全站仪三角高程测量的原理、方法、精度分析

全站仪三角高程测量的原理、方法、精度分析
全站仪三角高程测量的原理、方法、精度分析

摘要

在工程建设的勘测、施工中常常涉及到高程测量,现场采用的测量方法主要是水准测量和三角高程测量。水准测量精度高,但是速度比较慢,效率低。此外,水准测量的转点多,而且标尺与仪器也存在下沉误差,如果在丘陵、山区等地使用水准测量进行高程传递是非常困难的,有时甚至是不可能的。近些年来,由于全站仪的发展,使得测角、测距的精度不断提高。三角高程测量传递高程比较灵活、方便、受地形条件限制较少等优点,因此全站仪三角高程测量补充了水准测量不能在山区等地形起伏较大的地区施测的不足,成为水准测量的重要方法。本文对全站仪三角高程测量的原理、方法、精度等进行了分析,认为用全站仪代替水准仪进行高程测量,在一定范围内可达到三等水准测量要求。

关键词:全站仪三角高程精度分析等级水准

Abstract

In the construction survey, construction often involve the height measurement, the scene is the leveling measurement method is mainly used and trigonometric leveling. Leveling precision, but at a slower speed, low efficiency. In addition, the turning point of leveling and gauge and instrument is also sinking error, if in the hills, mountains and other places using the leveling elevation transfer is very difficult, sometimes even impossible. In recent years, due to the development of the total station, the accuracy of Angle, distance to improve. Trigonometric leveling elevation is more flexible and convenient, and the advantages of less restricted by terrain conditions, so the triangle elevation surveying added leveling can't in mountainous terrain volatile regions such as measured by the insufficiency, has become an important method of leveling. In this paper, the principle and method of total station triangle elevation measurement, precision are analyzed, such as that using total station to replace the level height measurement, within a certain range can be up to three, the fourth level measurement requirements.

Key Words:Total station, Triangle elevation, Accuracy analysis, Order leveling

目录

摘要........................................................... I ABSTRACT ......................................................... II 第1章绪论. (1)

1.1 前言 (1)

1.1.1 研究目的与意义 (1)

1.2 国内外研究现状 (2)

1.2.1 国内研究现状 (2)

1.2.2 国外研究现状 (2)

1.3 本文研究内容 (3)

第2章全站仪三角高程测量原理和观测方法 (4)

2.1 全站仪三角高程的基本理论 (4)

2.1.1 全站仪三角高程测量的原理 (4)

2.1.2三角高程测量的基本公式 (5)

2.2 全站仪三角高程测量的方法 (7)

2.2.1对向观测法 (7)

2.2.2中间测量法 (8)

第3章三角高程与几何水准高程误差及精度的对比研究 (9)

3.1 全站仪对向观测法的精度分析 (9)

3.2 全站仪中间观测法的精度分析 (11)

3.3 三角高程测量方法的比较 (13)

第4章实例分析 (15)

4.1 测量过程 (15)

4.2 观测结果分析 (17)

第5章结论与展望 (19)

致谢 (20)

参考文献 (21)

第1章绪论

1.1 前言

测量地面待定点的高程,传统的方法是通过仪器测量待测点与已知点间的高差,然后计算出待测点的高程。测定两点间高差的方法很多,如水准测量、经纬仪三角高程测量等。水准测量精度高,但仅适用于平坦地区;经纬仪三角高程测量能适用于山区,但由于距离测量精度较低,其高差测量精度较低。随着测量技术的高速发展,全站仪现已普遍用于控制测量、地形测量及工程测量中。全站仪集电子经纬仪、光电测距仪和数据记录于一体,其测距和测角精度大大提高,这使全站仪用于高程测量成为可能;但是,利用全站仪精确测距的优势进行三角高程测量能否普遍代替水准测量,已成为测绘人员急待解决的问题[1]。本文结合全站仪三角高程测量的原理和方法,应用误差传播定律,对其进行系统的精度分析,对全站仪三角高程测量代替水准测量进行了探讨。

1.1.1 研究目的与意义

在当今的高程测量中,水准测量是高程控制的最主要方法之一。但是,普通的水准测量速度比较慢。虽然国外有使用自动化水准测量,但是也没有显著提高它的效率,并且需要的劳动强度大。在长倾斜路线上受到垂直折光误差累积性影响,当前、后视线通过不同高度的温度层时,每公里的高差可能产生系统性的影响。尽管现在已有不少的研究人员提出了一些折光差改正的计算公式,但这些公式中仍然还存在系统误差。并且,近年来还发现地球磁场对补偿式精密水准仪也很有影响。此外,水准测量的转点多,而且标尺与仪器也存在下沉误差,这又是一项系统误差。由于上述原因,如果在丘陵、山区等地使用水准测量进行高程传递是非常困难的,有时甚至是不可能的。如果采用三角高程测量就比较容易实现。近些年来,由于全站仪的发展,使得测角、测距的精度不断提高。再加上学者对三角高程测量的深入研究,使三角高程测量的精度也有很大的提高。三角高程测量传递高程比较灵活、方便、受地形条件限制较少等优点,使三角高程测量在工程测量中得到广泛的应用。

但全站仪三角高程测量能否完全代替水准仪测量高程?若能代替,精度

又如何?为了回答这些问题,有必要对全站仪三角高程测量的原理、方法、误差来源等进行分析。然后针对这些因素改善其观测条件,探求合适的观测方法来消减误差,并拟定相应的作业规程,对比在高程控制测量过程中二者的精度和效率。得出在一定的测量条件下,三角高程测量代替水准测量作业方法的适用范围。以提高作业效率,减少劳动强度,为今后三角高程测量在测绘工作中实际推广应用打下坚实的基础。

1.2 国内外研究现状

1.2.1 国内研究现状

随着科学技术的发展,三角高程测量的优势很快的就显现出来。在我国,对三角高程和水准测量的对比研究是相当普遍。

1982年11月和1987年9月先后在昆明和北京召开了“电磁波测距仪在工程测量中的应用”的学术讨论会。1992年11月在厦门召开了“大气折射与测距三角高程代替水准测量学术讨论会”,这标志着我国这一领域的研究进入了新的阶段[3]。

如云南省水利水电勘测设计院采用的DM502测距仪测边,用DKM-2A经纬仪观测天顶距3测回,实测高程导线103条,边长从116m-1147m。试验结果表明,当用中间法观测边长在1km以内,三角高程测量是可以代替四等水准测量。对向观测法边长小于1.1km时,可以代替三等水准测量[4]。

国家测绘研究所使用AGA122测距仪与T2经纬仪在面积50平方公里的地区进行大规模的试验,采用对向观测,天顶距3测回,边长在50-4130m。其结果是,当边长在50m-1.1km内,可以代替三等水准测量,边长在70m-3.4km 时可以代替四等水准测量[5]。

东北水利水电勘察院与水电一局在白山水电监测网中,用ME-3000精密测距仪测边,用T3经纬仪同时找准对方经纬仪支架上的棱镜。三角高程测量的结果与一等水准测量的36个差值计算得到每公里高差中误差为±2.19mm。而由三角形12个闭合差计算每公里高差中误差为±2.88mm。这表明三角高程测量的精度接近二等水准测量要求[6]。

1.2.2 国外研究现状

美国国家大地测量局于1983-1985年间用T2000经纬仪和DI5测距仪组

成全站仪器,按中间法和对向观测法施测总长为30km的线路,边长为300m 左右。求得往返平均值标准差小于±0.76mm和±1.02mm,环线闭合差小于±4L mm [7]。

加拿大新不伦斯威克大学与同一时期,采用与美国类似的仪器在大学校园内600m的道路上按中间法进行试验,边长分别为200、250、300m,垂直角观测8-10测回,求得每公里往返平均值的标准差为±2.2mm[8]。

