Java 加密解密之对称加密算法AES

Java 加密解密之对称加密算法AES
Java 加密解密之对称加密算法AES

Java 加密解密之对称加密算法AES

本文转自网络

密码学中的高级加密标准(Advanced Encryption Standard,AES),又称Rijndael 加密法,是美国联邦政府采用的一种区块加密标准。这个标准用来替代原先的DES,已经被多方分析且广为全世界所使用。经过五年的甄选流程,高级加密标准由美国国家标准与技术研究院(NIST)于2001年11月26日发布于FIPS PUB 197,并在2002年5月26日成为有效的标准。2006年,高级加密标准已然成为对称密钥加密中最流行的算法之一。该算法为比利时密码学家Joan Daemen 和Vincent Rijmen所设计,结合两位作者的名字,以Rijndael之命名之,投稿高级加密标准的甄选流程。(Rijdael的发音近于"Rhinedoll"。)

AES是美国国家标准技术研究所NIST旨在取代DES的21世纪的加密标准。AES的基本要求是,采用对称分组密码体制,密钥长度的最少支持为128、192、256,分组长度128位,算法应易于各种硬件和软件实现。1998年NIST开始AES第一轮分析、测试和征集,共产生了15个候选算法。1999年3月完成了第二轮AES2的分析、测试。2000年10月2日美国政府正式宣布选中比利时密码学家Joan Daemen和Vincent Rijmen提出的一种密码算法RIJNDAEL 作为AES. 在应用方面,尽管DES在安全上是脆弱的,但由于快速DES芯片的大量生产,使得DES仍能暂时继续使用,为提高安全强度,通常使用独立密钥的三级DES。但是DES迟早要被AES代替。流密码体制较之分组密码在理论上成熟且安全,但未被列入下一代加密标准。

AES加密数据块和密钥长度可以是128比特、192比特、256比特中的任意一个。

AES加密有很多轮的重复和变换。大致步骤如下:

1、密钥扩展(KeyExpansion),

2、初始轮(Initial Round),

3、重复轮(Rounds),每一轮又包括:SubBytes、ShiftRows、MixColumns、AddRoundKey,

4、最终轮(Final Round),最终轮没有MixColumns。

JDK对DESede算法的支持

密钥长度:128位

工作模式:ECB/CBC/PCBC/CTR/CTS/CFB/CFB8 to CFB128/OFB/OBF8 to OFB128

AESCoder.java Java代码

密码学对称加密算法

对称加密算法 一、网络安全 1.网络安全 (1) 网络的安全问题:有以下四个方面 A. 端-端的安全问题,主要指用户(包括代理)之间的加密、鉴别和数据完整性维护。 B. 端系统的安全问题,主要涉及防火墙技术 C. 安全服务质量问题,主要指如何保护合法用户的带宽,防止用户非法占用带宽。 D. 安全的网络基础设施,主要涉及路由器、DNS服务器,以及网络控制信息和管理信息的安全问题。 (2)网络的安全服务:有以下五个方面 A.身份认证:这是考虑到在网络的应用环境下,验证身份的双方一般是通过网络而非直接交互,所以传统的验证手段如根据对方的指纹等方法就无法应用。同时大量的黑客随时都可能尝试向网络渗透,截获合法用户的口令并冒充顶替,以合法身份入网。所以应该提供一种安全可靠的身份认证的手段。 B.授权控制:授权控制是控制不同用户对信息资源的访问权限。授权控制是以身份认证为基础的。通过给不同用户的提供严格的不同层次和不同程度的权限,同时结合可靠的身份认机制,可以从很大程度上减少非法入侵事件发生的机会。 C.数据加密:数据加密技术顾名思义。在互联网上应用加密技术来保证信息交换的可靠性已经的到了人们普遍的认可,已经进入了应用阶段。目前的加密技术主要有两大类:一类是基于对称密钥加密的算法,另一类是基于非对称密钥加密的算法。它们都已经达到了一个很高的强度,同时加密算法在理论上也已经相当的成熟,形成了一门独立的学科。而从应用方式上,一般分成软件加密和硬件加密。前者成本低而且实用灵活,更换也方便;而后者加密效率高,本身安全性高。在应用中,可以根据不同的需要来进行选择。 D.数据完整性:数据完整性是指通过网上传输的数据应该防止被修改、删除、插入、替换或重发,以保证合法用户接收和使用该数据的真实性。 E.防止否认:在网上传输数据时,网络应提供两种防止否认的机制:一是防止发送方否认自己发送过的信息,而谎称对方收到的信息是别人冒名或篡改过的;二是防止接收方否认自己收到过信息。利用非对称加密技术可以很好的实现第一个否认机制。 二、加密技术 (1) 加密技术的产生和发展 A. 古代,目前记录的比较早的是一个在公元前2世纪,由一个希腊人提出来的,26个字母放在一个5×5的表格里,这样所有的源文都可以行列号来表示。 B. 近代,在第二次世界大战里,密码机(如紫罗兰)得到了比较广泛的已经技术,同时破译密码的技术也得到了发展,出现了一次性密码技术。同时密码技术也促进了计算机的发展。 C. 现代,由于计算机和计算机网络的出现,对密码技术提出了更高的需求。密码学的论文和会议不断的增加,以密码技术为主的商业公司开始出现,密码算法层出不穷,并开始走向国际标准化的道路,出现了DES,AES等国家(美国的)标准。同时各个国家和政府对密码技术也越来越重视,都加密技术的出口和进口都作了相当严格的规定。 (2) 加密技术的分类 A.对称加密技术 a. 描述 对称算法(symmetric algorithm),有时又叫传统密码算法,就是加密密钥能够从解密密钥中推算出来,同时解密密钥也可以从加密密钥中推算出来。而在大多数的对称算法中,加密密钥和解密密钥是相同的。所以也称这种加密算法为秘密密钥算法或单密钥算法。它要求发送方和接收方在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都可以对他们发送或接收的消息解密,所以密钥的保密性对通信性

AES加密算法的实现及应用

AES加密算法的实现及应用 摘要:AES加密算法具有安全性高,运行速度快,对硬件配置要求低,算法属于对称算法等优点,非常适合硬件的实现。课题对于AES加密算法进行改进,提高程序运行效率进行了研究。研究主要包括AES加密算法的改进,C语言实现,以及完成对数据流的加密和解密过程,同时对AES加密算法的应用进行了简单介绍。 关键词:AESC语言加密 前言: AES加密算法作为DES加密算法的替代品,具有安全、高效以及在不同硬件和软件[6]运行环境下表现出的始终如一的良好性能,因此该算法具有较高的开发潜力和良好的实用价值。本研究主要包括AES加密算法的改进,C语言实现,以及完成对数据流的加密和解密过程,同时对AES加密算法的应用进行了简单介绍。 一、AES加密算法的改进及实现 (1)AES加密算法的流程图 在图1.1中,Round代表加密的轮数,即程序循环次数。State代表状态矩阵,一个存储原始数据的数组。RoundKey代

表经过扩展运算后的密钥数组。ByteSub()代表置换函数,对状态矩阵State中的数据进行置换。ShiftRow()代表移位函数,对状态矩阵State中的数据进行移位运算。MixColumn()代表列混合运算函数,对状态矩阵State中的数据进行列混合运算。AddRoundKey()代表异或运送函数,对数组State和数组RoundKey进行异或运算。由上图可以看出,最后一次轮变换比前几次轮变换少执行一次MixColumn()函数。 (2)AES解密算法的流程图 在图1.2中,Round代表加密的轮数,即程序循环次数。State代表状态矩阵,一个存储原始数据的数组。RoundKey代表经过扩展运算后的密钥数组。InvByteSub()代表置换函数,对状态矩阵State中的数据进行置换。InvShiftRow()代表移位函数,对状态矩阵State中的数据进行移位运算。InvMixColumn()代表列混合运算函数,对状态矩阵State中的数据进行列混合运算。由上图可以看出,最后一次轮变换比前几次轮变换少执行一次MixColumn()函数。 二、AES加密算法复杂度分析 下面对改进前的算法和改进后的算法进行复杂度分析[8]以及程序执行效率的分析。 设b为0x00―0xff中的任意常数,以0x09*b为例进行讨

