八数码问题解释

八数码问题解释
八数码问题解释

8数码问题又称9宫问题,源于一个古老的智力游戏。说白了就是我们小时候玩的“华容道”。意在给定的9格棋盘的8个格子内分别放一个符号,符号之间互不相同,剩下一格做为“出口”。我们把8个符号在棋盘上的排列顺序称作8数码的状态,游戏要求给定一个初始的状态与一个终止状态,符号要经过若干次移动后由初态变成终态,这个过程中只有“出口”附近的符号可以朝“出口”的方向移动,且每次只能移动一个符号。如下图所示,(其中我们用0表示出口,=》表示移动一次,=》*表示移动0-n次):

初态终态

1 2 3 1 2 3 0 1 2

4 5 6 =》 4 5 6 =》* 3 4 5

7 8 0 7 0 8 6 7 8

2 解决方案

通过观察我们可以发现每一次8数码的状态都可以通过移动字符变成有限的几种其他状态,比如上图中我们可以知道初态“出口”附近有8和6可以移动,那么这个初态可以经过移动得到两个新的状态。我们人在玩这个游戏的时候,总是要做下面几个步骤:

1.看看哪个符号可以移动。

2.判断一下哪个符号的移动最有利于到达终态。

3.选定一个符号并移动它。

4.判断是否到达终态,是则结束,否则就回到第一步。

而现在我们要使用机器来模拟这一过程,其步骤与人类类似,但不同的是,人在执行第二部的时候总是能预先判断未来好几步的局势,从而选出最有利的一步,而机器则不行,它要先得到一个状态才能知道这个状态下一步将会到哪些状态而无法像我们一样一次就看到后面几步的状态。那么基本思想就是让机器穷尽由初态出发到达所有可能状态的路径,并从中找到有终态的路径作为问题的解。

2.1 A*算法

就如我们上面说到的让机器找出所有的可能来得到问题的解,看起来似乎很简单,但问题在于一旦8数问题的解达到一定规模,机器所要穷尽的路径数量将变得极为庞大,无疑会消耗大量的时间和空间。那么如何让机器像人一样在选择移动符号的时候总是能选择最有利的那一个呢?下面就要介绍启发式搜索中的一个算法A*算法来解决这个问题。

算法描述:

1.首先生成一个搜索的图G,这个图开始只有初始状态n0。生成一个叫open的表,把n0添加到这个表里。

2.生成一个空表名为close。

3.如果open为空,则失败退出。

4.选择open上的第一个结点,把它添加到close里并命名为n,且从open中删除。

5.如果n是终态,那么问题得到解退出,否则到第5步。

6.把n结点扩展,生成其后续状态集M,注意M中不能有n的祖先。把M添加到G中,并让他们成为n的后继。

7.把M中不在open与close表里的点添加到open表里。

8.在open表里按启发函数(见2.2节)的大小重排open表。

2.2 启发函数

启发函数其实是用来给机器提供额外信息的函数,以此来帮助机器选择。所以启发函数的设计一定要基于问题域,在本设计中采用f(n)=h(n) mod 12+g(n),其中h(n)表示n在搜索树中的深度,g(n)表示的是棋盘上所有结点离其正确位置的曼哈顿距离的和。在实际的搜索中若两个结点的f(n)相同则取深度大的那一个作为最优节点。关于mod 12,是因为随着搜索过程不断进行,搜索树的深度不断加深,h(n)的值将会不断增大,这样会影响搜索的效率,这里举个例子说明一下:假如在搜索树第二层有个节点A,它的曼哈顿距离之和g(n)为20,那么这是个很糟糕的情况了哈(在8数码问题里曼哈顿距离和的的最坏情况为24,这个自己推,我就不解释了),那么此时该结点的耗散值为20+2=22,当机器搜索到第22层时,你会发现22层上任意结点的h(n)=22,如果其中有一个结点B的g(n)=1,就是说B结点中那个不在正确位置上的符号只需要在移动一步就可以到达终态了。那么毫无疑问当前机器应该选择的最优结点就是B,可是要知道机器选择下一个扩展结点的依据是启发函数,如果此时启发函数为f(n)=h(n)+g(n)那么会发生什么情况呢,机器会放弃这个原本最优的结点B(此时B的f(n)=23)转而去选择A结点(A的f(n)=22).如此一来就会增加机器搜索出结果的代价。说到这里,有的人可能会想,那去掉h(n)这一层数因子不是更好?因为曼哈顿距离之和相同的情况下,层次越深的结点越好。不错,但是不要忽略了一个问题,从初态到终态之间不仅仅只有一条路径,如果你去掉层数这个因子,那么机器会一路向下从而忽略同一层次上其他路径上的结点,换句话说就是你通过这样的启发函数得到的路径不一定是最优的。那么现在的情况是,要么牺牲时间获得最佳结果,要么牺牲结果的最佳性而获得最快的速度。本设计则是取折中的结果,在保证速度的情况下尽可能的获得最好的结果,这就是mod 12 的原因,我们在12层这个规模里面遍历所有可能成为解路径上的结点,在12层这个规模外,我们忽略层数的影响,以深度为先。

2.3 可达性判断

现在还余下一个问题,那就是,是否所有的8数问题都有解?答案是否定的,以往的算法都以未找到结果且open表为空来断定当前给定的初始与终结状态互不可达。本设计采用通过判断两状态各自逆序数之和的奇偶性是否相同来判断两状态之间是否可达。实现代码如下:bool check(Node m)//判断是否可达

{

int k = 0, count = 0;

int tempArray[9] ;//临时数组存放8数码状态

for (int i = 0; i < 3; i++)

{

for (int j = 0; j < 3; j++)

{

tempArray[k++] = m.nGetV alue(i,j);

}

}

for (int i = 1; i <9; i++)

{

for (int j = 0; j < i; j++)

{

if ((tempArray[j] >tempArray[i])&&(tempArray[i]!=0))

count++;

}

}

if (count % 2 != 0)

return false;

else

return true;