德国累斯顿大学使用Recota全站仪(测距精度为5mm+2ppm,测角精度为1秒)在1.2km和1.5km的两条闭合线路进行中间法和对向法的观测试验,共测得22次,总长60km,平均边长为150m和370m。其结果与水准测量比较,在有利观测条件和一般观测条件观测时,对向观测时每公里中误差均小于±3mm。两条导线的作业效率分别为1.3km/小时和2.3km/小时,试验表明在倾斜地面作业时更为经济[9]。

1.3 本文研究内容

本文主要研究在工程测量中,三角高程和水准高程的精度对比分析。分析了三角高程测量的方法、原理和误差来源。并在校园布设高程控制网,对两种三角高程测方法所得的高程数据分别与水准测量所得的高程数据进行对比分析,得出各测量方法的优弊,技术路线如图1-1:

图1-1 技术路线图

第2章全站仪三角高程测量原理和观测方法

2.1 全站仪三角高程的基本理论

三角高程测量的基本思想是根据由测站向照准点所观测的垂直角(或天顶距)和它们之间的水平距离,计算测站点与照准点之间的高差。这种方法简便灵活,受地形条件的限制较少,故适用于测定三角点的高程。三角点的高程主要是作为各种比例尺测图的高程控制的一部分。一般都是在一定密度的水准网控制下,用三角高程测量的方法测定三角点的高程。

2.1.1 全站仪三角高程测量的原理

如图2-1所示,在地面上A、B两点间测定高差

h,A点设置仪器,在B

AB

点竖立标尺。量取望远镜旋转轴中心至地面点上A点的仪器高i,用望远镜中的十字丝的横丝照准B点标尺上的一点M,它距B点的高度称为目标高v,测出倾斜视线D'与水平视线D间所夹的竖直角α,若A、B两点之间的水平距离已知为D。

图2-1三角高程测量原理图

h为:

则由图2-1可得两点间高差

AB

错误!未找到引用源。 (2-1) 若在A点的高程已知为H A,则B点的高程为:

v i D H H A B -+?'+=αsin (2-2)

具体应用上式时要注意竖直角的正负号,当α为仰角时取正号,相应地错误!未找到引用源。也为正值,当α为俯角时取负号,相应地错误!未找到引用源。也为负值。

若在A 点设置全站仪(或经纬仪+光电测距仪),在B 点安置棱镜,并分别量取仪器高i 和棱镜高v ,测得两点间斜距错误!未找到引用源。与竖直角α以计算两点间的高差,成为光电测距三角高程测量。A 、B 两点间的高差可按下式计算:

v i D H AB -+?'=αsin (2-3) 凡是仪器设置在已知高程点,观测该点与未知高程点之间的高差称之为直觇;反之,仪器设置在未知高程点,测定该点与已知高程点之间的高差称之为反觇[10]。

2.1.2三角高程测量的基本公式

在控制测量中,由于距离较长,所以必须以大地水准面为依据来推导三角高程测量的基本公式。

如图2-2所示。设错误!未找到引用源。为A 、B 两点间的实测水平距离。仪器置于A 点,仪器高度为错误!未找到引用源。。B 为照准点,砚标高度为错误!未找到引用源。,R 为参考椭球面上错误!未找到引用源。的曲率半径。PE 、AF 分别为过P 点和A 点的水准面。错误!未找到引用源。是PE 在P 点的切线,PN 为光程曲线。当位于P 点的望远镜指向与PN 相切的PM 方向时,由于大气折光的影响,由N 点出射的光线正好落在望远镜的横丝上。这就是说,仪器置于A 点测得P 、M 间的垂直角为错误!未找到引用源。[11]。

由图2-2可明显地看出,A 、B 两地面点间的高差为

12

h BF MC CE EF MN NB ==++-- (2-4) 式中,EF 为仪器高1i ;NB 为照准点的觇标高度2v ;而CE 和MN 分别为地球曲率和折光影响。由

201S 2CE R = (2-5)

201S 2MN R =' (2-6)

式中错误!未找到引用源。为光程曲线PN 在N 点的曲率半径。设

'R K R =,则

22001.22R K MN S S R R R ''==

(2-7)

K 为大气垂直折光系数。

图2-2 地球曲率和大气折光的影响原理图

由于A 、B 间的水平距离0S 与曲率半径R 之比值很小(当010km S =时, 所对的圆心角仅5′多一点),故可认为PC 近似垂直于OM ,即认为PCM ≈90°, 这样PCM ?可视为直角三角形。则(2-4)式中的MC 为[12]

012S tan MC α= (2-8) 令式中C C R

K ,21=-一般称为球气差系数,则2-4式可写成

21.2012012tan h S CS i v α=++- (2-9)

(2-9)式中就是传统观测计算高差的基本公式。式中垂直角,仪器高1i 和觇标高2v ,均可由外业观测得到。0S 为实测的水平距离,一般要化为高斯平

面上的长度。

2.2 全站仪三角高程测量的方法

2.2.1对向观测法

求正向观测改正后的高差:在已知点A 处安置仪器,在未知点B 处设置觇标;分别测出AB 之间的斜距S 、竖直角α、仪器高i 、觇标高v 后得到正向高差: 22

1sin .cos 2A AB AB AB AB AB A B AB AB K h h f S i v S R αα-'=+=?+-+?

(2-10) 求反向观测改正后的高差:将仪器搬迁安置于未知点B 上,在已知点A 处设置觇标,重复上一步的工作,同样可得反向高差:

22

1sin .cos 2B BA BA BA BA BA B A BA BA K h h f S i v S R

αα-'=+=?+-+? (2-11) 正反向观测所得的高差之差满足限差要求时,则取正、反向高差的平均

值作为A 、B 两点间的高差,它可有效削减球气差的影响,即:2

AB BA

AB h h h ''-=作为A 、B 两点间的高差,其符号与正向高差错误!未找到引用源。同号。

A K 和

B K 分别为从A 向B 观测和从B 向A 观测时的大气折光系数。在观测条件相同的情况下,可以认为A B K K ≈,其次,错误!未找到引用源。和

AB AB S αcos ?为对向观测时A 、B 两点之间的水平距离,也近似相等,所以有:

2

2

22cos cos 1122AB BA A B AB BA K K S S R R αα--≈

(2-12) ()()()111sin sin 222

AB AB AB BA BA A A B B h S S i v i v αα=-++-+ (2-13) 由此可见,采取对向观测法可以有效地消除地球曲率和大气折光对高程影响。

2.2.2中间测量法

图2-3中间测量法示意图

如图2-3所示:已知A 点的高程A H ,欲测定B 点的高程B H ,可在A 、

B 两点间大概中间的位置P 点安置仪器,分别在A 、B 处设置觇标,照准A 点与B 点的觇标,得到视线距离错误!未找到引用源。错误!未找到引用源。、错误!未找到引用源。错误!未找到引用源。与水平的夹角A α与B α,,目标高度A v 与B v ;则可根据下式求得高差:

()2P 1sin cos 2A A A A A A A K h S v S R αα-=?-+??错误!未找到引用源。

(2-14)

()2P 1sin cos 2B B B B B B B K h S v S R αα-=?-+??

