Characteristics of long non-coding RNA and its relation to hepatocellular carcinoma

Characteristics of long non-coding RNA and its relation to hepatocellular carcinoma
Characteristics of long non-coding RNA and its relation to hepatocellular carcinoma

Carcinogenesis vol.35 no.3 pp.507–514, 2014

doi:10.1093/carcin/bgt405

Advance Access publication December 2, 2013

Review

Characteristics of long non-coding RNA and its relation to hepatocellular carcinoma

Jin-Lan Huang, Lei Zheng, Yan-wei Hu and Qian wang* Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Road, Guangzhou, Guangdong 510515, China

*To whom correspondence should be addressed. Tel/Fax: +86 20 61648007; Email: wangqian@https://www.360docs.net/doc/ee14112919.html,

Hepatocellular carcinoma (HCC) is one of the most common can-cers worldwide with high prevalence and lethality. However, the underlying mechanism for HCC has not been entirely elucidated. Recent studies have highlighted the roles of long non-coding RNAs (lncRNAs) in carcinogenesis, and it is suggested that they might play critical roles in HCC progression. Here, we will briefly intro-duce the biology of lncRNAs, emphasizing the mechanisms and emerging roles of HCC-related lncRNAs. To date, HCC-related lncRNAs are demonstrated to influence the life cycle of genes by various means including epigenetic silencing, splicing regulation, lncR NA–miR NA interaction, lncR NA–protein interaction and genetic variation. Moreover, they can participate in diverse bio-logical processes involved in HCC progression through impacts upon cell proliferation, apoptosis, invasion and metastasis and angiogenesis. Since lncRNA can present in body fluid and have good specificity and accessibility, some HCC-related lncR NAs are suggested to be useful as novel potential biomarkers for HCC diagnosis, prognosis and prediction of response to therapy. Those HCC-related lncR NAs may provide potential novel therapeutic targets for HCC and other diseases.

introduction

Hepatocellular carcinoma (HCC) is the most common form of liver cancer, accounting for 90% of primary liver cancers. In the last decade, it has become one of the most frequently occurring tumors worldwide and is also considered to be the most lethal of the cancer systems, accounting for approximately one-third of all malignancies (1,2). The process of HCC involves a series of sequential and complex steps. Intensive investigations over the last few decades have focused on the role of protein-coding genes in the pathogenesis of HCC. Nevertheless, only ~1% of the human genome encodes proteins, leav-ing another ~4–9% that is transcribed to yield many short or long RNAs with limited protein-coding capacity (3). Among them, those transcribed RNA molecules >200 nucleotides in length are defined as long non-coding RNAs (lncRNAs) (4). Although the vast major-ity of lncRNAs have yet to be further characterized, many of these transcripts are unlikely to represent transcriptional ‘noise’ as a sig-nificant number have been shown to exhibit cell type-specific expres-sion, localization to subcellular compartments and association with human diseases, especially cancers (5,6). Recently, roles for lncR-NAs as drivers of tumor suppressive and oncogenic functions have appeared in diverse cancer types (7). Through various mechanisms (epigenetic silencing, splicing regulation, lncRNA–micro RNA inter-action, lncRNA–protein interaction and genetic variation), HCC-related lncRNAs play critical regulatory roles in diverse biological processes involved in HCC progression, including cell proliferation, apoptosis, invasion and metastasis and angiogenesis (Table 1) (8,9). Nowadays, lncRNAs are found to be present in body fluid, like plasma and urine, and can be detected by PCR (10,11). It makes lncRNA to be a potential biomarker for various diseases. Similarly, some HCC-related lncRNAs are suggested to be useful as novel potential bio-markers for HCC diagnosis, prognosis and prediction of response to therapy because of their presences in body fluid and good specificity and accessibility (12). Here, we highlight the emerging impacts of lncRNAs in HCC, with a particular focus on the latest insights on advances made in understanding the mechanisms and functions of HCC-related lncRNAs.

Classification of lncRNAs

The mammalian genome encodes many thousands of non-coding transcripts including both short transcripts (<200 nucleotides in length) and lncRNAs (>200 nucleotides in length) (13). As for lncR-NAs, they can be divided into five broad categories according to the location relative to nearby protein-coding genes: (i) intergenic, (ii) intronic, (iii) bidirectional, (iv) antisense and (v) sense (3,14,15) (Figure 1). Several recent studies indicated that lncRNA classifica-tion may reflect functional characterization. Clark et al. (16) deter-mined the half-lives of ~800 lncRNAs in the mouse Neuro-2a cell line and revealed that intergenic and antisense RNAs are more stable than those derived from introns. Additionally, the classification of lncRNAs can also provide some crucial information for studying the potential mechanism of lncRNAs. Khalil et al. (17) found that many human large intergenic non-coding RNAs could associate with chro-matin-modifying complexes and affect gene expression. Therefore, according to the lncRNA classification, it would be easy for us to look for lncRNA’s cellular localization and get relative information about the nearby genes. However, these different classes are not mutually exclusive, and it is not yet clear how the classification reflects biologi-cal function.

Structure of lncRNAs

Although lncRNAs constitute a large fraction of the transcriptome, only a few lncRNAs have been structurally annotated. Works on struc-ture of lncRNAs showed that functional lncRNAs share some primary sequence features. By analyzing 204 functional lncRNAs and their splicing variants, Niazi et al. (18) obtained sequence features in func-tional lncRNAs, including paucity of introns, low GC content, poor start codon and open reading frame contexts. In addition, the presence of motifs embedded in the lncRNA primary sequence enables lncR-NAs to specifically associate with DNA, RNA and/or protein. Many lncRNAs provide alternative micro RNA (miRNA) binding sites or half-STAU1-binding sites to regulate expression levels of protein-coding genes (19). Emerging studies have also revealed that large- and small-scale mutations in the lncRNA primary sequence are highly correlated with diseases (20).

Apart from the primary sequence features, recent studies have developed genome-scale approaches to measure RNA secondary structures, resulting in a better structural understanding of sev-eral lncRNAs. Much like miRNAs, many lncRNAs have a signifi-cant secondary structure, which is critical for specific binding and function (21). F or example, the lincRNA HOTAIR can form mul-tiple double stem-loop structures for binding to the lysine-specific demethylase 1 and polycomb repressive complex 2 (PRC2) histone modification complexes (22). LncRNA SRA has a complex structural

Abbreviations: CREB, cAMP response element binding protein; Dreh, down-

regulated expression by HBx; HBV, hepatitis B virus; HBx, HBV X protein;

HCC, hepatocellular carcinoma; HULC, highly upregulated in liver cancer;

LALR, lncRNA associated with liver regeneration; LET, low expression in tumor;

lncRNA, long non-coding RNA; LSD1, lysine-specific demethylase 1; MALA T-

1, metastasis associated in lung adenocarcinoma transcript 1; MEG3, maternally

expressed gene 3; miRNA, micro RNA; mRNA, messenger RNA; MVIH, micro-

vascular invasion in HCC; PGK1, phosphoglycerate kinase 1; PRC2, polycomb

repressive complex 2; RERT, a lncRNA whose sequence overlaps with Ras-related

GTP-binding protein 4b and prolyl hydroxylase 1; TNM, tumor node metastasis;

TSA, trichostatin A.

507 by guest on February 23, 2016 https://www.360docs.net/doc/ee14112919.html,/ Downloaded from

? The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@https://www.360docs.net/doc/ee14112919.html,

J.-L.Huang et al.

architecture, organized into four distinct domains, with a variety of secondary structure elements and interacts with a variety of proteins (23). Additionally, non-canonical end maturation of the metastasis associated in lung adenocarcinoma transcript 1 (MALAT-1) ncRNA involves a cloverleaf secondary element at its 3′-end (24). Taken together, structural architecture of lncRNAs may contribute to a better understanding of the mechanisms responsible for functional lncRNAs.

Functional mechanisms of lncRNAs in HCC

Recent studies have shown that lncRNAs are involved in various human solid tumors including HCC through various means (25). Moreover, the underlying mechanisms of lncRNAs in HCC are diverse, including epigenetic silencing, splicing regulation, lncRNA–miRNA interaction, lncRNA–protein interaction and genetic variation (Figure 2). Specifically, almost every step in the life cycle of genes—from transcription to messenger RNA (mRNA) splicing, RNA decay and translation—can be influenced by lncRNAs (26).

Epigenetic silencing

A general model for lncRNA-dependent gene-silencing mechanism is presented: lncRNAs interact with chromatin, recruit histone-modify-ing enzymes, then induce chromatin modification and DNA methyla-tion, finally contribute to the epigenetic silencing of target genes. In 2011, an lncRNA high expression in HCC (lncRNA-HEIH) is found to interact with enhancer of zeste homolog 2 (EZH2), a key compo-nent of PRC2, then recruit PRC2 to p16 promoter and repress the expression of p16 gene, thereby contributing to cell cycle arrest (27). This model indicates that lncRNAs may be regulators of epigenetic mechanisms while actively participating in gene regulation. Despite these exciting developments, the basic mechanism of how these lncR-NAs work is still mostly unknown.

Splicing regulation

Alternative splicing of pre-mRNAs can produce complex protein iso-forms from a single mRNA in cell. Evidence showed that lncRNAs can influence this important process. In terms of HCC, a best-charac-terized lncRNA involved in splicing regulation is MALAT-1. Recent studies showed that the upregulation of MALAT-1 is a frequent event in human HCC (28,29). MALAT-1 regulated alternative splicing of endogenous target genes through interaction with the serine/arginine-rich family of nuclear phosphoproteins (SR proteins). Subsequently MALAT-1 can interact with SR proteins, influence the distribution of these and other splicing factors such as SF2/ASF and CC3 antigen, change the cellular levels of phosphorylated forms of SR proteins and finally modulate alternative splicing of various pre-mRNAs, such as oncogenic transcription factor B, CTHRC1 and several other motility-related genes. However, to date, whether MALAT-1 can target certain critical genes through splicing regulation in HCC is still not clear. And the mechanism for upregulation of MALAT-1 in HCC remains unknown.

LncRNA–miRNA interaction

LncRNA can also function as a competing endogenous RNA and ‘sponges’ miRNAs, thus regulating the expression of target mRNAs. This lncRNA–miRNA interaction was firstly put forward in 2007, a study in Arabidopsis thaliana that found an lncRNA IPS1 to bind to the miRNA miR-399 and inhibit its ability to regulate PHO2 mRNA (30). Recently, evidences came to light suggesting that several HCC-related lncRNAs may also regulate gene expression by binding to miRNAs and consequently preventing specific miRNAs from binding to their target mRNAs. A typical example is HULC, a highly up-regulated lncRNA in liver cancer, transcribed from human chromosome 6p24.3. The HULC gene consists of two exons and a single intron, whereas HULC contains a polyA tail and particularly a conserved target site of miR-372 (31). In 2011, Wang et al. (32) discovered the autoregula-tory loop of HULC through inhibition miRNA-372. A binding site

T a b l e i . L n c R N A s t h a t h a v e b e e n o r m i g h t b e l i n k e d t o H C C

L n c R N A

S p e c i e s

C l a s s i fi c a t i o n

C h a r a c t e r i s t i c s

M o l e c u l a r m e c h a n i s m

E x p r e s s i o n

E m e r g i n g r o l e s i n H C C G e n o m e p o s i t i o n

R e f e r e n c e

D r e h M o u s e S e n s e 728 b p , 2 e x o n s , d o w n r e g u l a t e d b y H B x L n c R N A –p r o t e i n i n t e r a c t i o n D o w n P r o m o t e m e t a s t a s i s c h r 17:64,767,111-64,767,931(9)H 19H u m a n L i n c R N A ~2.3 k b , i m p r i n t e d a t t h e I g f 2 l o c u s .L n c R N A –p r o t e i n i n t e r a c t i o n D o w n S u p p r e s s m e t a s t a s i s c h r 11:2,016,406-2,019,065(43–46)H