}

3 详细设计

本程序在设计过程中发现影响程序效率的因素除了上述启发函数以外,还有关于open表和close表的搜索效率,搜索open表是为了找到最优的扩展结点,而搜寻close表则是判断最新找到的扩展结点是否已经扩展,有的算法认为找到扩展结点后依然要去比对open表以防止出现回路,不过笔者有这样的假设,不知是否偏颇,拿出来与大家探讨。首先大前提是算法本身是搜寻最优路径的。那么我们现在设结点A是除终止结点外的任一结点,C是终止结点,B是A和C中间任何一个结点。同时设A到B的代价为m,最优情况下A经过B 到C的代价为n,那么这时B到C的代价为n-m。现在若出现了这种情况就是从B出发存在一条到达A点的回路,我们令这条回路的代价为x。假设B第一次回到A之后走的是最优路径,那么从A到B在到A最后到C的这条路径的最终代价为m+n-m+x=n+x>n,也就是说这条路径并非最优路径违背了我们的大前提,这表明本算法压根就不会选这条路径。但是值得注意的是本文刚开始的时候提到本算法是寻找最佳路径与使用最少时间的折中,这也意味着有可能在本算法所产生的结果中存在回路,我想这与问题的规模有关,具体情况需要进一步证明。

用A算法解决八数码问题演示教学

用A算法解决八数码 问题

用A*算法解决八数码问题 一、 题目:八数码问题也称为九宫问题。在3×3的棋盘,有八个棋子,每个 棋子上标有1至8的某一数字,不同棋子上标的数字不相同。棋盘上还有一个空格,与空格相邻的棋子可以移到空格中。要解决的问题是:任意给出一个初始状态和一个目标状态,找出一种从初始转变成目标状态的移动棋子步数最少的移动步骤。 二、 问题的搜索形式描述 状态:状态描述了8个棋子和空位在棋盘的9个方格上的分布。 初始状态:任何状态都可以被指定为初始状态。 操作符:用来产生4个行动(上下左右移动)。 目标测试:用来检测状态是否能匹配上图的目标布局。 路径费用函数:每一步的费用为1,因此整个路径的费用是路径中的步数。 现在任意给定一个初始状态,要求找到一种搜索策略,用尽可能少的步数得到上图的目标状态算法介绍 三、 解决方案介绍 1.A*算法的一般介绍 A*(A-Star)算法是一种静态路网中求解最短路最有效的方法。对 于几何路网来说,可以取两节点间欧几理德距离(直线距离)做为估价 值,即 ()()()()()()**f g n sqrt dx nx dx nx dy ny dy ny =+--+--; 这样估价函数f 在g 值一定的情况下,会或多或少的受估价值h 的制 约,节点距目标点近,h 值小,f 值相对就小,能保证最短路的搜索向终点的方向进行。明显优于盲目搜索策略。

A star算法在静态路网中的应用 2.算法伪代码 创建两个表,OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。算起点的估价值,将起点放入OPEN表。 while(OPEN!=NULL) { 从OPEN表中取估价值f最小的节点n; if(n节点==目标节点) {break;} for(当前节点n 的每个子节点X) { 算X的估价值; if(X in OPEN) { if( X的估价值小于OPEN表的估价值 ) {把n设置为X的父亲; 更新OPEN表中的估价值; //取最小路径的估价值} } if(X inCLOSE) { if( X的估价值小于CLOSE表的估价值 )

八数码问题求解--实验报告讲解

实验报告 一、实验问题 八数码问题求解 二、实验软件 VC6.0 编程语言或其它编程语言 三、实验目的 1. 熟悉人工智能系统中的问题求解过程; 2. 熟悉状态空间的盲目搜索和启发式搜索算法的应用; 3. 熟悉对八数码问题的建模、求解及编程语言的应用。 四、实验数据及步骤 (一、)实验内容 八数码问题:在3×3的方格棋盘上,摆放着1到8这八个数码,有1个方格是空的,其初始状态如图1所示,要求对空格执行空格左移、空格右移、空格上移和空格下移这四个操作使得棋盘从初始状态到目标状态。 2 8 3 1 2 3 1 4 8 4 7 6 5 7 6 5 (a) 初始状态(b) 目标状态 图1 八数码问题示意图 (二、)基本数据结构分析和实现 1.结点状态 我采用了struct Node数据类型 typedef struct _Node{

int digit[ROW][COL]; int dist; // distance between one state and the destination一 个表和目的表的距离 int dep; // the depth of node深度 // So the comment function = dist + dep.估价函数值 int index; // point to the location of parent父节点的位置 } Node; 2.发生器函数 定义的发生器函数由以下的四种操作组成: (1)将当前状态的空格上移 Node node_up; Assign(node_up, index);//向上扩展的节点 int dist_up = MAXDISTANCE; (2)将当前状态的空格下移 Node node_down; Assign(node_down, index);//向下扩展的节点 int dist_down = MAXDISTANCE; (3)将当前状态的空格左移 Node node_left; Assign(node_left, index);//向左扩展的节点 int dist_left = MAXDISTANCE; (4)将当前状态的空格右移 Node node_right; Assign(node_right, index);//向右扩展的节点 int dist_right = MAXDISTANCE; 通过定义结点状态和发生器函数,就解决了8数码问题的隐式图的生成问题。接下来就是搜索了。 3.图的搜索策略 经过分析,8数码问题中可采用的搜速策略共有:1.广度优先搜索、2.深度优先搜索、2.有界深度优先搜索、4.最好优先搜索、5.局部择优搜索,一共五种。其中,广度优先搜索法是可采纳的,有界深度优先搜索法是不完备的,最好优先和局部择优搜索法是启发式搜索法。 实验时,采用了广度(宽度)优先搜索来实现。 (三、)广度(宽度)优先搜索原理 1. 状态空间盲目搜索——宽度优先搜索 其基本思想是,从初始节点开始,向下逐层对节点进形依次扩展,并考察它是否为目标节点,再对下层节点进行扩展(或搜索)之前,必须完成对当层的所有节点的扩展。再搜索过程中,未扩展节点表OPEN中的节点排序准则是:先进入的节点排在前面,后进入的节点排在后面。其搜索过程如图(1)所示。