(2-15) 故A 点与B 点间的高差为:

222211sin sin .cos ..cos 22B A AB B B A A B A B B A A K K h S S v v S S R R αααα--=?-?-++?-

(2-16) 由于.cos ,.cos A A A B B B D S D S αα==代入式(2-16)整理后得:

2211.tan .tan ..22B A AB B B A A B A A B K K h D D D D v v R R αα--=-+-+-

(2-17) 若错误!未找到引用源。,则:

(2-18)

第3章 三角高程与几何水准高程误差及精度的对

比研究

3.1 全站仪对向观测法的精度分析 设:

由公式(2-13)根据误差传播定律可得其误差传播公式为:

(3-1) 现在我们设定全站仪边长观测中误差为错误!未找到引用源。;全站仪竖直角观测中误差为错误!未找到引用源。;仪器高和目标高的量取中误差为错误!未找到引用源。mm m m m v i g 1±===进行研究。

由3-1式可知,对向观测法的测量精度与距离精度、竖直角测量精度、仪高和目标高的量取精度有关。221Scos ().2A m ααρ

"=表示竖直角观测中误差m α对高差的影响;221sin 2

s B m α=表示测距中误差s m 对高差的影响;2g E m =表示作业时量取仪器高和棱镜高中误差对高差的影响。其值随竖直角和边长变化如表3-1。

由表3-1可以看出,

1)全站仪测距中误差对高差的影响与竖直角的大小有关,但是这种影响在竖直角小于15°是很小的。

2)竖直角观测中误差对高差的影响随着边长的增大而迅速增大,随着竖直角的增大而减小。这项影响比测边中误差的影响大的多。特别是在长边测量时,此项误差为影响高差精度的主要限制。为减小这项误差,一是边长不要太长,二是增加竖直角的测回数,提高测角精度;或者使用测角精度错误!未找到引用源。的全站仪。

表3-1 对向观测法极限误差与三等水准限差比较(单位:mm)

α项目

边长(m)

100 200 300 400 500 700 800 900 1000 1500

3° A 0.118 0.470 1.055 1.875 2.930 5.743 7.500 9.493 11.720 26.370

B 0.006 0.007 0.009 0.01 0.012 0.016 0.018 0.02 0.022 0.034

E 1 1 1 1 1 1 1 1 1

1

1.060 1.215 1.437 1.699 1.985

2.600 2.919

3.242 3.570 5.235

8°A 0.115 0.46 1.0375 1.845 2.88 5.6475 7.375 9.335 11.525 25.93

B 0.047 0.056 0.065 0.076 0.087 0.112 0.126 0.14 0.155 0.242 E 1 1 1 1 1 1 1 1 1

1

1.078 1.231 1.450 1.709 1.992

2.600 2.916

3.237 3.561 5.213

15°A 0.11 0.4375 0.9875 1.755 2.74 5.375 7.0175 8.8825 10.965 24.67

B 0.162 0.193 0.226 0.263 0.301 0.387 0.434 0.484 0.536 0.837 E 1 1 1 1 1 1 1 1 1

1

1.128 1.277 1.488 1.737

2.010 2.600 2.907

3.220 3.536 5.148

30°A 0.088 0.420 0.793 1.410 2.203 4.320 5.640 7.140 8.815 19.833

B 0.685 0.72 0.845 0.98 1.125 1.445 1.62 1.805 2 3.125 E 1 1 1 1 1 1 1 1 1

1

1.332 1.463 1.624 1.841

2.080 2.601 2.874

3.154 3.437

4.895

三等0.948 1.343 1.643 1.898 2.120 2.510 2.683 2.845 3.000 3.675 3)当测距视线斜距边长介于100-500m时,能够满足三等水准精度要求。

4)在测距视线斜距小于100m时,仪器高和目标高的量取误差为影响高

差精度的主要来源。

5)但是由于对向观测法假设对向观测的大气折光系数是一样的,进而相

互抵消。但是现实情况很难达到这种要求。我们现在取两个极限折光系数。

0.08和0.14进行研究。它对高差观测的影响如表3-2[15]

表3-2 对向观测时折光误差对高差的影响(单位:mm)

平距/m 100 200 300 400 500 700 800 900 1000 1500

误差/mm 0.05 0.19 0.42 0.75 1.18 2.3 3.01 3.81 4.7 10.58

当测距视线的平距超过500米时,对高差的影响就达到1mm 。所以我们在测量时除了要选择适当时间进行,还应适当的控制边长长度,进而减少误差。

3.2 全站仪中间观测法的精度分析

设;;;A B A B A B A B D D D v v g k k k m m m m m m m m m m m m ααα========,则有误差传播定律,根据公式(2-18)可推到出中间法观测高差的中误差为[13]:

(3-2)

现在我们设定全站仪边长观测中误差为()

62210.s m S mm -=±+?,S 为全站仪观测的斜距;全站仪竖直角观测中误差为错误!未找到引用源。;大气折光系数0.15,0.1A B k k ==,大气折光系数中误差0.05k m =。通过实验发现,在中间观测法中,不同的前后平距和前后平距差对高差观测精度的影响如表3-3。

表3-3 中间观测法地球曲率和大气折光对高差的影响值(单位:mm)

高差/mm

5 10 15 20 25 30 35 40 45 50 50 -0.04 -0.08 -0.12 -0.17 -0.22 -0.27 -0.33 -0.39 -0.4

6 -0.52 100 -0.0

7 -0.15 -0.23 -0.31 -0.39 -0.4

8 -0.57 -0.67 -0.77 -0.87 150 -0.11 -0.22 -0.33 -0.45 -0.57 -0.6

9 -0.82 -0.95 -1.08 -1.22 200 -0.14 -0.29 -0.43 -0.59 -0.74 -0.9 -1.06 -1.23 -1.4 -1.57 250 -0.18 -0.36 -0.54 -0.73 -0.92 -1.11 -1.31 -1.51 -1.71 -1.92 300 -0.21 -0.43 -0.64 -0.87 -1.09 -1.32 -1.55 -1.79 -2.02 -2.27 350 -0.25 -0.5 -0.75 -1.01 -1.27 -1.53 -1.8 -2.07 -2.34 -2.62 400 -0.28 -0.57 -0.85 -1.15 -1.44 -1.74 -2.04 -2.35 -2.66 -2.97

全站仪三角高程测量精度分析报告

全站仪三角高程测量精度分析 作者修涛 容摘要全站仪三角高程测量具有效率高,实施灵活等优点。全站仪三角高程测量可以代替水准测量进行高程控制,主要有对向观测法和中间观测法。在这两种方法中,前者将大气折光系数作为常数考虑,认为各个方向的折光系数相同,这与实际的情况有出入。而中间观测法则将大气折光系数作为变量处理,并加以改正。经研究并通过实践验证,在观测结果进行修正的条件下,全站仪三角高程测量完全能达到三、四等水准测量的精度要求,同时可借助Excel强大的数据处理能力,使观测数据的处理更为方便快捷[1]。文章根据三角高程测量原理及误差传播定律,对全站仪三角高程测量在测量中的应用及精度进行了探讨。对三角高程测量的不同方法进行了对比、分析总结。通过试验,对全站仪水准法三角高程测量进行了精度分析。 关键词全站仪;三角高程测量;精度分析

Total Station trigonometric leveling accuracy analysis Abstract T otal Station trigonometric leveling with high efficiency, the implementation of the advantages of flexible. Total Station trigonometric leveling can replace the standard of measurement for elevation control, mainly on the observation method to the observational method and intermediate. In both methods, the former take into account atmospheric refraction coefficient as a constant, that the refraction coefficient in each direction, this discrepancy with the actual situation. While the rule of the middle observation of atmospheric refraction coefficient as a variable processing and correction. Research and verify through practice, Total Station trigonometric leveling observations amendment can fully meet the accuracy requirements of the third and fourth level measurement, Can take advantage of Excel's powerful data processing capabilities, more convenient to make the processing of observational data.Article based on trigonometric leveling principle and law of error propagation, Total Station trigonometric leveling application and accuracy in the measurement are discussed. Different methods of measurement for triangulation were compared, analyzed and summarized. Trigonometric leveling Total Station Standards test, measurement accuracy analysis. Key words Electronic Total Station;trigonometric leveling;accuracy analysis

全站仪三角高程测量方法

应用全站仪进行三角高程测量的新方 在工程的施工过程中,常常涉及到高程测量。传统的测量方法是水准测量、三角高程测量。两种方法虽然各有特色,但都存在着不足。水准测量是一种直接测高法,测定高差的精度是较高的,但水准测量受地形起伏的限制,外业工作量大,施测速度较慢。三角高程测量是一种间接测高法,它不受地形起伏的限制,且施测速度较快。在大比例地形图测绘、线型工程、管网工程等工程测量中广泛应用。但精度较低,且每次测量都得量取仪器高,棱镜高。麻烦而且增加了误差来源。 随着全站仪的广泛使用,使用跟踪杆配合全站仪测量高程的方法越来越普及,使用传统的三角高程测量方法已经显示出了他的局限性。经过长期摸索,总结出一种新的方法进行三角高程测量。这种方法既结合了水准测量的任一置站的特点,又减少了三角高程的误差来源,同时每次测量时还不必量取仪器高、棱镜高。使三角高程测量精度进一步提高,施测速度更快。 一、三角高程测量的传统方法 如图一所示,设A,B为地面上高度不同的两点。已知A点高程H A,只要知道A 点对B点的高差H AB即可由H B=H A+H AB得到B点的高程H B。 此主题相关图片如下: 图中:D为A、B两点间的水平距离 а为在A点观测B点时的垂直角 i为测站点的仪器高,t为棱镜高