AES算法加解密原理及安全性分析

AES算法加解密原理及安全性分析 刘帅卿 一、AES算法简介 AES算法是高级加密标准算法的简称,其英文名称为Advanced Encryption Standard。该加密标准的出现是因为随着对称密码的发展,以前使用的DES(Data Encryption Standard数据加密标准)算法由于密钥长度较小(56位),已经不适应当今数据加密安全性的要求,因此后来由Joan Daeman和Vincent Rijmen提交的Rijndael算法被提议为AES的最终算法。 AES是一个迭代的、对称密钥分组的密码,它可以使用128、192和256位密钥,并且用128位(16字节)分组加密和解密数据。与公共密钥密码使用密钥对不同,对称密钥密码使用相同的密钥加密和解密数据。通过分组密码返回的加密数据的位数与输入数据相同。迭代加密使用一个循环结构,在该循环中重复置换(permutations)和替换(substitutions)输入数据。加之算法本身复杂的加密过程使得该算法成为数据加密领域的主流。 二、AES算法的基本概念 1、有限域(GF) 由于AES算法中的所有运算都是在有限域当中进行的,所以在理解和实现该算法之前先得打好有限域这一基石才行。通常的数学运算都是在实数域中进行,而AES算法则是在有限域中进行,我们可以将有限域看成是有确定边界范围的正整数集合,在该集合当中,任意两个元素之间的运算结果都仍然落在该集合当中,也即满足运算封闭性。 那么如何才能保证这样的“有限性”(也即封闭性)呢? GF(2w)被称之为伽罗华域,是有限域的典型代表。随着w(=4,8,16,…)的取值不同所形成的有限域范围也不同。AES算法中引入了GF域当中对数学运算的基本定义:将两数的加减法定义为两者的异或运算;将两数的乘法定义为多

AES加密解密与代码实现详解

先搞定AES算法,基本变换包括SubBytes(字节替代)、ShiftRows(行移位)、MixColumns(列混淆)、AddRoundKey(轮密钥加) 其算法一般描述为 明文及密钥的组织排列方式

ByteSubstitution(字节替代) 非线性的字节替代,单独处理每个字节: 求该字节在有限域GF(28)上的乘法逆,"0"被映射为自身,即对于α∈GF(28),求β∈GF(28), 使得α·β=β·α=1mod(x8+x4+x2+x+1)。 对上一步求得的乘法逆作仿射变换 y i=x i + x(i+4)mod8 + x(i+6)mod8 + x(i+7)mod8 + c i (其中c i是6310即011000112的第i位),用矩阵表示为 本来打算把求乘法逆和仿射变换算法敲上去,最后还是放弃了...直接打置换表

下面是逆置换表,解密时使用 这里遇到问题了,本来用纯c初始化数组很正常,封装成类以后发现不能初始化,不管是声明、构造函数都无法初始化,百歌谷度了一通后没有任何答案,无奈只能在构造函数中声明一个局部变量数组并初始化,然后用memcpy,(成员变量名为Sbox/InvSbox,局部变量名sBox/invsBox)

ShiftRows(行移位变换) 行移位变换完成基于行的循环位移操作,变换方法: 即行移位变换作用于行上,第0行不变,第1行循环左移1个字节,第2行循环左移2个字节,第3行循环左移3个字节。 MixColumns(列混淆变换)

逐列混合,方法: b(x) = (03·x3 + 01·x2 + 01·x + 02) · a(x) mod(x4 + 1)

AES加密算法原理(图文)