E I H H u m a n L i n c R N A H i g h l y e x p r e s s e d i n H C C .E p i g e n e t i c r e g u l a t i o n U p P r o m o t e p r o l i f e r a t i o n c h r 5:180,256,954-180,258,618(27)H O T A I R H u m a n A n t i s e n s e ~2.2 k b ; s p l i c e d , p o l y a d e n y l a t e d E p i g e n e t i c r e g u l a t i o n U p P r o m o t e m e t a s t a s i s c h r 12:54,356,092-54,368,740(22,47,48)H O T T I P H u m a n B i d i r e c t i o n a l H O X A d i s t a l t r a n s c r i p t L n c R N A –p r o t e i n i n t e r a c t i o n U p P r o m o t e p r o l i f e r a t i o n C h r 7:27,238,194-27,246,878(35,36)H U L C

H u m a n

L i n c R N A

~500 n t , s p l i c e d , p o l y a d e n y l a t e d , 2 e x o n s

L n c R N A –m i R N A i n t e r a c t i o n U p

P r o m o t e p r o l i f e r a t i o n

c h r 6:8,652,369-8,654,079

(31,32,37,40,49)

L n c R N A –p r o t e i n i n t e r a c t i o n L A L R 1

M o u s e

A n t i s e n s e

~480 b p , a s s o c i a t e d w i t h l i v e r r e g e n e r a t i o n L n c R N A –p r o t e i n i n t e r a c t i o n

U p

P r o m o t e p r o l i f e r a t i o n

C h r 17:24,155,833-24,156,739

(8)

L E T

H u m a n I n t r o n i c

~2.3 k b , N P T N i n t r o n i c t r a n s c r i p t 1

E p i g e n e t i c r e g u l a t i o n D o w n

S u p p r e s s m e t a s t a s i s

c h r 15:73,859,365-73,861,635

(50)

L n c R N A –p r o t e i n i n t e r a c t i o n M A L A T -1H u m a n L i n c R N A ~7 k b s i n g l e e x o n t r a n s c r i p t

S p l i c i n g r e g u l a t i o n U p

P r o m o t e m e t a s t a s i s

c h r 11:65,265,233-65,273,939

(28,29)R N A –p r o t e i n i n t e r a c t i o n (51,52)M E G 3H u m a n L i n c R N A ~1.6 k b , i m p r i n t e d a t t h e D l k 1-G t l 2 l o c u s N o t c l e a r D o w n I n d u c e a p o p t o s i s c h r 14:101,292,445-101,327,368 (53–55)M V I H

H u m a n S e n s e ~2.1 k b , m i c r o v a s c u l a r i n v a s i o n r e l a t e d l n c R N A L n c R N A –p r o t e i n i n t e r a c t i o n

U p

P r o m o t e a n g i o g e n e s i s c h r 10:79,798,541-79,800,686

(56)

R E R T H u m a n S e n s e ~3 k b , R A B 4B -E G L N 2 r e a d t h r o u g h G e n e t i c v a r i a t i o n U P N o t c l e a r c h r 19:41,284,124-41,314,346(39)u c 002m b e .2

H u m a n

L i n c R N A

~3.5 k b ,h i g h l y i n c r e a s e d u p o n T S A t r e a t m e n t

N o t c l e a r

T S A i n d u c e d

I n d u c e a p o p t o s i s c h r 19:4,769,117-4,772,568

(57)

508

by guest on February 23, 2016

https://www.360docs.net/doc/ee14112919.html,/Downloaded from

Long non-coding RNA and hepatocellular carcinoma

of cAMP response element binding protein (CREB) is found in the promoter region of HULC. Phospho-CREB through protein kinase A pathway binds to CREB binding site and induces upregulation of HULC. And then HULC directly binds to miR-372 and represses its expression and activity. The reduction of miR-372 induces increased level of Prkacb (cAMP-dependent protein kinase catalytic subunit beta), a target mRNA of miR-372. Interestingly, Prkacb can facili-tate phosphorylation of CERB in protein kinase A pathway. Finally, an autoregulatory loop (CREB-HULC-miR372-Prkacb) is formed (F igure 3B ). Nowadays, to facilitate the study of lncRNA–miRNA interactions, researchers have developed different databases, such as miRcode (https://www.360docs.net/doc/ee14112919.html, ) and CHIPBase (https://www.360docs.net/doc/ee14112919.html,/chipbase/) (33,34). This interaction can contribute to the better understanding of lncRNAs and miRNAs.

LncRNA–protein interaction

LncRNAs can participate in global cellular behaviors by binding to specific proteins. Through lncRNA–protein interactions, lncRNAs can serve as structural components or modulate protein activity or alter protein localization. As for HCC, lncRNA HOTTIP, upregulated in HCC, is able to directly coordinate and control the activation of several 5′ HOXA genes including HOXA13 and HOXA11 via inter-acting with the WDR5/MLL complex (35,36). Interestingly, certain protein binding with lncRNAs can also regulate the expression of lncRNA. Take HULC as an example. HULC can bind with the IGF2 mRNA-binding protein 1 (IGF2BP1) in hepatocytes. Then IGF2BP1 recruits CNOT1, a component of the CCR4-NOT deadenylase com-plex and brings HULC into close proximity to the CCR4-NOT dead-enylase complex, which initiates RNA degradation from the 3′-end, eventually specifically distablizing HULC (Figure 3B ) (37). Thus, it is possible for one lncRNA to bind to different proteins. Therefore, the functional mechanism of lncRNA may depend on its target protein.

Genetic variation

Surprisingly, emerging studies also revealed the presence of large- and small-scale mutations in the lncRNA primary sequence that is highly correlated with cancer. Cheetham et al. (38) found that of 301 single nucleotide polymorphisms currently linked to cancer, only 12 (3.3%) change the protein amino-acid sequence, whereas most are located in the introns of protein-coding genes (40%) or intergenic regions (44%). Hence, mutations potentially affected a large number of lncRNAs. Recently, variations in lncRNA genes, either germline or somatic, are demonstrated to contribute to HCC. In an independent case–control study consisting of 444 HCC cases and 450 controls, a 4 bp inser-tion/deletion polymorphism (rs10680577) within RERT-lncRNA (a lncRNA whose sequence overlaps with Ras-related GTP-binding protein 4b and prolyl hydroxylase 1) is found to contribute to hepa-tocarcinogenesis and modulate HCC risk, possibly by affecting RERT-lncRNA structure (39). Additionally, Liu et al. (40) investigated two single nucleotide polymorphisms, rs7763881 in HULC and rs619586 in MALAT-1, in 1300 hepatitis B virus (HBV) positive HCC patients, 1344 HBV persistent carriers and 1344 subjects with HBV natural clearance. Finally, the variant genotypes of rs7763881 in HULC are significantly associated with decreased HCC risk, whereas the vari-ant genotypes of rs619586 in MALAT-1 are associated with decreased HCC risk with a borderline significance. Compared with variations in protein-coding genes, where certain single nucleotide mutation can completely change protein structure or function, the effects of variations in lncRNAs may be more difficult to detect experimentally. Better annotation of lncRNA primary and secondary structures should improve the detection of genome aberrations that affect lncRNAs.Emerging roles of lncRNAs in HCC

Currently, lncRNAs were found to be deregulated in several human

cancers and show tissue-specific expression. Importantly, some were

Fig. 1. LncRNAs can be divided into five categories according to their location relative to nearby protein-coding genes. (A ) Intergenic lncRNAs (also termed large intervening non-coding RNAs or lincRNAs) are lncRNAs with separate transcriptional units from protein-coding genes. One definition required lincRNAs to be 5 kb away from protein-coding genes. (B ) Bidirectional lncRNAs are transcripts that initiate in a divergent fashion from the promoter of a protein-coding gene; the precise distance cutoff that constitutes bidirectionality is not defined but is generally within a few hundred base pairs. (C ) Intronic lncRNAs are lncRNAs that initiate inside of an intron of a protein-coding gene in either direction and terminate without overlapping exons. (D ) Antisense lncRNAs initiate inside or 3′ of a protein-coding gene and are transcribed in the opposite direction of protein-coding genes and overlap at least one coding exon. (e ) Sense lncRNAs sequence overlaps with the sense strand of a protein-coding gene.

509

by guest on February 23, 2016

https://www.360docs.net/doc/ee14112919.html,/Downloaded from

J.-L.Huang et al.

elucidated to influence the hallmarks of cancer, including prolif-eration, apoptosis, invasion and metastasis and angiogenesis (41). Similarly, evidences showed that the lncRNA expression profiles between HCC tumor tissues and normal liver samples or peritumoral tissues are quite different (42) and various lncRNAs have been or might be linked to HCC (Table I ). Moreover, misexpression of lncR-NAs may also affect these fundamental biological capacities of HCC.Proliferation

One of the most prominent characteristics of a cancer cell is its abil-ity to proliferate constantly and in the absence of external stimuli. To get independent of proliferation signals and achieve unlimited growth, cancer cells will change the production or function of growth promot-ing or inhibiting factors in multiple ways (58). In several types of cancers, as well as in HCC, the analysis of lncRNA expression has led to the identification of lncRNAs promoting or repressing cell pro-liferation. Here we focus on two best-characterized lncRNAs-HULC and LALR, which can impact proliferation through targeting various key regulators in different pathways.

Du et al. (49) found that HULC can be upregulated by HBV X protein (HBx) and then promotes hepatocyte proliferation via down-regulating p18 (hyphantria cunea nucleopolyhedrovirus) (Figure 3B ). In their study, HBx is demonstrated to activate the HULC promoter via CREB. Importantly, silencing HULC resulted in a significant decrease of cell proliferation of HBx stably transfected cell lines in a time-dependent manner, whereas overexpression of HULC was able to enhance the proliferation of L-O2 cells, a derivative of parental HepG2 cells. The same consequences were conformed in xenografts in nude mice of the same cells. And then, p18, a tumor suppressor by translocating to the nucleus to activate p53 pathway (59), is thought to be a target gene of HULC. F urther analysis showed that HULC promotes proliferation of hepatocytes through downregulating p18 in vitro and in vivo . However, whether HULC downregulates p18 through direct binding or indirect interaction remains unclear in this essay. Further validation is needed.

Another example of lncRNA involved in proliferation is lncRNA-LALR1 (lncRNA associated with liver regeneration), a ~480 bp non-coding RNA in mouse. In Xu’s study, LALR1 is specifically upreg-ulated in hepatocytes after two-thirds partial hepatectomy in mouse and can reduce the G 0/G 1 population in hepatocytes, finally accelerating cell proliferation. F or further mechanism investigation, LALR1 can acti-vate the Wnt/β-catenin pathway in mouse hepatocytes by suppressing AXIN1. Specifically, LALR1 could associate with transcription factor CTCF, recruiting CTCF to the AXIN1 promoter region to inhibit its expression. With the decreased expression of Axin1, the stability of the β-catenin destruction complex recede and meanwhile active β-catenin is released and binds to proteins such as T cell factor-4 and lymphoid enhancement factor and translocates to the nucleus to control the transcription of target genes, including c-myc and cyclin D1. Finally, LALR1 facilitates mouse cell cycle progression and hepatocyte prolif-eration. Importantly, a human ortholog RNA of LALR1 (hLALR1) is found to be expressed in human liver tissues. But whether it functions like mouse LALR1 needs further investigation (Figure 3A ) (8).

Notably, although MALAT-1 is suggested to control cell cycle pro-

gression in many solid tumors and to be upregulated in HCC, loss

Fig. 2. Functional mechanisms of lncRNAs in HCC. HCC-related lncRNAs can participate in diverse biological processes by various means including

epigenetic regulation, splicing regulation, lncRNA–miRNA interaction and lncRNA–protein regulation. HEIH can recruit PRC2 complex, then induce chromatin modification and DNA methylation, finally contribute to the epigenetic silencing of target genes (epigenetic regulation). MALAT-1 can change the cellular levels of phosphorylated forms of SR proteins, finally modulating alternative splicing of various pre-mRNAs (splicing regulation). Additionally, HULC can interact with miR-372 and finally form an autoregulatory loop through inhibition of miRNA-372 (lncRNA–miRNA interaction). Moreover, IGF2BP1 can bind to HULC and guide it to CCR4-NOT complex, eventually initiating HULC degradation (lncRNA–protein interaction). HEIH, high expression in HCC; P, phosphorylation; RISC, RNA-induced silencing complex; SR, serine/arginine-rich family of nuclear phosphoproteins.

