studies.In the nonparametric framework,the polluting technology can be constructed by the piecewise linear combinations of the observed data.Assume that there are k=1,2,…,K entities (e.g.countries)and for entity k the observed data are(E k,Y k,C k).Then the piecewise linear polluting technology T can be formulated as follows:

T?feE;Y;CT:

X K

k?1z k E k V E

X K k?1z k Y k z Y

X K k?1z k C k?C

z k z0;k?1;2;N;K g

e2T

In the literature,T is also referred to as the environmental DEA technology exhibiting constant returns to scale(CRS)since it is formulated in the DEA framework(Zhou et al.,2008).In energy and environmental studies,the concept of environmental DEA technology has been widely investigated.See,for example,F?re et al.(2004),Picazo-Tadeo et al.(2005),Pasurka(2006),Zaim and Taskin(2000),Zaim(2004)and Zhou et al.(2006,2007,2008,in press).

2.2.Decomposition method

We begin by defining the following two Shephard input distance functions for input(energy consumption)and undesirable output(CO2emissions):

D e E;Y;C

eT?sup k:E=k;Y;C

eTa T

f ge3T

3Like in many previous studies,we implicitly assume the weak disposability of CO

2

emissions as a kind of undesirable output although CO2emissions are still unregulated in the real world.In addition,the worldwide growing concern on climate change due to greenhouse gas emissions makes the treatment of CO2emission as weakly disposable become a logical assumption(Zaim and Taskin,2000).

1056P.Zhou,B.W.Ang/Energy Economics30(2008)1054–1067

D c

E ;Y ;C eT?sup h :E ;Y ;C =h eTa T f g e4T

where Eq.(3)attempts to shrink energy consumption as much as possible given the GDP,CO 2emissions and production technology,while Eq.(4)attempts to reduce the amount of CO 2emissions as much as possible given the energy consumption,GDP and production technology.4In addition to their functions serving as performance measures,the two Shephard input distance functions could also be used to characterize the production technology if appropriate assumptions are imposed (F?re and Primont,1995).

Now suppose that the aggregate CO 2emissions of a certain entity,i.e.entity k ,varies from C k 0in

time period 0to C k T

in time period T .Such a change can be expressed in the following multiplicative form:

D k ?C T

k C k ?C T k =E T k C k k áE T k =Y T k E k k áY T k

Y k e5TBy using the production technology in time period 0as a reference,we can decompose the change of

the aggregate CO 2emissions for entity i as follows 5:

D k ?C T k =D 0c

E T k ;Y T k ;C T k àá??á1=E T k àáC k 0c E k k k àá??k àá !?E T k =D 0e E T k ;Y T k ;C T k àá??á1=Y T

k

àáE k 0e E k k k àá??k àá? !?Y T k

Y k ?D 0c E T k ;Y T k ;C T k àáD 0c E k k k àá !?D 0e E T k ;Y T k ;C T k àáD 0e E k k k àá !

e6TOn the right hand side of Eq.(6),the first component could be interpreted as the potential carbon

factor change (PCFCH k 0)since the CO 2emission is deflated by its CO 2emissions technical efficiency.Inefficiency in CO 2emissions will result in the observed carbon factor being larger than that when there is no inefficiency.An increase in CO 2emissions technical efficiency from period 0to period T will lead to a larger carbon factor change and therefore more of the change in C being assigned to the change in C /E .The second component could be interpreted as the potential energy intensity change (PEICH k 0)since the energy consumption is deflated by its energy usage technical efficiency.6Inefficiency in energy consumption will result in the observed energy intensity to be larger compared to the case where there is no inefficiency.An increase in energy usage technical efficiency from period 0to period T will lead to a larger energy intensity change and therefore more of the change in C being assigned to the change in E /Y .The third component,i.e.GDPCH k ,accounts for the effect of GDP change.The fourth and fifth components,which are essentially two Malmquist index numbers,respectively measure the change of CO 2emissions performance (CEPCH k 0)and the change of energy usage performance (EUPCH k 0).7If there are no inefficiencies

4

Note that both D e (E ,Y ,C )and D c (E ,Y ,C )are not less than unity.Detailed discussions on the concepts and properties of the Shephard distance functions can be found in F?re and Primont (1995).5

It should be noted that the decomposition method presented in this paper does not account for fuel mix.As a result,the decomposition results it gives should be interpreted with this limitation in mind.6

The ratio of CO 2emissions to energy consumption is termed as “carbon factor ”while the ratio of energy consumption to GDP is referred to as “energy intensity ”in Ang (1999).7

The last three components might also be interpreted together in the sense that both the fourth and fifth components can be used to scale the effect of the third component.For example,in the case of the fifth component,the existence of energy usage inefficiency indicates that the level of energy consumed by the current GDP could have been used to support a higher level of GDP.The elimination of energy usage inefficiency would make it possible to increase GDP with the given level of energy consumption.An increase in energy usage technical efficiency over time will result in the decrease of the fifth component and then less of the change in C being assigned to the change in GDP.

1057

P .Zhou,B.W.Ang /Energy Economics 30(2008)1054–1067

pertaining to all the observations,all the distance functions used will be equal to unity and Eq.(6) will collapse to Eq.(5).

Using the notations described above,we can rewrite Eq.(6)as

D k?PCFCH0k?PEICH0k?GDPCH k?CEPCH0k?EUPCH0ke7TNote that in Eq.(7)all the components derived are based on the production technology in time period0.Alternatively,if we take the production technology in time period T as a reference,the following decomposition model could be obtained:

D k?PCFCH T k?PEICH T k?GDPCH k?CEPCH T k?EUPCH T ke8TIn Eq.(8)all the components are of the same form as those given in Eq.(6)except that the production technology in time period T is adopted.

To avoid the arbitrariness in choosing one of the two reference technologies,we can take the geometric mean of Eqs.(7)and(8):

D k?

C T k=D0c E T k;Y T k;C T k

àá

D T c

E T k;Y T k;C T k

àá

??1=2

n o

á1=E T

k

àá

C0

k

=D0c E0k;Y0k;C0k

àá

D T c E0

k

;Y0k;C0k

àá

??1=2

n o

á1=E0

k

àá

@

1

A

?

E T k=D0e E T k;Y T k;C T k

àá

D T e

E T k;Y T k;C T k

àá

??1=2

n o

á1=Y T

k

àá

E0

k

=D0e E0k;Y0k;C0k

àá

D T e E0

k

;Y0k;C0k

àá

??1=2

n o

á1=Y0

k

àá

@

1

A?Y T k

Y0

k

?

D0c E T k;Y T k;C T k

àá

D0c E0

k

;Y0k;C0k

àááD

T

c

E T k;Y T k;C T k

àá

D T c E0

k

;Y0k;C0k

àá

"#1=2

@

1

A

?

D0e E T k;Y T k;C T k

àá

D0e E0

k

;Y0k;C0k

àááD

T

e

E T k;Y T k;C T k

àá

D T e E0

k

;Y0k;C0k

àá

"#1=2

@

1

A

?PCFCH k?PEICH k?GDPCH k?CEPCH k?EUPCH ke9TIt should be pointed out that the idea of calculating geometric mean is consistent with the definition of Malmquist productivity index given by F?re et al.(1994b).This practice could be traced back to the Fisher ideal index number as explored in the IDA studies by Ang et al.(2004) and Boyd and Roop(2004).

Obviously,the last two components in Eq.(9)are essentially two Malmquist productivity indexes for entity i.The difference is that CEPCH k is an undesirable output-oriented while EUECH k is an input-oriented index.Following F?re et al.(1994b),we can further decompose the two indexes in the following way:

CEPCH k?D T c E T k;Y T k;C T k

àá

D0c E0

k

;Y0k;C0k

àá

!

?

D0c E T k;Y T k;C T k

àá

D T c

E T

k

;Y T k;C T k

àááD

c

E0

k

;Y0k;C0k

àá

D T c E0

k

;Y0k;C0k

àá

"#1=2

@

1

Ae10T

EUPCH k?D T e E T k;Y T k;C T k

àá

D0e E0

k

;Y0k;C0k

àá

!

?

D0e E T k;Y T k;C T k

àá

D T e

E T

k

;Y T k;C T k

àááD

e

E0

k

;Y0k;C0k

àá

D T e E0

k

;Y0k;C0k

àá

"#1=2

@

1

Ae11T

1058P.Zhou,B.W.Ang/Energy Economics30(2008)1054–1067

On the right hand side of Eq.(10),the first term could be interpreted as the effect of CO 2emissions technical efficiency change (CEEFCH k )and the second term measures the shift of CO 2emissions-side technology or carbon abatement technology (CATECH k ).On the right hand side of Eq.(11),the first term accounts for the effect of energy usage technical efficiency change (EUEFCH k )and the second term could be interpreted as the shift of energy usage-side technology or energy savings technology (ESTECH k ).

In summary,the change of the aggregate CO 2emissions for entity i could be decomposed into the following seven components:

D k ?C T k =C 0

k ?PCFCH k ?PEICH k ?GDPCH k ?CEEFCH k ?CATECH k

?EUEFCH k ?ESTECH k

e12T

For each component a value less than unity indicates that it contributes to a reduction,while a value greater than unity indicates that it contributes to an increase,in CO 2emissions.2.3.Estimation models

To apply the proposed decomposition approach to estimating the seven components in Eq.(12),

we need to compute eight Shephard distance functions,namely D c s (E k t ,Y k t ,C k t )and D e s (E k t ,Y k t ,C k t

)where s ,t ∈{0,T }.According to the definitions of these distance functions and the environmental DEA technology specified earlier,they can be derived by solving the following DEA type models:

D s c

E t k ;Y t k ;C t k àá??à1?min h

s :t :

X K k ?1z k E s k V E t k

X K k ?1z k Y s k z Y t

k X K k ?1

z k C s k ?h C t

k z k z 0;k ?1;N ;K

e13T

D s e

E t k ;Y t k ;C t k

àá?

?à1

?min k s :t :

X K k ?1z k E s k V k E t

k

X K k ?1

z k Y s k z Y t

k X K k ?1

z k C s k ?C t k

z k z 0;k ?1;N ;K

e14T

where s ,t ∈{0,T }.

