导数的应用与生活中的优化问题举例(理)

导数的应用与生活中的优化问题举例(理)
导数的应用与生活中的优化问题举例(理)

导数在研究函数中的应用与生活中的优化问题举例

一.基础知识

1.函数的单调性与导数

在某个区间(a,b)内,如果________,那么函数y=f(x)在这个区间内单调递增;如果________,那么函数y=f(x)在这个区间内单调递减.如果_________,那么函数y=f(x)在这个区间上是常数函数.

若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0吗?f′(x)>0是否是f(x)在(a,b)内单调递增的充要条件?提示:函数f(x)在(a,b)内单调递增,则f′(x)≥0,f′(x)>0是f(x)在(a,b)内单调递增的充分不必要条件.

2.函数的极值与导数

(1)函数的极小值

若函数y=f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值_____,且f′(a)=0,而且在点x=a附近的左侧_________,右侧________,则a点叫做函

数的极小值点,f(a)叫做函数的极小值.

(2)函数的极大值

若函数y=f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值_____,

且f′(b)=0,而且在点x=b附近的左侧_________,右侧_________,则b点叫做

函数的极大值点,f(b)叫做函数的极大值,________和________统称为极值.

3.函数的最值与导数

函数f(x)在[a,b]上有最值的条件:如果在区间[a,b]上函数y=f(x)的图象是

一条__________的曲线,那么它必有最大值和最小值.

4.生活中的优化问题

二.典例剖析

题型一.函数的单调性与导数

例1.已知函数f(x)=3x-2ax-1.

(1)若f(x)在实数集R上单调递增,求实数a的取值范围.

(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的取值范围;若不存在,说明理由.

变式:已知a∈R,函数f(x)=(-2x+ax)x e (x∈R,e为自然对数的底数).

(1)当a=2 时,求函数f(x)的单调递增区间;

(2)若函数f (x )在(-1,1)上单调递增,求a 的取值范围.

题型二.

函数的极值与导数 例 2. 设函数3()3(0)f x x ax b a =-+≠.(Ⅰ)若曲线()y f x =在点()()

22f ,处与直线8y =相切,求,a b 的值;(Ⅱ)求函数()f x 的单调区间与极值点.

变式: 设a 为实数,函数3()3f x x x a =-++

(1)求()f x 的极值;(2)当a 为何值时,函数()y f x =恰好有两个零点?

题型三. 函数的最值与导数

例3. 已知a 为实数,函数f (x )=(x 2+1)(x +a ).若f ′(-1)=0,求函数y =f (x )在???

?-32,1上的最大值和最小值.

变式: 已知32()f x x ax bx c =+++在23

x =-与1x =时,都取到极值。 (1)求a b 、的值;(2)若对2[1,2],()x f x c ∈-<恒成立,求c 的取值范围。

例4.已知函数f (x )=ln x -a x

.若f (x )在[1,e]上的最小值为32,求a 的值.

题型四.生活优化举例

例5. 用长为18 m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2∶1,

问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?

三.检测

1.函数y =3

x 的单调增区间是( )

A .(-∞,0)

B .(0,+∞)

C .(-∞,+∞)

D .(-∞,0)和(0,+∞)

2.函数y =x sin x +cos x 在下面哪个区间内是增函数( )

A .(π2,3π2)

B .(π,2π)

C .(3π2,5π2

) D .(2π,3π) 3.函数f (x )=3x +ax -2在区间(1,+∞)上是增函数,则实数a 的取值范围是( )

A .[3,+∞)

B .[-3,+∞)

C .(-3,+∞)

D .(-∞,-3)

4.函数f (x )=(x -3)e x

的单调递增区间是 ( )

A.(-∞,2)

B.(0,3)

C.(1,4)

D.(2,+∞)

5.已知函数f(x)的导数为f ′(x )=4x 3-4x ,且f (x )的图象过点(0,-5),当函数f (x )

取得极大值-5时,x 的值应为 ( )

A.-1

B.0

C.1

D.±1

6.若函数f (x )=ax 3-3x 在(-1,1)上单调递减,则实数a 的取值范围是

( )A.a <1 B.a ≤1 C.0<a <1 D.0<a ≤1

7..函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数

f (x )在开区间(a ,b )内有极小值点的个数为( )

A .1

B .2

C .3

D .4

8.设a ∈R,若函数y =e ax +3x ,x ∈R 有大于零的极值点,则( )

A .a >-3

B .a <-3

C .a >-13

D .a <-13

9.已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的

最小值是( )

A .-37

B .-29

C .-5

D .以上都不对

10.若函数f (x )=x 3-3x +a 有3个不同的零点,则实数a 的取值范围是( )

A .(-2,2)

B .[-2,2]

C .(-∞,-1)

D .(1,+∞)

11.函数f (x )=3x +3a 2x +3[(a +2)x +1]有极大值又有极小值,则a 的取值范围是

________.

12.函数f (x )=3x -152

x -33x +6的单调减区间为________.

13.f(x)=x (x -c )2在x =2处有极大值,则常数c 的值为 .

14.已知函数f (x )=a ln x +x 在区间[2,3]上单调递增,求实数a 的取值范围.