AES加密算法原理(图文) 随着对称密码的发展,DES数据加密标准算法由于密钥长度较小(56位),已经不适应当今分布式开放网络对数据加密安全性的要求,因此1997年NIST公开征集新的数据加密标准,即AES[1]。经过三轮的筛选,比利时Joan Daeman和Vincent Rijmen提交的Rijndael算法被提议为AES的最终算法。此算法将成为美国新的数据加密标准而被广泛应用在各个领域中。尽管人们对AES还有不同的看法,但总体来说,AES作为新一代的数据加密标准汇聚了强安全性、高性能、高效率、易用和灵活等优点。AES设计有三个密钥长度:128,192,256位,相对而言,AES的128密钥比DES的56密钥强1021倍[2]。AES算法主要包括三个方面:轮变化、圈数和密钥扩展。 AES 是一个新的可以用于保护电子数据的加密算法。明确地说,AES 是一个迭代的、对称密钥分组的密码,它可以使用128、192 和256 位密钥,并且用128 位(16字节)分组加密和解密数据。与公共密钥密码使用密钥对不同,对称密钥密码使用相同的密钥加密和解密数据。通过分组密码返回的加密数据的位数与输入数据相同。迭代加密使用一个循环结构,在该循环中重复置换(permutations )和替换(substitutions)输入数据。Figure 1 显示了AES 用192位密钥对一个16位字节数据块进行加密和解密的情形。

Figure 1 部分数据 AES算法概述 AES 算法是基于置换和代替的。置换是数据的重新排列,而代替是用一个单元数据替换另一个。AES 使用了几种不同的技术来实现置换和替换。为了阐明这些技术,让我们用Figure 1 所示的数据讨论一个具体的AES 加密例子。下面是你要加密的128位值以及它们对应的索引数组: 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 192位密钥的值是: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 170 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23

AES加密算法的实现及应用

现代经济信息 前言: AES加密算法作为DES加密算法的替代品,具有安全、高 效以及在不同硬件和软件[6]运行环境下表现出的始终如一的良好性 能,因此该算法具有较高的开发潜力和良好的实用价值。本研究主要 包括AES加密算法的改进,C语言实现,以及完成对数据流的加密和 解密过程,同时对AES加密算法的应用进行了简单介绍。 一、AES加密算法的改进及实现 (1)AES加密算法的流程图 在图1.1中,Round代表加密的轮数,即程序循环次数。State代 表状态矩阵,一个存储原始数 据的数组。RoundKey代表经 过扩展运算后的密钥数组。 ByteSub()代表置换函数,对 状态矩阵State中的数据进行 置换。ShiftRow()代表移位函 数,对状态矩阵State中的数据 进行移位运算。MixColumn() 代表列混合运算函数,对状态 矩阵State中的数据进行列混合 运算。AddRoundKey()代表异 或运送函数,对数组State和数 组RoundKey进行异或运算。由 上图可以看出,最后一次轮变 换比前几次轮变换少执行一次 MixColumn()函数。 (2)A E S解密算法的流 程图 在图1.2中,Round代表加 密的轮数,即程序循环次数。 State代表状态矩阵,一个存储 原始数据的数组。RoundKey 代表经过扩展运算后的密钥 数组。InvByteSub()代表置换 函数,对状态矩阵State中的数据进行置换。InvShiftRow()代表移位函 数,对状态矩阵State中的数据进行移位运算。InvMixColumn()代表列 混合运算函数,对状态矩阵State中的数据进行列混合运算。由上图可 以看出,最后一次轮变换比前几次轮变换少执行一次MixColumn()函 数。 二、AES加密算法复杂度分析 下面对改进前的算法和改进后的算法进行复杂度分析[8]以及程序 执行效率的分析。 设b为0x00—0xff中的任意常数,以0x09*b为例进行讨论。该算式 分解如下: 0x09*b=(0x08+1)*b =0x08*b+b =(0x06+0x02)*b+b =0x06*b+0x02*b+b =(0x04+0x02)*b+0x02*b+b =0x04*b+0x02*b+0x02*b+b =(0x02+0x02)*b+0x02*b+0x02*b+b =0x02*b+0x02*b+0x02*b+0x02*b +b 将上述算式进行C语言实现得到以下程序: (1)程序1 int i,t; t=b; t=t<<2; for(i=0;i<3;i++){ t=t^t; } t=t^b; 由此可见,该程序的 时间复杂度为O(n)。将上 述程序做一改进可得到如 下程序: (2)程序2 int i,t; t=b; t=t<<2; t=t^t; t=t^t; t=t^t; t=t^t; t=t^b; 由此可见,该程序的 时间复杂度为O(1)。 若通过表格法对公式进行编成,可以得到如下程序: (3)程序3 int t; t=Tab0e[0x0e][b]; 由此可见,该程序的时间复杂度为O(1)。 通过上述程序可以发现,程序2与程序3的时间复杂度相同。但这 只能说明两程序的时间效率相似,并不一定相同,具体判断还要看程 序的规模。 虽然程序之间的规模只有几行代码的差距,但如果将这些程序放 在循环体中执行,程序之间在时间上的执行效率就会表现出较大的差 距,循环次数越多,循环层数越多,效率差距就越明显。AES加密算 法本身是一种非常适用于硬件加密的算法,因此当该算法应用于硬件 编程时,就更要把算法的时间效率考虑在内,否则很可能由于算法执 行时间过长,导致尚未加密的数据被新加入的数据冲掉,造成数据的 遗失,如此一来也就失去了数据加密的意义。这也是为什么要对算法 的程序实现进行效率考察的主要原因。 AES加密算法的实现及应用 赵雪梅 盐城工学院,江苏 盐城 224003 图1.1 AES加密算法流程图图1.2 AES解密算法流程图