用A算法解决八数码问题

用A*算法解决八数码问题 一、 题目:八数码问题也称为九宫问题。在3×3的棋盘,有八个棋子,每个 棋子上标有1至8的某一数字,不同棋子上标的数字不相同。棋盘上还有 一个空格,与空格相邻的棋子可以移到空格中。要解决的问题是:任意给 出一个初始状态和一个目标状态,找出一种从初始转变成目标状态的移动 棋子步数最少的移动步骤。 二、 问题的搜索形式描述 状态:状态描述了8个棋子和空位在棋盘的9个方格上的分布。 初始状态:任何状态都可以被指定为初始状态。 操作符:用来产生4个行动(上下左右移动)。 目标测试:用来检测状态是否能匹配上图的目标布局。 路径费用函数:每一步的费用为1,因此整个路径的费用是路径中的步数。 现在任意给定一个初始状态,要求找到一种搜索策略,用尽可能少的步数 得到上图的目标状态算法介绍 三、 解决方案介绍 1.A*算法的一般介绍 A*(A-Star)算法是一种静态路网中求解最短路最有效的方法。对于 几何路网来说,可以取两节点间欧几理德距离(直线距离)做为估价值,即 ()()()()()()**f g n sqrt dx nx dx nx dy ny dy ny =+--+--; 这样估价函数f 在g 值一定的情况下,会或多或少的受估价值h 的制约,节点距目标点近,h 值小,f 值相对就小,能保证最短路的搜索向终点的 方向进行。明显优于盲目搜索策略。

A star算法在静态路网中的应用 2.算法伪代码 创建两个表,OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。算起点的估价值,将起点放入OPEN表。 while(OPEN!=NULL) { 从OPEN表中取估价值f最小的节点n; if(n节点==目标节点) {break;} for(当前节点n 的每个子节点X) { 算X的估价值; if(X in OPEN) { if( X的估价值小于OPEN表的估价值 ) {把n设置为X的父亲; 更新OPEN表中的估价值; //取最小路径的估价值} } if(X inCLOSE) { if( X的估价值小于CLOSE表的估价值 ) {把n设置为X的父亲; 更新CLOSE表中的估价值; 把X节点放入OPEN //取最小路径的估价值} } if(X not inboth) {把n设置为X的父亲; 求X的估价值; 并将X插入OPEN表中; //还没有排序}

C语言实现8数码问题

1、实验目的 (1)熟悉人工智能系统中的问题求解过程; (2)熟悉状态空间中的盲目搜索策略; (3)掌握盲目搜索算法,重点就是宽度优先搜索与深度优先搜索算法。 2、实验要求 用VC语言编程,采用宽度优先搜索与深度优先搜索方法,求解8数码问题 3、实验内容 (1)采用宽度优先算法,运行程序,要求输入初始状态 假设给定如下初始状态S0 2 8 3 1 6 4 7 0 5 与目标状态Sg 2 1 6 4 0 8 7 5 3 验证程序的输出结果,写出心得体会。 (2)对代码进行修改(选作),实现深度优先搜索求解该问题 提示:每次选扩展节点时,从数组的最后一个生成的节点开始找,找一个没有被扩展的节点。这样也需要对节点添加一个就是否被扩展过的标志。 4 源代码及实验结果截图 #include #include #include

//八数码状态对应的节点结构体 struct Node{ int s[3][3];//保存八数码状态,0代表空格 int f,g;//启发函数中的f与g值 struct Node * next; struct Node *previous;//保存其父节点 }; int open_N=0; //记录Open列表中节点数目 //八数码初始状态 int inital_s[3][3]={ 2,8,3,1,6,4,7,0,5 }; //八数码目标状态 int final_s[3][3]={ 2,1,6,4,0,8,7,5,3 }; //------------------------------------------------------------------------ //添加节点函数入口,方法:通过插入排序向指定表添加 //------------------------------------------------------------------------ void Add_Node( struct Node *head, struct Node *p) { struct Node *q;

用盲目搜索技术解决八数码问题

. 用盲目搜索技术解决八数码问题 题目 在3×3的棋盘,有八个棋子,每个棋子上标有1至8的某一数字,不同棋子上 标的数字不相同。棋盘上还有一个空格,与空格相邻的棋子可以移到空格中。要解决的问题是:任意给出一个初始状态和一个目标状态,找出一种从初始转变成目标状态的移动棋子步数最少的移动步骤。 算法流程 使用宽度优先搜索 从初始节点开始,向下逐层对节点进形依次扩展,并考察它是否为目标节点,再对下层节点进行扩展(或搜索)之前,必须完成对当层的所有节点的扩展。再搜 索过程中,未扩展节点表OPEN中的节点排序准则是:先进入的节点排在前面, 后进入的节点排在后面。 宽度优先算法如下: 把初始结点S0放入OPEN表中 若OPEN表为空,则搜索失败,问题无解 取OPEN表中最前面的结点N放在CLOSE表中,并冠以顺序编号n 若目标结点,则搜索成功,问题有解N?Sg若N无子结点,则转2 扩展结点N,将其所有子结点配上指向N的放回指针,依次放入OPEN表的尾部,转2 源程序 #include 文档Word . #include #include

using namespace std; const int ROW = 3;//行数 const int COL = 3;//列数 const int MAXDISTANCE = 10000;//最多可以有的表的数目const int MAXNUM = 10000; typedef struct _Node{ int digit[ROW][COL]; int dist;//distance between one state and the destination 一个表和目的表的距离 int dep; // the depth of node深度 // So the comment function = dist + dep.估价函数值 int index; // point to the location of parent父节点的位置} Node; Node src, dest;// 父节表目的表 vector node_v; // store the nodes存储节点 文档Word . bool isEmptyOfOPEN() //open表是否为空

启发式搜索算法解决八数码问题(C语言)