HA为A点高程,HB为B点高程。 V为全站仪望远镜和棱镜之间的高差(V=Dtanа) 首先我们假设A,B两点相距不太远,可以将水准面看成水准面,也不考虑大气折光的影响。为了确定高差h AB,可在A点架设全站仪,在B点竖立跟踪杆,观测垂直角а,并直接量取仪器高i和棱镜高t,若A,B两点间的水平距离为D,则h AB=V+i-t 故 H B=H A+Dtanа+i-t (1) 这就是三角高程测量的基本公式,但它是以水平面为基准面和视线成直线为前提的。因此,只有当A,B两点间的距离很短时,才比较准确。当A,B两点距离较远时,就必须考虑地球弯曲和大气折光的影响了。这里不叙述如何进行球差和气差的改正,只就三角高程测量新法的一般原理进行阐述。我们从传统的三角高程测量方法中我们可以看出,它具备以下两个特点: 1、全站仪必须架设在已知高程点上 2、要测出待测点的高程,必须量取仪器高和棱镜高。 二、三角高程测量的新方法 如果我们能将全站仪象水准仪一样任意置点,而不是将它置在已知高程点上,同时又在不量取仪器高和棱镜高的情况下,利用三角高程测量原理测出待测点的高程,那么施测的速度将更快。如图一,假设B点的高程已知,A点的高程为未知,这里要通过全站仪测定其它待测点的高程。首先由(1)式可知: H A=H B-(Dtanа+i-t) (2) 上式除了Dtanа即V的值可以用仪器直接测出外,i,t都是未知的。但有一点可以确定即仪器一旦置好,i值也将随之不变,同时选取跟踪杆作为反射棱镜,假定t值也固定不变。从(2)可知: H A+i-t=H B-Dtanа=W(3) 由(3)可知,基于上面的假设,H A+i-t在任一测站上也是固定不变的.而且可以计算出它的值W。 这一新方法的操作过程如下: 1、仪器任一置点,但所选点位要求能和已知高程点通视。 2、用仪器照准已知高程点,测出V的值,并算出W的值。(此时与仪器高程测定有关的常数如测站点高程,仪器高,棱镜高均为任一值。施测前不必设定。)

全站仪测量误差分析

全站仪测量误差分析 随着新仪器新设备的不断出现,测量技术的不断提高,同时对工程质量的要求也是愈来愈高,这就对精度的要求加强了许多,随着全站仪在施工放样中的广泛应用,为了使全站仪在实际生产中更好地运用,现结合工程测量理论,对全站仪在测量放样中的误差及其注意事项进行分析。 在我们建筑施工测量中,全站仪主要是用于测量坐标点位的控制和高程的控制,在以下几个方面对全站仪放样的误差作简要概述。 1、全站仪在施工放样中坐标点的误差分析 全站仪极坐标法放样点点位中误差MP由测距边边长S(m)、测距中误差ms(m)、水平角中误差mβ(″)和常数ρ=206265″共同构成,其精度估算公式为: 而水平角中误差mβ(″)包含了仪器整平对中误差、目标偏心误差、照准误差、仪器本身的测 角精度以及外界的影响等。 式(3)表明,对固定的仪器设备,采用相同的方法放样时,误差相等的点分布在一个圆周上,圆心为测站O。因此对每一个放样控制点O,可以根据点位放样精度m计算圆半径S,在半径范围内的放样点都可由此控制点放样。由式(1)可看出,放样点位误差中,测距误差较小,主要是测角误差。因此,操作中应时时注意提高测角精度。 2、全站仪在控制三角高程上的误差分析 一般情况下,在测量高程时方法为:设A,B为地面上高度不同的两点。已知A点高程HA,只要知道A点对B点的高差HAB即可由HB=HA±HAB得到B点的高程HB。 当A、B两点距离较短时,用上述方法较为合适。 在较长距离测量时要考虑地球曲率和大气折光对高差的影响。 设仪器高为i,棱镜高度为l,测得两点间的斜距为S,竖直角α,则AB两点的高差为: 一般情况下,当两点距离大于400m时须考虑地球曲率及大气折光的影响,在高差计算时需加两差改正。 式中R为地球曲率半径,取6371km, k为大气折光差系数,k=1-2RC (C为球气差,C=0.43D2/R,D:两点间水平距离)。 从上式中可以看出,当距离较远时,影响高差精度的主要因素就是地球曲率及大气折光,如果高程传递次数较多,累计误差就会加大,在测量时,最好是一次传递高程,若有需要,往返测高程,取其平均值以减小误差。 (1)、地球曲率改正 以水平面代替椭球面时,地球曲率对高差有较大的影响,测量中,采取视距离相等,消除其影响。三角高程测量是用计算影响值加以改正。地球曲率引起的高差误差,按下式计算 P=D2 /2R (2)、大气折光改正 一般情况下,视线通过密度不同的大气层时,将发生连续折射,形成向下弯曲的曲线。视线读数与理论位值读数产生一个差值,这就是大气光引起的高差误差。按下式计算 r =D2 /14R

高程测量的精度研究.

高程测量的精度研究

摘要 由于其高效方便,得到了迅猛发展,成为了现在地形测量、变形监测、低等级高程控制测量的首选。近年来在理论和技术高速发展的带动下在平面测量精度和高程测量精度方面都得到了很大的提高。硬件方面,扼流圈天线使得的多路径效应得到了有效的消除;理论方面,各种对流层、电离层延迟改正模型的提出及其应用,以及许多研究表明有效的消除误差理论的应用,使得的诸多与卫星及接收机之间的误差得到了很好的改正,所以在平面位置和高程的测量精度也进一步提高。由于测量的大地高应用于实际时需要经过高程转换为正常高,中间转换过程中需要解算高程异常,一系列的计算使得在高程控制测量方面误差偏大,影响了高程控制测量在许多方面的应用。本文在双频观测的基础上,通过解算原始的观测数据,建立一种区域的电离层延迟改正模型,取代现在最常用的克罗布歇模型来消除电离层对测量的影响,更好的消除电离层延迟的影响,以提高的解算数据的精度。 本文在阐述高程系统和高程测量原理的基础上,首先分析并总结了影响测高的各种因素及大地高的测定精度;其次对现有的高程转换方法进行了全面分析,结合工程算例,深入探讨了各种拟合模型的适合范围及精度情况;同时针对高程测量中几何方法转换的不足,本文研究了基于人工神经元网络转换高程的新方法,通过实例分析证明了该方法转换高程的可行性与可靠,对神经网络模型转换高程的BP网络结构中隐层单元数量的确定、隐含层数的确定、学习速率的选择、初始权值的选择、训练样本对网络泛化能力的影响等问题进行了较为深入的探讨。为避免应用单一模型进行高程拟合方法的局限性,在吸收和学习己有研究成果的基础上,将不同的拟合模型进行迭加,提高高程异常的逼近精度和可靠性。 关键词:1、三角高程;2、测量精度;3、井下三角;4、GPS高程测量

三角高程测量的方法与精度分析

南昌工程学院 毕业论文 水利与生态工程系(院)测绘工程专业毕业论文题目全站仪三角高程测量的方法与误差分析 学生姓名倪忠利 班级07测绘工程 学号2007101191 指导教师陈伟 完成日期 2010年 06月 17 日