510

by guest on February 23, 2016

https://www.360docs.net/doc/ee14112919.html,/Downloaded from

Long non-coding RNA and hepatocellular carcinoma

of MALAT-1 does not affect proliferation, cell cycle progression or nuclear architecture in human liver cancer cells (51,60). The corre-sponding mechanism remains to be further studied.

Apoptosis

Programmed cell death by apoptosis serves as a natural barrier to cancer development. It can be induced by various external as well as internal stimuli. Various cancers were reported to attenuate apopto-sis via different pathways (caspases pathway, p53 pathway, etc.) and eventually become therapy resistant (52). This notion holds true also for HCC.

Braconi et al. (61) found that the expression of maternally expressed gene 3 (MEG3) is markedly reduced in four human HCC cell lines compared with normal hepatocytes and enforced expression of MEG3 in HCC cells significantly induce apoptosis. MEG3 gene is an imprinted gene belonging to the imprinted DLK1–MEG3 locus located at chromosome 14q32.3 in human. It consists of 10 exons and can yield multiple MEG3 transcript isoforms due to alternative RNA splicing. MEG3 RNA is predicted by Mfold (a computer pro-gram widely used to predict the secondary structures of nucleic acids based on their thermostability) to fold into three major motifs, M1, M2 and M3, which are related to its p53-activating function (53). Evidences elucidated that MEG3 is expressed in normal tissues, whereas its expression is lost in an expanding list of primary human tumors and tumor cell lines. In terms of HCC, MEG3 is lost or sig-nificantly reduced in >80% cases (53). In Braconi’s study, apoptotic HCC cells are significantly increased after transfection with MEG3. Interestingly, an increase of p53 is also conformed in these cells. This result consists with the previous finding that MEG3 can functionally interact with p53 and selectively activate expression of p53 target genes (62). Hence, enhanced expression of MEG3 in hepatocytes can induce apoptosis through p53-dependent transcription (61). However,

the p53 expression varies in different liver cancer cell lines, whereas MEG3 expression is significantly reduced. So, it is possible that the apoptotic effect of MEG3 is only partially mediated by p53 in HCC. Alternative mechanisms may be function in place.

Besides, another study showed that liver cancer-downregulated lncRNA uc002mbe.2 could be induced by trichostatin A (TSA) treatment and its expression is positively correlated with the apop-totic effect of TSA in HCC cells. Knockdown the expression of uc002mbe.2 significantly reduced TSA-induced apoptosis of Huh7 cells (54). But the underlying mechanism of how uc002mbe.2 pro-motes TSA-induced apoptosis has not yet been discussed.

Invasion and metastasis

Accumulating evidences have demonstrated that many patients die from metastases and not from the primary tumor. Invasion and metas-tasis comprise various biological processes, beginning with local invasion, then intravasation into nearby blood and lymphatic vessels, transit through the lymphatic and hematogenous systems, extrava-sation, micrometastases and finally colonization (41,58). Recently many HCC-related lncRNAs are found to play important roles in cell metastasis and invasion.

A typical example is lncRNA-Dreh (an lncRNA downregulated expression by HBx). In 2013, Dreh is first characterized to be signifi-cantly downregulated in HBx-transgenic mice and mouse liver cells expressing HBx. Suppression of cellular Dreh promotes the migration and invasion activity of liver cancer cells in vitro and in vivo . Further experiments showed that Dreh can specifically bind to vimentin, a type III intermediate filament and the major cytoskeletal component of mesenchymal cells and then inhibit HCC metastasis by modifying the expression and reorganization of vimentin. Vimentin is significantly downregulated and present as helical filament structures extending from the nuclear membrane to the cellular membrane in the Dreh-transfected cells, whereas the filament structures are retracted to the nuclear membrane in the control cells. Moreover, extensive filamen-tous aggregation and many irregular fragmented aggregated structures can also be found in the cytoplasm of Dreh-transfected cells. All these changes about vimentin would result in instability of the cells and finally promote cell migration. Moreover, a human ortholog RNA of Dreh (hDREH) is identified to be frequently downregulated in HBV-related HCC tissues and its decrement significantly correlated with poor survival of HCC patients. Therefore, it would be of great clinical significance to further study the hDREH (9).

Importantly, another lncRNA-LET (lncRNA low expression in tumor) is found to play a critical role in hypoxia-induced metasta-sis in HCC (Figure 3C ). LET is generally downregulated in various cancer types, including HCC, colorectal cancer and squamous cell lung carcinoma. Gain and loss of function of LET in orthotopic tumor models of nude mouse showed that LET reduces hepatic inva-sion and abdominal metastases. Yang et al. (55) finally determined a hypoxia-inducible factor 1, alpha subunit (HIF-1a)/histone deacety-lase 3 (HDAC3)/LET/NF90 pathway. Precisely, HDAC3, which has been recently demonstrated to be regulated by HIF -1a, can repress LET by reducing the histone acetylation-mediated modulation of the LET promoter region under hypoxic conditions. Subsequently, the downregulation of LET reduces the direct interactions between LET and NF90, then enhance the stabilization of NF90 and finally increases the expression of HIF-1a, a target mRNA of NF90 involved in hypoxia-induced metastasis. Hence, LET inhibit the metastasis of HCC through this positive feedback loop. This feedback loop really adds the complexity of gene regulation network.

Besides, other HCC-related lncRNAs have been found to be involved in metastasis. For instance, lncRNA H19 can associate with the protein complex hnRNP U/PCAF /RNAPol II, activating miR-200 family through histone acetylation, thus suppressing HCC pro-gression metastasis (57). In addition, another well-known lncRNA, HOTAIR, is upregulated in HCC. Knocking down of HOTAIR in HepG2 cells leads to significantly reduced invasive capability, thus

contributing to a less invasive and malignant phenotype of the HCC

Fig. 3. The pathways in which typical HCC-related lncRNA are implicated. (A )LncRNA-LALR1 accelerates hepatocyte proliferation during liver

regeneration by activating Wnt/beta-Catenin signaling. (B ) The pathways in which HULC are involved. HBx protein upregulates HULC via CREB. The elevation of HULC promotes hepatoma cell proliferation via down-regulating p18. Moreover, HULC can be upregulated through an auto-regulatory loop (CREB-HULC-miR372-Prkacb). Additionally, HULC can bind to IGF2BP1 protein. Then IGF2BP1 recruits the CCR4-NOT deadenylase complex, finally leading to HULC decay. (C ) LncRNA LET inhibits the metastasis of HCC through a hypoxia-inducible factor 1, alpha subunit (HIF-1α) / histone deacetylase 3 (HDAC3)/ LET/NF90 pathway.

511

by guest on February 23, 2016

https://www.360docs.net/doc/ee14112919.html,/Downloaded from

J.-L.Huang et al.

cells. Although HOTAIR have been demonstrated to regulate a variety of genes through epigenetic slicing, its exact molecular mechanism in HCC mostly remains unknown (43,50).

Angiogenesis

As the tumor mass and size increases, the formation of new blood vessels is required to not only provide nutrients and oxygen but also allow tumors to dispose their metabolic wastes and enter the hematog-enous metastatic process, as well. Often, tumor cells induce proangio-genic factors or block antiangiogenic signals to turn on an ‘angiogenic switch’. Increasing evidences showed that lncRNAs also function in regulating the angiogenic process (41).

One such lncRNA in HCC is lncRNA-MVIH (lncRNA associated with microvascular invasion in HCC). In 2012, Yuan et al. (47) found that MVIH is generally overexpressed and negatively correlates with recurrence-free survival and overall survival in HCC. Furthermore, MVIH is elucidated to be specifically associated with phosphoglycer-ate kinase 1 (PGK1), an enzyme of glycolysis and a factor that can be secreted by tumor cells and inhibit angiogenesis, as well. Finally, MVIH weakens the function of PGK1 in angiogenesis inhibition by reducing the secretion of PGK1 but could not regulate the function of PGK1 in glycolysis. The similar results are also found in clinical samples. MVIH expression level inversely correlates with the serum level of PGK1 and positively correlates with the microvessel density. However, the mechanism for the upregulation of MVIH in HCC is still not well investigated.

Others

There are also some HCC-related lncRNAs participate in the progres-sion of HCC by other means. Some certain lncRNAs are suggested to involve in drug resistance. Take H19 lncRNA as an example. H19 gene belongs to a highly conserved imprinted H19-IGF2 locus, encoding a ~2.3 kb long, capped, spliced, and polyadenylated RNA. Notably, the structure of the H19 gene corresponds to a typical intergenic miRNA primary transcript (63). It contains a microRNA (miR-675) in exon 1, which may be responsible for the oncogenic activity of H19 (64). H19 is upregulated in doxorubicin-resistant R-HepG2 cells and is believed to induce P-glycoprotein expression and MDR1-associated drug resistance in HepG2 cells through regulation of MDR1 promoter methylation (48).

Although many lncRNAs were found to be associated with HCC by different means, the mechanism of functional HCC-related lncRNA is still not entirely elucidated and needs further investigation. But nota-bly, all these biological processes mentioned above might provide new avenues for therapeutic intervention against HCC progression.

Potentia l dia gnostic a nd thera peutic a pplica tions of LncRNAs in HCC

LncRNAs are emerging as biomarkers for HCC and other diseases due to their attractive features. Many lncRNAs have restricted tissue-specific and cancer-specific expression patterns. Often, a significant increase or decrease in lncRNA expression levels is found in tumors compared with normal tissues. Moreover, similar as circulating miRNAs, some types of lncRNAs are demonstrated to be present in body fluids, like urine and plasma, which can be easily obtained by the least invasive methods (10,56). But the exact mechanism for the release of lncRNAs into body fluids is still not well defined. Some studies suggested that the apoptosis and necrosis of cancer cells in the tumor microenvironment could make a difference. RNA may be packaged into microparticles, including exosomes, microvesicles, apoptotic bodies and apoptotic microparticles, thus secreted into body fluids (10,44). Given this specificity and good accessibility, lncRNAs may be superior biomarkers than many current protein-coding biomarkers.

As for HCC, some lncRNAs may be useful as novel potential biomarkers for diagnosis, prognosis and prediction of response to therapy. HULC can be detected with higher frequency in the plasma of HCC patients compared with healthy controls and may serve as a promising non-invasive novel biomarker for the detection and diag-nosis of HCC (31,46). MVIH, for example, can serve as a predictor for HCC patients’ poor recurrence-free survival after hepatectomy. In a cohort of 215 HCC patients, overexpressing MVIH is related to a higher tumor node metastasis stage as well as decreased recurrence-free survival and overall survival (47). Additionally, Yang et al. (50) examined the expression of HOTAIR in 110 HCC samples (among them, 60 were undergone liver transplantation) and finally found that overexpression of HOTAIR predicts tumor recurrence in HCC patients following liver transplantation. The similar phenomenon is also observed in mouse. LncRNAs originating from the Dlk1-Dio3 imprinted gene cluster showed progressive increases in phenobarbi-tal-mediated liver tumor promotion and can be used as novel candi-date biomarkers for liver tumor promotion (46).