AES加密算法实验报告

实验报告 学号:姓名:专业:班级:第 10 周

static void SubBytes(unsigned char p[16]); static void inSubBytes(unsigned char p[16]); static void ShiftRows(unsigned char e[]); static void inShiftRows(unsigned char e[]); static void MatrixToByte(unsigned char e[]); static void inMatrixToByte(unsigned char e[]); static unsigned char FFmul(unsigned char a, unsigned char b); static void KeyAdding(unsigned char state[16], unsigned char k[][4]); static void KeyExpansion(unsigned char* key, unsigned char w[][4][4]); ~plaintext(); private: }; #include"" using namespace std; static unsigned char sBox[] = {};/定义加密S盒/ unsigned char insBox[256] ={};//定义解密S盒 plaintext::plaintext() { } void plaintext::createplaintext(unsigned char a[])//创建明文 { int i = 0; unsigned int p[16]; for (int j = 0; j<200; j++) { if (a[j] == 0) { break; } } for (; i<16; i++) { p[i] = a[i]; a[i] = a[i + 16];

JAVA实现AES加密算法代码

JAVA实现AES加密算法代码 近些年DES使用越来越少,原因就在于其使用56位密钥,比较容易被破解,近些年来逐渐被AES替代,AES已经变成目前对称加密中最流行算法之一;AES可以使用128、192、和256位密钥,并且用128位分组加密和解密数据。本文就简单介绍如何通过JAVA实现AES加密。 1. JAVA 实现闲话少许,掠过AES加密原理及算法,关于这些直接搜索专业吧,我们直接看JAVA的具体实现。 1.1 加密代码有详细解释,不多废话。/** * 加密 * * param content 需要加密的容* param password 加密密码* return */ public static byte[] encrypt(String content, String password) { try { KeyGenerator kgen = KeyGenerator.getInstance("AES"); kgen.init(128, new SecureRandom(password.getBytes())); SecretKey secretKey = kgen.generateKey(); byte[] enCodeFormat = secretKey.getEncoded(); SecretKeySpec key = new SecretKeySpec(enCodeFormat, "AES"); Cipher cipher = Cipher.getInstance("AES");// 创建密码器byte[] byteContent = content.getBytes("utf-8");