生活中的优化问题举例

高二数学◆选修2-2◆导学案编写:刘方贵张晓丽审核:仇国宗陈兆平袁全升2011-03-21 1 建立数学模型§1.4生活中的优化问题举例 教学目标: 1.使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作 用 2.提高将实际问题转化为数学问题的能力 教学重点:利用导数解决生活中的一些优化问题. 教学难点:利用导数解决生活中的一些优化问题. 一.创设情景 生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为 优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节, 我们利用导数,解决一些生活中的优化问题. 二.新课讲授 导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有 以下几个方面: 1、与几何有关的最值问题; 2、与物理学有关的最值问题; 3、与利润及其成本有关的最值问题; 4、效率最值问题。 解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函 数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是 建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决, 在这个过程中,导数是一个有力的工具. 利用导数解决优化问题的基本思路: 三.典例分析 例1.海报版面尺寸的设计学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图 1.4-1所示的竖向张贴的海报,要求版心面积为128dm 2,上、下两边各空2dm,左、右两边各空1dm 。 如何设计海报的尺寸,才能使四周空心面积最小? 本节课精华记录预习心得:解决数学模型 作答用函数表示的数学问题 优化问题用导数解决数学问题 优化问题的答案

利用导数解决生活中的优化问题

利用导数解决生活中的优化问题 导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:1、与几何有关的最值问题;2、与物理学有关的最值问题;3、与利润及其成本有关的最值问题;4、效率最值问题。 一.解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具. 二.利用导数解决优化问题的基本思路: 三、应用举例 例1(体积最大问题)用长为18m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少? 解:设长方体的宽为(m)x ,则长为2(m)x ,高为 181234.53(m)042x h x x -??==-<< ?? ?.故长方体的体积为 22323()2(4.53)96(m )02V x x x x x x ??=-=-<< ??? . 从而2()181818(1)V x x x x x '=-=-. 令()0V x '=,解得0x =(舍去)或1x =,因此1x =. 当01x <<时,()0V x '>;当312 x <<时,()0V x '<. 故在1x =处()V x 取得极大值,并且这个极大值就是()V x 的最大值. 从而最大体积233 (1)91613(m )V V ==?-?=,此时长方体的长为2m ,高为1.5m . 答:当长方体的长为2m ,宽为1m ,高为1.5m 时,体积最大,最大体积为33m . 点评:用导数来解决实际问题时,一般首确定自变量,选定了自变量,要搞清自变量的围,再列出关系式,对关系式进行求导,最后求出最值来。 例2(帐篷设计问题)请您设计一个帐篷。它下部的形状是高为1m 的正六棱柱,上部的形状是侧棱长为3m 的正六棱锥。试问当帐篷的顶点O 到底面中心1o 的距离为多少时,帐

2012高考数学热点考点精析:10导数在研究函数中的应用与生活中的优化问题举例(新课标地区)

考点10 导数在研究函数中的应用 与生活中的优化问题举例 一、选择题 1.(2011·安徽高考文科·T10)函数()()2 1n f x ax x =-在区间[]0,1上的 图象如图所示,则n 可能是( ) (A )1 (B )2 (C )3 (D )4 【思路点拨】 代入验证,并求导得极值,结合图象确定答案. 【精讲精析】选A. 代入验证,当n=1时,)2()1()(232x x x a x ax x f +-=-=,则 )143()(2+-='x x a x f ,由)143()(2+-='x x a x f =0可知,1,3 1 21==x x ,结合图 象可知函数应在(0,31)递增,在) (1,31递减,即在3 1 =x 处取得最大值,由 ,2 1 )311(31)31(2=-??=a f 知a 存在. 2.(2011·辽宁高考理科·T11)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,2)(>'x f ,则f (x )>2x+4的解集为 (A )(-1,1) (B )(-1,+∞) (C )(-∞,-1) (D )(-∞,+∞) 【思路点拨】先构造函数)42()()(+-=x x f x g ,求其导数,将问题转化为求)(x g 单调性问题即可求解.

【精讲精析】选B.构造函数)42()()(+-=x x f x g ,则 =-)1(g 022)42()1(=-=+---f , 又因为2)(>'x f ,所以02)()(>-'='x f x g ,可知)(x g 在R 上是增函数,所以)42()(+>x x f 可化为0)(>x g ,即 )1()(->g x g ,利用单调性可知,1->x .选B. 3.(2011·安徽高考理科·T10)函数()()1n m f x ax x =-在区间[]0,1上的 图象如图所示,则,m n 的值可能是 (A )1,1m n == (B) 1,2m n == (C) 2,1m n == (D) 3,1m n == 【思路点拨】本题考查函数与导数的综合应用,先求出)(x f 的导数,然后根据函数图像确定极值点的位置,从而判断m,n 的取值. 【精讲精析】选B.函数()()1n m f x ax x =-的导数 11()()(1)(),m n m f x m n ax x x m n --'=-+-- +则)(x f '在),0(n m m +上大于0,在 )1,(n m m +上小于0,由图象可知极大值点为31,结合选项可得m=1,n=2. 二、填空题 4.(2011·广东高考理科·T12)函数32()31f x x x =-+在x = 处取得极小值. 【思路点拨】先求导函数的零点,然后通过导数的正负分析函数的增减情况,从而得出取得极值的时刻. 【精讲精析】答案:2 由063)(2=-='x x x f 解得0=x 或2=x ,列表如下:

3.4生活中的优化问题举例

二、预习内容 :生活中的优化问题,如何用导数来求函数的最小

二、学习过程 1.汽油使用效率最高的问题 阅读例1,回答以下问题: (1)是不是汽车速度越快,汽油消耗量越大? (2)“汽车的汽油使用效率最高”含义是什么? (3)如何根据图3.4-1中的数据信息,解决汽油的使用效率最高的问题? 2.磁盘最大存储量问题 阅读背景知识,思考下面的问题: 问题:现有一张半径为的磁盘,它的存储区是半径介于r与R的环形区域。(1)是不是r越小,磁盘的存储量越大? (2)r为多少时,磁盘具有最大存储量(最外面的磁道不存储任何信息)? 3饮料瓶大小对饮料公司利润的影响 阅读背景知识,思考下面的问题: (1)请建立利润y与瓶子半径r的函数关系。 (2)分别求出瓶子半径多大时利润最小、最大。 (3)饮料瓶大小对饮料公司利润是如何影响的? 三、反思总结 通过上述例子,我们不难发现,解决优化问题的基本思路是:

收集一下各种型号打印纸的数据资料,并说明其中所蕴含的设计原理。【资料】打印纸型号数据(单位:厘米)

§3.4 生活中的优化问题举例教学目标: 1.要细致分析实际问题中各个量之间的关系,正确设定所求最大值或最小值的变量y 与自变量x ,把实际问题转化为数学问题,即列出函数解析式()y f x =,根据实际问题确定函数()y f x =的定义域; 2.要熟练掌握应用导数法求函数最值的步骤,细心运算,正确合理地做答. 重点:求实际问题的最值时,一定要从问题的实际意义去考察,不符合实际意义的理论 值应予舍去。 难点:在实际问题中,有()0f x '=常常仅解到一个根,若能判断函数的最大(小)值 在x 的变化区间内部得到,则这个根处的函数值就是所求的最大(小)值。 教学方法:尝试性教学 教学过程: 前置测评: (1)求曲线y=x 2+2在点P(1,3)处的切线方程. (2)若曲线y=x 3上某点切线的斜率为3,求此点的坐标。 【情景引入】 生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数,解决一些生活中的优化问题 例1.汽油的使用效率何时最高 材料:随着我国经济高速发展,能源短缺的矛盾突现,建设节约性社会是众望所归。现实生活中,汽车作为代步工具,与我们的生活密切相关。众所周知,汽车的每小时耗油量与汽车的速度有一定的关系。如何使汽车的汽油使用效率最高(汽油使有效率最高是指每千米路程的汽油耗油量最少)呢? 通过大量统计分析,得到汽油每小时的消耗量 g(L/h)与汽车行驶的平均速度v (km/h )之间的函数关系g=f(v) 如图3.4-1,根据图象中的信息,试说出汽车的速度v 为多少时,汽油的使用效率最高? 解:因为G=w/s=(w/t)/(s/t)=g/v 这样,问题就转化为求g/v 的最小值,从图象上看,g/v

生活中的优化问题举例

生活中的优化问题举例 学校:___________姓名:___________班级:___________考号:___________ 一、选择题 1.内接于半径为的圆的矩形的面积的最大值是( ) A .32 B .16 C .16π D .64 2.设底面为等边三角形的直棱柱的体积为 V ,那么其表面积最小时,底面边长为( ) D .3.若商品的年利润y (万元)与年产量x (百万件)的函数关系式为y =-x 3 +27x +123(x>0),则获得最大利润时的年产量为( ) A .1百万件 B .2百万件 C .3百万件 D .4百万件 4.把一个周长为12 cm 的长方形围成一个圆柱,当圆柱的体积最大时,该圆柱底面周长与高的比为( ) A .1∶ 2 B .1∶π C .2∶1 D .2∶π 5.要做一个圆锥形漏斗,其母线长为20cm ,要使其体积最大,则其高为( ) A cm B .100cm C .20cm D .20 cm 3 6.某城市在发展过程中,交通状况逐渐受到大家更多的关注,据有关数据统计显示,从上午6时到9时,车辆通过该市某一路段的用时y (分钟)与车辆进入该路段的时刻t 之间的关系可近似地用如下函数表示:3 213368 4y t t t =-- +-6294 ,则在这段时间内,通过该路段用时最多的时刻是( ) A .6时 B .7时 C .8时 D .9时 7.三棱锥O -ABC 中,OA 、OB 、OC 两两垂直,OC =2x ,OA =x ,OB =y ,且x +y =3,则三棱锥O -ABC 体积的最大值为( ) A .4 B .8 C . 43 D .83 8.某公司生产一种产品,固定成本为20 000元,每生产一单位的产品,成本增加100 元,若总收入R (x )元与年产量x 的关系是()R x =3 400,0390,90090090,390,x x x x ?- +≤≤???>? 则当

生活中数学最优化问题的研究

生活中数学最优化问题的研究

生活中数学最优化问题的研究 教学目标: 1)知识与技能:能够把理论与实践相结合,将现实生活中的实际问题抽象、归纳并转化成数学中的最优化问题来解决。 2)能力目标: 1、运用已掌握的数学知识及其他相关的知识,将实际问题转化为数学问题去解决; 2、培养学生发现问题、分析问题和解决题的能力; 3、培养学生探索数学问题的能力。 3)情感目标: 1、通过主动发现、自主探索的过程,让学生有发现、有收获,从而获得成功的经验,激发学生的求知欲; 2、培养学生的合作精神和创新精神。 参与者特征分析 高中生相对来说独立性较强,具有一定的独立处理事情的能力,但他们生活经验不够,看待问题欠准确,往往会以点概面,不过高中生很容易接受新生事物,只要进行适当的引导,相信能使活动顺利开展。教学过程: 1、深入生活,从生活中取得课题 生活中处处充满着数学,处处留心皆数学。我们早晨起床刷牙用的牙膏,细心的同学会发现,牙膏的包装有大有小,其价格也不相同,你想过大小包与其价格之间的关系吗?你吃东西时,想过营养成份的搭配吗?你在开灯关灯时,想过灯的位置与照明度问题吗?你在开、关窗户时,想过窗户的面积与采光量的问题吗?烈日下,你想过遮阳棚搭建方式与遮挡太阳光线有关吗?你在购买商品时,想过哪儿如何才能买到最便宜的吗? 生活中经常遇到求利润最大、用料最省、效率最高、费用最少、路线最短、容积最大等