Although lncRNAs are suggested to be biomarkers of HCC, some critical issues need to be resolved before their clinical appliance. Firstly, so far, a majority of studies are done in a small number of cases. Further validations in larger patient cohorts are needed to confirm the correla-tion and diagnosis sensitivity and specificity between certain lncRNAs and HCC. In the second place, another challenge relates to the low amount of total lncRNAs in plasma or serum or urine, which makes it necessary to use amplification to measure lncRNAs. To date, Q-PCR is the most widely used method. The concentration and quality of lncR-NAs can be confounded by multiple technical factors in the preanalyti-cal and analytical procedures. Therefore, normalization is an important aspect to measure lncRNAs. And it is very important for clinical labora-tory to make a standard analytical protocol for sample preparing and operating process, thus minimize interprocedure bias and implement quality control. Finally, at the moment, most studies are investigating the utility of individual lncRNAs as biomarker for diseases, but a com-bination of multiple lncRNAs or lncRNAs and miRNAs may provide greater accuracy since different causes for the disease might result in different levels of plasma lncRNAs and miRNAs.

Apart from being biomarkers, lncRNAs may also provide new targets for HCC therapy. Some researchers suggest that lncRNAs might be directly applied as therapeutic agents. The use of RNAi for human therapy by in vivo administration has already been proved successful (65). However, it seems like a daunting task to use lncRNAs directly as therapeutic bullets because of the big size. To deliver lncRNAs into the cancer cells, gene therapy delivery systems (for example, viruses) would be required and meanwhile bring risk. On the other hand, lncRNAs might provide new therapeutic targets because of the lncRNA–miRNA interaction. It would also be pos-sible to design synthetic small interfering RNAs, antisense oligonu-cleotide or miRNAs to target certain lncRNAs. Another indirect way to cancer-specific therapeutics would be targeting the lncRNA–pro-tein interface and focusing on the cancer-specific transcript. Totally, continuous efforts should be made to achieve lncRNA-based cancer therapies.

Conclusions

In conclusion, although plenty of key questions remain unanswered, many studies all suggest that lncRNAs act as important regulators in various biological processes in diverse diseases, including HCC. According to the latest studies, HCC-related lncRNAs can influence HCC initiation, progression and treatment. However, to date, lncRNA research still remains in its infancy. Only a small part of HCC-related lncRNAs have been well characterized and a large portion surely remains to be further discovered. They may provide new methods for the diagnosis and treatment of HCC. Systematic identification of lncRNAs and well understanding of their mechanisms should pave the way for designing therapeutics for HCC.

Funding

National Natural Science F oundation of China (81271932); Doctoral Program of the Ministry of Education (20134433110010).

512 by guest on February 23, 2016 https://www.360docs.net/doc/ee14112919.html,/ Downloaded from

Long non-coding RNA and hepatocellular carcinoma

Acknowledgements

We thank the members of the Laboratory Medicine Center in Nanfang Hospital for helpful discussions and comments on this manuscript. We apolo-gize to all researchers whose relevant contributions were not cited due to space limitations.

Conflict of Interest Statement: None declared.

References

1. Cervello,M. et al. (2012) Targeted therapy for hepatocellular carcinoma:

novel agents on the horizon. Oncotarget, 3, 236–260.

2. El-Serag,H.B. et al. (2007) Hepatocellular carcinoma: epidemiology and

molecular carcinogenesis. Gastroenterology, 132, 2557–2576.

3. Ponting,C.P. et al. (2009) Evolution and functions of long noncoding

RNAs. Cell, 136, 629–641.

4. Wang,K.C. et al. (2011) Molecular mechanisms of long noncoding RNAs.

Mol. Cell, 43, 904–914.

5. Wilusz,J.E. et al. (2009) Long noncoding RNAs: functional surprises from

the RNA world. Genes Dev., 23, 1494–1504.

6. Qureshi,I.A. et al. (2010) Long non-coding RNAs in nervous system func-

tion and disease. Brain Res., 1338, 20–35.

7. Prensner,J.R. et al. (2011) The emergence of lncRNAs in cancer biology.

Cancer Discov., 1, 391–407.

8. Xu,D. et al. (2013) Long noncoding RNAs associated with liver regen-

eration 1 accelerates hepatocyte proliferation during liver regeneration by activating Wnt/beta-catenin signaling. Hepatology, 58, 739–751.

9. Huang,J.F. et al. (2013) Hepatitis B virus X protein (HBx)-related long

noncoding RNA (lncRNA) down-regulated expression by HBx (Dreh) inhibits hepatocellular carcinoma metastasis by targeting the intermediate filament protein vimentin. Hepatology, 57, 1882–1892.

10. Huang,X. et al. (2013) Characterization of human plasma-derived exoso-

mal RNAs by deep sequencing. BMC Genomics, 14, 319.

11.R en,S.et al. (2013) Long non-coding RNA metastasis associated in

lung adenocarcinoma transcript 1 derived miniRNA as a novel plasma-based biomarker for diagnosing prostate cancer. Eur. J. Ca ncer, 49, 2949–2959.

12. Van Roosbroeck,K. et al. (2013) miRNAs and long noncoding RNAs as

biomarkers in human diseases. Expert Rev. Mol. Diagn., 13, 183–204. 13. Guttman,M. et al. (2012) Modular regulatory principles of large non-cod-

ing RNAs. Nature, 482, 339–346.

14. Rinn,J.L. et al. (2012) Genome regulation by long noncoding RNAs. Annu.

Rev. Biochem., 81, 145–166.

15. Yan,B. et al. (2012) Long noncoding RNA: its physiological and pathologi-

cal roles. DNA Cell Biol., 31 (suppl. 1), S34–S41.

16. Clark,M.B. et al. (2012) Genome-wide analysis of long noncoding RNA

stability. Genome Res., 22, 885–898.

17. Khalil,A.M. et al. (2009) Many human large intergenic noncoding RNAs

associate with chromatin-modifying complexes and affect gene expression.

Proc. Natl Acad. Sci. USA, 106, 11667–11672.

18. Niazi,F. et al. (2012) Computational analysis of functional long noncoding

RNAs reveals lack of peptide-coding capacity and parallels with 3′ UTRs.

RNA, 18, 825–843.

19. Novikova,I.V. et al. (2012) Sizing up long non-coding RNAs: do lncRNAs

have secondary and tertiary structure? Bioarchitecture, 2, 189–199.

20. Halvorsen,M. et al. (2010) Disease-associated mutations that alter the RNA

structural ensemble. PLoS Genet., 6, e1001074.

21. V olders,P.J. et al. (2013) LNCipedia: a database for annotated human

lncRNA transcript sequences and structures. Nucleic Acids Res., 41, D246–D251.

22. Gupta,R.A. et al. (2010) Long non-coding RNA HOTAIR reprograms

chromatin state to promote cancer metastasis. Nature, 464, 1071–1076. 23. Novikova,I.V. et al. (2012) Structural architecture of the human long

non-coding RNA, steroid receptor RNA activator. Nucleic Acids Res., 40, 5034–5051.

24. Wilusz,J.E. et al. (2008) 3′ end processing of a long nuclear-retained non-

coding RNA yields a tRNA-like cytoplasmic RNA. Cell, 135, 919–932. 25. Li,C.H. et al. (2013) Targeting long non-coding RNAs in cancers: progress

and prospects. Int. J. Biochem. Cell. Biol., 45, 1895–1910.

26. Wapinski,O. et al. (2011) Long noncoding RNAs and human disease.

Trends Cell Biol., 21, 354–361.

27. Yang,F. et al. (2011) Long noncoding RNA high expression in hepatocellu-

lar carcinoma facilitates tumor growth through enhancer of zeste homolog

2 in humans. Hepatology, 54, 1679–1689.28. Lin,R. et al. (2007) A large noncoding RNA is a marker for murine hepa-

tocellular carcinomas and a spectrum of human carcinomas. Oncogene, 26,

851–858.

29. Lai,M.C. et al. (2012) Long non-coding RNA MALAT-1 overexpression

predicts tumor recurrence of hepatocellular carcinoma after liver transplan-

tation. Med. Oncol., 29, 1810–1816.

30.F ranco-Zorrilla,J.M.et al. (2007) Target mimicry provides a new

mechanism for regulation of microRNA activity. Na t. Genet., 39,

1033–1037.

31. Panzitt,K. et al. (2007) Characterization of HULC, a novel gene with

striking up-regulation in hepatocellular carcinoma, as noncoding RNA.

Gastroenterology, 132, 330–342.

32. Wang,J. et al. (2010) CREB up-regulates long non-coding RNA, HULC

expression through interaction with microRNA-372 in liver cancer. Nucleic

Acids Res., 38, 5366–5383.

33. Yang,J.H. et al. (2013) ChIPBase: a database for decoding the transcrip-

tional regulation of long non-coding RNA and microRNA genes from

ChIP-Seq data. Nucleic Acids Res., 41, D177–D187.

34.J eggari,A.et al. (2012) miRcode: a map of putative microRNA tar-

get sites in the long non-coding transcriptome. Bioinformatics, 28,

2062–2063.

35. Wang,K.C. et al. (2011) A long noncoding RNA maintains active chroma-

tin to coordinate homeotic gene expression. Nature, 472, 120–124.

36. Quagliata,L. et al. (2013) lncRNA HOTTIP/HOXA13 expression is associ-

ated with disease progression and predicts outcome in hepatocellular carci-

noma patients. Hepatology. doi:10.1002/hep.26740.

37. Hammerle,M. et al. (2013) Posttranscriptional destabilization of the liver-

specific long noncoding RNA HULC by the IGF2 mRNA-binding protein

1 (IGF2BP1). Hepatology, 58, 1703–1712.

38. Cheetham,S.W. et al. (2013) Long noncoding RNAs and the genetics of

cancer. Br. J. Cancer, 108, 2419–2425.

39. Zhu,Z. et al. (2012) An insertion/deletion polymorphism within RERT-

lncRNA modulates hepatocellular carcinoma risk. Ca ncer Res., 72,

6163–6172.

40. Liu,Y. et al. (2012) A genetic variant in long non-coding RNA HULC con-

tributes to risk of HBV-related hepatocellular carcinoma in a Chinese popu-

lation. PLoS One, 7, e35145.

41. Gutschner,T. et al. (2012) The hallmarks of cancer: a long non-coding

RNA point of view. RNA Biol., 9, 703–719.

42. Pan,Y.F. et al. (2013) Expression profile of altered long non-coding RNAs

in patients with HBV-associated hepatocellular carcinoma. J. Hua zhong

Univ. Sci. Technolog. Med. Sci., 33, 96–101.

43. Geng,Y.J. et al. (2011) Large intervening non-coding RNA HOTAIR is

associated with hepatocellular carcinoma progression. J. Int. Med. Res.,

39, 2119–2128.

44. Orozco,A.F. et al. (2010) Flow cytometric analysis of circulating micropar-

ticles in plasma. Cytometry A, 77, 502–514.

45.X ie,H.et al. (2013) Plasma HULC as a promising novel biomarker

for the detection of hepatocellular carcinoma. Biomed. Res. Int., 2013,

136106.

46. Lempi?inen,H. et al. (2013) Identification of Dlk1-Dio3 imprinted gene

cluster noncoding RNAs as novel candidate biomarkers for liver tumor pro-

motion. Toxicol. Sci., 131, 375–386.

47. Yuan,S.X. et al. (2012) Long noncoding RNA associated with microvascu-

lar invasion in hepatocellular carcinoma promotes angiogenesis and serves

as a predictor for hepatocellular carcinoma patients' poor recurrence-free

survival after hepatectomy. Hepatology, 56, 2231–2241.

48. Tsang,W.P. et al. (2007) Riboregulator H19 induction of MDR1-associated

drug resistance in human hepatocellular carcinoma cells. Oncogene, 26,

4877–4881.

49. Du,Y. et al. (2012) Elevation of highly up-regulated in liver cancer (HULC)

by hepatitis B virus X protein promotes hepatoma cell proliferation via

down-regulating p18. J. Biol. Chem., 287, 26302–26311.

50. Yang,Z. et al. (2011) Overexpression of long non-coding RNA HOTAIR

predicts tumor recurrence in hepatocellular carcinoma patients following

liver transplantation. Ann. Surg. Oncol., 18, 1243–1250.

51. Eissmann,M. et al. (2012) Loss of the abundant nuclear non-coding

RNA MALAT1 is compatible with life and development. RNA Biol., 9,

1076–1087.