简述对称加密算法有哪些优点

1.简述对称加密算法有哪些优点。 A.对称密码术的优点在于效率高(加/解密速度能达到数十兆/秒或更多) B.算法简单 C.系统开销小 D.适合加密大量数据 2. 结合实验描述一下使用RSA工具加密数据的一般流程。 主机A选择“文件->载入任意待加密文件(字节流)”,指定明文文件hello.txt。主机A 选择“操作->公钥加密载入的字节流”,生成密文文件hello1.hextxt。主机A查看密文文件hello1.hextxt的内容。由此可以分析出:经RSA公钥加密了明文文件hello.txt。 3.常用的加密技术通常都有很多实际的应用,请列举几例。 例如办公文件证书的加密,公司内部文件报表加密,以及一些机关重要文件加密等。 4.通过本实验,请设计一个文件安全传输的方法流程 通过“OUTLOOK EXPRESS”客户端,在系统托盘的PGP图标上单击鼠标,在弹出的快捷菜单上选择“Current Window->Encrypt”菜单项,弹出“PGPtray - Key Selection Dialog”对话框,将接收方的邮件地址拖到“Recipients”列表中,将发件人的邮件地址拖到“Drag users from this list to the Recipients”列表中,单击“OK”按钮,则要发送的邮件内容被加密了。 5. 应用数字签名有哪些好处? 数字签名可以用来验证文档的真实性和完整性,数字签名使用强大的加密技术和公钥基础结构,以更好地保证文档的真实性、完整性和受认可性。该流程非常安全,一些政府已经立法赋予数字签名法律效力。 6.如何防止网络传输的文件遭到非法篡改? 可以利用数字签名技术进行保护: 使用加密系统(对称性与非对称性加密)防止他人篡改或窃取。 以散列方式防止文件完整性遭到破坏。 使用数字签名方式核实发送方的确切身份。 使用数字签名防止发送者否认。 7.数字时间戳服务主要的作用是什么? 对于成功的电子商务应用,要求参与交易各方不能否认其行为。这其中需要在经过数字签名的交易上打上一个可信赖的时间戳,从而解决一系列的实际问题和法律问题。由于用户桌面时间很容易改变,由该时间产生的时间戳不可信赖,因此需要一个权威第三方来提供可信赖的且不可抵赖的时间戳服务。 在各种政务和商务文件中,时间是十分重要的信息。在书面合同中,文件签署的日期和签名一样均是十分重要的防止文件被伪造和篡改的关键性内容。 在电子文件中,同样需对文件的日期和时间信息采取安全措施,而数字时间戳服务(DTS:digital time-stamp service)就能提供电子文件发表时间的安全保护。

AES加密算法

AES加密算法[转] 加密它:用新的高级加密标准(AES)保持你的数据安全 原著:James McCaffrey 翻译:小刀人 原文出处:MSDN Magazine November 2003 (Encrypt It) 本文的代码下载:msdnmag200311AES.exe (143KB) 本文假设你熟悉C# 和位(bit)操作。 摘要 AES(The Advanced Encryption Standard)是美国国家标准与技术研究所用于加密电子数据的规范。它被预期能成为人们公认的加密包括金融、电信和政府数字信息的方法。本文展示了AES的概貌并解析了它使用的算法。包括一个完整的C#实现和加密.NET数据的举例。在读完本文后你将能用AES加密、测试基于AES的软件并能在你的系统中使用AES加密。 -------------------------------------------------------------------------------- 美国国家标准与技术研究所(NIST)在2002年5月26日建立了新的高级数据加密标准(AES)规范。本文中我将提供一个用C#编写的的能运行的AES 实现,并详细解释到底什么是AES 以及编码是如何工作的。我将向您展示如何用AES 加密数据并扩展本文给出的代码来开发一个商业级质量的AES 类。我还将解释怎样把AES 结合到你的软件系统中去和为什么要这么做,以及如何测试基于AES 的软件。 注意本文提供的代码和基于本文的任何其它的实现都在联邦加密模块出口控制的 适用范围之内(详情请参看Commercial Encryption Export Controls )。 AES 是一个新的可以用于保护电子数据的加密算法。明确地说,AES 是一个迭代的、对称密钥分组的密码,它可以使用128、192 和256 位密钥,并且用128 位(16字节)分组加密和解密数据。与公共密钥密码使用密钥对不同,对称密钥密码使用相同的密钥加密和解密数据。通过分组密码返回的加密数据的位数与输入数据相同。迭代加密使用一个循环结构,在该循环中重复置换(permutations )和替换(substitutions)输入数据。Figure 1 显示了AES 用192位密钥对一个16位字节数据块进行加密和解密的情形。