1059

P .Zhou,B.W.Ang /Energy Economics 30(2008)1054–1067

1060P.Zhou,B.W.Ang/Energy Economics30(2008)1054–1067

3.Application studies

Two application studies are presented in this section to illustrate the use of our proposed approach.The first deals with the decomposition of aggregate CO2emission changes for eight world regions from2002to2004.The total primary energy supply(in million tons of oil equivalent or Mtoe),gross domestic product(in billion US$1995,PPP)and CO2emissions from fuel combustion(in million tonnes or Mt)are treated as input,desirable and undesirable outputs, respectively.The data sources are Key World Energy Statistics2004(IEA,2004a)and Key World Energy Statistics2006(IEA,2006).Table1shows the eight regions and the collected data.Based on these data,we apply the proposed approach described in Section2to derive the seven con-tributing factors on changes in CO2emissions for each region.Table2shows the decomposition results obtained and the relative changes of aggregate CO2emissions.

It can be observed from Table2that both the carbon abatement technological change(CATECH) and the energy savings technological change(ESTECH)are estimated to have led to a reduction in world CO2emissions,which may be an indication of the world-wide technological improvement in multiple aspects.Interestingly,the effects of carbon abatement technological change(CATECH)are the same for all regions(except for Latin America)although their individual distance function values used to calculate the CATECH component are different.This implies that the contributions of carbon abatement technological change to the reductions of their CO2emissions are the same. This could be attributed to the very limited observations used in the application study.However,it is also possible that the growing concern on CO2emissions and the active international technological diffusion may play a role.

From Table2,we also found that the potential energy intensity change component(PEICH)is greater than one for China,while it is less than one for other regions(except for Latin America). This indicates that from2002to2004energy usage efficiency increased more in China compared to other regions,which leads to more of the change in CO2emissions assigned to the change in the aggregate energy intensity.As a whole,among the four components which contribute to the increase in world CO2emissions,the output change component(GDPCH)is the most important in all the regions which is not surprising.

It is worth pointing out that the four components PCFCH,PEICH,CATECH and ESTECH cannot be estimated for Latin America because the linear programs for calculating D e(E,Y,C)and D c(E,Y,C)based on the reference technology in2001and the data in2002are not feasible.This is due to the fact that no benchmarking points could be found under the environmental DEA Table1

Energy consumption,GDP and CO2emissions for world regions,2002and2004

Region20022004

E(Mtoe)Y(billion US$1995,PPP)C(Mt)E(Mtoe)Y(billion US$1995,PPP)C(Mt) OECD534625,37512,554550829,49312,911 Middle East4311026109348012821183 Former USSR9311552223297919892313 Non-OECD Europe100358253104413265 China124553593307162672194769 118455082257129067772499 Asia(exclusive

of China)

Latin America45525678454853119907 Africa54016697435861997814

technology in 2001to evaluate the efficiencies of Latin America in energy consumption and CO 2emissions in 2002.As was discussed in Pasurka (2006),this phenomenon should be attributed to the assumption of weak disposability imposed on undesirable outputs,which could be considered as a limitation of our approach.Nevertheless,as was suggested by F?re et al.(2001,2007),if infeasible linear programs occur too frequently,we may use multiple year windows data to construct the reference technology in order to avoid infeasible linear programs.

In our second application study,the changes of the aggregate CO 2emissions for 30OECD countries from 2001to 2002are decomposed by the proposed approach.Similar to the first application study,the total primary energy supply (in Petajoules),gross domestic product (in billion US$1995,PPP)and CO 2emissions from fuel combustion (in million tonnes or Mt)are used as input,desirable and undesirable outputs,respectively.The data for the three variables have been collected from IEA (2004b).The countries and the data are shown in Table 3.Table 4shows the relative changes of CO 2emissions and the decomposition results obtained.

The results in Table 4show that both the carbon abatement technological change (CATECH)and the energy savings technological change (ESTECH)contribute to a reduction in CO 2emissions for the OECD countries as a whole.This may be an indication that technological progress in multiple aspects occurred in most OECD countries from 2001to 2002.Nevertheless,in this study the contributions of carbon abatement technological change (CATECH)may not be the same in all countries,while in the first application study they are the same (=0.8834)for all regions.

In addition to CATECH and ESTECH,the CO 2emissions technical efficiency change (CEEFCH)and the potential energy intensity change (PEICH)also contribute to the reduction of CO 2emissions in most countries.Interestingly,we found that the energy usage technical efficiency change (EUEFCH)has a positive rather than a negative effect on the increase of CO 2emissions in most countries.It is an indication that in these countries the energy usage efficiency declined over time.As a whole,among the components which lead to a decrease in CO 2emissions,the carbon abatement technology change (CATECH)seems to have the most important effect.On the other hand,among the components which lead to an increase in CO 2emissions,the output change (GDPCH)and the energy usage efficiency change (EUEFCH)respectively play the most and the least important roles.These findings are consistent with those in the first application study.

As shown in Table 4,the PCFCH and CATECH components for Italy and the PEICH and ESTECH components for Switzerland cannot be estimated because of the infeasibility of two linear programs involved.The underlying reasons have been elaborated in the first application study,and the infeasible linear programs could also be avoided by using the environmental DEA technology based on multiple year windows data (F?re et al.,2001,2007).However,since there

Table 2

CO 2emissions change and its seven components for world regions,2002–2004Region

C T /C 0PCFCH PEICH GDPCH CEEFCH CATECH EUEFCH ESTECH OECD

1.0284 1.12810.9462 1.1623 1.00160.8834 1.01080.9268Middle East 1.0823 1.12200.8662 1.24950.98050.8834 1.13620.9056Former USSR

1.0363 1.21870.8086 1.28160.91530.8834 1.12050.9056Non-OECD Europe 1.0474 1.10930.9139 1.1536 1.02780.8834 1.08210.9116China

1.4421 1.0314 1.0540 1.3471 1.21180.8834 1.00000.9198Asia (exclusive of China) 1.1072 1.12930.9579 1.2304 1.01870.8834 1.00240.9222Latin America 1.0734–

1.2150 1.0000–

1.0000–

Africa

1.0956 1.10260.9628 1.1965 1.03650.8834 1.01890.9245Geometric mean a

1.1128

1.1190

0.9271

1.2300

1.0242

0.8834

1.0516

0.9166

a

The calculation of geometric mean excludes the data for Latin America.

1061

P .Zhou,B.W.Ang /Energy Economics 30(2008)1054–1067

are only two infeasible linear programs,we simply leave the four components alone in order not to introduce more biases in constructing the reference technology.

The foregoing two application studies show that the proposed approach can be used to decompose a change of aggregate CO 2emissions over time into different components by using aggregate panel data.However,since no sectoral data are involved,the proposed approach could not be used to identify structure effects as could be done by IDA and SDA decomposition https://www.360docs.net/doc/e012132308.html,ing the production frontier estimated from the panel data,the proposed approach can be used to identify some production technology related components such as the effects of carbon emission technological change and energy savings technological change,which could be considered as a key feature of the proposed approach.

https://www.360docs.net/doc/e012132308.html,parisons with other decomposition analysis methods

Although their objectives are fairly similar,the decomposition techniques mentioned in Section 1have different theoretical foundations and underlying formulations.Each has its own

Table 3

Energy consumption,GDP and CO 2emissions for OECD countries,2001and 2002Country

20012002E

(petajoules)

Y

(Billion US$1995,PPP)C (Mt)E

(petajoules)Y

(Billion US$1995,PPP)C (Mt)Australia 4536.0479.2341.94719.0492.3342.9Austria 1292.0208.967.31275.0211.866.1Belgium 2470.0252.6119.62382.0254.3112.6Canada

10390.0816.5521.210468.0843.1531.9Czech Republic 1733.0136.0118.61747.0138.6115.0Denmark 838.0136.251.6827.0139.051.2Finland 1418.0123.960.51491.0126.763.5France 11152.01435.5384.311132.01452.8377.1Germany 14795.01934.7850.114501.01938.2837.5Greece 1202.0170.290.21215.0176.690.5Hungary 1071.0117.856.21066.0121.955.5Iceland 141.07.7 2.1143.07.7 2.2Ireland 634.0109.343.1641.0116.842.5Italy 7226.01333.5426.17231.01338.4433.2Japan 21646.03037.91164.621643.03042.31206.9Korea

8119.0675.2441.78520.0718.0451.6Luxembourg 161.018.88.4169.019.09.3Mexico 6366.0812.4360.06586.0819.8365.2Netherlands 3235.0406.9177.73263.0407.9177.9New Zealand 758.074.233.3754.077.434.0Norway 1107.0126.533.71110.0127.733.1Poland 3770.0367.1291.53734.0372.2282.9Portugal

1065.0162.559.11105.0163.363.0Slovak Republic 772.054.139.3776.056.537.9Spain 5352.0767.3287.35508.0783.0303.4Sweden 2143.0222.548.52137.0226.850.1Switzerland 1173.0199.543.91136.0199.942.8Turkey 2997.0379.2185.23158.0408.7193.1UK

9814.01374.1541.79483.01397.8529.3United States

94366.0

8977.8

5613.8

95895.0

9196.4

5652.3

1062P .Zhou,B.W.Ang /Energy Economics 30(2008)1054–1067

strengths and weaknesses and is suited to certain specific decomposition situations.Depending on the purpose of a study and the kind of data available,the analyst generally will opt for a specific technique that is applicable rather than having to make a choice among the various techniques as they may not be substitutable.In this light,broad comparisons of the key features of the techniques would be useful.In the discussions that follow,we shall refer to our proposed technique as the production-theoretical decomposition analysis (PDA)https://www.360docs.net/doc/e012132308.html,parison with IDA/SDA

As mentioned in Section 1,IDA and SDA are two widely used techniques in decomposition analysis.Within the scope of each technique,especially in the case of IDA,different methods or approaches have been proposed and applied to energy and environmental analysis.Following Ang and Zhang (2000)and Hoekstra and van den Bergh (2003),we may compare the PDA approach with IDA/SDA in terms of theoretical foundation,data requirements,decomposition form,and some relevant index properties.Table 5summarizes the key features of these techniques and approach.