52. Hengartner,M.O. (2000) The biochemistry of apoptosis. Nature, 407,

770–776.

53. Zhou,Y. et al. (2012) MEG3 noncoding RNA: a tumor suppressor. J. Mol.

Endocrinol., 48, R45–R53.

54. Yang,H. et al. (2013) Induction of the liver cancer-down-regulated long

noncoding RNA uc002mbe.2 mediates trichostatin-induced apoptosis of

liver cancer cells. Biochem. Pharmacol., 85, 1761–1769.

513

by guest on February 23, 2016

https://www.360docs.net/doc/ee14112919.html,/

Downloaded from

J.-L.Huang et al.

55. Yang,F.et al. (2013) Repression of the long noncoding RNA-LET by

histone deacetylase 3 contributes to hypoxia-mediated metastasis. Mol.

Cell., 49, 1083–1096.

56. Lee,G.L. et al. (2011) Prostate cancer: diagnostic performance of the PCA3

urine test. Nat. Rev. Urol., 8, 123–124.

57. Zhang,L. et al. (2013) Epigenetic activation of the MiR-200 family contrib-

utes to H19-mediated metastasis suppression in hepatocellular carcinoma.

Carcinogenesis, 34, 577–586.

58. Hanahan,D. et al. (2011) Hallmarks of cancer: the next generation. Cell,

144, 646–674.

59. Park,B.J. et al. (2005) The haploinsufficient tumor suppressor p18 upregu-

lates p53 via interactions with ATM/ATR. Cell,120, 209–221.

60. Tripathi,V. et a l. (2013) Long noncoding RNA MALAT1 controls cell

cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet.,9, e1003368.61. Braconi,C. et al. (2011) microRNA-29 can regulate expression of the long

non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene,30, 4750–4756.

62. Zhou,Y. et al. (2007) Activation of p53 by MEG3 non-coding RNA. J. Biol.

Chem.,282, 24731–24742.

63. Smits,G. et al. (2008) Conservation of the H19 noncoding RNA and H19-

IGF2 imprinting mechanism in therians. Nat. Genet.,40, 971–976.

64. Tsang,W.P. et al. (2010) Oncofetal H19-derived miR-675 regulates tumor

suppressor RB in human colorectal cancer. Carcinogenesis,31, 350–358.

65.D avis,M.E.et al. (2010) Evidence of RNAi in humans from systemi-

cally administered siRNA via targeted nanoparticles. Nature,464, 1067–1070.

Received August, 30, 2013; revised November 9, 2013; accepted November 27, 2013

514 by guest on February 23, 2016 https://www.360docs.net/doc/ee14112919.html,/ Downloaded from

三年级语文阅读练习题一小院的西面是花圃一年四季花开不断唱主角的是紫色的月季和各色玫瑰北面有个挺大的

三年级语文阅读练习题 一、 小院的西面是花圃,一年四季花开不断,唱主角的是紫色的月季和各色玫瑰。北面有个挺大的葡萄架。夏天,孩子们在葡萄架下乘凉、下棋,大人们在这里看报、休息。一只只蝴蝶上下飞舞,显得非常热闹。到了秋天,一大串一大串的葡萄挂在葡萄架上,不时发出醉人的香味。院子的东面种着几棵高大的白杨,它们像巨人一样守卫着小院。院子南面是一片碧绿的小菜园。地里种着黄瓜□茄子□西红柿□还种着绿油油的青菜□一眼看去,个个漂漂亮亮,惹人喜爱。 1 、填空:这段话是按________ 顺序写的。先写小院西面是________ ,北面有个___________ ,院子东面种着____________ ,南面是__________ 。其中写得最多、最详细的是___________ ,这段话中的第_____ 句到第 _____ 句,都是写这里的景色的。 2 、读句子,想想带点词的意思,给合适的说法打“√”。(1% ) 一大串一大串的葡萄挂在葡萄架上,不时发出醉人的香味。 这句话写了:①葡萄长得多,有时香味会使人像喝醉酒一样糊里糊涂。…… ( ) ②葡萄不但长得多,而且香味使人陶醉。……………………… ( ) ③葡萄成熟了,很可爱。………………………………………… ( ) 3 、写出下面词语的反义词:高大( ) 热闹( ) 4 、照样子写词语 绿油油_________ __________ 漂漂亮亮_________ _________ 5 、用“”划出打比方的句子。 6 、给文中画□的地方加上标点。 7 、文中的“青菜黄瓜茄子西红柿”总的名称是()类。 二、前面的小凳(dèng dèn)子上摆着个针线笸箩,笸箩里放着剪刀、线团、布头和针线包。针线包上绣着个红五星,特别引人注目。多年来,邓奶奶随身带着它,一直带到了北京。从什么时候起,她就有了这个针线包呢?从延

常用数据类型转换使用详解

VC常用数据类型使用转换详解 CString ,BSTR ,LPCTSTR之间关系和区别 CString是一个动态TCHAR数组,BSTR是一种专有格式的字符串(需要用系统提供的函数来操纵,LPCTSTR只是一个常量的TCHAR指针。 CString 是一个完全独立的类,动态的TCHAR数组,封装了 + 等操作符和字符串操作方法。typedef OLECHAR FAR* BSTR; typedef const char * LPCTSTR; vc++中各种字符串的表示法 首先char* 是指向ANSI字符数组的指针,其中每个字符占据8位(有效数据是除掉最高位的其他7位),这里保持了与传统的C,C++的兼容。 LP的含义是长指针(long pointer)。LPSTR是一个指向以‘/0’结尾的ANSI字符数组的指针,与char*可以互换使用,在win32中较多地使用LPSTR。 而LPCSTR中增加的‘C’的含义是“CONSTANT”(常量),表明这种数据类型的实例不能被使用它的API函数改变,除此之外,它与LPSTR是等同的。 1.LP表示长指针,在win16下有长指针(LP)和短指针(P)的区别,而在win32下是没有区别的,都是32位.所以这里的LP和P是等价的. 2.C表示const 3.T是什么东西呢,我们知道TCHAR在采用Unicode方式编译时是wchar_t,在普通时编译成char. 为了满足程序代码国际化的需要,业界推出了Unicode标准,它提供了一种简单和一致的表达字符串的方法,所有字符中的字节都是16位的值,其数量也可以满足差不多世界上所有书面语言字符的编码需求,开发程序时使用Unicode(类型为wchar_t)是一种被鼓励的做法。 LPWSTR与LPCWSTR由此产生,它们的含义类似于LPSTR与LPCSTR,只是字符数据是16位的wchar_t而不是char。 然后为了实现两种编码的通用,提出了TCHAR的定义: 如果定义_UNICODE,声明如下: typedef wchar_t TCHAR; 如果没有定义_UNICODE,则声明如下: typedef char TCHAR; LPTSTR和LPCTSTR中的含义就是每个字符是这样的TCHAR。 CString类中的字符就是被声明为TCHAR类型的,它提供了一个封装好的类供用户方便地使用。

我家的院子阅读答案

我家的院子阅读答案 【篇一:小学生阅读练习-我家的菜园】 块长方形的菜园子,它的四周围着高墙,里面种着各种各样的蔬菜 瓜果。园子的北面长着一丛鲜艳的喇叭花,南面有着一棵茂盛的石 榴树。 当春天来临时,菜苗纷纷从土里钻了出来,一片片绿油油的,大地 像上了一条绿色的毯子。一群群毛绒绒的小鸟栖在高墙和树枝上, 叽叽喳喳地叫个不停,冬眠的菜园渐渐地苏醒了。 到了初夏,成行的向日葵已经长得十分健壮,绽开的花朵像一只只 金色的盘子。盛开的石榴树的花朵,散发出阵阵清香,引来了成群 的蜜蜂和蝴蝶,园子里热闹极了。 骄阳下的盛夏,一排排挺立着的玉米,像一个个浑身插满手榴弹的 威武的战士。高梁细长的头上像戴着一顶红珠帽。地里结满了累累 瓜果。 秋天,石榴胀开红褐色的果皮,袒露出饱含秋意的珍珠般的颗粒, 迎着秋风欢笑着。镶嵌着无数红色小花的深蓝色的络石藤,布满了 北墙,墙角盛开着粉红色的喇叭花。一场大雪过后,菜园一片洁白,如同盖上了一床银色的被子。几片顽皮的菜叶悄悄地顶起被子探着 脑袋张望着,远远望去就像几朵淡绿色的小花。 菜园的四季,仿佛是一幅幅诱人的画卷。 1、全文共有()个自然段。第()自然段描写的是我家菜园的样子。 2、用曲线画出文中比喻句。 3、根据课文内容,选择词语连线 粉红色的画卷 茂盛的络石藤 深蓝色的石榴树 诱人的喇叭花 4、照样子写词语 绿油油 5、根据文章内容填表。 【篇二:小院阅读答案】 篇二:小院阅读答案

①关中农村,总喜欢用泥巴打墙,围起一个院儿。我家的小院在村 的正中。母亲每天早早起来,将院子一遍一遍地扫干净,不允许我 们扔下一片纸屑,一个柴棍。村里的人见一方小院,竟收拾得这般 模样,便与母亲开起玩笑来:王妈,您这里准备在地上擀面条了吧?说得大伙直乐。②小院是母亲用四五年攒下的鸡蛋钱,请了小工, 打墙围起来的。得之不易,母亲便格外地宠爱它;冬天埋下一截葡 萄枝条,春天里长起来了,嫩嫩的叶,像一只刚出壳的雏鸟,昂着头,望着这新鲜的世界;春天里种下一行豆,夏天里蔓爬上土墙, 花便密密地排成队儿,立了起来。③小院是母亲精心编织的一个花篮。它盛着农家艰辛而又多彩的生活,也使我稚嫩的心成熟起来。 ④小院南侧有几棵香椿树,那是母亲赶庙会时,从近百里的山里挖 来的苗,三年便长得胳膊般的粗细,并举起一树的叶子。香椿虽是 野树,但那香却十分细腻,风来也罢,风去也罢,香便充满了小院,香便传遍了村落。左邻右舍的只说多了这香,整个村子也便多了新鲜,三天两头有人带了孩子来看,小院也因此多一种情感。小院成 了大伙的小院了。⑤以后我参加工作,怕母亲一个人在家孤单,想 接她到城里一起生活,可母亲执意不肯,她说离不开小院,丢不下 小院。从此,我想到小院,就想到母亲的一生,我想,母亲不就是 那小院吗?朴素的再不能朴素了,但她正是用这种朴素,将一片爱 心献给了这个世界,将那干干净净,且带着泥土芳香的情愫给了人间。1.文章表面写什么?实际又写什么?2.文章抒发了什么感情?3. 第一自然段表现了母亲怎样的品质?4.是什么使“我稚嫩的心成熟起来”的?快,好的加分、表面上写小院,(2分)实际上写母亲。(2分)2、对母亲的爱和怀念。3、搬,或拿、提;凑,或坐4、清洁的特点。(3分)勤劳,热爱生活的品质。(3分)5、第三自然段。 (2分)母亲的关爱和教育表达了作者对家和母亲的眷恋,对母亲养 育的感恩。母亲的小树给乡人带来了清香,我受此感染,也会努力 奉献,给别人带来“清香”。1 干净正面,侧面2 小院在母亲的打理 下生机勃勃。嫩嫩雏鸟昂爬立3 温暖,即人情味。从一开始的冷 清到现在成了大家的园子可以看出。4 没有第七段,是让总结一个吗?春夏秋冬诉说着小院的故事,小院吟诵着母亲的爱1、表:小院实:母亲2、对母亲的爱和怀恋3、清洁的特点4母亲的关爱的教育篇三:小院阅读答案 篇四:小院阅读答案