全站仪三角高程测量的方法与误差分析 Total Station trigonometric leveling method and error analysis 总计毕业设计(论文) 25 页 表格 2 个 插图 3 幅

本文介绍了三角高程测量原理以及全站仪三角高程测量的不同方法,对于每种方法所能达到的精度进行分析。在相同条件下采用不同的方法, 对高差精度的影响是不同的, 所能达到的测量精度等级要求也是不一样的。从而在实际生产应用中可针对不同的精度要求和具体的客观实际情况选择不同的测量方法。 关键词:三角高程测量单向观测对向观测中间自由设站精度分析

This paper introduces the measuring principle and triangular elevation of trigonal height measurement method for each different, the precision of the method can be analyzed.Under the same conditions used different methods, the influence of accuracy of elevation is different, can achieve the measurement precision level requirement is different.Thus in the actual production application can be in view of the different accuracy and the objective reality of specific select different measuring methods Key word: trigonometric levelling ;One-way observation ;Two-way observation ;Free among set up observation;Precision analysi

三角高程测量

§4-6 三角高程测量 一、三角高程测量原理及公式 在山区或地形起伏较大的地区测定地面点高程时,采用水准测量进行高程测量一般难以进行,故实际工作中常采用三角高程测量的方法施测。 传统的经纬仪三角高程测量的原理如图4-12所示,设A点高程及AB两点间的距离已知,求B点高程。方法是,先在A点架设经纬仪,量取仪器高i;在B点竖立觇标(标杆), 并量取觇标高L,用经纬仪横丝瞄准其顶端,测定竖直角δ,则AB两点间的高差计算公式为: 故(4-11) 式中为A、B两点间的水平距离。 图4-12 三角高程测量原理 当A、B两点距离大于300m时,应考虑地球曲率和大气折光对高差的影响,所加的改正 数简称为两差改正: 设c为地球曲率改正,R为地球半径,则c的近似计算公式为: 设g为大气折光改正,则g的近似计算公式为: 因此两差改正为:,恒为正值。 采用光电三角高程测量方式,要比传统的三角高程测量精度高,因此目前生产中的三角高程测量多采用光电法。

采用光电测距仪测定两点的斜距S,则B点的高程计算公式为: (4-12) 为了消除一些外界误差对三角高程测量的影响,通常在两点间进行对向观测,即测定hAB 和hBA,最后取其平均值,由于hAB和hBA反号,因此可以抵销。 实际工作中,光电三角高程测量视距长度不应超过1km,垂直角不得超过15°。理论分析和实验结果都已证实,在地面坡度不超过8度,距离在1.5km以内,采取一定的措施,电磁波测距三角高程可以替代三、四等水准测量。当已知地面两点间的水平距离或采用光电三角高程测量方法时,垂直角的观测精度是影响三角高程测量的精度主要因素。 二、光电三角高程测量方法 光电三角高程测量需要依据规范要求进行,如《公路勘测规范》中光电三角高程测量具体要求见表4-6。 表4-6 光电三角高程测量技术要求 往返各 注:表4-6中为光电测距边长度。 对于单点的光电高程测量,为了提高观测精度和可靠性,一般在两个以上的已知高程点上设站对待测点进行观测,最后取高程的平均值作为所求点的高程。这种方法测量上称为独立交会光电高程测量。 光电三角高程测量也可采用路线测量方式,其布设形式同水准测量路线完全一样。 1.垂直角观测 垂直角观测应选择有利的观测时间进行,在日出后和日落前两小时内不宜观测。晴天观测时应给仪器打伞遮阳。垂直角观测方法有中丝法和三丝法。其中丝观测法记录和计算见表4-7。表4-7 中丝法垂直角观测表 点名泰山等级四等 天气晴观测吴明 成像清晰稳定仪器Laica 702 全站仪记录李平 仪器至标石面高1.553m 1.554 平均值1.554m 日期2006.3.1

GPS高程测量的精度分析

GPS高程测量的精度分析 介绍了GPS在市政工程高程测量中的应用,并揭示了造成实践应用不广泛的主要原因—测量精度。进而从GPS卫星、卫星信号的传播过程和地面接收设备以及地面高程的转化四个方面分析了GPS高程测量的精度问题。 标签:市政工程高程测量GPS信号接收机测量精度 一、引言 在工程测量中,高程测量的精度问题一直被测绘学界的工作者们广泛关注。水准测量的精度较高,但是测量工作量太大、测量速度较慢。相较于水准测量而言,GPS测量高程在效率上有很大的提高。理论与试验研究表明,如果在测量时加上一些特定的措施,GPS的高程测量精度可以达到三、四等水准测量的要求。近年来,随着RTK技术的广泛应用,尤其是多基站连续运行卫星定位服务综合系统在各城市的相继建立,高程测量方法得到了有效扩展,作业效率大大提高,但由于高程异常变化复杂,所以,GPS高程的精度普遍不高,分析影响GPS测量精度的影响因素,提高GPS的测量精度有重要的实践意义。 二、GPS高程测量的影响因素分析 1.与卫星相关的因素。卫星是GPS测量的信息发出点,卫星的分布、数量、稳定性对GPS测量结果的稳定性和精确度影响很大。 (1)卫星的个数及稳定程度。在解算整周模糊度时,至少需要有5颗公共卫星。星数越多,解算模糊度的速度越快、越可靠。当周围高层建筑物密集且有大树时,公共卫星数如果少于5颗,就很难得到固定解。当降低卫星的截止高度角时,公共卫星数将增加,但将使采集的数据含有较低的信噪比,使GPS接收机解算模糊度的时间延长,且观测精度较差,很难满足要求;当周围只是一侧或部分遮挡,此时的卫星个数需根据实际情况而定,如果卫星正好在遮挡物的一侧,此时,可能导致卫星数少于5颗,或者卫星数时而增加,时而减少。这样就会造成测回间的数据精度不稳定;当周围较空矿时,一般都能达5颗或者5颗以上,且卫星个数固定,此时采集的数据精度也比较稳定,但不排除个例。 (2)卫星分布情况。卫星分布用PDOP值(位置精度强弱度,为玮度、经度和高程等误差平方和的平方根)来衡量。PDOP值越小,说明卫星的分布越好,定位精度越高。一般规定,PDOP值应小于6。 2.与卫星信号传播相关的因素。卫星信号要经由大气空间传播到GPS数据接收器上来,在传播过程中,信号可能受到大气层的影响而发生波动,这就会对GPS接收到的数据造成影响,进而影响解算结果,影响测量的精度。 (1)对流层延迟。对流层延迟是指电磁波信号通过高度在50km以下的未

谈全站仪的高程测量精度

谈全站仪的高程测量精度 本人在从事工程技术管理的工作中,经常听到有测量工程师抱怨说某某全站仪不好用,测高程测不准。于是我问他:测距离准不准?得到回答是,测距离没问题!于是我就奇怪了,为什么测距离准,测高程不准呢?全站仪工作时测得夹角a和距离L,如下图: s H L a H=L*sina S=L*cosa 既然S准确,相应的H也应该准确,因为他们的计算变量都是一样的。但经过本人实际操作,全站仪测高程精度确实比较差。到底是什么原因使得同样的参数,计算出来的结果一个精确,另一个却不精确呢?进过详细分析,本人发现其实并不是仪器的问题,而是误差给大家带来的麻烦:

90sinx cosx Y Y1 Y2 上图是正弦曲线和余弦曲线示意图,我们可以发现在全站仪镜头水平x=0°—竖直x=90°期间y值的变化,当我们在接近0°附近测量时f(x)=cosx相对于g(x)=sinx对x的增量来说不敏感,也就是说,当我们在仪器测量a角时,一个增量Δa引起的S的变化比H的变化小的多,而实际操作中,各位测量工程师也会发现,由于仪器的构造限制,很少有机会在测量的时候使全站仪仰俯超过45°,而真正当仰俯角超过45°,(例如在近距离测量盖梁或者墩顶高程)时,全站仪的高程测量精度并不比水平坐标的测量精度低。例如:sin10.1-sin10=0.00171855,cos10.1-cos10=-0.0003045,这表明在角度误差0.1°的情况下,瞄准接近100米的目标,高程会差17cm,而距离只差3cm,这就是为什么大家都抱怨全站仪测高程不精确的原因。 当然测量高程精度不准还与另外一些因素有关,如:1、仪器高不能准确测得,2、镜杆高度由于标杆底的磨损产生偏差,3、对站标时习惯性只左右对中,不上下对中等。这些原因都可能使全站仪的高