将款全部付清的前提下, 商店又提出了下表所示的几种付款方案,以供顾客选择,何种方案最实惠。 分几次付清付款方法首期所付款额付款总额与一次性付款差额 3次购买后四个月第 一次付款,每四 个月付一次款 1775.8元5327元327元 6次购买后2个月第 一次付款,后每 两个月付一次 款,购买后12个 月是第6次付款 880.8 5285 285 12次购买后一个月第 一次付款,每一 个月付一次款 438.6元5263元263元 注规定月利率为0.8%,每月利息按复利计算 方案一:设每期所付款额x元,那么到最后一次付款时付款合部本利和为x×(1+1.0084+1.0088)元x×(1+) 另外,5000元商品在购买后12个月后的本利和为5000×1.00812元。得x×(1+1.0084+1.0088)=5000×1.00812 解得x=1775.8元 方案2: =5000×1.00812 x=880.8元 方案3: =5000×1.00812 x=438.6元 不难得出第三种方案时间既宽松而且更实惠。 四、成本最低化问题

生活中的最优化问题

生活中的最优化问题 新乡市一中刘秀辉初中生的数学学习过程,事实上是一个体验生活、不断积累生活经验的过程。数学课程 中许多问题的解决,实际上就是为学生创设一个或若干个选择的情境,让学生在模拟的实际 背景下学会解决问题,在解决问题的过程中学会“选择”。教师应尽可能多地为学生设置“真 实情景”的活动平台,使学生在对数学实际问题的探究活动中学会选择最佳解决方案。下面 是我在《生活中的最优化问题》的教学过程中,利用生活中的几个实际问题,引导学生学会 如何做出最佳选择的。 一、创设问题情景,搭建“选择”平台 师:数学来源于生活。生活中许多实际问题可以转化为数学问题来解决,请同学们看大 屏幕,认真观察老师为大家收集的几个生活中的问题,看这些问题背景材料有什么共同特点? 背景材料1:(人教版七年级上册教材100页数学活动1)一种笔记本售价为2.3元/本,如 果买100本以上(不含100本),售价为2.2元/本。某班级要统一购买练习本,怎样购买才划算? 背景材料2:某地上网有两种收费方式 用户可以任选其一: (A)记时制:2.8元/时 (B)包月制:60元/月 此外,每一种上网方式都加收通信费1.2元/时。你能帮一位新上网客户策划一下选用哪种 收费方式? 背景材料3:为了使学生更多地了解牧野文化,新乡市一中七年级某班班主任带领学生准 备去牧野公园参观,参观门票是每张20元,售票员告诉老师说有两种优惠方式:一种是老师 免费,学生按7.25折优惠;一种是全体师生都按7折优惠。如果你是这个班的班主任,怎样购 买门票划算? 背景材料4:某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费, 然后每通话1分钟,再付电话费0.4元;“神州行”不缴月租费,每通话1分钟,付话费0.6元。如果你的爸爸因为工作需要刚刚购买一部手机,你能帮他参考选用哪种收费方式吗? (同学们边看边小声议论,问题展示完毕,便有同学站起来回答老师的问题。) 生1:我认为这些生活的数学问题,都提供了多种方案,让我们做出选择。 生2:在选择这些实际问题的方案时要结合自己的实际情况,没有最好,只有更好! 师:同学们的见解很独到,很精彩!对问题的理解比较到位。让我们快行动起来,来探 究这些有趣的数学问题吧! 二、实际问题探究,引领学生学会“选择”