1、程序源代码 #include #include struct node{ int a[3][3];//用二维数组存放8数码 int hx;//函数h(x)的值,表示与目标状态的差距 struct node *parent;//指向父结点的指针 struct node *next;//指向链表中下一个结点的指针 }; //------------------hx函数-------------------// int hx(int s[3][3]) {//函数说明:计算s与目标状态的差距值 int i,j; int hx=0; int sg[3][3]={1,2,3,8,0,4,7,6,5}; for(i=0;i<3;i++) for(j=0;j<3;j++) if(s[i][j]!=sg[i][j]) hx++; return hx; } //-------------hx函数end----------------------// //-------------extend扩展函数----------------// struct node *extend(node *ex) { //函数说明:扩展ex指向的结点,并将扩展所得结点组成一条//单链表,head指向该链表首结点,并且作为返回值 int i,j,m,n; //循环变量 int t; //临时替换变量 int flag=0; int x[3][3];//临时存放二维数组 struct node *p,*q,*head; head=(node *)malloc(sizeof(node));//head p=head; q=head; head->next=NULL;//初始化 for(i=0;i<3;i++)//找到二维数组中0的位置 { for(j=0;j<3;j++)

八数码难题 Matlab

一、实验目的 1、熟悉和掌握启发式搜索的定义、估价函数和算法过程。 2、利用A*算法求解N数码难题,理解求解流程和搜索顺序。 二、实验内容 以八数码为例实现A或A*算法。 1、分析算法中的OPEN表CLOSE表的生成过程。 1)建立一个队列,计算初始结点的估价函数f,并将初始结点入队,设置队列头和尾指针。 2)取出队列头(队列头指针所指)的结点,如果该结点是目标结点,则输出路径,程序结束。否则对结点进行扩展。 3)检查扩展出的新结点是否与队列中的结点重复,若与不能再扩展的结点重复(位于队列头指针之前),则将它抛弃;若新结点与待扩展的结点重复(位于队列头指针之后),则比较两个结点的估价函数中g的大小,保留较小g值的结点。跳至第五步。 4)如果扩展出的新结点与队列中的结点不重复,则按照它的估价函数f大小将它插入队列中的头结点后待扩展结点的适当位置,使它们按从小到大的顺序排列,最后更新队列尾指针。 5)如果队列头的结点还可以扩展,直接返回第二步。否则将队列头指针指向下一结点,再返回第二步。 2、分析估价函数对搜索算法的影响。

3、分析启发式搜索算法的特点。 广度优先搜索和双向广度优先搜索都属于盲目搜索,这在状态空间不大的情况下是很合适的算法,可是当状态空间十分庞大时,它们的效率实在太低,往往都是在搜索了大量无关的状态结点后才碰到解答,甚至更本不能碰到解答。 搜索是一种试探性的查寻过程,为了减少搜索的盲目性引,增加试探的准确性,就要采用启发式搜索了。所谓启发式搜索就是在搜索中要对每一个搜索的位置进行评估,从中选择最好、可能容易到达目标的位置,再从这个位置向前进行搜索,这样就可以在搜索中省略大量无关的结点,提高了效率。 启发式函数选取为:f*(n)=g*(n)+ h*(n) 其中: g*(n)是搜索树中节点n的深度 h*(n)用来计算对应于节点n的数据中错放的棋子个数。 三、实验结果

实验三A星算法求解8数码问题实验讲解

实验三:A*算法求解8数码问题实验 一、实验目的 熟悉和掌握启发式搜索的定义、估价函数和算法过程,并利用A*算法求解N数码难题,理解求解流程和搜索顺序。 二、实验内容 1、八数码问题描述 所谓八数码问题起源于一种游戏:在一个3×3的方阵中放入八个数码1、2、3、4、5、6、7、8,其中一个单元格是空的。将任意摆放的数码盘(城初始状态)逐步摆成某个指定的数码盘的排列(目标状态), 如图1所示 图1 八数码问题的某个初始状态和目标状态 对于以上问题,我们可以把数码的移动等效城空格的移动。如图1的

初始排列,数码7右移等于空格左移。那么对于每一个排列,可能的一次数码移动最多只有4中,即空格左移、空格右移、空格上移、空格下移。最少有两种(当空格位于方阵的4个角时)。所以,问题1 就转换成如何从初始状态开始,使空格经过最小的移动次数最后排列成目标状态。 2、八数码问题的求解算法 2.1 盲目搜索 宽度优先搜索算法、深度优先搜索算法 2.2 启发式搜索 启发式搜索算法的基本思想是:定义一个评价函数f,对当前的搜索状态进行评估,找出一个最有希望的节点来扩展。 先定义下面几个函数的含义: f*(n)=g*(n)+h*(n) (1) 式中g*(n)表示从初始节点s到当前节点n的最短路径的耗散值;h*(n)表示从当前节点n到目标节点g的最短路径的耗散值,f*(n)表示从初始节点s经过n到目标节点g的最短路径的耗散值。 评价函数的形式可定义如(2)式所示: f(n)=g(n)+h(n) (2) 其中n是被评价的当前节点。f(n)、g(n)和h(n)分别表示是对f*(n)、g*(n)和h*(n)3个函数值的估计值。

采用A算法解决八数码问题

人工智能实验一报告题目:采用A*算法解决八数码问题 姓名: XXX 学号: 10S003028 专业:计算机科学与技术 提交日期: 2011-05-04

目录 1问题描述........................................................................................................................... - 2 - 1.1待解决问题的解释............................................................................................... - 2 - 1.2问题的搜索形式描述............................................................................................ - 2 - 1.3解决方案介绍(原理)........................................................................................ - 3 - 2算法介绍........................................................................................................................... - 4 - 2.1A*搜索算法一般介绍............................................................................................ - 4 - 2.2 算法伪代码........................................................................................................... - 4 - 3算法实现........................................................................................................................... - 5 - 3.1 实验环境与问题规模........................................................................................... - 5 - 3.2 数据结构............................................................................................................... - 5 - 3.3 实验结果............................................................................................................... - 6 - 3.4系统中间及最终输出结果.................................................................................... - 6 - 4参考文献........................................................................................................................... - 7 - 5附录—源代码及其注释................................................................................................... - 7 -