Table 4

CO 2emissions change and its seven components for OECD countries,2001–2002Country C T /C 0PCFCH PEICH GDPCH CEEFCH CATECH EUEFCH ESTECH Australia 1.00290.98730.9775 1.02730.99430.9820 1.0201 1.0156Austria 0.9822 1.0276 1.0043 1.01390.99480.97350.97330.9957Belgium 0.9415 1.04430.9561 1.00670.95210.9819 1.00550.9964Canada 1.0205 1.02490.9890 1.0326 1.00620.98220.9747 1.0122Czech Rep.0.9696 1.01100.9515 1.01910.96870.9822 1.0187 1.0206Denmark 0.9922 1.03440.9866 1.02060.99860.9734 1.00050.9797Finland 1.04960.9725 1.0181 1.0226 1.04490.9822 1.01310.9969France 0.9813 1.0140 1.0052 1.01210.99180.9775 1.00270.9786Germany 0.9852 1.02230.9890 1.0018 1.00620.97710.99310.9960Greece 1.0033 1.02670.9728 1.03760.99090.9757 1.0000 1.0015Hungary 0.9875 1.04010.9690 1.03480.97290.98050.99610.9965Iceland 1.04760.98600.9917 1.0000 1.06660.9822 1.03920.9841Ireland 0.9861 1.39490.9618 1.06860.75370.9276 1.00000.9837Italy 1.0167–

1.0010 1.0037 1.0000–

1.00000.9961Japan 1.0363 1.0016 1.0178 1.0014 1.06020.97600.98960.9912Korea

1.0224 1.01330.9637 1.06340.97880.9822 1.0113 1.0126Luxembourg 1.10710.9624 1.0635 1.0106 1.11830.98000.98010.9965Mexico 1.01440.9752 1.0035 1.0091 1.02810.9780 1.02560.9962Netherlands 1.00110.99380.9991 1.0025 1.02110.9781 1.01110.9961New Zealand 1.0210 1.04870.9859 1.04310.99650.98220.97100.9962Norway 0.9822 1.0068 1.0046 1.00950.99280.9800 1.01070.9783Poland 0.9705 1.02370.9585 1.01390.97450.9822 1.0000 1.0192Portugal 1.06600.9683 1.0287 1.0049 1.08840.9749 1.02360.9806Slovak Rep.0.9644 1.03900.9274 1.04440.94010.9822 1.0223 1.0152Spain 1.05600.9915 1.0168 1.0205 1.06070.9757 1.00670.9853Sweden 1.0330 1.02250.7805 1.0193 1.03170.9820 1.66310.7536Switzerland 0.9749 1.1301–

1.0020 1.00000.8908 1.0000–

Turkey 1.0427 1.02310.9777 1.07780.98920.9777 1.00320.9967UK 0.9771 1.05320.9805 1.01720.98410.97560.97920.9894US

1.0069 1.00800.9839 1.0243 1.00070.98220.9968 1.0114Geometric mean a

1.0083

1.0233

0.9796

1.0234

0.9981

0.9774

1.0207

0.9871

a

The calculation of geometric mean excludes the data for Italy and Switzerland.

1063

P .Zhou,B.W.Ang /Energy Economics 30(2008)1054–1067

As already pointed out,IDA has a close relationship with the index number theory and SDA is based on the input –output analysis in quantitative economics.In contrast,PDA is built upon the production theory in which both desirable and undesirable outputs are jointly produced.Thus the theoretical foundation varies although the decomposition formulae in SDA and PDA are based on concepts that are akin to some specific index numbers,e.g.the Laspeyres index in the case of SDA and the Malmquist index in the case of PDA.

Data requirement is another major difference between PDA and IDA/SDA.In general,IDA requires only data at the sub-sector level.The data requirements depend to a very large extent on the level of sector disaggregation which could vary significantly from one study to another.SDA is generally more data intensive as input –output tables are employed,and decomposition is often conducted for specific years only when such tables are available.In contrast,PDA uses panel aggregate data which are easy to collect.Since no sectoral data are involved,PDA does not give structural effects which are often important components in IDA and SDA studies.In addition,PDA uses the information provided by panel data to estimate the production frontiers and then give some production technology related components.As such,the results obtained are often influenced by the number of entities considered.These may be seen as limitations of the PDA approach.

Our proposed PDA approach takes the multiplicative form where changes over time are measured in terms of ratios.Both multiplicative and additive decompositions are widely adopted in IDA while additive decomposition prevails in SDA.In the additive form,changes over time are measured in terms of differences.Issues related to additive decomposition versus multiplicative decomposition,such as which is the preferred form,can be found in Ang and Zhang (2000)and Ang (2004).Ease of result presentation,interpretation and dissemination may be a consideration.Technically,it seems to be difficult to extend our approach to the additive form.In terms of implementation,IDA and SDA deal with some simple algebraic operations.The PDA approach involves the solving of a number of linear programs and computationally it may be more complex for analysts who are not familiar with linear programming.

In terms of index properties,Ang and Zhang (2000)and Liu and Ang (2003)discussed in details the properties of different IDA methods.Hoekstra and van den Bergh (2003)compared the properties of SDA and IDA methods in a unified framework.Three index properties are shown in Table 5.In decomposition analysis,satisfying this factor-reversal test ensures perfect or complete decomposition where there is no residual appearing in the decomposition results.The time-reversal test requires that if the data for periods 0and T are interchanged,the index should be equal to the reciprocal of the original index in multiplicative decomposition,and it should be the negative of the original index in additive decomposition.Some of the more desirable IDA methods consider

Table 5

Comparison between IDA/SDA and PDA Technique/approach

Theoretical foundation

Data

requirements

Decomposition form

Implementation

Index properties a Factor reversal

Time reversal Zero value robust IDA Index number Medium Additive/multiplicative Algebraic operation Yes/no Yes/no Yes/no SDA Input –output analysis

High Additive Algebraic operation Yes/no Yes/no Yes PDA

Production theory

Low

Multiplicative

Linear

programming

Yes

Yes

Yes

a

The properties in the cases of IDA and SDA depend on the specific decomposition formulae used.

1064P .Zhou,B.W.Ang /Energy Economics 30(2008)1054–1067

the logarithmic changes of the factors studied instead of their percentage changes.As such the existence of zero values in the data set may pose a problem,i.e.whether a method is zero value robust.In the same context as in IDA/SDA,our PDA approach passes the factor-reversal and time-reversal tests,and is zero value robust.It therefore possesses some desirable properties as a decomposition method.It should be noted that since IDA/SDA consist of a number of methods in each case,some IDA/SDA methods pass while others do not pass all the three tests as indicated in Table 5.

https://www.360docs.net/doc/e012132308.html,parison with Pasurka (2006)and Wang (2007)8

Table 6shows the similarities and differences between our PDA approach and two earlier PDA approaches proposed by Pasurka (2006)and Wang (2007).Despite their common production-theoretical framework,the application areas of the three studies are different.The approach by Pasurka deals with changes of NO x and SO 2emissions from electric power plants,while that by Wang involves energy productivity change.In contrast,our approach focuses on decomposing the change of aggregate CO 2emissions.As a result,these three studies differ in the characterization of production technology.

Wang (2007)adopts the traditional DEA technology (without considering undesirable outputs)while Pasurka (2006)and our study are based on the environmental DEA technology.The compositions of production technologies in the three studies are also different.Nevertheless,all assume that the production technology exhibits constant returns to scale.As to the decomposition method,the Shephard output distance functions are used in Pasurka (2006)and Wang (2007),while the Shephard input distance functions are used in our study.All three studies adopt nonparametric DEA models to estimate the components.

In summary,our proposed PDA approach is essentially different from the IDA/SDA techniques since they have different theoretical foundations,data requirements and implementation forms.They share some common features in decomposition form and index https://www.360docs.net/doc/e012132308.html,pared with two earlier PDA studies,our study focuses specifically on the decomposition of aggregate CO 2emissions and this differs from the two earlier studies.

Table 6

Comparison between our study and Pasurka (2006)and Wang (2007)Study Application area Production technology Decomposition foundation Estimation models Pasurka (2006)Electric power plant emissions

Environmental DEA technology,CRS Six Shephard output distance functions DEA Wang (2007)Energy productivity Tradition DEA technology,CRS Eight Shephard output distance functions DEA Our study

CO 2emissions

Environmental DEA technology,CRS

Eight Shepard input distance functions

DEA

8

Within a joint production framework,Zaim (2004)employed several subvector distance functions to calculate a composite pollution intensity index and then applied regression analysis to investigate the possible factors associated with the change in the pollution intensity index.Although regression analysis is superior to our PDA approach since it can be used to investigate any well-defined factors associate with the change in one variable,the quantification of some factors such as production technology is not an easy task.In addition,unlike the PDA approach,regression analysis is not residual free.

1065

P .Zhou,B.W.Ang /Energy Economics 30(2008)1054–1067

1066P.Zhou,B.W.Ang/Energy Economics30(2008)1054–1067

5.Conclusion

Decomposition of changes in aggregate CO2emissions over time has been dealt with in a number of studies.To the best of our knowledge,all the studies use the IDA or SDA technique.In this paper, we present a production-theoretical decomposition analysis(PDA)approach based on the Shephard input distance function and the environmental DEA technology concepts.The proposed PDA approach does not require sectoral data and can decompose a change of aggregate CO2emissions over time into seven contributing factors.In practice,these factors can be obtained by solving a series of DEA type models.A key feature of the proposed PDA approach is that it uses panel data to estimate production frontiers and then provides several production technology related components.

Two application studies on decomposing the CO2emissions for world regions and OECD countries are presented.We point out some limitations of the proposed PDA approach when compared with the well-known IDA and SDA techniques.Despite its limitations,the proposed PDA approach could offer an alternative in CO2emission decomposition.We also compare our PDA approach to two earlier PDA methods.The proposed PDA approach could be easily extended to study the emissions of other energy-related pollutants.Methodologically,it is possible to extend our proposed approach to account for the fuel mix effect if the aggregate energy input is replaced by energy inputs by fuel type.Since the proposed approach focuses only on the decomposition of CO2emissions,future research could include extending it to multiple pollutants together in a joint production framework.Our study treats energy consumption as the only input.The inclusion of more inputs,such as capital stock and labor,could yield more insights by giving several other production technology related components.

Acknowledgements

The authors would like to thank the Journal editor Richard S.J.Tol and two anonymous referees for their invaluable comments and suggestions on an earlier draft of this paper.

References

Ang,B.W.,1999.Is the energy intensity a less useful indicator than the carbon factor in the study of climate change?

Energy Policy27,943–946.

Ang,B.W.,2004.Decomposition analysis for policymaking in energy:which is the preferred method?Energy Policy32, 1131–1139.

Ang,B.W.,Pandiyan,G.,1997.Decomposition of energy-induced CO2emissions in manufacturing.Energy Economics 19,363–374.