最优化方法,汇总

最优化方法结课作业 年级数学121班 学号201200144209 姓名李强

1、几种方法比较 无约束优化:不对定义域或值域做任何限制的情况下,求解目标函数的最小值。这是因为实际应用中,许多情形被抽象为函数形式后均为凸函数,对于凸函数来说局部最小值点即为全局最小值点,因此只要能求得这类函数的一个最小值点,该点一定为全局最小值。(直接法:又称数值方法,它只需计算目标函数驻点的函数数值,而不是求其倒数,如坐标轮换法,单纯型法等。间接法:又称解析法,是应用数学极值理论的解析方法。首先计算出目标函数的一阶或一阶、二阶导数,然后根据梯度及海赛矩阵提供的信息,构造何种算法,从而间接地求出目标函数的最优解,如牛顿法、最速下降法共轭梯度法及变尺度法。)在优化算法中保证整体收敛的重要方法就是线搜索法与信赖域法,这两种算法既相似又有所不同。根据不同的线搜索准则就延伸出不同的线搜索算法,譬如比较常见和经典的最速下降法,牛顿法,拟牛顿法以及共辄梯度法等。 一维搜索又称线性搜索(Line Search),就是指单变量函数的最优化,它是多变量函数最优化的基础,是求解无约束非线性规划问题的基本方法之一。 一维搜索技术既可独立的用于求解单变量最优化问题,同时又是求解多变量最优化问题常用的手段,虽然求解单变量最优化问题相对比较简单,但其中也贯穿了求解最优化问题的基本思想。由于一维搜索的使用频率较高,因此努力提高求解单变量问题算法的计算效率具有重要的实际意义。 在多变量函数的最优化中,迭代格式Xk+1=Xk+akdk其关键就是构造搜索方向dk和步长因子ak 设Φ(a)=f(xk+adk) 这样从凡出发,沿搜索方向dk,确定步长因子ak,使Φ(a)<Φ(0)的问题就是关于步长因子a 的一维搜索问题。其主要结构可作如下概括:首先确定包含问题最优解的搜索区间,然后采用某种分割技术或插值方法缩小这个区间,进行搜索求解。 一维搜索通常分为精确的和不精确的两类。如果求得ak使目标函数沿方向dk达到极小,即使得f (xk+akdk)=min f (xk+ adk) ( a>0)则称这样的一维搜索为最优一维搜索,或精确一维搜索,ak叫最优步长因子;如果选取ak使目标函数f得到可接受的下降量,即使得下降量f (xk)一f (xk+akdk)>0是用户可接受的,则称这样的一维搜索为近似一维搜索,或不精确一维搜索,或可接受一维搜索。由于在实际计算中,一般做不到精确的一维搜索,实际上也没有必要做到这一点,因为精确的一维搜索需要付出较高的代价,而对加速收敛作用不大,因此花费计算量

高考数学(理)一轮复习检测:《导数在生活中的优化问题举例》

第3讲 导数在生活中的优化问题举例 1.从边长为10 cm ×16 cm 的矩形纸板的四角截去四个相同的小正方形,做成一个无盖的盒子,则盒子容积的最大值为( ) A .12 cm 3 B .72 cm 3 C .144 cm 3 D .160 cm 3 2.要制作一个圆锥形的漏斗,其母线长为20 cm ,要使其体积最大,则高为( ) A.33 cm B.10 33 cm C.16 33 cm D.20 33 cm 3.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13 x 3+81x -234,则使该生产厂家获得最大年利润的年产量为( ) A .13万件 B .11万件 C .9万件 D .7万件 4.对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )≥0,则必有( ) A .f (0)+f (2)<2f (1) B .f (0)+f (2)≤2f (1) C .f (0)+f (2)≥2f (1) D .f (0)+f (2)>2f (1) 5.某厂生产某种产品x 件的总成本C (x )=1200+275 x 3(单位:万元),又知产品单价的平方与产品件数x 成反比,生产100件这样的产品单价为50万元,则产量定为( )元时总利润最大.( ) A .10 B .25 C .30 D .40 6.已知函数f (x )=13 x 3+ax 2-bx +1(a ,b ∈R )在区间[-1,3]上是减函数,则a +b 的最小值是( ) A.23 B.32 C .2 D .3 7.(2012年福建)已知f (x )=x 3-6x 2+9x -abc ,a 0;②f (0)f (1)<0;③f (0)f (3)>0;④f (0)f (3)<0. 其中正确结论的序号是( )

3.4生活中的优化问题举例(含答案)

§3.4 生活中的优化问题举例 课时目标 通过用料最省、利润最大、效率最高等优化问题,使学生体会导数在解决 实际问题中的作用,会利用导数解决简单的实际生活中的优化问题. 1.生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为____________,通过前面的学习,我们知道________是求函数最大(小)值的有力工具,运用________,可以解决一些生活中的______________. 2.解决实际应用问题时,要把问题中所涉及的几个变量转化成函数关系,这需通过分析、联想、抽象和转化完成.函数的最值要由极值和端点的函数值确定,当定义域是开区间,而且其上有惟一的极值,则它就是函数的最值. 3.解决优化问题的基本思路是: 用函数表示的数学问题→用函数表示的数学问题 ↓ 优化问题的答案←用导数解决数学问题 上述解决优化问题的过程是一个典型的_________ _过程. 一、选择题 1.某箱子的容积与底面边长x 的关系为V (x )=x 2?? ?? 60-x 2 (0400) ,则总利润最大时,年产 量是( )

生活中的优化问题举例(教学设计)含答案

3.4生活中的优化问题举例(教学设计)(1)(2)(2课时) 教学目标: 知识与技能目标: 会利用导数求利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用,提高将实际问题转化为数学问题的能力。 过程与方法目标: 在利用导数解决实际问题中的优化问题的过程中,进一步巩固导数的相关知识,学生通过自主探究,体验数学发现与创造的历程,提高学生的数学素养。 情感、态度与价值观目标: 在学习应用数学知识解决问题的过程中,培养学生善于发现问题、解决问题的自觉性,以及科学认真的生活态度,并以此激发他们学习知识的积极性。 教学重点:利用导数解决生活中的一些优化问题. 教学难点:将实际问题转化为数学问题,根据实际利用导数解决生活中的优化问题. 教学过程: 一.创设情景、新课引入 生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数,解决一些生活中的优化问题. 二.师生互动,新课讲解 导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面: 1、与几何有关的最值问题; 2、与物理学有关的最值问题; 3、与利润及其成本有关的最值问题; 4、效率最值问题。 例1(课本P101例1).海报版面尺寸的设计 学校或班级举行活动,通常需要贴海报进行宣传。现让你设计一如图1.4-1所示的竖向贴的海报,要求版心面积为128dm 2,上、下两边各空2dm,左、右两边各空1dm 。如何设计海报的尺寸,才能使四周空心面积最小? 解:设版心的高为xdm ,则版心的宽为128 x dm,此时四周空白面积为 128512 ()(4)(2)12828,0S x x x x x x =++-=++>。 求导数,得 '2 512()2S x x =- 。 令' 2512()20S x x =-=,解得16(16x x ==-舍去)。 于是宽为128128 816x ==。 当(0,16)x ∈时,' ()S x <0;当(16,)x ∈+∞时,' ()S x >0. 因此,16x =是函数()S x 的极小值,也是最小值点。所以,当版心高为16dm ,宽为8dm 时,能使四周空白面积最小。 答:当版心高为16dm ,宽为8dm 时,海报四周空白面积最小。 解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具.