全站仪的使用原理和操作方法

全站仪的使用原理和操作方法内容:了解全站仪的分类、等级、主要技术指标;掌握全站仪的基本操作,测角、测边、测三维坐标和三维坐标放样的原理和操作方法;了解全站仪的对边测量、悬高测量、面积测量等方法。 重点:全站仪的基本操作,测角、测边、测三维坐标和三维坐标放样的原理和操作方法。 难点:全站仪测三维坐标和三维坐标放样的原理和操作方法。 教学方法:采取演示法教学。讲解拓普康全站仪使用,在课堂上每讲一项功能后,利用多媒体课室的优点,现场演示一次,并将操作过程通过投影仪投影到屏幕上,起到直观、形象的效果,使学生能迅速掌握全站仪的使用。 § 7.1 全站仪(total station)的功能介绍: 随着科学技术的不断发展,由光电测距仪,电子经纬仪,微处理仪及数据记录装置融为一体的电子速测仪(简称全站仪)正日臻成熟,逐步普及。这标志着测绘仪器的研究水平制造技术、科技含量、适用性程度等,都达到了一个新的阶段。 全站仪是指能自动地测量角度和距离,并能按一定程序和格式将测量数据传送给相应的数据采集器。全站仪自动化程度高,功能多,精度好,通过配置适当的接口,可使野外采集的测量数据直接进入计算机进行数据处理或进入自动化绘图系统。与传统的方法相比,省去了大量的中间人工

操作环节,使劳动效率和经济效益明显提高,同时也避免了人工操作,记录等过程中差错率较高的缺陷。 全站仪的厂家很多,主要的厂家及相应生产的全站仪系列有:瑞士徕卡公司生产的TC 系列全站仪;日本TOPCN (拓普康)公司生产的GTS 系列;索佳公司生产的SET 系列;宾得公司生产的PCS 系列;尼康公司生产的DMT 系列及瑞典捷创力公司生产的GDM 系列全站仪。我国南方测绘仪器公司90 年代生产的NTS 系列全站仪填补了我国的空白,正以崭新的面貌走向国内国际市场。 全站仪的工作特点: 1、能同时测角、测距并自动记录测量数据; 2、设有各种野外应用程序,能在测量现场得到归算结果; 3、能实现数据流; 一、TOPCON 全站仪构造简介

全站仪高程测量新方法

全站仪高程测量新方法 [导读]:使用棱镜配合全站仪测量高程的方法越来越普及,传统的三角高程测量方法已经显示出了局限性。经过长期的工作实践,总结出一种新的方法进行三角高程测量。 摘要:使用棱镜配合全站仪测量高程的方法越来越普及,传统的三角高程测量方法已经显示出了局限性。经过长期的工作实践,总结出一种新的方法进行三角高程测量。这种方法既结合了水准测量的任意置站的特点,又减少了三角高程的误差来源,同时毎次测量时还不必量取仪器高、棱镜高。该法使三角高程测量精度进一步提高,施测进度更快。 关键词:全站仪测量三角高程新方法 1引言 在长江下游丘陵地区测量过程中,全站仪测量技术被广泛应用,全站仪三角高程测量也得到普遍应用。传统的测量方法是水准测量、三角高程测量。两种方法虽然各有特色,但都存在着不足。水准测量是一种直接测高法,测定高差的精度是校高的,但水准测量受地起伏的限制,外业工作量大,施测速度校慢。三角高程测量是一种间接测高法,它不受地形起伏的限制,且施测速度校快。在大比例地形图测绘、线型工程、管网工程等工程测量中广泛应用。但精度校低,且每次测量都得量取仪器高、棱镜高,比校繁锁,而且增加了误差来源。随着全站仪的广泛使用,使用棱镜配合全站仪测量高程的方法越来越普及,传统的三角高程测量方法已径显示出了局限性。我们经过长期实践和摸索,总结出一种新的方法进行三角高程测量。这种方法既结合了水准测量的任意置站的特点,又减少了三角高程的误差来源,同时每次测量时还不必量取仪器高、棱镜高。该方法使三角高程测量精度进一并提高,施测速度更快。 2三角高程测量的传统方法 设A、B为地面上高度不同的两点。已知A点高程HA,只要知道A点对B点的高差HAB即可由HB=HA+HAB得到B点的高程HB。 D为A、B两点间的水平距离;α为在A点观测,B点时的垂直角;i为测站点的仪器高;t为棱镜高;HA 为A点高程,HB为B点高程V为全站仪望远镜和棱镜之间的高差(V=Dtanα); 首先我们假设A、B两点相距不太远,可以将水准面看成水平面,也不考虑大气折光的影。为了确定高差HAB,可在A点架设全站仪、在B点竖立棱镜,观测垂直角α,并直接量取仪器高i和棱镜高t,若A、B两点间的水平距离为D,则HAB=V+i-t,故 HB=HA+Dtanα+i-t(1) 这就是三角高程测量基本公式,但它是以水平面为基准和视线成直线为前提的。因此,只有当A、B两点间的距离很短时,才比较准确。当A、B两点距离较远时,就必须考虑地球弯曲和大气折光的影响。这里不叙述如何进行球差和气差的改正,只就三角高程测量新方法的一般原理进行闸述。从传统的三角高程测量方法中我们可以看出,它具备以下两个特点:a全站仪必须架设在已知高程点上;b要测出待测点的高程,必须量取仪器高和棱镜高。 3三角高程测量的新方法 如果我们能将全站仪像水准仪一样任意置点,而不是将它置在已知高程点上同时又,在不量取仪器高和棱镜高的情况下,利用三角高程测量原理测出待测点的高程,那么施测的速度将更快。如图所示,假设B点的高程为已知,A点的高程为未知,这里要通过全站仪测定其他待测点的高程。首先由式(1)可知:HA=HB-(Dtanα+i-t)(2) 上式除了Dtanα即V的值可以用仪器直接测出外,i、t都是未知的。但有一点可以确定,即仪器一旦置好,i值也将随之不变,同时选取棱镜作为反射,假定t值也固定不变。从式(2)可知: HA+i-t=HB-Dtanα=W(3) 由式(3)可知,基于上面的假设,HA+i-t在任一测站上也是固定不变的,而且可以计算出它的值W。 这一新方法的操作过程如下: a、仪器任意置点,但所选点位要求能和已知高程点通视。 b、用仪器照准已知高程点,测出V的值,并算出W的值(此时与仪器高程测定有关的常数如测站点高程、仪器高、棱镜高均为任意什值。施测前不必设定)。 c、将仪器测站点高程重新设定为W、仪器高和棱镜高设为0即可。 d、照准待测点测出其高程。

全站仪三角高程测量精度分析

全站仪三角高程测量精度 分析 Prepared on 22 November 2020

全站仪三角高程测量精度分析 作者修涛 内容摘要全站仪三角高程测量具有效率高,实施灵活等优点。全站仪三角高程测量可以代替水准测量进行高程控制,主要有对向观测法和中间观测法。在这两种方法中,前者将大气折光系数作为常数考虑,认为各个方向的折光系数相同,这与实际的情况有出入。而中间观测法则将大气折光系数作为变量处理,并加以改正。经研究并通过实践验证,在观测结果进行修正的条件下,全站仪三角高程测量完全能达到三、四等水准测量的精度要求,同时可借助Excel强大的数据处理能力,使观测数据的处理更为方便快捷[1]。文章根据三角高程测量原理及误差传播定律,对全站仪三角高程测量在测量中的应用及精度进行了探讨。对三角高程测量的不同方法进行了对比、分析总结。通过试验,对全站仪水准法三角高程测量进行了精度分析。 关键词全站仪;三角高程测量;精度分析 Total Station trigonometric leveling accuracy analysis Abstract Total Station trigonometric leveling with high efficiency, the implementation of the advantages of flexible. Total Station trigonometric leveling can replace the standard of measurement for elevation control, mainly on the observation method to the observational method and intermediate. In both methods, the former take into account atmospheric refraction coefficient as a constant, that the refraction coefficient in each direction, this discrepancy with the actual situation. While the rule of the middle observation of atmospheric refraction coefficient as a variable processing and correction.