Ang,B.W.,Zhang,F.Q.,1999.Inter-regional comparisons of energy-related CO2emissions using the decomposition technique.Energy24,297–305.

Ang,B.W.,Zhang,F.Q.,2000.A survey of index decomposition analysis in energy and environmental analysis.Energy25, 1149–1176.

Ang,B.W.,Liu,F.L.,Chung,H.S.,2004.A generalized Fisher index approach to energy decomposition analysis.Energy Economics26,757–763.

Boyd,G.A.,Roop,J.M.,2004.A note on the Fisher ideal index decomposition for structural change in energy intensity.

The Energy Journal25,87–101.

Casler,S.,Rose, A.,1998.Carbon dioxide emissions in the US economy:a structural decomposition analysis.

Environmental and Resource Economics11,349–363.

Chang,Y.F.,Lin,S.J.,1998.Structural decomposition of industrial CO2emission in Taiwan:an input–output approach.

Energy Policy26,5–12.

Charnes,A.,Cooper,W.W.,Rhodes,E.,1978.Measuring the efficiency of decision making units.European Journal of Operational Research2,429–444.

Coelli,T.J.,Rao,D.S.P.,O'Donnell,C.J.,Battese,G.E.,2005.An Introduction to Efficiency and Production Analysis.

Springer,New York.

Cooper,W.W.,Seiford,L.M.,Tone,T.,2006.Introduction to Data Envelopment Analysis and Its Uses:with DEA-Solver

Software and References.Springer,New York.

Diakoulaki,D.,Mandaraka,M.,2007.Decomposition analysis for assessing the progress in decoupling industrial growth

from CO 2emissions in the EU manufacturing sector.Energy Economics 29,636–664.

Diakoulaki,D.,Mavrotas,G.,Orkopoulos,D.,Papayannakis,L.,2006.A bottom-up decomposition analysis of energy-related CO 2emissions in Greece.Energy 31,2638–2651.

F?re,R.,Primont,D.,1995.Multi-output Production and Duality:Theory and Applications.Kluwer Academic Publishers,

Boston.

F?re,R.,Grosskopf,S.,Lovell,C.A.K.,Pasurka,C.,1989.Multilateral productivity comparisons when some outputs are

undesirable:a nonparametric approach.The Review of Economics and Statistics 71,90–98.

F?re,R.,Grosskopf,S.,Lovell,C.A.K.,1994a.Production Frontiers.Cambridge University Press,Cambridge.

F?re,R.,Grosskopf,S.,Norris,M.,Zhang,Z.,1994b.Productivity growth,technical progress,and efficiency change in

industrialized countries.The American Economic Review 84,66–83.

F?re,R.,Grosskopf,S.,Pasurka Jr.,C.A.,2001.Accounting for air pollution in measures of state manufacturing growth.

Journal of Regional Science 41,381–409.

F?re,R.,Grosskopf,S.,Hernández-Sancho,F.,2004.Environmental performance:an index number approach.Resource

and Energy Economics 26,343–352.

F?re,R.,Grosskopf,S.,Noh,D.,Weber,W.,2005.Characteristics of a polluting technology:theory and practice.Journal

of Econometrics 126,469–492.

F?re,R.,Grosskopf,S.,Pasurka Jr.,C.A.,2007.Pollution abatement activities and traditional measures of productivity.

Ecological Economics 62,673–682.

Hoekstra,R.,van den Bergh,J.C.J.M.,https://www.360docs.net/doc/e012132308.html,paring structural and index decomposition analysis.Energy Economics 25,

39–64.

International Energy Agency (IEA),2004a.Key World Energy Statistics 2004.OECD,Paris.

International Energy Agency (IEA),2004b.CO 2Emissions from Fuel Combustion:1971–2002.OECD,Paris.International Energy Agency (IEA),2006.Key World Energy Statistics 2006.OECD,Paris.

Lin,S.J.,Lu,I.J.,Lewis,C.,2006.Identifying key factors and strategies for reducing industrial CO 2emissions from a non-Kyoto protocol member's (Taiwan)perspective.Energy Policy 34,1499–1507.

Liu,F.L.,Ang,B.W.,2003.Eight methods for decomposing aggregate energy intensity of industry.Applied Energy 76,15–23.Munksgaard,J.,Pedersen,K.A.,Wien,M.,2000.Impact of household consumption on CO 2emissions.Energy Economics 22,

423–440.

Pasurka Jr.,C.A.,2006.Decomposing electric power plant emissions within a joint production framework.Energy

Economics 28,26–43.

Picazo-Tadeo,A.J.,Reig-Martínez,E.,Hernández-Sancho,F.,2005.Directional distance functions and environmental

regulation.Resource and Energy Economics 27,131–142.

Rose,A.,Casler,S.,1996.Input –output structural decomposition analysis:a critical appraisal.Economic Systems

Research 8,33–62.

Sun,J.W.,1999.Decomposition of aggregate CO 2emissions in the OECD:1960–1995.The Energy Journal 20,147–155.Wang,C.,2007.Decomposing energy productivity change:a distance function approach.Energy 32,1326–1333.

Wang,C.,Chen,J.,Zou,J.,2005.Decomposition of energy-related CO 2emission in China:1957–2000.Energy 30,73–83.Wu,L.,Kaneko,S.,Matsuoka,S.,2005.Driving forces behind the stagnancy of China's energy related CO 2emissions from

1996to 1999:the relative importance of structural change,intensity change and scale change.Energy Policy 33,319–335.Zaim,O.,2004.Measuring environmental performance of state manufacturing through changes in pollution intensities:a

DEA framework.Ecological Economics 48,37–47.

Zaim,O.,Taskin,F.,2000.Environmental efficiency in carbon dioxide emissions in the OECD:a non-parametric

approach.Journal of Environmental Management 58,95–107.

Zhou,P.,Ang,B.W.,Poh,K.L.,2006.Slacks-based efficiency measures for modeling environmental performance.

Ecological Economics 60,111–118.

Zhou,P.,Poh,K.L.,Ang,B.W.,2007.A non-radial DEA approach to measuring environmental performance.European

Journal of Operational Research 178,1–9.

Zhou,P.,Ang,B.W.,Poh,K.L.,2008.Measuring environmental performance under different environmental DEA

technologies.Energy Economics 30,1–14.

Zhou,P.,Ang,B.W.,Poh,K.L.,in press.A survey of data envelopment analysis in energy and environmental studies.

European Journal of Operational Research.doi:10.1016/j.ejor.2007.04.042.

1067

P .Zhou,B.W.Ang /Energy Economics 30(2008)1054–1067

二氧化碳气体保护焊安全操作规程

二氧化碳气体保护焊安全操作规程 1、作业前,二氧化碳气体应预热15min。开气时,操作人员必须站在瓶嘴的侧面。 2、作业前,应检查并确认焊丝的进给机构、电线的连接部分、二氧化碳气体的供应系统及冷却水循环系统合乎要求,焊枪冷却水系统不得漏水。 3、二氧化碳气体瓶宜放阴凉处,其最高温度不得超过30℃,并应放置牢靠,不得靠近热源。 4、二氧化碳气体预热器端的电压,不得大于36V,作业后,应切断电源。 5、焊接操作及配合人员必须按规定穿戴劳动防护用品。并必须采取防止触电、高空坠落、瓦斯中毒和火灾等事故的安全措施。 6、现场使用的电焊机,应设有防雨、防潮、防晒的机棚,并应装设相应的消防器材。 7、高空焊接或切割时,必须系好安全带,焊接周围和下方应采取防火措施,并应有专人监护。 8、当需施焊受压容器、密封容器、油桶、管道、沾有可燃气体和溶液的工作时,应先消除容器及管道内压力,消除可燃气体和溶液,然后冲洗有毒、有害、易燃物质;对存有残余油脂的容器,应先有蒸汽、碱水冲洗,并打开盖口,确认容器清洗干净后,再灌满清水方可进行焊接。在容器内焊接应采取防止触电、中毒和窒息的措施。焊、割密封容器应留出气孔,必要时在进、出气口处装设通风设备;容器内照明电压不得超过12V,焊工与焊件间应绝缘;容器处应设专人监护。严禁在已喷涂过油漆和塑料的容器内焊接。 9、对承压状态的压力容器及管道、带电设备、承载结构的受力部位和装有易燃、易爆物品的容器严禁进行焊接和切割。 10、焊接铜、铝、锌、锡等有色金属时,应通风良好,焊接人员应戴防毒面罩、呼吸滤清器或采取其他防毒措施。 11、当消除焊缝焊渣时,应戴防护眼镜,头部应避开敲击焊渣飞溅方向。

溶解平衡图像

溶解平衡图像 The Standardization Office was revised on the afternoon of December 13, 2020

沉淀溶解平衡曲线 沉淀溶解平衡图像题的解题策略 1.沉淀溶解平衡曲线类似于溶解度曲线,曲线上任一点都表示饱和溶液,曲线上方的任一点均表示过饱和溶液,此时有沉淀析出,曲线下方的任一点均表示不饱和溶液。 2.从图像中找到数据,根据K sp公式计算得出K sp的值。 3.比较溶液的Q c与K sp的大小,判断溶液中有无沉淀析出。 4.涉及Q c的计算时,所代入的离子浓度一定是混合溶液中的离子浓度,因此计算离子浓度时,所代入的溶液体积也必须是混合溶液的体积。 1.在t℃时,AgBr在水中的沉淀溶解平衡曲线如图所示。又知t℃时AgCl的K sp=4×10-10,下列说法不正确的是( ) A.在t℃时,AgBr的K sp为×10-13 B.在AgBr饱和溶液中加入NaBr固体,可使溶液由c点变到b点 C.图中a点对应的是AgBr的不饱和溶液 D.在t℃时,AgCl(s)+Br-(aq)AgBr(s)+Cl-(aq)的平衡常数K≈816 答案 B 解析根据图中c点的c(Ag+)和c(Br-)可得该温度下AgBr的K sp为×10-13,A正确;在AgBr饱和溶液中加入NaBr固体后,c(Br-)增大,溶解平衡逆向移动,c(Ag+)减小,故B错;在a点时Q c<K sp,故为AgBr的不饱和溶液,C正确;选项D中K=c(Cl-)/c(Br-)=K sp(AgCl)/K sp(AgBr),代入数据得K≈816,D正确。 2.已知25℃时,CaSO4在水中的沉淀溶解平衡曲线如图所示,向100mL该条件下的CaSO4饱和溶液中加入·L-1Na 2SO4溶液,下列叙述正确的是( ) A.溶液中析出CaSO4固体沉淀,最终溶液中c(SO2-4)比原来的大 B.溶液中无沉淀析出,溶液中c(Ca2+)、c(SO2-4)都变小 C.溶液中析出CaSO4固体沉淀,溶液中c(Ca2+)、c(SO2-4)都变小 D.溶液中无沉淀析出,但最终溶液中c(SO2-4)比原来的大 答案 D 解析由图像可知K sp(CaSO4)=×10-6,当加入·L-1Na2SO4溶液时,此时c(Ca2+)=错误!=6×10-4mol·L-1,c(SO2-4)=错误! =×10-3mol·L-1,Q c=×10-6