启发式搜索 八数码问题

启发式搜索 1. 介绍 八数码问题也称为九宫问题。在3×3的棋盘,摆有八个棋子,每个棋子上标有1至8的某一数字,不同棋子上标的数字不相同。棋盘上还有一个空格(以数字0来表示),与空格相邻的棋子可以移到空格中。 要求解决的问题是:给出一个初始状态和一个目标状态,找出一种从初始转变成目标状态的移动棋子步数最少的移动步骤。 所谓问题的一个状态就是棋子在棋盘上的一种摆法。解八数码问题实际上就是找出从初始状态到达目标状态所经过的一系列中间过渡状态。 2. 使用启发式搜索算法求解8数码问题。 1) A ,A 星算法采用估价函数 ()()()()w n f n d n p n ??=+??? , 其中:()d n 是搜索树中结点n 的深度;()w n 为结点n 的数据库中错放的棋子个数;()p n 为结点n 的数据库中每个棋子与其目标位置之间的距离总和。 2) 宽度搜索采用f(i)为i 的深度,深度搜索采用f(i)为i 的深度的倒数。 3. 算法流程 ① 把起始节点S 放到OPEN 表中,并计算节点S 的)(S f ; ② 如果OPEN 是空表,则失败退出,无解; ③ 从OPEN 表中选择一个f 值最小的节点i 。如果有几个节点值相同,当其中有一个 为目标节点时,则选择此目标节点;否则就选择其中任一个节点作为节点i ; ④ 把节点i 从 OPEN 表中移出,并把它放入 CLOSED 的已扩展节点表中; ⑤ 如果i 是个目标节点,则成功退出,求得一个解; ⑥ 扩展节点i ,生成其全部后继节点。对于i 的每一个后继节点j : 计算)(j f ;如果j 既不在OPEN 表中,又不在CLOCED 表中,则用估价函数f 把 它添入OPEN 表中。从j 加一指向其父节点i 的指针,以便一旦找到目标节点时记住一个解答路径;如果j 已在OPEN 表或CLOSED 表中,则比较刚刚对j 计算过的f 和前面计算过的该节点在表中的f 值。如果新的f 较小,则 (I)以此新值取代旧值。 (II)从j 指向i ,而不是指向他的父节点。 (III)如果节点j 在CLOSED 表中,则把它移回OPEN 表中。 ⑦ 转向②,即GOTO ②。

15数码问题的解决算法算法和具体代码

〈〈人工智能〉〉 题目:15数码问题 实验1: 要求: 采用广度优先算法解决15数码问题,输出扩展结点,步数和最终结果 算法描述: 广度优先搜索,即BFS(Breadth First Search),常常深度优先并列提及。这是一种相当常用的图算法,其特点是:每次搜索指定点,并将其所有未访问过的近邻加入搜索队列(而深度优先搜索则是栈),循环搜索过程直到队列为空。 广度优先搜索算法的基本思想:从初始状态出发,按照给定的结点产生式规则(算符、结点扩展规则)生产第一层结点,每生成一个结点就检查是不是目标结点,如果是目标结点就搜索结束,如果不是目标结点并且前面没出现过就保存该结点(入队列);再用产生式规则将所有第一层的结点依次扩展,得到第二层结点,同时检查是否为目标结点,是目标搜索停止,不是并且没出现过保存(入队);再把第二层的结点按产生规则扩展生产第三层结点,直至找到目标或所有的状态找完但找不到目标(队列空)。 特点:先生成深度为1的所有结点,再生产深度为2的所有结点,依次类推。先横向,再纵向。这种方法找到目标,需要的步数一定最少。

程序算法流程图: 描述: (1).把起始结点放到OPEN表中。 (2).如果OPEN表是个空表,则没有解,失败退出;否则继续。 (3).把第一个结点从OPEN表中移出,并把它放入CLOSE表的扩展节点表 中。 (4).扩展结点N。如果没有后继结点,则转向步骤(2)。 (5).把N的所有后继结点放到OPEN表的末端,并提供从这些后继结点回 到N的指针。 (6).如果N的任意个后继结点是个目标结点,则找到一个解答,成功退出; 否则转向步骤(2). 流程图:

A星算法求解八数码问题

A*算法求解八数码问题 1、八数码问题描述 所谓八数码问题起源于一种游戏:在一个3×3的方阵中放入八个数码1、2、3、4、5、 6、7、8,其中一个单元格是空的。将任意摆放的数码盘(城初始状态)逐步摆成某个 指定的数码盘的排列(目标状态),如图1所示 图1 八数码问题的某个初始状态和目标状态 对于以上问题,我们可以把数码的移动等效城空格的移动。如图1的初始排列,数码7右移等于空格左移。那么对于每一个排列,可能的一次数码移动最多只有4中,即空格左移、空格右移、空格上移、空格下移。最少有两种(当空格位于方阵的4个角时)。所以,问题就转换成如何从初始状态开始,使空格经过最小的移动次数最后排列成目标状态。 2、八数码问题的求解算法 2.1 盲目搜索 宽度优先搜索算法、深度优先搜索算法 2.2 启发式搜索 启发式搜索算法的基本思想是:定义一个评价函数f,对当前的搜索状态进行评估,找出一个最有希望的节点来扩展。 先定义下面几个函数的含义:

f*(n)=g*(n)+h*(n) (1) 式中g*(n)表示从初始节点s到当前节点n的最短路径的耗散值;h*(n)表示从当前节点n到目标节点g的最短路径的耗散值,f*(n)表示从初始节点s经过n到目标节点g 的最短路径的耗散值。 评价函数的形式可定义如(2)式所示: f(n)=g(n)+h(n) (2) 其中n是被评价的当前节点。f(n)、g(n)和h(n)分别表示是对f*(n)、g*(n)和h*(n)3个函数值的估计值。 利用评价函数f(n)=g(n)+h(n)来排列OPEN表节点顺序的图搜索算法称为算法A。在A算法中,如果对所有的x, h(x)<=h*(x) (3) 成立,则称好h(x)为h*(x)的下界,它表示某种偏于保守的估计。采用h*(x)的下界h(x)为启发函数的A算法,称为A*算法。 针对八数码问题启发函数设计如下: f(n)=d(n)+p(n) (4) 其中A*算法中的g(n)根据具体情况设计为d(n),意为n节点的深度,而h(n)设计为