实验2 对称加密算法:DES

实验1-2 对称密码算法DES 一.实验原理 信息加密根据采用的密钥类型可以划分为对称密码算法和非对称密码算法。对称密码算法是指加密系统的加密密钥和解密密钥相同,或者虽然不同,但是可以从其中任意一个推导出另一个,更形象的说就是用同一把钥匙开锁和解锁。在对称密码算法的发展历史中曾出现过多种优秀的算法,包括DES、3DES、AES等。下面我们以DES算法为例介绍对称密码算法的实现机制。 DES算法是有美国IBM公司在20世纪70年代提出,并被美国政府、美国国家标准局和美国国家标准协会采纳和承认的一种标准加密算法。它属于分组加密算法,即明文加密和密文解密过程中,信息都是按照固定长度分组后进行处理的。混淆和扩散是它采用的两个最重要的安全特性,混淆是指通过密码算法使明文和密文以及密钥的关系非常复杂,无法从数学上描述或者统计。扩散是指明文和密钥中每一位信息的变动,都会影响到密文中许多位信息的变动,从而隐藏统计上的特性,增加密码安全。 DES将明文分成64比特位大小的众多数据块,即分组长度为64位。同时用56位密钥对64位明文信息加密,最终形成64位的密文。如果明文长度不足64位,则将其扩展为64位(例如补零等方法)。具体加密过程首先是将输入的数据进行初始换位(IP),即将明文M 中数据的排列顺序按一定的规则重新排列,生成新的数据序列,以打乱原来的次序。然后将变换后的数据平分成左右两部分,左边记为L0,右边记为R0,然后对R0施行在子密钥(由加密密钥产生)控制下的变换f,结果记为f(R0 ,K1),再与L0做逐位异或运算,其结果记为R1,R0则作为下一轮的L1。如此循环16轮,最后得到L16、R16,再对L16、R16施行逆初始置换IP-1,即可得到加密数据。解密过程与此类似,不同之处仅在于子密钥的使用顺序正好相反。 DES全部16轮的加密过程如图1-1所示。 DES的加密算法包括3个基本函数: 1.初始换位(IP) 它的作用是把输入的64位数据块的排列顺序打乱,每位数据按照下面换位规则重新组合。即将第58位换到第1位,第50位换到第2位,…,依次类推。重组后的64位输出分为L0、R0(左、右)两部分,每部分分别为32位。 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8 57, 49, 41, 33, 25, 17, 9, 1 59, 51, 43, 35, 27, 19, 11, 3 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 R0和K1经过f(R0,K1)变换后的输出结果,再和L0进行异或运算,输出结果做为R1。R0则赋给L1。L1和R1同样再做类似运算生成L2和R2,…,经过16次运算后生成L16和R16。 2.f函数 f函数是多个置换函数和替代函数的组合函数,它将32位比特的输入变换为32位的输出,如图1-2。R i经过扩展运算E变换后扩展为48比特的E(R i),与K i+1进行异或运算后输出的结果分成8组,每组6比特的并联B,B=B1B2B3B4B5B6B7B8,再经过8个S盒的选择压缩运算转换为4比特,8个4比特合并为32比特后再经过P变换输出为32比特的f(R i-1,K i)。其中,扩展运算E与置换P主要作用是增加算法的扩散效果。