国内天然气水合物相平衡研究进展

国内天然气水合物相平衡研究进展 摘要:分析了目前国内天然气水合物相平衡领域的五大主要研究热点,认为含醇类和电解质体系中天然气水合物的相平衡是研究中最活跃的领域,而多孔介质中天然气水合物的相平衡研究是未来天然气水合物相平衡研究的热点和难点问题。 关键词:天然气;水合物;相平衡;替代能源 Review of the Phase Equlibria on The Natura1 Gas Hydrate at home Abstract: According to the literature investigation at home,the five main researeh hot spots for the phase equllibria are analysed.The phase equilibria in aqueous solutions containing electrolytes and/or alcohol is the most active in all the research fields.While the Phase equilibria in natura1 Porous media is one of the essential hot spots and difficult problems during the phase equllibria researeh in future. Key words: natural gas;hydrate;phase equilibria ;alternative energy 1、前言 天然气水合物具有能量密度高、分布广、规模大、埋藏浅、成藏物化条件优越等特点,是21世纪继常规石油和天然气能源之后最具开发潜力的清洁能源,在未来能源结构中具有重要的战略地位。由于天然气水合物处于亚稳定状态,其相态转换的临界温度、压力和天然气水合物的组分直接制约着天然气水合物形成的最大深度和矿层厚度。天然气水合物的生成过程,实际上是一个天然气水合物—溶液—气体三相平衡变化的过程,任何能影响相平衡的因素都能影响天然气水合物的生成或分解过程[1]。因此,研究各种条件下天然气水合物—溶液—气体的三相平衡条件及其影响因素,可提供天然气水合物的生成或分解信息。因此,天然气水合物相平衡研究是天然气水合物勘探、开发和海洋环境保护研究中最基础和最重要的前沿问题。天然气水合物相平衡的研究主要是通过实验方法和数学预测手段确定天然气水合物的相平衡条件。随着透明耐高压材料的出现和相关实验测试技术的进步,科学家们对天然气水合物的相平衡条件的研究不断深入。 2、国内目前天然气水合物相平衡的主要五大研究热点 2.1 研究热点一:含醇类和电解质体系中天然气水合物的相平衡研究 长庆石油勘探局第三采油厂的严则龙(1997年)在长庆油田林5井采用井口注醇防止油管和地面管线天然气水合物堵塞,取得了良好的效果[2]。 中国石油大学(北京)梅东海和廖健等人:(1)(1997)在温度262.6~285.2K范围内分别测定了甲烷、二氧化碳和一种合成天然气在纯水、电解质水溶液以及甲醇水溶液中天然气水合物的平衡生成压力[3]。(2)(1998)对36个单一电解质水溶液体系及41个混合电解质水溶液体系中气体水合物的生成条件进行了预测。但对于二元以上的混合电解质水溶液体系,该模型的预测精度还有待改进[4];在温度260.8~281.5K和压力0.78~11.18MPa下,研究了含盐以及含盐和甲醇水溶液体系中的水合物平衡生成条件。认为无论对于单盐或多盐水溶液体系,甲醇对天然气水合物的生成均有显著的抑制作用;当溶液中甲醇增加至20%质量时,KCI 的抑制作用强于CaCl2[5];采用在Zuo一Golunesen一Guo水合物模型的基础上简化和改进的模型应用于含有盐和甲醇的水溶液体系中气体水合物生成条件的预测[6]。 华南理工大学的葛华才等人(2001)在模拟蓄冷空调的实验系统中研究了一元醇类添加

沉淀溶解平衡曲线图形分析(选择专练)

高考化学二轮复习12题题型各个击破 ——有机物的制备综合实验(大题专练) 一、填空题(本大题共2小题,共20分) 1.乙酰乙酸乙酯(CH3COCH2COOC2H5)是一种不溶于水的液体,熔点:?45°C,沸点: 180.8℃,它是有机合成中常用的原料.在实验室,它可以由乙酸乙酯在乙醇钠的催化作用下缩合而制得,反应式为: 2CH3COOC2H5CH3COCH2COOC2H5+C2H5OH 反应中催化剂乙醇钠是由金属钠和残留在乙酸乙酯中的微量乙醇作用生成的,而一旦反应开始,生成的乙醇又会继续和钠反应生成乙酸钠.乙酰乙酸乙酯制备的流程如下: 金属钠,有机液体钠熔化小米状钠珠橘红色溶液含乙酰乙酸乙酯的混合物乙酰乙酸乙酯粗产品 阅读下面关于乙酰乙酸乙酯制备的实验过程,并回答有关问题. (1)将适量干净的金属钠放入烧瓶中,为了得到小米状的钠珠,需将钠熔化,为了 防止钠的氧化,熔化时需在钠上覆盖一层有机液体,下表是钠和一些常用有机液体的物理性质: 钠苯甲苯对二甲苯四氯化碳 密度(g/cm3)0.970.880.870.86 1.60 熔点(℃)97.8 5.5?9513.3?22.8 沸点(℃)881.480111138.476.8 最好选用______ 来熔化钠.是否能用四氯化碳?______ (填“是”或“否”) 理由是______ . (2)将烧瓶中的有机液体小心倾出,迅速加入适量乙酸乙酯,装上带有一根长玻璃 导管的单孔胶塞,并在导管上端接一个干燥管.缓缓加热,保持瓶中混合液微沸状态.在实验中,使用烧瓶必须干燥,原料乙酸乙酯必须无水,原因是______ ,烧瓶配上长导管的作用是______ ,导管上端接一干燥管的目的是______ . (3)步骤⑥为向混合溶液中加入饱和食盐水,其目的是______ ,写出步骤⑦实验 操作的主要仪器______ (填最主要一种). 粗产品(含乙酸乙酯和少量水及乙酸等)经过几步操作,最后成为纯品.

交流电焊机接线

交流电焊机接线

————————————————————————————————作者:————————————————————————————————日期:

电焊机是焊接钢铁的主要设备。在焊接时,可根据焊接要求,调节电抗器的间隙来改变焊接电流的大小。 在起弧时,由于焊条与工件直接接触,电焊变压器次级处于短路状态,使次级电压快速下降至零,从而不会因电焊变压器电流过大而烧毁。其工作原理及外形如图5.2所示。 图5.2电焊机工作原理图及外形 常用交流电焊机的一般接法用刀闸或空气断路器控制,如图5.3所示,当合上闸刀开关QS时,电焊机得电工作;当拉下闸刀开关QS时,电焊机停止工作。该线路是电焊机常用的,且最简单的一种接线线路。 另外为了更安全方便控制电焊机则采用按钮开关控制交流接触器线圈,实现远距离操作,其接线方法如图5.4所示,工作时,合上刀闸开关QS,按下起动按钮SB1,交流接触器KM线圈得电吸合且自锁,KM主触点闭合,电焊机通电工作;欲停止则按下停止按钮SB2,交流接触器KM线圈断电释放,主触点断开,电焊机断电停止工作。 图5.3常用交流电焊机采用闸刀开关的具体接线方法

图5.4采用交流接触器控制电焊机的具体接线方法BX1型电焊机接成如图5.5所示。 图5.5BX1型电焊机接线 BX3型电焊机接线如图5.6所示。

图5.6BX3型电焊机接线BX6型电焊机接线如图5.7所示。 图5.7BX6型电焊机接线BX1型电焊机技术数据如表5.2所示。 表5.2BX1型电焊机技术数据

动铁式:输入电压为220V时,一次电流为每kVA×4.5A,若为380V时,每kVA×2.5A BX3型电焊机技术数据如表5.3所示。 表5.3BX3型电焊机技术数据 BX6型电焊机技术数据如表5.4所示。 表5.4BX6型电焊机技术数据

二氧化碳保护焊机安全操作规程

二氧化碳保护焊机安全操作规程 1. 此类设备属特种作业设备,必须持证上岗,上岗证由市劳动部门统一颁发。 2. 本机必须由受过专业培训的人员操作; 3. 在移动焊机时,应取出机内易损电子器材单独搬动。 4. 焊机内的接触器、断电器的工作元件,焊枪夹头的夹紧力以及喷嘴的以及喷嘴的绝缘性能等,应定期检查。 5. 咼频引弧焊机或装有咼频引弧装置时,焊接电缆都应有铜网编织屏蔽套,并可靠接地。 6. 焊机使用前应检查供气、供水系统,不得在漏水、漏气的情况下运行。 7. 气体保护焊机作业结束后,禁止立即用手触摸焊枪导电嘴,以免烫伤。 8. 盛装保护气体的高压气瓶就小心轻放竖立固定,防止倾倒。气瓶与热源距离应大于3m 9. 采用电热器使二氧化碳气瓶内液态二氧化碳充分氧化时,焊机必须使用规范的输入电压,应低于 36V;外壳接地可靠。工作结束立即切断电源和气源。 10. 在无严重影响焊机绝缘性能和引起腐蚀的环境中使用; 11. 焊机必须有符合规范的接地装置,必要时安装漏电保护器;

12. 工人操作时要要穿戴焊帽、眼镜及必要的绝缘防护用具; 13. 焊把、焊枪要轻拿轻放; 14. 严禁用力拉焊把线、焊机二次线,包括送丝机构线; 15. 操作工要按照工艺要求选择焊接电流、电压; 16. 对于抽头式焊机,严禁焊接时调节电压; 17. 焊机要定期(一个月)进行除尘保养,包括送丝软管; 18. 焊机不使用时,要切断电源,妥善保管; 19. 在连续施焊过程中,随时清理喷嘴内焊渣。 20. 焊丝上有油污必须清理,否则影响焊接质量。 21. 如果发现电机火花过大应及时修理。 22. 随时注意导电嘴的磨损情况,注意焊丝的存放,防止生锈。