中国写意山水画的特点及举例

1、以形写神,以神写意。 从古到今,中国的绘画一直围绕着一个形的问题在作文章。在绘画的初萌阶段,由于造型能力差,那时的形是简单而幼稚的,是似是而非的,也可以说是“以意表形”。随着绘画经验的不断积累,写形的功能大大提高,进入了“以形写形”的阶段。但随着时代的发展,画家们并不以形似为满足,逐渐认识到了“神似”的重要性。即在造型上表现对象的内在本质精神面貌和性格特征,才算真正达到绘画的目的。 最先提出“以形写神”理论的是人物画家顾恺之。后来引伸到中国写意画领域,逐渐比为“以神写意”的意象造型观念。是中国的写意画摆脱了自然形的限制,而追求以笔墨为载体的情感宣泻。由于开拓了表现上的自由空间,画家笔下的形象既跳出了特定时空中客观物象再现的制约,又由于形的限制而避免了过于的随意性。使作品既来源于生活,又高于生活,既有形的观念,又有自我情感的表露,达到极完善的幻化境界。关于形神论的观点,历代都有不少精辟的论述。北宋苏轼提出“作画以形似,见与儿童邻”,虽不免过于偏颇,但观点是明确的。元代倪云林的“逸笔草草,不求形似”,则是文人画家的一种偏激言词。二者都没有把形神的关系界定清楚。对中国写意画的形神问题阐述的最精僻的莫过于齐白石,他说:“不似为欺世,太似则媚俗,妙在于似与不似之间”。似与不似之间就有了一定的空间,画家在作画过程中,积极地去作物象的内在本质即神韵的追求,为了达到目的,就要对物象的特征加以强调、夸张,对形进行必要的概括、取舍、归纳。这个过程叫做“遗貌取神”,这种造型观念叫做“意象造型”。 2、骨法用笔、以书入画。 “骨法用笔”是谢赫六法中第二位,它用“气韵生动”是六法中最重要的两个概念。“骨法”是指客观物象的形神结构,“用笔”则是用笔方法,用笔技巧和艺术表现。唐代张彦远在《论画六法》中提出“骨气形似皆本立意而归乎用笔”。说明“骨气用笔”的内涵是十分丰富的,它不但要表现客观对象的基本结构、神韵,还要表达画家的主观感情和艺术创造。在写意画中,笔墨还有独立的审美价值,表现为特殊的用笔方法所产生的形式美,也表现为笔墨情趣。 黄宾虹先生根据中国画的审美要求,总结前人和自己的创作经验,把用笔归结为平、圆、留、重、变五法,他说:“用笔须平,如锥划沙;用笔须圆,如折钗股,如金之柔;用笔须留,如屋漏痕;用笔须重,如高山堕石。”以上是用笔所追求的一种境界,至于具体操作中如何灵活掌握,还要懂得一个“变”字,要留有余地,要掌握好分寸,过分了同样也是弊病。黄宾虹、齐白石、潘天寿、李可染等先生追求线条的凝重深厚,注重留的作用,因此行笔相对较慢,但也并不是处处都慢,该快时还是要快的。有的画家追求线的流畅,行笔速度相对较快,有气势磅礴、一气呵成之感。至于怎样才好,这与每个人的实践经验、审美情趣有关,不可强求一律。至于用笔中的苍、老、活、松、涩、劲、毛、挺、圆、厚的艺术效果,一个“变”字都能概括,靠在实践中去体会去灵活掌握。

李金山山水画欣赏

李金山山水画欣赏 李金山山水画欣赏 李金山画语:关于“功夫在画外” 一幅优秀的中国画作品,其本质意义在于以意定形,以意驱形,其独具的文学性、抒情性,以大观小,空灵的禅宗思想,博大精深的道法自然,深远的人文关怀,意冥玄化、纯任自然的创造。这种烟波风月、平淡虚旷、萧条淡漠的境界是任何艺术形式所不能比拟的。这就要求中国画不光要具有书法和绘画本身的艺术内涵,更不可缺或缺的与之相关的很多文化的滋养和支撑。 诗词文赋、儒释道诸多传统哲学思想,和高度发达的思维体系、洞察能力,高度的人本理念精神和社会责任感,都直接影响着作品本身品味、意境、思想内涵、艺术感染力等诸多因素。这就要求创作者的人格、学养、心性、智慧全方位的积累达到相当程度,在创作的一瞬间集中赋予作品。 我从来就是把书法与文学视为画内的功课来做的,而且这还远远不够,还要涉猎戏曲、摄影、哲学等等,尽可能的开阔思路,博采众长。我的书画作品,尽量题自己的诗文,在作

画的时候诗文已经成竹在胸,画毕则题于其上。 总之,中国书画,是生存于悠悠华夏八千年文明的丰厚土地上的一朵鲜艳的奇葩,书内书外,互为一体,画内画外,内外兼修,才能融会到中国传统文化的大体系中。从古至今,那些书画艺术大家,都是诗文书画、金石篆刻样样精通,王维、苏轼、赵孟頫、郑板桥、等等历史人物,齐白石、潘天寿、李可染、启功等等这些现当代大家都是如此,他们不仅是书画艺术大家,更是内外兼修的国学大师。可见,对一个画家来说,除了画面语言表现技法外,书法、诗词、文学、哲学以及人格、学养、心性、智慧的修为都是缺一不可的。不然,你的绘画作品也就成了索然无味的符号堆砌。在这一点上,我对自己是非常苛求的,自断其后路,逼着自己向更高的要求迈进。 李金山画语:关于“风格与境界” 关于风格与境界,这个词对我们来讲并不陌生,但真探其精髓的能有几人呢?在这个问题上可以说仁者见仁,智者见智,这里我浅谈一些自己的观点与认识。 谈到风格与境界,可以把它分开来讲,但从某种意义上又是密不可分的。艺术风格可分为两种,一种是人们不自觉的自

help语法归类

help的语法 2011-05-05 07:28 sb cannot help doing sth.忍不住、情不自禁做某事。 eg. i cannot help thinking of you.我忍不住总是想你。 sb help sb do sth.某人帮助某人做某事。 eg. she helped regain my faith.她帮我重拾信心。 sth help do sth.某事促进/有利于某事的发展。 eg. cooperation will definitely help improve bilateral relationships.合作必将有利于促进双边关系。 sb is helping. 某人很乐于助人。 eg. he is a really helping guy.他特别乐于助人 sb is helpful.某人能帮的上忙。 eg he is always helpful. 他总能帮的上忙。 help 及物动词 vt. & 不及物动词 vi. 1.帮助 We'll be happy to help if you need us. 如果你需要的话, 我们将乐意帮助你。 2.有助于, 有利于 Every little helps. 点点滴滴全有助益。 及物动词 vt. 1.避免; 抑制, 克制 She burst her crying; she couldn't help it. 她放声大哭, 无法控制自己。 2.改善状况;促进;促使 3.搀扶;带领 4.为(自己╱某人)取用 5.擅自拿走;窃取 6.扶持,救助,资助 We should help her, it's too difficult for her to feed five children by herself. 就她自己要养活五个孩子太困难了,我们应该资助她。 7.协助…得到(或找到、达到) I helped him (to) find his wallet. 我帮他找到了他丢失的钱包。 8.治疗;缓解;补救,改进 Honey helps the cough 蜂蜜能治咳嗽。 9.给…盛(饭、菜);为…倒(酒、饮料);劝(酒等)(与 to连用)

JAVA的各种变量类型的转换

JAVA的各种变量类型的转换 1 如何将字串 String 转换成整数 int? A. 有两个方法: 1).int i = Integer.parseInt([String]); i = Integer.parseInt([String],[int radix]); 2). int i = Integer.valueOf(my_str).intValue(); 注: 字串转成 Double, Float, Long 的方法大同小异. 2 如何将整数 int 转换成字串 String ? A. 有叁种方法: 1.) String s = String.valueOf(i); 2.) String s = Integer.toString(i); 3.) String s = "" + i; 注: Double, Float, Long 转成字串的方法大同小异. java的各种变量类型的转换 integer to String : int i = 42; String str = Integer.toString(i); String str = "" + i double to String : String str = Double.toString(i); long to String : String str = Long.toString(l); float to String : String str = Float.toString(f); String to integer : str = "25";

int i = Integer.valueOf(str).intValue(); int i = Integer.parseInt(str); String to double : double d = Double.valueOf(str).doubleValue(); String to long : long l = Long.valueOf(str).longValue(); long l = Long.parseLong(str); String to float : float f = Float.valueOf(str).floatValue(); decimal to binary : int i = 42; String binstr = Integer.toBinaryString(i); decimal to hexadecimal : int i = 42; String hexstr = Integer.toString(i, 16); String hexstr = Integer.toHexString(i); hexadecimal (String) to integer : int i = Integer.valueOf("B8DA3",16).intValue(); int i = Integer.parseInt("B8DA3", 16); ASCII code to String int i = 64; String aChar = new Character((char)i).toString(); integer to ASCII code (byte) char c = 'A'; int i = (int) c; To extract Ascii codes from a Strin String test = "ABCD"; for ( int i = 0; i < test.length(); ++i ) {

我爱小院(十册语文课外阅读训练)

一走进我家的大门,就会看见一个小小的院子。我在它的怀里长大,深深地爱着它。 它( )小,( )一年四季富有迷人的色彩。春天,万物复苏,院中的蔷薇花用一片翠绿向我们报告春天的信息。爬山虎也不甘示弱,舒展开黄绿眉眼的小芽,带来了满墙的新绿。美人蕉像一个亭亭玉立的绿衣少女迎来了夏天,在暖风中向我点头。金秋,秋菊迎风怒放,金黄的、墨绿的,一株株、一盆盆,装点着院子。一阵秋风吹来,喜树的叶子纷纷扬扬地掉下来,像一只只金蝴蝶在翩翩起舞。寒风送来了冬爷爷和雪姑娘,院子里披上了白毯,树枝上开出了朵朵白花。小院给我以美的享受。 小院的怀中生活着许多有趣的小生命:在枝头打架的白头翁,在墙壁上散步的壁虎,贪婪地从墙壁缝里伸出小脑袋的老鼠……妈妈常把这些小动物编在一起,讲成一个个我所喜爱的童话故事。 每年春天,爸爸总要爬上高高的喜树、女贞树,去整理树枝,左邻右舍的小伙子们常跑来帮忙,大家边说边干,好热闹。每当腊梅飘香的时候,我们总选出几枝怒放的送给邻居们,大家一起享受这迷人的清香。小院( )充满着欢声笑语,( )使我懂得邻里互助友谊深。 如今,虽然我长大了,即将成为一名中学生,要投入到广阔天地的怀抱中去,_____________________。 1、根据短文的题目,联系文章内容,把文章的结尾补充完整。(2分) 2、选择恰当的关联词,填到文中的括号里。(2分) 不但……而且…… 如果……就…… 不是……而是…… 虽然……但是…… 3、用“//”给文章分段。(3分) 4、用“____”画出文章第二自然的中心句,这段话主要用( )和( )修辞手法来描写景物。(3分) 5、用“摘录法”概括第2、3、4自然段的段意。(3分) 第2自然段: 第3自然段: 第4自然段:

写意山水画水墨写生之我见

写意山水画水墨写生之我见 郑天欣 写意山水画,有人又称它为水墨山水画,顾名思义它是以水墨——即笔墨技巧为语言的民族艺术。水墨世界的千变万化宛若海洋。每一个画家(即使是天才巨子)涉入其境,惨淡经营探索终生,也只不过得到其中的一滴或几滴圣水而已。但这一滴圣水却犹如包含核能量的元素那样,能迸发出耀人的艺术之光,给人以新的艺术享受,永焕画史。正因为这样,她的引力也最大,执着于其中的探索者最顽强,成功者也多是不会炫耀的诚实艺术家。写意山水画家苦苦勤奋一生,一直在寻找着最适合自己个性的笔墨艺术语言这滴水。许多人没有找到,寻到的就是佼佼者。我觉得寻找自己水墨语言的最好途径就是在掌握传统技法后,坚持不懈深入生活写生,特别是进行水墨写生。当然还应有相应的画外功的配合,限于不是本文的主题,这里只提出来。 随着社会节奏的增快和科技的发展,不少从事写意山水画创作的画家为求方便和快速而放弃了水墨写生,操起了钢笔、铅笔和照相机、摄像机。这对于一个要想创建自己独特水墨语言的有志者来说,确实是不利的。因为这样的写生丧失了一次出现新的笔墨效果的机会。这样收集来的素材并未具备写意山水的笔墨语言,用它来创作仍然是很艰难的,简直无法和实地水墨写生相比,何况,一幅好的水墨山水写生就是一幅成功的山水作品,是人们公认的。这是因为身处真实景观中的那种强烈的激情早已淡化了。写意山水画的艺术形式因素特别是水墨语言实际上是主客观因素和谐的迹化,景是触发情思的客体,但必须融入人的性情才能产生表现它的语言形成感人的作品。写意山水画中的笔墨技巧和经营位置等等都是画家受当时客观景物的感染冲击而形成的不可抑制的感情所迸发的火花,所以是最能感染人的。要使自己的写意山水画创作既能出现自己独特的语言形式美感及浓郁的生活气息,我的体会是:长期坚持水墨写生是成功的最佳途径。 中国写意山水画实际上开创于封建社会的文人士大夫们,他们所具备的得天独厚的书法功底为画写意山水奠定了有利的笔墨基础。多数文人从事写意山水多是在读书翰墨之余或酒足饭饱之后乘兴消遣,娱乐游戏,绘画不是为了换取钱粮谋生,故能随心所欲表达自己的思想感情,放笔任意挥洒,感人的佳作很多,值得我们在写生和创作中借鉴。同时他们往往在无意间的笔墨游戏中偶然出现意想不到的笔墨艺术效果,他们从偶然性中得到启发,并锲而不舍对偶然性进行反复试验研究,总结升华出了一套不断发展和产生新活力的笔墨技法规律和理论,形成生动鲜活的写意山水画民族绘画传统。我在30多年对写意山水画创作的学习和探索中,发现只有在进行水墨写生中,随激情所至放笔任意挥洒时,才出现意想不到的笔墨效果,要比创作中偶尔出现的效果生动的多,感人的多。我的绘画语言的成熟多来自坚持不懈的水墨写生之中。 笔墨语言的优劣直接决定着作品的档次,写意山水画家对笔墨语言的提炼和探索是无止境的,要想自己的艺术常青,一生都要不断寻求新的语言。实践告诉我们,新的别具个人独特风韵的艺术语言,多不是来自画室内的苦思冥想,而是来自活生生的自然景观和激情的结合,也就是说不是源于理智,而是发自客观景物感化了的情感。宋代苏轼提出“论画以形似,见与儿童邻”的绘画观点,批判了缺乏感情的描绘景物表像的毕肖观点,对当时中国绘画的发展有着革命的意义,也把绘画从过去仅仅作为“成教化、助人伦”的政教工具中解放出来,成为表现人的思想感情的自由艺术手段。这是一个非常大的进步,得到以后历代有识画家的认同。“寄情物外”、“用情笔墨之中,放怀笔墨之外”“意足不求颜色似”成了近、现代画家进行创作的准绳,对我国绘画(包括写意山水画)的发展有着重要的意义。很值得我们在水墨写生乃至创作中体味和借鉴。

编写程序,将long型数据987654转换为字符串,将十进制数365转换为十六进制数表示的字符串

【实验内容】 编写程序,将long型数据987654转换为字符串,将十进制数365转换为十六进制数表示的字符串。【程序清单附件】 public class Ex17 { public static void main(String[] args) { long num=987654L; int i=365; System.out.println("Long类型转换为String:"+String.valueOf(num)); String HexI=DtoX(i); System.out.println(HexI); } //转换函数 public static String DtoX(int d) { String x=""; if(d<16){ x=change(d); } else{ int c; int s=0; int n=d; while(n>=16){ s++; n=n/16;

} String [] m=new String[s]; int i=0; do{ c=d/16; //判断是否大于10,如果大于10,则转换为A-F的格式m[i++]=change(d%16); d=c; }while(c>=16); x=change(d); for(int j=m.length-1;j>=0;j--){ x+=m[j]; } } return x; } //判断是否为10-15之间的数,如果是则进行转换 public static String change(int d){ String x=""; switch(d){ case 10: x="A"; break; case 11: x="B";

《手指上的温度》阅读答案 坐在母亲的小院里晒太阳,冬天的太阳

《手指上的温度》阅读答案坐在母亲的小院里晒太阳,冬天的太阳 《手指上的温度》,完成19―22题。(17分) (1)坐在母亲的小院里晒太阳,冬天的太阳。 (2)母亲的小院落,还是从前的模样。几十年了,花开花落,星月流转,它却坚定地守在这里,等着我回来晒太阳。 (3)母亲把炒好的南瓜子捧出来给我嗑。夏天的时候,母亲的小院里,还有门前屋后,总会开满艳艳的黄花,是南瓜的花。不多久,就看到很壮观的场面:大大小小的南瓜,睡在绿的叶间,像胖娃娃。母亲吃不掉那些南瓜,她栽种的目的,是为了取里面的籽。把籽洗净,晒干,炒熟,就是香味四溢的瓜子儿。母亲知道她的孩子喜欢吃。 (4)母亲的脚步声在院门外响起,胳膊肘里挎着篾篮,蔑篮里是碧绿的青菜,很蓬勃。母亲不知打哪儿学到一句很时髦的话,笑眯眯地对我说:“这是绿色食品。”父亲跟在后面进来,也说:“这是绿色食品,一点农药都没打过的。”母亲回头,佯怒道:“怎么我跑到哪儿你跟到哪儿,跟猫儿似的。” (5)父亲就对我告状,说母亲老是欺负中。母亲不甘落后,也抢着告状,说父亲欺负她了。我问怎么个欺负法的。两个人就傻笑,说不出个所以然来,只嘟囔着,反正欺负了。 (6)心突地一紧,想起小时候,受了冷落,总是以这样的方式来引起父母的注意,到母亲面前告状,说姐姐欺负我了。母亲就会抱抱我,亲亲我。母亲的温度,通过手指传给我,我小小的心,很安静很温暖。 (7)阳光绵软如絮。恍惚中,从前的那个小女孩长大了,而我的父母却小了老了,愿望只剩下那么一点点:不被我们遗忘。 (8)眼睛触到父亲的白发,母亲的皱纹,突然无话。记起回来时,曾在包里塞进一条烟,是带给父亲的。 (9)父亲得了香烟很得意,跑到母亲跟前炫耀,中晃着那条烟馋母亲,说:“丫头带给我的。”其神态,像意外得了宝贝的孩子。 (10)母亲不乐意了,跑过来,对我摊开双手说,我也要。我觉得好笑,低头到包里翻找,找出一盒巧克力,是单位同事结婚时发的喜糖,我随手放在包里面了。我把巧克力拿出来给母亲,母亲非常惊喜,把那盒包装精美的巧克力托在掌上,看了又看,然后举到父亲跟前,欢天喜地地说,看:“丫头还是最宝贝我,送我的东西比送你的好看。” (11)午饭过后,我回城里。半路上,到包里掏纸巾擦手,手触到一个纸盒,掏出来,竟是我给母亲的那盒巧克力。不知何时,母亲又把它悄悄塞回到我的包里面,连上面的包装都未曾动过。 (12)原来,母亲所索要的,不过是我手指上的温度。 19.我们长大了,父母却小了老了,中们的愿望只剩下“不被我们遗忘掉”。本文哪两件事情体现了这一点?(4分) 20.请结合上下文,自选角度赏析下列语句。(4分) (1)不多久,就看到很壮观的场面:大大小小的南瓜,睡在绿的叶间,像胖娃娃。 (2)父亲得了香烟很得意,跑到母亲跟前炫耀,中晃着那条烟馋母亲,说:“丫头带给我的。” 21.文章题目“手指上的温度”有何含义?结合文本分析。(4分) 22.阅读下列材料,请结合文本和生活实际,写出你的感受,不少于80字(5分) (1)一位年轻的母亲,为了能够给患病的儿子移植肝脏,每天跑步十几公里,上下楼梯

long 类型

(1)--函数定义begin—————— create or replace function getlong(p_tname in varchar2, p_cname in varchar2, p_rowid in rowid)return varchar2as l_cursor integer default dbms_sql.open_cursor; l_n number; l_long_val varchar2(4000); l_long_len number; l_buflen number:=4000; l_curpos number:=0; begin dbms_sql.parse(l_cursor, 'select '|| p_cname ||' from '|| p_tname || ' where rowid = :x', dbms_sql.native); dbms_sql.bind_variable(l_cursor,':x', p_rowid); dbms_sql.define_column_long(l_cursor,1); l_n := dbms_sql.execute(l_cursor); if(dbms_sql.fetch_rows(l_cursor)>0)then dbms_sql.column_value_long(l_cursor, 1, l_buflen, l_curpos, l_long_val, l_long_len); end if; dbms_sql.close_cursor(l_cursor); return l_long_val; end getlong; ------end———————————————— (2)--以下函数调用 select ROWNUM, a.*, getlong('workflow_requestlog','REMARK', a.rowid) aa from workflow_requestlog a --where ROWNUM <= 608 order by a.requestid asc

父亲的院落-初中语文课外阅读含答案

父亲的院落 ①父亲到城里来,几天之后,就腰酸腿痛,唉声叹气:“这哪是人住的啊,还不把人憋死?”说完不久,就回到了他的院落。 ②父亲永远留恋着自己那三间瓦房,还有一个院子。 ③父亲的院落在乡下,依然是矮墙,上面杂生着枯草;依然是三间瓦房,在夕阳下,扯出一缕袅袅的炊烟。父亲坐在院落里,抽着烟,烤着火,间或咳嗽两声。 ④在乡下的院子里,父亲才算找回了真实的自己。他可以粗声武气地大笑,可以大声喊叫邻居来喝茶,可以找年龄相当的人谈今年的雨水和收成,可以打开鸡笼,大声吆喝着鸡;也可以对母亲高声说着今天要吃什么饭,放点地里长的大白菜,或者豆角。 ⑤在小院里,父亲永远是个主人,而不是客人。 ⑥春天来了,雨水一落,父亲就会在墙角空地上用棍子插些小洞,放进豆种,然后,沿墙一周插上篱笆。不久,几场春雨飘落下来,父亲那些豆子,就会一颗颗破土而出,长出肥嫩的芽儿,顺着风长长,长高。父亲从坡上回来,站在院子里,看着这些豆秧一根根顺着篱笆而上,伸长了身子,舒展着叶子,就会高兴得哈哈大笑,摸着胡茬:那种得意,就如面对自己的孙子一样。 ⑦夏天之后,院子里,丝瓜拉成架,豆荚顺着篱笆爬上墙头。做饭时,父亲会踩着凳子去摘,然后洗净了,交给母亲,放在锅里炒着。在放了油的烧红了的锅里,豆角快活地发出“咝啦咝啦”的响声。父亲坐在院子里,坐在豆棚瓜架下,轻轻地摇着蒲扇,摇出一院的清凉。 ⑧到了秋天,院中的葡萄熟了,父亲会很认真地照看着,不许鸟雀啄食,让一颗颗葡萄珠圆玉润地鼓胀着,晶莹着,由小变大,由绿变紫,变灰。这时,父亲总会打电话告诉我们,让我们回来吃葡萄。 ⑨当然,一般情况下,我们是难以回家的。不久,父亲就进城来了,拿着袋子,里面装着葡萄,一颗一颗,水灵而饱满。等我们都回来了,父亲才拿出来,一串一串摆在桌上,摆得很慢,很细致,摆出一脸的成就感。 ⑩冬天,父亲会感到寂寞,没有了瓜菜豆秧陪伴的父亲,坐在院子里,就像没有朋友聊天一样,显得形单影只,显得无奈和怅w?ng。这时,他会拢起火,坐在火堆前编起背篓,还有竹筐。竹篾是山上自栽的竹子织成的,父亲剖开竹子,划成竹丝。竹丝在父亲龟裂的手上跳跃着,翻动着,仿佛有生命的精灵一样。这些竹器,就成了家用的东西,但更多的则送给了同村的人。父亲喜欢别人讨用这些东西,每到这时,他的脸上会露出满足的笑,用他的话说:“人家要,是给咱长脸。” 对父亲来说,院落里的一切,都是他的,其实,他也需要这一切。 (1)阅读第⑩段,根据拼音写汉字,并给加横线字注音。 怅w?ng()龟()裂