最新导数的应用之优化问题

导数的应用之优化问 题

导数的综合应用--优化问题 广东省和平县福和高级中学高三数学组颜贞 1.知识与能力 通过用料最省,利润最高等优化问题,使学生体会导数在解决实际问题中的作用,并且会利用导数解决简单的实际生活优化问题。 2.过程与方法 让学生参与问题的分析,探究解决过程,体会数学建模,从而掌握用导数法解决优化问题的方法。 3.情感、态度与价值观 形成数学建模思想,培养学生应用数学意识,进一步体会导数作为解决函数问题的工具性。激发学生学习热情,培养学生解决问题的能力和创新能力. 4.教学重点和难点 优化问题的数学建模与求解方法的掌握. 上课内容详细分解: 一、复习导数作为工具的具体体现: 1.解决函数的单调性 2.解决函数在某一区间内的极值或最值 3.知识点的综合运用 二、提出本节课听课要求 1.深化理解导数作为工具的卓越表现力 2.掌握用导数法解决生活中优化问题的一般步骤 3.解决生活中优化问题时应注意的问题 三、回顾解决优化问题的一般常用方法 1.基本函数型(如二次函数型,指数对数型)

2.基本不等式型 3.线性规划型…. 最后提出本节课的目的:用导数法解决实际生活中的优化问题. 【设计理念:通过复习知识点,构建学生的知识网络,对开展进一步的教学有一定的好处,也适合学生的学习习惯。】 四、探究实例一(用料最省问题) 老师:设圆柱形金属罐的容积一定,请问怎么来设计它的高与底面的关系,才能使所用材料最身? 学生:积极探索,寻求关系并初步分析问题。部分学生可以解决问题. 老师:(详细分析) 解:设圆柱的高为h ,底面半径为r ,容积为V 。则用料最省问题即可转化为求圆柱体的表面积最小问题。可找函数关系:222r rh S ππ+=, 由V=22r V h h r ππ= ?,有2222222)(r r V r r V r r S ππππ+=+?=.令0)(='r S ,可求得时用料最省。达到最大,即此时r V r V h S V r 24,2323====πππ 【设计理念:探究性学习是我们在新课程改革中一个很重要的成果,通过这道实际例题,既可以培养学生的学习热情,又可以充分调动学生的积极探索的欲望,真正将学生从“要去学”转变到“我要学”.】 五、探究实例一的变式 (问题转化为利润型问题) 老师:某制造商制造并销售瓶装球形饮料,瓶子的制造成本是0.82r π 分/个,已知每出售1mL 饮料,获利0.2分,且制造商能制作的瓶子的最大半径是6cm 。请分析瓶子的半径与利润的关系. 学生:同桌之间开始讨论,有的在独立思考. 老师:(详细分析) 解:由于瓶子的半径为r ,所以每瓶饮料的利润是

高中数学第一章 导数及其应用1.4 生活中的优化问题举例(含答案解析)

1.4 生活中的优化问题举例 考点 学习目标 核心素养 优化问题 了解利润最大、用料最省、效率最高等优化 问题 数学抽象 导数的实际应用 会利用导数解决简单的实际生活中的优化 问题 数学建模 面积、容积最值问题 请你 设计一个帐篷,它下部的形状是高为1 m 的正六棱柱,上部的形状是侧棱长为3 m 的正六棱锥(如图所示).试问当帐篷的顶点O 到底面中心O 1的距离为多少时,帐篷的体积最大? 【解】 设OO 1为x m ,则10,V (x )为增函数; 当2

(1)优化问题往往涉及变量之间的变化,因而就产生了函数关系,这时就可以利用导数解决优化问题. (2)导数是解决优化问题的基本方法之一.利用导数解决生活中的优化问题的基本思路是: 用长为90 cm ,宽为48 cm 的长方形铁皮做一个无盖的容器,先在四个 角分别截去一个小正方形,然后把四边翻转90°,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少? 解:设容器的高为x ,容器的容积为V , 则V =(90-2x )(48-2x )x (0<x <24), 即V =4x 3-276x 2+4 320x . 因为V ′=12x 2-552x +4 320, 由V ′=12x 2-552x +4 320=0,得x 1=10,x 2=36. 因为0<x <10时,V ′>0,10<x <36时,V ′<0,x >36时,V ′>0,所以当x =10时,V 有极大值V (10)=19 600. 又因为0<x <24, 所以V (10)也是最大值. 所以当x =10时,V 有最大值V (10)=19 600. 故当容器的高为10 cm 时,容器的容积最大,最大容积是19 600 cm 3. 用料(费用)最省问题 现有一批货物由海上从A 地运往B 地,已知轮船的最大航行速度为35海里/时, A 地至 B 地之间的航行距离约为500海里,每小时的运输成本由燃料费和其余费用组成,轮船每小时的燃料费与轮船速度的平方成正比(比例系数为0.6),其余费用为每小时960元. (1)把全程运输成本y (元)表示为速度x (海里/时)的函数; (2)为了使全程运输成本最小,轮船应以多大速度行驶? 【解】 (1)依题意得y =500 x (960+0.6x 2) = 480 000 x +300x , 且由题意知,函数的定义域为(0,35],