天然气水合物的研究与开发的论文

天然气水合物的研究与开发的论文 【摘要】人类的生存发展离不开能源。当人类学会使用第一个火种时便开始了能源应用的漫长历史。几千年来,人类所使用的能源已经历了三代,正在向第四代能源时代迈进。主体能源的更替充分反映出人类社会和经济的进步与发展。第一代能源为生物质材,以薪柴为代表;第二代能源以煤为代表;第三代能源则是石油、天然气和部分核裂变能源。实际上,第二代和第三代能源是以化石燃料为主体,第四代能源的构成将可能是核聚变能、氢能和天然气水合物。 一、天然气水合物是人类未来能源的希望 人类的生存发展离不开能源。当人类学会使用第一个火种时便开始了能源应用的漫长历史。几千年来,人类所使用的能源已经历了三代,正在向第四代能源时代迈进。主体能源的更替充分反映出人类社会和经济的进步与发展。第一代能源为生物质材,以薪柴为代表;第二代能源以煤为代表;第三代能源则是石油、天然气和部分核裂变能源。实际上,第二代和第三代能源是以化石燃料为主体,第四代能源的构成将可能是核聚变能、氢能和天然气水合物。 核聚变能主要寄希望于3he,它的资源量虽然在地球上有限(10~15t),但在月球的月壤中却极为丰富(100-500万t)。氢能是清洁、高效的理想能源,燃烧耐仅产生水(h2o),并可再生,氢能主要的载体是水,水体占据着地球表面的2/3以上,蕴藏量大。天然气水合物的主要成分是甲烷(c4h)和水,甲烷气燃烧十分干净,为清洁的绿色能源,其资源量特别巨大,开发技术较为现实,有可能成为21世纪的主体能源,是人类第四代能撅的最佳候选。 天然气水合物(gas hydrate)是一种白色固体结晶物质,外形像冰,有极强的燃烧力,可作为上等能源,俗称为”可燃冰”。天然气水合物由水分子和燃气分子构戚,外层是水分子格架,核心是燃气分子(图1)。燃气分子可以是低烃分子、二氧化碳或硫化氢,但绝大多数是低烃类的甲烷分子(c4h),所以天然气水合物往往称之为甲烷水合物(methane hydrate)。据理论计算,1m3的天然气水合物可释放出164m3的甲烷气和m3的水。这种固体水合物只能存在于一定的温度和压力条件下,一般它要求温度低于0~10℃,压力高于10mpa,一旦温度升高或压力降低,甲烷气则会逸出,固体水合物便趋于崩解。 天然气水合物往往分布于深水的海底沉积物中或寒冷的永冻±中。埋藏在海底沉积物中的天然气水合物要求该处海底的水深大于300-500m,依赖巨厚水层的压力来维持其固体状态。但它只可存在于海底之下500m或1000m的范围以内,再往深处则由于地热升温其固体状态易遭破坏。储藏在寒冷永冻土中的天然气水合物大多分布在四季冰封的极圈范围以内。煤、石油以及与石油有关的天然气(高烃天然气)等含碳能源是地质时代生物遗体演变而成的,因此被称为化石燃料。从含碳量估算,全球天然气水合物中的含碳总量大约是地球上全部化石燃料的两倍。因此,据最保守的统计,全世界海底天然气水合物中贮存的甲烷总量约为×108亿m3,约合11万亿t(11×1012t)。数冀如此巨大的矿物能源是人类未来动力的希望。 二、天然气冰合物的研究现状 1.分布与环境效应 世界上绝大部分的天然气水合物分布在海洋里,储存在深水的海底沉积物中,只有极其少数的天然气水合物是分布在常年冰冻的陆地上。世界海洋里天然气水合物的资源量是陆地上的100倍以上。到目前为止,世界上已发现的海底天然气水合物主要分布区有大西洋海域的墨西哥湾、加勒比海、南美东部陆缘、非洲西部陆缘和美国东岸外的布莱克海台等,西太平洋海域的白令海、鄂霍茨克海、千岛海沟、日本海、四国海槽、日本南海海槽、冲绳海槽、南

二氧化碳气体保护焊机操作与安全规程

氧化碳气体保护焊机操作与安全规程 一、工作前 1.焊机及加热器接地必须可靠,焊枪绝缘必须良好。 2 ?二氧化碳气瓶阀门应完好无损,搬运气瓶时瓶盖要盖好。 3.电源电压波动范围不得超出额定输入电压值的土10%时方可使用。电焊机上的各种仪器仪表应齐全、完好。 4.工具附件齐全、完好。工作环境符合要求。 二、工作中 1.班前检查合格后,先接通总电源开关,动作要迅速,再接通控制电源开关。绿灯亮表示焊机正常。检查冷却风机运行是否正常,风路是否畅通无阻。严禁在没有冷却的情况下使用设备。 3.接通检气开关,打开钢瓶气阀,检查气阀是否完好;调整二氧化碳气体流量在10—20升/ 分。接通预热器,检查二氧化碳气体是否加热正常。接通送丝机构部分,检查送丝速度是否均匀,并调整到适当值。接通主焊电路进行试焊。根据焊接工艺要求及设备说明书的《焊接条件表》调整好电流、电压,送丝轮压力及焊嘴与母材间的距离,并随时观察焊缝质量。对其修正,调节到较佳位置。 4.一切正常后方能进行焊接。 5.当焊接敏感金属或对焊接质量要求较高的工件时,在二氧化碳气路系统中应设置干燥器和低压干燥器(根据需要低压干燥器可增至2—3个) ,可采用硅胶或脱水硫酸铜作干燥剂。气瓶使用前应先排放瓶内空气1-2分钟,二氧化碳气瓶内气压不能W1 — 1.5兆帕。 6.焊枪使用应注意下列事项: (1.)在连续使用中,焊枪的焊接电流和负载持续率应控制在所有焊枪的额定表所规定的范围内。(2.)为延长喷嘴及导电嘴的使用寿命,在使用前应先涂一层防堵剂,防止其粘上焊接飞溅物。(3.)须经常清理喷嘴,以免出气孔被飞溅颗粒堵塞,保证气路畅通及防止焊接电源短路,损坏机内电气元件。使用时应经常检查导电嘴,如有磨损或堵塞应立即更换。(4.)焊枪用完后应放在可靠的地方,禁止放在焊件上。 7.工作中需随时注意焊丝输送情况,紧轮不得过松、过紧,焊丝轮管不得有急 弯,最小曲率半径应> 3 0 0毫米。 8.焊接现场严禁使用风扇,以确保气体的保护作用。 9.离岗时,应关闭气路与电路,切断电源后方可离开。 三、工作后关闭气路与电路,切断电源,清理工作现场,检查并扑灭现场火星,把 工具 附件放在规定的地方。做好日常维护保养工作。 批准:审核:制定:林燕 设备动能部 2013年05月10日

二氧化碳保护焊机安全操作规程通用版

操作规程编号:YTO-FS-PD217 二氧化碳保护焊机安全操作规程通用 版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

二氧化碳保护焊机安全操作规程通 用版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 1.此类设备属特种作业设备,必须持证上岗,上岗证由市劳动部门统一颁发。 2.本机必须由受过专业培训的人员操作; 3.在移动焊机时,应取出机内易损电子器材单独搬动。 4.焊机内的接触器、断电器的工作元件,焊枪夹头的夹紧力以及喷嘴的以及喷嘴的绝缘性能等,应定期检查。 5.高频引弧焊机或装有高频引弧装置时,焊接电缆都应有铜网编织屏蔽套,并可靠接地。 6.焊机使用前应检查供气、供水系统,不得在漏水、漏气的情况下运行。 7.气体保护焊机作业结束后,禁止立即用手触摸焊枪导电嘴,以免烫伤。 8.盛装保护气体的高压气瓶就小心轻放竖立固定,防止倾倒。气瓶与热源距离应大于3 m 。 9.采用电热器使二氧化碳气瓶内液态二氧化碳充分氧化时,焊机必须使用规范的输入电压,应低于36V;外壳接

人教部编版高中化学沉淀溶解平衡曲线知识考点梳理

人教部编版高中化学沉淀溶解平衡曲线知识考点梳理 溶度积(Ksp) 1. 概念:一定温度下,难溶电解质在饱和溶液中各离子 浓度幂的乘积是一个常数,这个常数称为该难溶电解质的溶 度积,用符号Ksp表示。 2. 表达式:对于沉淀溶解平衡:MmAn(s)? mMn+(aq)+nAm-(aq), 溶度积常数:Ksp = c(Mn+)mc(Am-)n 3. 溶度积规则:比较Ksp与溶液中有关离子浓度幂的 乘积(离子积Qc)判断难溶电解质在给定条件下沉淀能否 生成或溶解。 Qc>Ksp时,生成沉淀; Qc=Ksp时,达到溶解平衡; Qc<Ksp时,沉淀溶解。 4. 影响溶度积的因素: Ksp 只与难溶电解质的性质和温度有关,而与沉淀的量无关,并且溶液中的离子浓度的变化能使平衡移动,并不改 变Ksp 。 5. 溶度积的物理意义: Ksp反映了难溶电解质在水中的溶解能力。当化学式所 表示的组成中阴、阳离子个数比相同时,Ksp数值越大则难

溶电解质在水中的溶解能力越强。但对化学式所表示的组成 中阴、阳离子个数比不相同的电解质,则不能直接由它们的 溶度积来比较溶解能力的大小,必须通过具体计算确定。 6. 难溶电解质的溶度积以及溶解能力的比较 【拓展提升】 一. 沉淀的生成 1.沉淀生成的应用 在涉及无机制备、提纯工艺的生产、科研、废水处理等 领域中,常利用沉淀溶解来达到分离或除去某些离子的目 的。 2.沉淀的方法 (1) 调节pH法:如工业原料氯化铵中含杂质氯化铁, 使其溶解于水,再加入氨水调节pH至7~8,可使Fe3+转变为Fe(OH)3沉淀而除去。反应如下:Fe3++3NH3·H2O===Fe(OH)3↓+3NH4+。 (2) 加沉淀剂法:如以Na2S、H2S等作沉淀剂,使某 些金属离子,如Cu2+、Hg2+等生成极难溶的硫化物CuS、HgS等沉淀,也是分离、除去杂质常用的方法。反应如下:Cu2++S2-===CuS↓ Cu2++H2S===CuS↓+ 2H+ Hg2++S2-===HgS↓ Hg2++H2S===HgS↓+ 2H+