全站仪三角高程测量方案优化设计

全站仪三角高程测量方案优化设计 论文:应用全站仪进行三角高程测量的新方法_建筑设计 关键字:全站仪三角高程测量新方法发布时间:08-29 10:54 应用全站仪进行三角高程测量的新方法 张英杰 摘要:使用跟踪杆配合全站仪测量高程的方法越来越普及,使用传统的三角高程测量方法已经显示出了他的局限性。经过长期摸索,总结出一种新的方法进行三角高程测量。这种方法既结合了水准测量的任一置站的特点,又减少了三角高程的误差来源,同时每次测量时还不必量取仪器高、棱镜高。使三角高程测量精度进一步提高,施测速度更快。 关键词:全站仪三角高程测量新方法 1引言 在工程的施工过程中,常常涉及到高程测量。传统的测量方法是水准测量、三角高程测量。水准测量是一种直接测高法,测定高差的精度是较高的,但水准测量受地形起伏的限制,外业工作量大,施测速度较慢。三角高程测量是一种间接测高法,它不受地形起伏的限制,且施测速度较快。广泛应用,但精度较低,且每次测量都得量取仪器高,棱镜高。麻烦而且增加了误差来源。 随着全站仪的广泛使用,使用跟踪杆配合全站仪测量高程的方法越来越普及,使用传统的三角高程测量方法已经显示出了他的局限性。经过长期摸索,总结出一种新的方法进行三角高程测量。这种方法既结合了水准测量的任一置站的特点,又减少了三角高程的误差来源,同时每次测量时还不必量取仪器高、棱镜高。使三角高程测量精度进一步提高,施测速度更快。 2 三角高程测量的传统方法 如图一所示,设A,B为地面上高度不同的两点。已知A点高程HA,只要知道A点对B点的高差HAB即可由HB=HA+ hAB得到B点的高程HB。

图一 图中: D为A、B两点间的水平距离 а为在A点观测B点时的垂直角 i为测站点的仪器高,t为棱镜高 HA为A点高程,HB为B点高程。 V为全站仪望远镜和棱镜之间的高差(V=Dtan а) 首先我们假设A,B两点相距不太远,可以将水准面看成水准面,也不考虑大气折光的影响。为了确定高差hAB,可在A点架设全站仪,在B点竖立跟踪杆,观测垂直角а,并直接量取仪器高i和棱镜高t,若A,B两点间的水平距离为D,则hAB=V+i-t 故 HB=HA+ Dtanа+ i-t (1) 这就是三角高程测量的基本公式,但它是以水平面为基准面和视线成直线为前提的。因此,只有当A,B两点间的距离很短时,才比较准确。当A,B两点距离较远时,就必须考虑地球弯曲和大气折光的影响了。这里不叙述如何进行球差和气差的改正,只就三角高程测量新法的一般原理进行阐述。我们从传统的三角高程测量方法中我们可以看出,它具备以下两个特点: 1、全站仪必须架设在已知高程点上 2、要测出待测点的高程,必须量取仪器高和棱镜高。 3 三角高程测量的新方法 如果我们能将全站仪像水准仪一样任意置点,而不是将它置在已知高程点上,同时又在不量取仪器高和棱镜高的情况下,利用三角高程测量原理测出待测点的高程,那么施测的速度将更快。如图一,假设B点的高程已知,A点的高程为未知,这里要通过全站仪测定其它待测点的高程。首先由(1)式可知: HA=HB-(Dtanа+i-t) (2)

如何使用全站仪进行三角高程测量

如何使用全站仪进行三角高程测量 【内容提要】使用跟踪杆配合全站仪测量高程的方法越来越普及,使用传统的三角高程测量方法已经显示出了他的局限性。经过长期摸索,总结出一种新的方法进行三角高程测量。这种方法既结合了水准测量的任一置站的特点,又减少了三角高程的误差来源,同时每次测量时还不必量取仪器高、棱镜高。使三角高程测量精度进一步提高,施测速度更快。 在工程的施工过程中,常常涉及到高程测量。传统的测量方法是水准测量、三角高程测量。两种方法虽然各有特色,但都存在着不足。水准测量是一种直接测高法,测定高差的精度是较高的,但水准测量受地形起伏的限制,外业工作量大,施测速度较慢。三角高程测量是一种间接测高法,它不受地形起伏的限制,且施测速度较快。在大比例地形图测绘、线型工程、管网工程等工程测量中广泛应用。但精度较低,且每次测量都得量取仪器高,棱镜高。麻烦而且增加了误差来源。 随着全站仪的广泛使用,使用跟踪杆配合全站仪测量高程的方法越来越普及,使用传统的三角高程测量方法已经显示出了他的局限性。经过长期摸索,总结出一种新的方法进行三角高程测量。这种方法既结合了水准测量的任一置站的特点,又减少了三角高程的误差来源,同时每次测量时还不必量取仪器高、棱镜高。使三角高程测量精度进一步提高,施测速度更快。 一、三角高程测量的传统方法 如图一所示,设A,B为地面上高度不同的两点。已知A点高程H A, 只要知道A 点对B点的高差H A B 即可由H B =H A +H A B 得到B点的高程H B。

高程基准面 α A B i V HA t hAB HB 过A点的水平面 图 一 图中:D 为A 、B 两点间的水平距离 а为在A 点观测B 点时的垂直角 i 为测站点的仪器高,t 为棱镜高 H A 为A 点高程,HB 为B 点高程。 V 为全站仪望远镜和棱镜之间的高差(V=D tan а) 首先我们假设A ,B 两点相距不太远,可以将水准面看成水准面,也不考虑大气折光的影响。为了确定高差h A B ,可在A 点架设全站仪, 在B 点竖立跟踪杆,观测垂直角а,并直接量取仪器高i 和棱镜高t ,若A ,B 两点间的水平距离为D ,则h A B =V+i -t 故 H B =H A +D tan а+i -t (1) 这就是三角高程测量的基本公式,但它是以水平面为基准面和视 线成直线为前提的。因此,只有当A ,B 两点间的距离很短时,才比较准确。当A ,B 两点距离较远时,就必须考虑地球弯曲和大气折光的影响了。这里不叙述如何进行球差和气差的改正,只就三角高程测量新