help的用法

help的用法 1. help sb. to do sth. 帮助某人做某事。 Can you help me to learn English 你能帮助我学英语吗 I can't help you to lift this stone. 我不能帮你搬这块石头。 2. be of some/ no/ much help to sb. 对某人有些 / 没有 / 很有帮助。 This book is of great help to me. 这本书对我很有帮助。 Is this magazine of any help to you 这本杂志对你有些帮助吗 3. help oneself ( to )自用(食物等)。 Help yourself to the fish. 请随便吃鱼。 Please help yourself to some pork. 请随便吃点肉。 4. help sb. into/ out of 搀扶某人进入 / 走出。 He helped the patient out of the hospital. 他搀扶病人走出了医院。 Can you help the patient into the hospital 你能搀扶病人进医院吗 5. help sb. out 帮助某人克服困难,渡过难关、解决问题、完成工作。 When I'm in trouble, he always helps me out with money. 每当我处境困难时,他总是用金钱帮助我渡过难关。 Please help me out with this problem. 请帮我解这道试题。 6. with the help of 在……帮助下。 With the help of her, he found his lost child. 在她的帮助下,他找到了失踪的小孩。 7. help sb. with sth. 帮助某人做某事。 Please help me with my French. 请帮我学法语。 Can you help him with this work 你能帮助他完成这项工作吗 8. help to do sth. 有助于做某事。 This program helps to improve our English. 这个计划有助于我们提高英语成绩。 His speech helps to understand the policy. 他的演讲有助于理解这个政策。 补充: 1、help sb (to) do sth:to可以省略 2、(摘自源空间) can't/couldn't help (to) do sth. 不能帮忙做.... Cant/couldn't help doing 情不自禁做.... Cann't help but do sth. 不得不做... 3、can’t help to do sth与can’t help doing sth例题解析 He knows nothing about it, so he can’t help _________ any of your

开满鲜花的小院阅读答案

篇一:开满鲜花的小院阅读答案 当雏鹰尚嗷嗷待哺于巢穴之中,观望蓝天白云时,它已有了梦想,那就是振翅九霄,与蓝天搏击,与白云共舞;当骏马休憩于栅栏之中,昂首长嘶之时,它已有了梦想,那就是奋蹄原野,驰骋天下。每个人都有自己的梦想,那些梦想或远大,或美好,但都需要我们一步步踏踏实实地去实现,在通往梦想的道路上,留下自己的汗水。我们的梦想永远在路上,只有在路上,在前进,才能看到成功的希望,当你在路上不断向前时,你就在梦想的道路上栽下了一朵又一朵的鲜花。世界著名撑杆跳高名将布勃卡有个绰号叫“一厘米王”,因为在一些重大的国际比赛中,他几乎每次都能刷新自己保持的记录,将成绩提高1厘米,当他成功地跃过6.25米时,不无感慨地说:“如果我当初就把目标定在6.25米,没准儿会被这个目标吓到。”是啊,人因梦想而伟大,这句话具有励志意义,但更为现实的是,最伟大的梦想如果脱离自己的实际,往往只能成为空想,在现实中,大多数人之所以碌碌无为,不是因为缺乏梦想,而是没有踏实地去实践。在英国古老的建筑威斯敏斯特教堂旁边,矗立着一块墓碑,上面说:“当我年轻的时候,我梦想改变这个世界;当我成熟以后,我发现我不能够改变这个世界,我将目光缩短了些,决定只改变我的国家;当我进入暮年之后,我发现我不能够改变我的国家,我的最后愿望仅仅是改变一下我的家庭。但是,这也不可能。当我现在躺在床上,行将就木时,我突然意识到:如果一开始我仅仅去改变自己,然后,我可能改变我的家庭;在我家人的帮助和鼓励下,我可能为国家做一些事情;稍后,谁知道呢?我甚至可能改变这个世界。”这段话的确发人深省,每个人年轻时代,总心高气傲,好高骛远,给自己设定了过高的理想,但却忘了只有从最小开始,一步一步往上爬,才能最后得以成功。在路上,不可能一帆风顺,或许荆棘满布,惊险丛生,疾风骤雨,电闪雷鸣,但只要你有梦想,有信心,有一直向前的勇气与踏踏实实的干劲,只要你迈出第一步,并一步一步的走下去,虽有千辛万苦,但而后必将幸福。当我们在梦想的道路上,用心去培养梦想的花朵,用汗水去浇灌,用勤奋去施肥。当你抬起头来,向后看,你会看到一路蜿蜒却充满生机绽放的花朵,向前看,你会发现面前就是梦想的大门向你敞开。 篇四:开满鲜花的小院阅读答案 季明 他住的老屋,已经很破旧了,整个冬天都在漏雨。于是,在一个积雪化尽的晴天,柴贵决定动手修葺一下。 一天,柴贵正在干活儿,身后忽然响起一个声音,问:“老柴,干啥呢?” 扭过头,见是三皮趴在半人高的矮院墙上,正用漫不经心的眼神望着他。 三皮不屑地说:“切,修个屁呀!费那神干啥,还不知你能在这破屋里住多久呢!” 临走时,三皮又说:“我们呀,就只干一个活儿——等死!” 三皮正和十几个人缩在村口土墙根下,晒太阳。 一时都无语。 “有人来了。 三皮说:“看花眼了吧?没事谁敢到这里来!” 柴贵定了定神,果然是看花眼了。

山水画鉴赏

关于黄公望的山水画《富春山居图》的再认识 摘要:黄公望的代表作《富春山居图》,从布景到造型语言无一不反映出熔铸主观情怀于自然景物之中,把人引向远的境地,达到物我两忘,创造了“闲逸平淡”的艺术境界。让人于宁静处感悟平淡,于细致处品味闲逸。山水画已如一首抒情诗,是一种超然物外、意味悠长之美。 关键词:黄公望;《富春山居图》;艺术特色;闲逸平淡;再认识 中国画的历史己经非常悠久了,远在2000多年前的战国时期就出现了画在丝织品上的绘画——帛画,而在这之前就已经有原始岩画和彩陶画。中国画按照画中的内容又分为山水画和花鸟画。山水画艺术,尤其是水墨山水画方面有了空前的大发展。有后人评价元代的山水画:“潇洒简远,妙在笔墨之外”,意思就是元代的山水画重心源、重意象、重韵致、求天趣、尚逸品的审美追求。元代山水画不论是赵孟頫的《鹊华秋色图》,还是黄公望《天池石壁图》,或是倪云林的《江岸望山图》等,他们的作品都表现出了一种“闲逸平淡”的意境。其中“元四家”之———黄公望深得赵孟頫真传,他的作品“精通造化,笔尽意在;水墨纷纷,浑润古雅”。他继赵孟颓之后,将董巨山水推向山水画的正脉,改变了院体画陈陈相因的积习,开创了山水画的一代风貌。 1黄公望简介 黄公望(1269-1354),常熟人,名公望,字子久。他前半生奔走于仕途,曾任浙内宪吏,中台察院转吏,一度随从张闾经理钱粮,后张闾因“贪刻用事”被治罪,黄公望亦受牵连下狱。出狱后,自知仕宦无望,于是投身道门,改号一峰,义苦行净墅、大痴翁。以卖卜和收徒为业,居杭州肖箕泉,并常往来于吴越间,结交了不少文人名士和画家。他雅好书画、音律利散曲,尤以山水冠称一绝。其山水画取意于五代董源、巨然的“平淡”,又得元代赵孟頫之“古意”,以疏体写江南烟岚山川,用墨枯淡而见华滋,笔态洒脱不羁,意境超迈简淡、空灵疏秀。黄公望山水从技法面貌而言,有两种风格类型,明张丑《清河书画舫》归纳为: “一种作浅绛色,山头多岩石,笔势雄伟,一种作水墨,效甚少,笔意尤为简远。”从他现存的几幅作品中可见《富春山居图》当为黄公望第二种画风的典型代表,足以代表他一生绘画的最高成就。图为长卷,纵仅33厘米,横636.9厘米,描绘富春江两岸初秋之景。画面层峦起伏,井然有序,林峦婉蜒,平岗连绵,水平树静,风和日丽,境界开阔辽远,简洁清润,又不失雄秀苍莽使人心旷神怡。村居散散落落地掩映在山麓林间,时有垂钓者放舟江心,让人于宁静处感悟平淡,于细致处品味闲逸。至此,山水画已如一首抒情诗,一种超然物外、意味悠长之美油然而生。用李白的“清水出芙蓉,天然去雕饰”的诗句,来形容《富春山居图》很是恰当,美之至极,不就是回归自然,闲逸平淡之境!

名家绘画:山水作品欣赏11

名家绘画:山水作品欣赏11 周澄,字莼波,是我国台湾当代著名书画家和美术教育家,其诗、书、画、印全能的艺术造诣早已蜚声国际艺坛,其作品曾在国内个展十余次,并在英、美、加、日、韩等地举办个展多次,是第一位在北京故宫举办个展的当代书画家。孙宪,教授,男,1954年生,安徽泾县人,现任江西教育学院美术系主任、教授。中国美术家协会会员、江西省美术家协会副主席,江西省政协委员、江西省教育学会美术专业委员会理事长、江西民进书画院院长、江西省文史馆特聘书画家、江西画院特聘画家、江西省工艺美术高级职称评委会主任、江西省工艺美术大师评委。黄东雷,1966年生,号古画王子,中国书画名家理事会常务理事,中外实力派书画艺术名家,毛体书法家全国三十佳。继承了自五代十国到清 代书画界各大名门名派的精髓,并且在此基础上进行了更深入的创意与完善,从而达到了无比高深的艺术境界,作品名扬四海,受到书画界及全社会的普注。黄东雷的行草书法清秀典雅、大气磅礴,既有前无古人之气势,又有龙飞凤舞之美感。书画家黄东雷的书画在中国国内家喻户晓,他的写意山水、工笔仕女、毛体行草三项主攻被成为书画三绝。张 仁芝,1935年10月7日生,祖籍天津,生于热河兴隆。 擅国画。北京画院。1957年毕业于中央美术学院附中,1962

年毕业于中央美院中国画系,1965年在北京中国画院进修班结业。现为北京画院专业画家北京画院艺术委员会委员,中国美术家协会会员,中国书法家协会会员,北京市美协理事,东方美术交流学会常务理事,北京画院专业画家,一级美术师。 吴耀中,又名吴梅,1945年生,福建诏安人,大专文化。中国国画大师王盛烈弟子,现为东方书画函授学院教授,中华诗词学会会员,菏泽天香画院名誉院长,中国艺术研究院文研中心创作委员,四海诗社基本社友,福建美术家协会会员等。 潘韵(1905—1985)原名趣琴,号趣叟,长兴人。潘韵擅长山水画。初学北宋黄山谷与明代沈石田,继学南宋马远、夏圭,掌握传统笔法,观察真山真水,重视写生,认为“没有生活、没有感受、没有激情,画出来的东西就没有生命”。他的创作以刚毅之笔,溢不阿之情,又于刚直强倔之中蕴藉温婉,韵而不靡,工而不诡,雄秀兼至,格调双谐。他的写生眼力独特、笔法娴熟,画面精审坚实,线条刚健俊逸,不故意矜炫古雅却自有高致;他的山水画无论是起承转合、回抱皴托,皆能舒展自如,浑厚雄健,神舞韵动,过目难忘,充满了诗情画意和生活气息。晚年受黄宾虹画理的启示,追随清画家石溪笔意,承宋人余风,其画清劲中更添老辣的意味。徐全群的水墨江南风景吴悦石,1945年生,北京市人。国家

相关文档
最新文档