工贸企业二氧化碳气体保护焊安全操作规程通用范本

内部编号:AN-QP-HT642 版本/ 修改状态:01 / 00 The Procedures Or Steps Formulated T o Ensure The Safe And Effective Operation Of Daily Production, Which Must Be Followed By Relevant Personnel When Operating Equipment Or Handling Business, Are Usually Systematic Documents, Which Are The Operation Specifications Of Operators. 编辑:__________________ 审核:__________________ 单位:__________________ 工贸企业二氧化碳气体保护焊安全操 作规程通用范本

工贸企业二氧化碳气体保护焊安全操作 规程通用范本 使用指引:本操作规程文件可用于保证本部门的日常生产、工作能够安全、稳定、有效运转而制定的,相关人员在操作设备或办理业务时必须遵循的程序或步骤,通常为系统性的文件,是操作人员的操作规范。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 电焊工须经培训考试,并持有操作证者方能独立操作,未经专门培训和考试不得单独操作。遵守电焊作业通用安全操作规程。操作前认真熟悉焊接有关图样,弄清焊接位置和技术要求。 1准备工作 1.1焊前清理。CO2焊虽然没有钨极氩弧焊那样严格,但也应清理坡口及其两侧表面的油污、漆层、氧化皮以及铁金属等杂物。 1.2检查设备。检查电源线是否破损;地线接地是否可靠;导电嘴是否良好;送丝机构是

天然气水合物物化性质

天然气水合物物化性质 在自然界发现的天然气水合物多呈白色、淡黄色、琥珀色、暗褐色亚等轴状、层状、小针状结晶体或分散状。它可存在于零下,又可存在于零上温度环境。从所取得的岩心样品来看,气水合物可以以多种方式存在:①占据大的岩石粒间孔隙;②以球粒状散布于细粒岩石中;③以固体形式填充在裂缝中;或者为④大块固态水合物伴随少量沉积物。 气水合物与冰、含气水合物层与冰层之间有明显的相似性:①相同的组合状态的变化——流体转化为固体;②均属放热过程,并产生很大的热效应——0℃融冰时需用0.335KJ的热量,0~20℃分解天然气水合物时每克水需要0.5~0.6KJ的热量;③结冰或形成水合物时水体积均增大——前者增大9%,后者增大26%~32%;④水中溶有盐时,二者相平衡温度降低,只有淡水才能转化为冰或水合物;⑤冰与气水合物的密度都不大于水,含水合物层和冻结层密度都小于同类的水层;⑥含冰层与含水合物层的电导率都小于含水层;⑦含冰层和含水合物层弹性波的传播速度均大于含水层。 天然气水合物中,水分子(主体分子)形成一种空间点阵结构,气体分子(客体分子)则充填于点阵间的空穴中,气体和水之间没有化学计量关系。形成点阵的水分子之间靠较强的氢健结合,而气体分子和水分子之间的作用力为范德华力。 到目前为止,已经发现的天然气水合物结构有三种,即结构 I 型、结构 II 型(图1)和结构H型。结构 I 型气水合物为立方晶体结构,其在自然界分布最为广泛,仅能容纳甲烷(C1)、乙烷这两种小分子的烃以及N2、CO2、H2S等非烃分子,这种水合物中甲烷普遍存在的形式是构成CH4·5.75H2O的几何格架;结构 II 型气水合物为菱型晶体结构,除包容C1、C2等小分子外,较大的“笼子”(水合物晶体中水分子间的空穴)还可容纳丙烷(C3)及异丁烷(i-C4)等烃类;结构H型气水合物为六方晶体结构,其大的“笼子”甚止可以容纳直径超过异丁烷(i-C4)的分子,如i-C5和其他直径在7.5~8.6A之间的分子(表1)。结构H型气水合物早期仅存在于实验室,1993年才在墨西哥湾大陆斜坡发现其天然产物。 II 型和H型水合物比 I 型水合物更稳定。除墨西哥外,在格林大峡谷地区也发现了 I 、 II 、H型三种气水合物共存的现象。 表1 墨西哥湾巴什山三种气水合物伴生气体及烃类组成(体积百分比)[2] 样品 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 水合物(H) 21.2 9.5 7.5 2.5 17.5 41.1 0.8 排放气体 88.0 8.0 2.1 0.3 1.2 0.4 <0.1 排放气体 88.0 7.5 2.2 0.5 1.1 0.6 <0.1 水合物( I ) 71.8 3.4 18.8 5.7 0.3 N.D N.D 水合物( II ) 73.9 4.9 16.3 4.6 0.2 N.D N.D N.D=未检测到 在一定的温压条件下,即在气水合物稳定带(HSZ)内,气水合物可以稳定存在,如果脱离HSZ水合物就会分解。气水合物一般随沉积作用的发生而生成,随着沉积的进一步进行,稳定带基底处的水合物由于等温线的持续变化而分解。孔隙中的水达到饱和后会产生游离气体,其向上运移到水合物稳定带并重新生成水合物。但是在离开HSZ后,人们发现天然气水合物仍具有相对的稳定性。Ershov和Yakushev在实验过程中发现,在一定晶体中生长的气体水合物,在大气压和零度以下可以保存好几天。他们认为水合物的初始分解导致在水合物样品的表面形成一层脱离的膜,其可减缓或很可能阻止水合物的进一步分解。Ershov和Yakushev(1992)将这一现象称为气水合物的自保性。加拿大马更些三角洲Taglu气田92GSCTAGLU钻孔中可见气水合物的发现,证实了自然界中气水合物具有自保性。这种水合物如薄冰层,其可在大气压条件和冻结温度以下稳定存在4小时。

二氧化碳保护焊机安全操作规程

二氧化碳保护焊机安全操作 规程 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

二氧化碳保护焊机安全操作规程 1.此类设备属特种作业设备,必须持证上岗,上岗证由市劳动部门统一颁发。 2.本机必须由受过专业培训的人员操作; 3.在移动焊机时,应取出机内易损电子器材单独搬动。 4.焊机内的接触器、断电器的工作元件,焊枪夹头的夹紧力以及喷嘴的以及喷嘴的绝缘性能等,应定期检查。 5.高频引弧焊机或装有高频引弧装置时,焊接电缆都应有铜网编织屏蔽套,并可靠接地。 6.焊机使用前应检查供气、供水系统,不得在漏水、漏气的情况下运行。 7.气体保护焊机作业结束后,禁止立即用手触摸焊枪导电嘴,以免烫伤。 8.盛装保护气体的高压气瓶就小心轻放竖立固定,防止倾倒。气瓶与热源距离应大于3m。 9.采用电热器使二氧化碳气瓶内液态二氧化碳充分氧化时,焊机必须使用规范的输入电压,应低于36V;外壳接地可靠。工作结束立即切断电源和气源。 10.在无严重影响焊机绝缘性能和引起腐蚀的环境中使用; 11.焊机必须有符合规范的接地装置,必要时安装漏电保护器; 12.工人操作时要要穿戴焊帽、眼镜及必要的绝缘防护用具;

13.焊把、焊枪要轻拿轻放; 14.严禁用力拉焊把线、焊机二次线,包括送丝机构线; 15.操作工要按照工艺要求选择焊接电流、电压; 16.对于抽头式焊机,严禁焊接时调节电压; 17.焊机要定期(一个月)进行除尘保养,包括送丝软管; 18.焊机不使用时,要切断电源,妥善保管; 19.在连续施焊过程中,随时清理喷嘴内焊渣。 20.焊丝上有油污必须清理,否则影响焊接质量。 21.如果发现电机火花过大应及时修理。 22.随时注意导电嘴的磨损情况,注意焊丝的存放,防止生锈。

天然气水合物

化学选修3《物质结构与性质》P85选题2 天然气水合物 (一种潜在的能源) 天然气水合物——可燃冰 一、可燃冰相关概念 可燃冰:天然气与水在高压低温条件下形成的类冰状结晶物质。(又称笼形化合物)甲烷水合物(Methane Hydrate):用M·nH2O来表示,M代表水合物中的气体分子,n为水合指数(也就是水分子数)。组成天然气的成分如CH4、C2H6、C3H8、C4H10等同系物以及CO2、N2、H2S等可形成单种或多种天然气水合物。形成天然气水合物的主要气体为甲烷,对甲烷分子含量超过99%的天然气水合物通常称为甲烷水合物。 又因外形像冰,而且在常温下会迅速分解放出可燃的甲烷,因而又称“可燃冰”或者“固体瓦斯”和“气冰”)。 因为可燃冰的主要成分为甲烷,为甲烷水合物,而甲烷在常温中为气体,熔、沸点低,所以甲烷为分子晶体,因而可燃冰也为分子晶体。 可燃冰存在之处:天然气水合物在自然界广泛分布在大可燃冰 陆、岛屿的斜坡地带、活动和被动大陆边缘的隆起处、极地大陆架以及海洋和一些内陆湖的深水环境。 天然气水合物在全球的分布图 在标准状况下,一单位体积的气水合物分解最多可产生164单位体积的甲烷气体,因

而其是一种重要的潜在未来资源。 笼状化合物(Clathrate):在天然气水合物晶体中,有甲烷、乙烷、氮气、氧气二氧化碳、硫化氢、稀有气体等,它们在水合物晶体里是装在以氢键相连的几个水分子构成的笼内,因而又称为笼状化合物。 天然气分子藏在水分子中 水分子笼是多种多样的 二、可燃冰的性质 可燃冰的物理性质: (1)在自然界发现的天然气水合物多呈白色、淡黄色、琥珀色、暗褐色亚等轴状、层状、小针状结晶体或分散状。 (2)它可存在于零下,又可存在于零上温度环境。 (3)从所取得的岩心样品来看,气水合物可以以多种方式存在: ①占据大的岩石粒间孔隙; ②以球粒状散布于细粒岩石中; ③以固体形式填充在裂缝中;或者为大块固态水合物伴随少量沉积物。 可燃冰的化学性质: 1、在冰的空隙(“笼”)中可以笼合天然气中的分子的原因: (1)气水合物与冰、含气水合物层与冰层之间有明显的相似性: ①相同的组合状态的变化——流体转化为固体; ②均属放热过程,并产生很大的热效应——0℃融冰时需用的热量,0~20℃分解天然气 水合物时每克水需要~的热量; ③结冰或形成水合物时水体积均增大——前者增大9%,后者增大26%~32%; ④水中溶有盐时,二者相平衡温度降低,只有淡水才能转化为冰或水合物; ⑤冰与气水合物的密度都不大于水,含水合物层和冻结层密度都小于同类的水层; ⑥含冰层与含水合物层的电导率都小于含水层; ⑦含冰层和含水合物层弹性波的传播速度均大于含水层。 (2)天然气水合物中,水分子(主体分子)形成一种空间点阵结构,气体分子(客体分子) 则充填于点阵间的空穴中,气体和水之间没有化学计量关系。形成点阵的水分子之间靠较强的氢健结合,而气体分子和水分子之间的作用力为范德华力。 2、经发现的天然气水合物结构有三种: 即结构 I 型、结构 II 型和结构H型。结构 I 型气水合物为立方晶体结构,其在自然界分布最为广泛,仅能容纳甲烷(C1)、乙烷这两种小分子的烃以及N2、CO2、H2S 等非烃分子,这种水合物中甲烷普遍存在的形式是构成CH4·的几何格架;结构 II 型气水合物为菱型晶体结构,除包容C1、C2等小分子外,较大的“笼子”(水合物晶体中水分子间的空穴)还可容纳丙烷(C3)及异丁烷(i-C4)等烃类;结构H型气水合物为