数字高程模型和精度分析

数字高程模型和精度分析 最近几年,GIS架构下的数据库、高效态势下的微机,正在被延展运用。因此,数据质量的管控,就增添了原有的价值。DEM这一模型,是GIS特有的信息源头,是空间架构下的基础设施。数字高程这样的模型,也被划归到现有的DGDF,预设了规模化这一生产路径。因此,有必要明晰DEM特有的获取路径,考量现有的精度影响,辨识误差根源。只有这样,才能限缩模型偏差,创设可用的管控办法。 标签:数字高程模型模型精度具体分析 数字高程模型,是在既有的区段范畴以内,应用新颖的离散路径,去表征区段现有的表层地貌。在工程建构的多样领域,DEM这一模型,都带有偏大的运用范畴。比对惯用的地形图,DEM这样的高程图形,带有数字架构下的表征方式,更易被辨识。DEM这一新颖路径,替代了惯用的地形描画办法,在城区现有的测绘架构下,延展了原初的应用范畴。要接纳精度评析的可用路径,提升原有的管控水准。 1明晰影响要点 DEM特有的误差,是建构模型这一流程内,产出的综合差值。如上的建模误差,带有独特的要点: 首先,地形固有的表层特性,决定了现有的建模难度。这样的特性要点,在辨识表面精度这一流程内,凸显出了侧重的价值。在地面表层现有的特性之内,坡度这样的特性,被看成侧重的描画要素。通常情形下,可用特有的坡度及特有的坡长,去辨识这一区段内的地形。原始数据固有的布设影响,是侧重架构下的影响要素。数值的布设态势,可以利用固有的方位及构架,予以描画。常常接纳矩形架构下的规则格网,去描画现有的数值布设。原初数据固有的密度,可以依循平均态势下的间距、单位面积表征出来的数目、空间范畴内的数值更替、特有的截止频率,予以辨识并确认。在摄影测量这一范畴内,要预设精准的立体交会,就应当辨识影像之间特有的同名点。这一点,是数字架构下的摄影测量,必备的核心辨识点,也就是特有的影像匹配。 其次,表面架构下的建模路径,能影响原初的模型精度。可以预设两种路径,去建构如上的模型。一种路径,是经由测量,得到特有的量测数据;另一种路径,是接纳间接构建这一方式,抽取出可用的随机点,预设内插处理这一流程,以便建构出DEM架构下的模型。如上的归整过程,会损耗掉原初的可信程度。原始数据特有的损失,会经由建构好的模型,传递到现有的表面层级。DEM固有的表面特性,表征了地形架构下的吻合因素,也决定了现有的建模精度。DEM架构下的可视表达,带有侧重的辨识价值。摄影测量这一范畴内的可视表达,涵盖了现有的影像匹配。惯常情形下,影像匹配预设的基础,是特有的灰度分布,因此,如上的影像匹配,也被看成特有的灰度匹配。此外,还可以接纳特征匹配这

全站仪高程控制测量精度与误差分析

全站仪高程控制测量精度与误差分析 【摘要】水准测量操作简单,数据量相对较小,容易计算与处理,而且精度高。但是,由于位置差异,在一些特殊的地理位置采用全站仪进行高程控制测量更能提高效率。例如在一些山区、丘陵地带,应用几何水准测量效率就很会很低,在应用全站仪进行高程测量的时候,采用什么方法来进行数据处理也是非常重要的。为了提高计算精度与工作效率,更有利于设计最佳方案进行测量工作,那么我们将采用几种方法进行精度与误差分析比较。精度与误差也是我们最需要关注的。经过实践操作证明,使用全站仪进行山地水准测量能够达到三、四等要求。因此,采用全站仪进行高程控制测量能够达到精度要求,大大提高了工作效率。 【关键词】全站仪;高程;精度分析;误差分析 1.引言 随着测绘专业的不断发展,全站仪的应用越来越广泛,并以其操作简捷,电脑计算,大大提高工作效率,而被广大测绘人员所青睐。目前,人们对全站仪的研究也是越来越深入,希望能够将它应用到更多的工作中,而在山地高程控制测量中,使用水准仪的传统方式进行测量虽然精度高,但是工作量大,耗时长,效率太低;而采用三角高程控制测量虽不受地形限制,但是它受地球曲率、棱镜高和仪器高的因素的影响,精度与水准测量相比过低,误差相对较大。那么,使用全站仪绝对是一个很好的发展方向,这就可以摆脱传统的水准测量方式,减少了数据量,降低了工作难度,不受地区地形限制,影响测量精度因素较少。我们通过实践与研究,对全站仪高程测量精度与误差进行了分析。 2.全站仪高程测量原理与精度分析 (1)基本原理 全站仪高程测量的基本原理是把全站仪当作水准仪来使用,使棱镜高相同,达到抵消仪器高和棱镜高的目的,从而不必量取棱镜高和仪器高,这样既能在地形复杂地区进行快速的高程传递,又能确保足够的高程测量精度。如果在较短的距离内不考虑两差对高差测量的影响,那么观测计算得到的A,B两点高差只受垂直角测量和距离测量精度的影响。如果两点间高差较大或距离较远,仅安置一次仪器不能测出其高差时,就可以在两点间安置多次仪器,加设多个转点,然后再分段设站观测。图1中各符号所含意义如下:SCA为后视斜距;SCB为前视斜距;DCA为后视平距;DCB为前视平距;iA为后视点棱镜的高度;iB为前视点棱镜的高度;VC为全站仪的高度;hAC为后点A至测站点C的高差;hCB为测站点C至前点B的高差;h1为后视棱镜中心至全站仪横轴的高差;h2为全站仪横轴至前视棱镜中心的高差;hAB为后视点A至前视点B的地面高差;A1为全站仪观测后视棱镜中心点的竖直角(俯角或仰角);A2为全站仪对前视棱镜中心点的竖直角(俯角或仰角)。原理图如下:

RTK测高试验与精度分析

马永来宋海松弓增喜(黄河水利委员会水文局郑州450004) 摘要:RTK技术是基于载波相位观测量的实时动态定位技术。为了解RTK技术的应用情况,在小浪底库区及花园口大堤做了RTK测高试验,并对实测资料进行了分析。分析结果表 明:RTK测高精度能够达到仪器标称精度,数据可靠;若选择VDOP<4、可用卫星为5颗以上的情况下进行观测,可提高观测精度;RTK测量高差通过布尔莎模型转化后,仍为大地高高差,经高程拟合消除高程异常后,所得正常高可以达到五等水准测量要求。 关键词:精度实时动态测量RTK快速静态测量高程拟合 GPS即全球定位系统,80年代主要是基于载波相位差分的静态测量,要得到可靠的解向量,通常需要观测一二个小时l至更长时间、随着GPS应用技术的发展,义出现了GPS快速定位技术(快速静态、动态、伪静态)、当基线长度小于15 km时,GPS快速定位技术可在较短的时间内达到厘米级的定位精度,具有。·短、平、快,,的优点、然而,观测时需要对己知数据点进行各种各样的初始化,对卫星凡何条件及卫星跟踪都有较高要求,而巨只能通过事后数据处理得到测量结果、为缩短观测时间,提高工作效率,在小范围测量中,义逐渐提出了一种新技术实时动态测量RTK(Real Time Kine matic技术)。 1.RTK技木简介 RTK技术是基于载波相位观测量的实时动态定位技术,一般中基准站、移动站、数据通讯链3部分组成、其工作原理是:基准站接收机~调制器~发射电台~转发器~接收电台~解调器~移动站接收机、基准站和移动站同时接收GPS卫星定位信息、通过差分数据链,移动站接收基准站发送的GPS数据,结合自月采集的GPS数据进行实时处理,在Is内以厘米级的精度给出移动站的点位信息、通过OTF(Oil The Fly)实时处理算法,移动站在动态环境下可进行初始化处理,无需在己知点上进行初始化、RTK测量必须有伪距和相位观测值(最好带双频P码,有利于实时快速解求模糊度)。 2.RTK测高试验与精度 2.1试验基本情况 RTK测量和解算是在WGS84坐标系中进行的,实时给出的高程为大地高、我国采用的高程为丁常高,在实际应用时还需将大地高转换为丁常高、因此,RTK的应用范围,RTK技术确定丁常高的精度和可靠性,以及将大地高转换为丁常高时采用的方法等都是人们十分关心的问题、为此我们在小浪底库区进行了RTK实地测量、为了解平原地区倩况,又在郑州郊区黄河花园口大堤选驭部分试验点,试验点高程范围为98 856-314053 m,移动站至基准站间距离为0-1049 km、试验点均经快速静态布网测量,井经过平差,得到了WGS84大地坐标和大地高成果、试验之前对所有试验点进行了四、五等水准测量、RTK试验所用仪器为Trimble4000SSE(OTF)、仪器实时动态(RTK)标称精度:水平10 mm+ZD。10‘,垂直20 mm+ZD。10‘;快速静态标称精度:水平10 mm+D。10‘,垂直10 mm+ZD。10‘、D表示测量基线的距离。

相关文档
最新文档