八数码问题报告

八数码问题分析 班级:计算机1041 学号:01 姓名:李守先 2013年9月26日

摘要 八数码问题(Eight-puzzle Problem )是人工智能中一个很典型的智力问题。 本文以状态空间搜索的观点讨论了八数码问题,给出了八数码问题的Java 算法与实现的思想, 分析了A*算法的可采纳性等及系统的特点。 关键词 九宫重排, 状态空间, 启发式搜索, A*算法 1 引言 九宫重排问题(即八数码问题)是人工智能当中有名的难题之一。问题是在3×3方格盘上,放有八个数码,剩下一个位置为空,每一空格其上下左右的数码可移至空格。问题给定初始位置和目标位置,要求通过一系列的数码移动,将初始状态转化为目标状态。状态转换的规则:空格周围的数移向空格,我们可以看作是空格移动,它最多可以有4个方向的移动,即上、下、左、右。九宫重排问题的求解方法,就是从给定的初始状态出发,不断地空格上下左右的数码移至空格,将一个状态转化成其它状态,直到产生目标状态。 图1 许多学者对该问题进行了有益的探索[1,2,4,6]。给定初始状态,9个数在3×3中的放法共有9!=362880种,其状态空间是相当大的。因此, 有必要考虑与问题相关的启发性信息来指导搜索,以提高搜索的效率。当然,还有个很重要的问题:每个初始状态都存在解路径吗?文献给出了九宫重排问题是否有解的判别方法:九宫重排问题存在无解的情况,当遍历完所有可扩展的状态也没有搜索到目标状态就判断为无解。可以根据状态的逆序数来先验的判断是否有解,当初始状态的逆序数和目标状态的逆序数的奇偶性相同时,问题有解;否则问题无解。状态的逆序数是定义把三行数展开排成一行,并且丢弃数字 0 不计入其中,ηi 是第 i 个数之前比该数小的数字的个数,则 η=Σηi 是该状态的逆序数,图2说明了逆序数计算的过程 。 本文介绍用JAVA 编写九宫重排问题游戏。游戏规则是,可随机产生或由用户设置初始状态,由初始状态出发,不断地在空格上下左右的数码移至空格,若能排出目标状态,则成功。为了避免对无解节点进行无用搜索,首先对初始节点进行逆序数分析,对有解的节点进行搜索,从而节省了资源,也提高了效率。本文内容安排: 第2部分介绍几个相关的概念和A*算法以及可采纳性 ;

八数码问题人工智能实验报告

基于人工智能的状态空间搜索策略研究 ——八数码问题求解 (一)实验软件 TC2.0 或VC6.0编程语言或其它编程语言 (二)实验目的 1. 熟悉人工智能系统中的问题求解过程; 2. 熟悉状态空间的盲目搜索和启发式搜索算法的应用; 3. 熟悉对八数码问题的建模、求解及编程语言的应用。 (三)需要的预备知识 1. 熟悉TC 2.0或VC6.0 编程语言或者其它编程语言; 2. 熟悉状态空间的宽度优先搜索、深度优先搜索和启发式搜索算法; 3. 熟悉计算机语言对常用数据结构如链表、队列等的描述应用; 4. 熟悉计算机常用人机接口设计。 (四)实验数据及步骤 1. 实验内容 八数码问题:在3×3的方格棋盘上,摆放着1到8这八个数码,有1个方格是空的,其初始状态如图1所示,要求对空格执行空格左移、空格右移、空格上移和空格下移这四个操作使得棋盘从初始状态到目标状态。 图1 八数码问题示意图 请任选一种盲目搜索算法(深度优先搜索或宽度优先搜索)或任选一种启发式搜索方法(A 算法或A* 算法)编程求解八数码问题(初始状态任选),并对实验结果进行分析,得出合理的结论。 2. 实验步骤 (1)分析算法基本原理和基本流程; 程序采用宽度优先搜索算法,基本流程如下:

(2)确定对问题描述的基本数据结构,如Open表和Closed表等;

(3)编写算符运算、目标比较等函数; (4)编写输入、输出接口; (5)全部模块联调; (6)撰写实验报告。 (五)实验报告要求 所撰写的实验报告必须包含以下内容: 1. 算法基本原理和流程框图; 2. 基本数据结构分析和实现; 3. 编写程序的各个子模块,按模块编写文档,含每个模块的建立时间、功能、输入输出参数意义和与其它模块联系等; 4. 程序运行结果,含使用的搜索算法及搜索路径等; 5. 实验结果分析; 6. 结论; 7. 提供全部源程序及软件的可执行程序。 附:实验报告格式 一、实验问题 二、实验目的 三、实验原理 四、程序框图 五、实验结果及分析 六、结论