溶解平衡图像

沉淀溶解平衡曲线 沉淀溶解平衡图像题的解题策略 1.沉淀溶解平衡曲线类似于溶解度曲线,曲线上任一点都表示饱和溶液,曲线上方的任一点均表示过饱和溶液,此时有沉淀析出,曲线下方的任一点均表示不饱和溶液。 2.从图像中找到数据,根据K sp 公式计算得出K sp 的值。 3.比较溶液的Q c 与K sp 的大小,判断溶液中有无沉淀析出。 4.涉及Q c 的计算时,所代入的离子浓度一定是混合溶液中的离子浓度,因此计算离子浓度时,所代入的溶液体积也必须是混合溶液的体积。 1.在t ℃时,AgBr 在水中的沉淀溶解平衡曲线如图所示。又知t ℃时AgCl 的K sp =4×10-10 ,下列说法不正确的 是( ) A .在t ℃时,AgBr 的K sp 为4.9×10 -13 B .在AgBr 饱和溶液中加入NaBr 固体,可使溶液由c 点变到b 点 C .图中a 点对应的是AgBr 的不饱和溶液 D .在t ℃时,AgCl(s)+Br - (aq)AgBr(s)+Cl - (aq)的平衡常数K ≈816 答案 B 解析 根据图中c 点的c(Ag + )和c(Br - )可得该温度下AgBr 的K sp 为4.9×10 -13 ,A 正确;在AgBr 饱和溶液中加 入NaBr 固体后,c(Br - )增大,溶解平衡逆向移动,c(Ag + )减小,故B 错;在a 点时Q c <K sp ,故为AgBr 的不饱和溶液,C 正确;选项D 中K =c(Cl - )/c(Br - )=K sp (AgCl)/K sp (AgBr),代入数据得K ≈816,D 正确。 2.已知25℃时,CaSO 4在水中的沉淀溶解平衡曲线如图所示,向100mL 该条件下的CaSO 4饱和溶液中加入400mL0.01mol·L -1 Na 2SO 4溶液,下列叙述正确的是( ) A .溶液中析出CaSO 4固体沉淀,最终溶液中c(SO 2- 4)比原来的大 B .溶液中无沉淀析出,溶液中c(Ca 2+ )、c(SO 2- 4)都变小 C .溶液中析出CaSO 4固体沉淀,溶液中c(Ca 2+ )、c(SO 2- 4)都变小 D .溶液中无沉淀析出,但最终溶液中c(SO 2-4)比原来的大 答案 D 解析 由图像可知K sp (CaSO 4)=9.0×10 -6,当加入400mL0.01mol·L -1 Na 2SO 4溶液时,此时c(Ca 2+ )= 3.0×10-3 mol·L -1 ×0.1L 0.5L =6×10-4mol·L -1,c(SO 2- 4)=3.0×10-3 mol·L -1 ×0.1L +0.01mol·L -1 ×0.4L 0.5L =8.6×10-3 mol·L -1 ,Q c =5.16×10-6

电焊机使用规范

不良等度触电问题,热电公司夏季发生一次焊机爆炸,为避免类似问题发生,组织部分电焊机安全常识,供参考同时对工作状态不良的焊机进行排查,有问题的不能使用,及时报修。 建议组织检修工、焊工学习。

预防电焊机空载电压触电 电焊机是一种特殊结构的降压变压器,某一次侧接入380V或220V的交流电源,二次侧输出供焊接用的较低电压的电源。电焊就是将该电源的电能转化成热能作为热源来加热金属实现焊接的方法。由于电焊作业中操作者每时每刻都要同电打交道,故危险因素较多,触电伤亡事故屡见不鲜。本文以普遍使用的手工电弧焊为例,谈谈电焊机在空载状态下,二次侧输出电压正常时,其焊接回路致人触电的主要原因,并提出相应的预防措施。 (1)空载电压致人触电的原因 我国目前生产的手弧电焊机的空载电压一般为55~99V,工作电压为25~40V。显而易见,空载电压值已远远超过了安全电压范围,对于人的安全而言存在比较大的威胁。一方面由于该电压不像相电压(220V)和线电压(3 8 0V)那样高,易使人忽视,另一方面,电焊工及有关操作人员与焊接回路中的焊钳、焊条、焊件、工作台、焊接电线等器材的接触比较频繁。当操作人员的个人防护用品保持齐全良好状态时,如果触及到焊条的焊芯、焊钳的焊口、破损的焊接线等焊接回路带电时,通过人体的事故电流大约在10mA左右,会使手臂产生酸、麻和疼痛感,但触电者一般都能够摆脱这种局面,不至于造成严重的后果。当操作人员的个人防护用品存在缺陷、环境湿度较大、身体出汗、皮肤上带有导电性粉尘、身处导电性地面(由砖、湿木板、钢筋混凝土、金属等材料制成的地面或金属贮罐、管道、锅炉等金属结构内)或碰触到其他接地的导电物体,如操作人员碰触到处于空载状态下的焊接回路的带电体时,通过人体的事故电流可达40mA以上,此时触电者的触电部位(如手部)将发生痉挛,甚至昏迷而不能摆脱,触电时间稍长就会有生命危险;若事故电流一旦超过50mA,在较短的时间内就可能造成死亡。 (2)预防空载电压触电的措施 加强个人防护。焊工个人防护用品包括完好的工作服、绝缘鞋、绝缘手套(长度不得短于0.3m)等,作业时必须按使用规定穿戴整齐。 焊接作业前,应先检查工作场所的焊件、工具等放置合理有序,检查各电气设备的摆放和连接应正确可靠,焊接工作点附近不得有易燃易爆物品。 在潮湿地方焊接时,操作台附近地面上应铺设绝缘物(如橡胶绝缘垫),或站在垫起的干燥木板上。 电焊机至焊钳、电焊机至焊件的二次回路连接电缆(统称焊接电缆)必须选用电焊专用电缆,如YHH型或YHHR型等。其截面要求根据电焊机额定输出电流选用,其长度一般以20~30m为宜。 焊钳必须具有良好的绝缘性能和隔热能力,各绝缘部位不得有残缺现象。 焊钳与焊接电缆之间的连接要求坚固可靠、接触良好,电缆的橡胶包皮应深入到焊钳手柄内部,以防电缆芯线外露。 无论是焊把线(电焊机至焊钳的电缆)还是地线(电焊机至焊件的电缆),最好使用整根的,如果确需中途接头时,每根的接头不宜超过两个,接头处必须连接牢固,保证极低的接触电阻,并做好绝缘处理。 保持一次电源线与焊把线清洁干燥,使用完毕后及时清理外皮粉尘污物检查有无破损,并晾晒干燥。 无论在高处、斜坡处或沟道等复杂环境还是在常规环境焊接时,均不得把焊接电缆缠在腰里或腿上、系在金属物体上,也不要把过长的电缆盘成卷。 在金属结构及金属容器(如气柜、锅炉气鼓、管道等)内及其他狭小工作场所焊接时,由于触电的危险性增加,故必须采取专门的防护措施,如在容器外面设有可看见和可听见焊工工作的监护人,以便随时注意焊工的安全动态,或两人的职能轮换工作。

二氧化碳气体保护焊安全操作规程

二氧化碳气体保护焊安全操作规程 二氧化碳气体保护焊安全操作规程提要:co2气瓶的搬运和储存应参照气瓶的搬运与保管的有关规定执行。若发现气体调节器外观损伤或怀疑漏气,应停止使用 二氧化碳气体保护焊安全操作规程 从事二氧化碳气体(co2)保护焊接的工作人员应遵守手工电弧焊的相关规定,并注意下面几点: 1、从事二氧化碳气体(co2)保护焊人员应,熟悉气瓶使用要求,学习焊机使用和气体调节器的说明书中的规定。 2、二氧化碳气体在高温电弧作用下,可分解产生一氧化碳有害气体,工作场所必须通风良好。 3、co2气体保护焊,焊接时飞溅大,弧光辐射强烈,工作人员必须穿白色工作服,戴皮手套和防护面罩。 4、装有co2的气瓶,不能在阳光下曝晒或接近高温,以免引起瓶内压力增加而发生爆炸。气瓶应稳固直立,开起气阀时不可站在气体调节器的前方(压力表前方)。要缓缓地将阀逐渐打开到全开位置。 5、安装气体调节器前应清除高压气瓶与气体调节器部分的油、油污、水分、灰尘、泥砂等附着物,防止油污、油脂等对气体调节器的污染。。 6、切记绝对不可将焊枪挂在气瓶上,注意电极不要与气瓶接触。 7、co2气瓶的搬运和储存应参照气瓶的搬运与保管的有关规定执行。若发现气体调节器外观损伤或怀疑漏气,应停止使用。 8、使用气体调节器应了解,气体调节器的适用范围。所配用的气体调节器不适合虹吸式co2容器。 9、气体调节器为非防水构造,若在户外使用,应采取防滴保护措施,以避免雨淋,并应避免阳光直接照射。 10、避免由于情况异常造成调节压力升高而导致气体调节器损坏,气体调节器上装有安全阀,切不可对安全阀的工作压力进行调整,安全阀在发生泄漏时,则其压力调节功能已丧失,应停止使用。 11、co2气体预热器的电源应采用36V电压,工作结束时将电源切断。气体调节器应接地。

相关文档
最新文档