生活中的优化问题带答案

生活中的优化问题举例 1.要制做一个圆锥形的漏斗,其母线长为20cm ,要使其体积最大,则高为( ) cm B .1033cm cm D .2033cm [答案] D 2.用总长为6m 的钢条制作一个长方体容器的框架,如果所制作容器的底面的相邻两边长之比为3:4,那么容器容积最大时,高为( ) A .0.5m B .1m C .0.8m D .1.5m [答案] A [解析] 设容器底面相邻两边长分别为3x m 、4x m ,则高为6-12x -16x 4=? ?? ??32-7x (m),容积V =3x ·4x ·? ????32-7x =18x 2-84x 3? ?? ??00,x ∈? ?? ??17,314时,V ′<0,所以在x =17处,V 有最大值,此时高为0.5m. 3.内接于半径为R 的球且体积最大的圆锥的高为( ) A .R B .2R R D .34R [答案] C [解析] 设圆锥高为h ,底面半径为r ,则R 2=(h -R )2+r 2,∴r 2=2Rh -h 2, ∴V =13πr 2h =π3h (2Rh -h 2)=23πRh 2-π3h 3,V ′=43πRh -πh 2.令V ′=0得h =43R . 当00;当4R 3

导数在生活中的优化问题举例

1.4第一课时 生活中的优化问题举例 一、课前准备 1.课时目标 (1)了解函数极值和最值的基本应用. (2)会用导数解决某些实际问题. 2.基础预探 利用导数解决生活中的优化问题的一般步骤: (1) 分析实际问题中各量之间的关系,建立实际问题的 ,写出实际问题中变量之间的 ,根据实际意义确定定义域. (2) 求函数()y f x =的导数f '(x ),解方程f '(x )=0,求定义域内的根,确定 . (3) 比较函数在 和极值点处的函数值,获得所求的最大(小)值. (4) 还原到原 中作答. 三、学习引领 1. 常见的优化问题 主要有几何方面的应用,物理方面的应用,经济方面的问题等.例如,使经营利润最大、生产效率最高,或使用力最省、用料最少、消耗最省等等,需要寻求相应的最佳方案或最佳策略,这些都是最优化问题.导数是解决这类问题的基本方法之一. 2.解决优化问题的方法 首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系.再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具. 解决优化问题的基本程序是: 读题 建模 求解 反馈 (文字语言) (数学语言) (导数应用) (检验作答) 3. 需要注意的几个问题 (1) 目标函数的定义域往往受实际问题的具体意义约束,所以在建立目标函数时,需要注意定义域的确定,并注意定义域对函数最值的影响. (2) 如果实际问题中的目标函数在定义域上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较,但要注意说明极值点的唯一性. 四、典例导析 题型一 几何图形中的优化问题 例1请你设计一个包装盒,如图所示,ABCD 是边长为60cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E 、F 在AB 上是被切去的等腰直角三角形斜边的两个端点,设AE =FB =x cm (1)某广告商要求包装盒侧面积S (cm 2 )最大,试问x 应取何值? (2)某广告商要求包装盒容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.

3.4生活中的优化问题举例

第三章第4节 生活中的优化问题举例 课前预习学案 一、预习目标 了解解决优化问题的思路和步骤 二、预习内容 1.概念: 优化问题:_______________________________________________________ 2.回顾相关知识: (1)求曲线y=x 2+2在点P(1,3)处的切线方程. (2)若曲线y=x 3上某点切线的斜率为3, 求此点的坐标。 3:生活中的优化问题, 如何用导数来求函数的最小(大)值? 4.解决优化问题的基本思路是什么? 三、提出疑惑 同学们, 通过你的自主学习, 你还有哪些疑惑, 请把它填在下面的表格中 疑惑点 疑惑内容 课内探究学案 一、学习目标 1.要细致分析实际问题中各个量之间的关系, 正确设定所求最大值或最小值的变量y 与自变量x , 把实际问题转化为数学问题, 即列出函数解析式()y f x =, 根据实际问题确定函数()y f x =的定义域; 2.要熟练掌握应用导数法求函数最值的步骤, 细心运算, 正确合理地做答. 重点:求实际问题的最值时, 一定要从问题的实际意义去考察, 不符合实际意义的理论值应予舍去。 难点:在实际问题中, 有()0f x '=常常仅解到一个根, 若能判断函数的最大(小)值在x 的变化区间内部得到, 则这个根处的函数值就是所求的最大(小)值。

二、学习过程 1.汽油使用效率最高的问题 阅读例1, 回答以下问题: (1)是不是汽车速度越快, 汽油消耗量越大? (2)“汽车的汽油使用效率最高”含义是什么? (3)如何根据图3.4-1中的数据信息, 解决汽油的使用效率最高的问题? 2.磁盘最大存储量问题 阅读背景知识, 思考下面的问题: 问题:现有一张半径为的磁盘, 它的存储区是半径介于r与R的环形区域。(1)是不是r越小, 磁盘的存储量越大? (2)r为多少时, 磁盘具有最大存储量(最外面的磁道不存储任何信息)? 3饮料瓶大小对饮料公司利润的影响 阅读背景知识, 思考下面的问题: (1)请建立利润y与瓶子半径r的函数关系。 (2)分别求出瓶子半径多大时利润最小、最大。 (3)饮料瓶大小对饮料公司利润是如何影响的? 三、反思总结 通过上述例子, 我们不难发现, 解决优化问题的基本思路是:

(全国通用版)201X-201x版高中数学 第一章 导数及其应用 1.4 生活中的优化问题举例学案

§1.4生活中的优化问题举例 学习目标 1.了解导数在解决实际问题中的作用.2.掌握利用导数解决简单的实际生活中的优化问题. 知识点生活中的优化问题 (1)生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题. (2)利用导数解决优化问题的实质是求函数最值. (3)解决优化问题的基本思路: 上述解决优化问题的过程是一个典型的数学建模过程. 1.生活中常见到的收益最高,用料最省等问题就是数学中的最大、最小值问题.( √) 2.解决应用问题的关键是建立数学模型.( √) 类型一几何中的最值问题 例1 请你设计一个包装盒,如图所示,ABCD是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒.点E,F在边AB上,是被切去的一个等腰直角三角形斜边的两个端点.设AE=FB=x(cm). 某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.

考点 利用导数求几何模型的最值问题 题点 利用导数求几何体体积的最值问题 解 ∵V (x )=(2x )2 ×(60-2x )× 22 =2x 2 ×(60-2x )=-22x 3 +602x 2 (00; 当20

生活中数学最优化问题的研究

生活中数学最优化问题的研究 教学目标: 1)知识与技能:能够把理论与实践相结合,将现实生活中的实际问题抽象、归纳并转化成数学中的最优化问题来解决。 2)能力目标: 1、运用已掌握的数学知识及其他相关的知识,将实际问题转化为数学问题去解决; 2、培养学生发现问题、分析问题和解决题的能力; 3、培养学生探索数学问题的能力。 3)情感目标: 1、通过主动发现、自主探索的过程,让学生有发现、有收获,从而获得成功的经验,激发学生的求知欲; 2、培养学生的合作精神和创新精神。 参与者特征分析 高中生相对来说独立性较强,具有一定的独立处理事情的能力,但他们生活经验不够,看待问题欠准确,往往会以点概面,不过高中生很容易接受新生事物,只要进行适当的引导,相信能使活动顺利开展。教学过程: 1、深入生活,从生活中取得课题 生活中处处充满着数学,处处留心皆数学。我们早晨起床刷牙用的牙膏,细心的同学会发现,牙膏的包装有大有小,其价格也不相同,你想过大小包与其价格之间的关系吗?你吃东西时,想过营养成份的搭配吗?你在开灯关灯时,想过灯的位置与照明度问题吗?你在开、关窗户时,想过窗户的面积与采光量的问题吗?烈日下,你想过遮阳棚搭建方式与遮挡太阳光线有关吗?你在购买商品时,想过哪儿如何才能买到最便宜的吗? 生活中经常遇到求利润最大、用料最省、效率最高、费用最少、路线最短、容积最大等问题,这些问题通常称为优化问题。现如今最优化问题备受关注,已渗透到生产、管理、商业、

军事、决策等各领域。对于上述问题,有些你也许想过,有些你也许从未想过。这些问题都与数学最优化问题有关!这堂课让我们共同发现并研究这些数学最优化问题吧! 2、结合生活、联系社会实际选择课题 解决最优化问题是一个发现、探索的过程,也是我们亲身感受问题、寻找解题策略,实现再创造以及体验数学价值的过程。在这个过程中,肯定我们的见解不全相同,就让我们彼此关心、合作探讨、互相评价、取得共识、达到群体算法多样化,获得探索成功的快乐吧。使不同的人在数学活动中得到不同的收获,让我们每个人都能有所发展、有所创新,提高创造思维水平高,丰富实践经验,增强探索能力。下面我就列举几个生活中数学最优化问题的例子吧。 一、商品价格最优化问题 在生活中,有许多生活必需品需要我们购买,就如妈妈要购买一台电磁炉,但如何才能买到最实惠的呢?于是我们开始为妈妈出谋划策,前往各大超市调查这件商品的价格。我们将收集的信息列成下表: 各大超市电磁炉价目表: 从上表我们不难发现天天新最便宜,如果只从价格方面考虑我们不难得出结论,妈妈在天天新买最合算。 上述这个问题是一个很直接也很简单的数学最优化问题,我们收集信息——分析信息——得出结论,加以使用数学最为简单的加减运算,就为妈妈节省了一笔钱。 二、预算最优化问题 在研究过程中,我们不仅需要动脑,更需要调查行动。学习了长方体的表面积后,让我们来测算一下粉刷教室的费用。 我们首先动手测定教室的粉刷面积,了解市场上涂料价格如何,需要多少涂料,粉刷的工钱如何计付,明确了这些因素以后我们就能对粉刷教室的费用做个初步的结算。 三、分期付款最优化问题 现在让我们来完成一道较为复杂的数学最优化问题,它与时下流行的分期付款的计算有关,为了更加迎合消费者的需要,开发商往往会提出几种销售方案供顾客选择,如何选最优的销售方案,也是我们研究的关键所在。顾客购买一件售价为5000元的商品时,那在一年内将款全部付清的前提下, 商店又提出了下表所示的几种付款方案,以供顾客选择,何种方案最实惠。

相关文档
最新文档