八数码问题C语言A星算法详细实验报告含代码

一、实验内容和要求 八数码问题:在3×3的方格棋盘上,摆放着1到8这八个数码,有1个方格是空的,其初始状态如图1所示,要求对空格执行空格左移、空格右移、空格上移和空格下移这四个操作使得棋盘从初始状态到目标状态。 例如: [ (a) 初始状态 (b) 目标状态 图1 八数码问题示意图 请任选一种盲目搜索算法(广度优先搜索或深度优先搜索)或任选一种启发式搜索方法(全局择优搜索,加权状态图搜索,A 算法或 A* 算法)编程求解八数码问题(初始状态任选)。选择一个初始状态,画出搜索树,填写相应的OPEN 表和CLOSED表,给出解路径,对实验结果进行分析总结,得出结论。 二、实验目的 1. 熟悉人工智能系统中的问题求解过程; 2. 熟悉状态空间的盲目搜索和启发式搜索算法的应用; % 3. 熟悉对八数码问题的建模、求解及编程语言的应用。 三、实验算法 A*算法是一种常用的启发式搜索算法。 在A*算法中,一个结点位置的好坏用估价函数来对它进行评估。A*算法的估价函数可表示为: f'(n) = g'(n) + h'(n) 这里,f'(n)是估价函数,g'(n)是起点到终点的最短路径值(也称为最小耗费或最小代价),h'(n)是n到目标的最短路经的启发值。由于这个f'(n)其实是无法预先知道的,所以实际上使用的是下面的估价函数: f(n) = g(n) + h(n) 其中g(n)是从初始结点到节点n的实际代价,h(n)是从结点n到目标结点的最佳路径的估计代价。在这里主要是h(n)体现了搜索的启发信息,因为g(n)是已

知的。用f(n)作为f'(n)的近似,也就是用g(n)代替g'(n),h(n)代替h'(n)。这样必须满足两个条件:(1)g(n)>=g'(n)(大多数情况下都是满足的,可以不用考虑),且f必须保持单调递增。(2)h必须小于等于实际的从当前节点到达目标节点的最小耗费h(n)<=h'(n)。第二点特别的重要。可以证明应用这样的估价函数是可以找到最短路径的。 *算法的步骤 A*算法基本上与广度优先算法相同,但是在扩展出一个结点后,要计算它的估价函数,并根据估价函数对待扩展的结点排序,从而保证每次扩展的结点都是估价函数最小的结点。 A*算法的步骤如下: & 1)建立一个队列,计算初始结点的估价函数f,并将初始结点入队,设置队列头和尾指针。 2)取出队列头(队列头指针所指)的结点,如果该结点是目标结点,则输出路径,程序结束。否则对结点进行扩展。 3)检查扩展出的新结点是否与队列中的结点重复,若与不能再扩展的结点重复(位于队列头指针之前),则将它抛弃;若新结点与待扩展的结点重复(位于队列头指针之后),则比较两个结点的估价函数中g的大小,保留较小g值的结点。跳至第五步。 4)如果扩展出的新结点与队列中的结点不重复,则按照它的估价函数f大小将它插入队列中的头结点后待扩展结点的适当位置,使它们按从小到大的顺序排列,最后更新队列尾指针。 5)如果队列头的结点还可以扩展,直接返回第二步。否则将队列头指针指向下一结点,再返回第二步。 四、程序框图

八数码C语言A算法详细代码

#include #include #include #include #include usingnamespace std; struct node{ int a[3][3]; //存放矩阵 int father; //父节点的位置 int gone; //是否遍历过,1为是,0为否 int fn; //评价函数的值 int x,y; //空格的坐标 int deep; //节点深度 }; vector store; //存放路径节点 int mx[4]={-1,0,1,0}; int my[4]={0,-1,0,1}; //上下左右移动数组 int top; //当前节点在store中的位置 bool check(int num) //判断store[num]节点与目标节点是否相同,目标节点储存在store[0]中 { for(int i=0;i<3;i++){ for(int j=0;j<3;j++){ if(store[num].a[i][j]!=store[0].a[i][j]) returnfalse; } } returntrue; } bool search(int num) //判断store[num]节点是否已经扩展过 ,没有扩展返回true { int pre=store[num].father; //pre指向store[num]的父节点位置 bool test=true; while(!pre){ //循环直到pre为0,既初始节点 for(int i=0;i<3;i++){ for (int j=0;j<3;j++){ if(store[pre].a[i][j]!=store[num].a[i][j]){ test=false;

八数码难题的搜索求解演示

人工智能实验报告 学院:信息科学与工程学院 班级:自动化0901班 学号: 06 姓名:孙锦岗 指导老师:刘丽珏 日期:2011年12月20日

一、实验名称、目的及内容 实验名称: 八数码难题的搜索求解演示 实验目的: 加深对图搜索策略概念的理解,掌握搜索算法。 实验内容要求: 以八数码难题为例演示广度优先或深度优先搜索、A算法(本实验使用的是广度优先搜索)的搜索过程,争取做到直观、清晰地演示算法。 八数码难题:在3 X 3方格棋盘上,分别放置了标有数字 123,4,5,6,7,8 的八张牌,初始状态SO,目标状态如图所示,可以 使用的操作有:空格上移,空格左移,空格右移,空格下移。试编一程序实现这一搜索过程。 二、实验原理及基本技术路线图 实验原理: 八数码问题中,程序产生的随机排列转换成目标共有两种可能,而且这两种不可能同时成立,也就是奇数排列和偶数排列。我们可以把一个随机排列的数组从左到右从上到下用一个数组表示,例如{8,

7,1,5,2,6,3,4,0}其中0代表空格。它在奇序列位置上。 在这个数组中我们首先计算它能够重排列出来的结果,公式就是: E(F(X))=Y,其中F (X),就是一个数他前面比这个数小的数的个数,Y为奇数和偶数个有一种解法。那么上面的数组我们就可以解出它的结果。 数据结构: 本实验使用的数据结构是队列,应用队列先进先出的特点来实现对节点的保存和扩展。首先建立一个队列,将初始结点入队,并设置队列头和尾指,然后取出队列(头指针所指)的结点进行扩展,从它扩展出子结点,并将这些结点按扩展的顺序加入队列,然后判断扩展出的新结点与队列中的结点是否重复,如果重复则,否则记录其父结点,并将它加入队列,更新队列尾指针,然后判断扩展出的结点是否是目标结点,如果是则显示路径,程序结束。否则如果队列头的结点可以扩展,直接返回第二步。否则将队列头指针指向下一结点,再返回第二步,知道扩展出的结点是目标结点结束,并显示路径。 算法分析: 九宫问题的求解方法就是交换空格(0)位置,直至到达目标位置为止。如图所示:

八数码问题C语言A星算法详细实验报告含代码

八数码问题C语言A星算法详细实验报告含代 码 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

一、实验内容和要求 八数码问题:在3×3的方格棋盘上,摆放着1到8这八个数码,有1个方格是空的,其初始状态如图1所示,要求对空格执行空格左移、空格右移、空格上移和空格下移这四个操作使得棋盘从初始状态到目标状态。 例如: (a) 初始状态 (b) 目标状态 图1 八数码问题示意图 请任选一种盲目搜索算法(广度优先搜索或深度优先搜索)或任选一种启发式搜索方法(全局择优搜索,加权状态图搜索,A 算法或 A* 算法)编程求解八数码问题(初始状态任选)。选择一个初始状态,画出搜索树,填写相应的OPEN表和CLOSED表,给出解路径,对实验结果进行分析总结,得出结论。 二、实验目的 1. 熟悉人工智能系统中的问题求解过程; 2. 熟悉状态空间的盲目搜索和启发式搜索算法的应用; 3. 熟悉对八数码问题的建模、求解及编程语言的应用。 三、实验算法 A*算法是一种常用的启发式搜索算法。 在A*算法中,一个结点位置的好坏用估价函数来对它进行评估。A*算法的估价函数可表示为: f'(n) = g'(n) + h'(n)

这里,f'(n)是估价函数,g'(n)是起点到终点的最短路径值(也称为最小耗费或最小代价),h'(n)是n到目标的最短路经的启发值。由于这个f'(n)其实是无法预先知道的,所以实际上使用的是下面的估价函数: f(n) = g(n) + h(n) 其中g(n)是从初始结点到节点n的实际代价,h(n)是从结点n到目标结点的最佳路径的估计代价。在这里主要是h(n)体现了搜索的启发信息,因为g(n)是已知的。用f(n)作为f'(n)的近似,也就是用g(n)代替 g'(n),h(n)代替h'(n)。这样必须满足两个条件:(1)g(n)>=g'(n)(大多数情况下都是满足的,可以不用考虑),且f必须保持单调递增。(2)h必须小于等于实际的从当前节点到达目标节点的最小耗费 h(n)<=h'(n)。第二点特别的重要。可以证明应用这样的估价函数是可以找到最短路径的。 *算法的步骤 A*算法基本上与广度优先算法相同,但是在扩展出一个结点后,要计算它的估价函数,并根据估价函数对待扩展的结点排序,从而保证每次扩展的结点都是估价函数最小的结点。 A*算法的步骤如下: 1)建立一个队列,计算初始结点的估价函数f,并将初始结点入队,设置队列头和尾指针。

八数码问题实验报告讲解

《八数码问题》实验报告 一、实验目的: 熟练掌握启发式搜索A *算法。 二、实验内容: 使用启发式搜索算法求解8数码问题。编制程序实现求解8数码问题A *算法,采用估价函数 ()()()()w n f n d n p n ??=+??? , 其中:()d n 是搜索树中结点n 的深度;()w n 为结点n 的数据库中错放的棋子个数;()p n 为结点n 的数据库中每个棋子与其目标位置之间的距离总和。 三、实验原理: 1. 问题描述: 八数码问题也称为九宫问题。在3×3的棋盘,摆有八个棋子,每个棋子上标有1至8的某一数字,不同棋子上标的数字不相同。棋盘上还有一个空格(以数字0来表示),与空格相邻的棋子可以移到空格中。 要求解决的问题是:给出一个初始状态和一个目标状态,找出一种从初始转变成目标状态的移动棋子步数最少的移动步骤。 所谓问题的一个状态就是棋子在棋盘上的一种摆法。解八数码问题实际上就是找出从初始状态到达目标状态所经过的一系列中间过渡状态。 2. 原理描述: 启发式搜索 (1)原理 启发式搜索就是在状态空间中的搜索对每一个搜索的位置进行评估,得到最好的位置,再从这个位置进行搜索直到目标。这样可以省略大量无谓的搜索路径,提高了效率。在启发式搜索中,对位置的估价是十分重要的。采用了不同的估价可以有不同的效果。 (2)估价函数

计算一个节点的估价函数,可以分成两个部分: 1、 已经付出的代价(起始节点到当前节点); 2、 将要付出的代价(当前节点到目标节点)。 节点n 的估价函数)(n f 定义为从初始节点、经过n 、到达目标节点的路径的最小代价 的估计值,即)(* n f = )(* n g + )(* n h 。 )(*n g 是从初始节点到达当前节点n 的实际代价; )(*n h 是从节点n 到目标节点的最佳路径的估计代价。 )(*n g 所占的比重越大,越趋向于宽度优先或等代价搜索;反之,)(*n h 的比重越大, 表示启发性能就越强。 (3)算法描述: ① 把起始节点S 放到OPEN 表中,并计算节点S 的)(S f ; ② 如果OPEN 是空表,则失败退出,无解; ③ 从OPEN 表中选择一个f 值最小的节点i 。如果有几个节点值相同,当其中有一个 为目标节点时,则选择此目标节点;否则就选择其中任一个节点作为节点i ; ④ 把节点i 从 OPEN 表中移出,并把它放入 CLOSED 的已扩展节点表中; ⑤ 如果i 是个目标节点,则成功退出,求得一个解; ⑥ 扩展节点i ,生成其全部后继节点。对于i 的每一个后继节点j : 计算)(j f ;如果j 既不在OPEN 表中,又不在CLOCED 表中,则用估价函数f 把 它添入OPEN 表中。从j 加一指向其父节点i 的指针,以便一旦找到目标节点时记住一个解答路径;如果j 已在OPEN 表或CLOSED 表中,则比较刚刚对j 计算过的f 和前面计算过的该节点在表中的f 值。如果新的f 较小,则 (I)以此新值取代旧值。 (II)从j 指向i ,而不是指向他的父节点。 (III)如果节点j 在CLOSED 表中,则把它移回OPEN 表中。 ⑦ 转向②,即GOTO ②。 (3)算法流程图:

相关文档
最新文档