AES加密算法实现流程

由于AES的数学原理在网上有很多,所以在这里就不再说明,主要是加密流程。 先说明一下AES的几个必备参数的初始化 typedef struct _AES{ int Nb; //明文或密文的行数 int Nr; //加密或解密时的轮数 int Nk; //密钥的行数 unsigned long *Word;//指向密钥库的指针 unsigned long *State; //指向每一轮加密或解后的结果 }AES; 这里统一为4列n行,可以用unsigned long数组表示。 Nb = 明文或密文长度/4 ;Nk = 密钥长度/4;加密轮数Nr = Nb < Nk ? Nk:Nb+6; 一.密钥库的生成过程 1.计算库的行数并分配内存 库行数= Nb*(Nr+1); 2.初始化密钥库 库的第一个密钥为原密钥---直接将密钥拷贝到密钥库中; 3.开始计算轮密钥 unsigned long temp; for (int c = Nk; c < Nb * (Nr+1); ++c) { //把上一轮的最后一行放入temp temp = w[c-1]; //判断是不是每一轮密钥的第一行 if (c % Nk == 0) { //左旋8位 temp = (temp<<8)|(temp>>24); //查Sbox表 SubWord((byte*)&temp); temp ^= Rcon[c/Nk]; } else if ( Nk > 6 && (c % Nk == 4) ) {

SubWord((byte*)&temp); } //w[c-Nk] 为上一轮密钥的第一行 w[c] = w[c-Nk] ^ temp; } 二.State生成 为了实现快速列混淆(这里应该是行混淆),State需要多出三行作为缓冲区。所以State = new unsigned long[Nb+3]; 当解密时State += 3;加密时不变。 AES算法中行混淆的实现: 加密时第1,2,3列(从0开始)分别上旋(解密时下旋)1,2,3个字节。先拷贝前三行到State的最后三行(就是拷贝到多出来的那三行)。 设temp(unsigned char temp[4])为行混淆后第n行的数据。 设Nb = 4,那么加密时的逻辑结构为:(空白为无效数据) 拷贝前:拷贝后:处理完后的结果: c0 c1 c2 c3 c0 c1 c2 c3 c0 c1 c2 c3 --------------------- --------------------- --------------------- | s0 | s1 | s2 | s3 | | s0 | | | | | t0 | t5 | ta | tf | --------------------- --------------------- --------------------- | s4 | s5 | s6 | s7 | | s4 | s5 | | | | t4 | t9 | te | t3 | --------------------- --------------------- --------------------- | s8 | s9 | sa | sb | | s8 | s9 | sa | | | t8 | td | t2 | t7 | --------------------- --------------------- --------------------- | sc | sd | se | sf | | sc | sd | se | sf | | tc | t1 | t6 | tb | --------------------- --------------------- --------------------- | | | | | | | s1 | s2 | s3 | | | | | | --------------------- --------------------- --------------------- | | | | | | | | s6 | s7 | | | | | | --------------------- --------------------- --------------------- | | | | | | | | | sb | | | | | | --------------------- --------------------- --------------------- 则temp = {s0,s5,sa,sf};temp值经其它运算后放入State的第n行。 下面是解密时的情况 拷贝前:拷贝后:处理完后的结果:

AES加密算法流程介绍

AES加密算法流程介绍 作者美创科技安全实验室 01、AES算法简介 美国政府在1997年公开征集高级加密标准(Advanced Encryption Standard:AES)替代DES加密算法。AES得到了全世界很多密码工作者的响应,先后有很多人提交了自己设计的算法。最终有5个候选算法进入最后一轮:Rijndael,Serpent,Twofish,RC6和MARS。最终经过安全性分析、软硬件性能评估等严格的步骤,Rijndael算法获胜。 02、AES的基本结构 AES为分组密码,把明文分成一组一组的,每组长度相等,每次加密一组数据,直到加密完整个明文。在AES标准规范中,分组长度只能是128位,也就是说,每个分组为16个字节(每个字节8位)。密钥的长度可以使用128位、192位或256位。密钥的长度不同,推荐加密轮数也不同,如下表所示: 接下来,我们以AES-128为例,介绍AES算法的流程。 03、AES算法流程

AES加密算法涉及4种操作:字节替代(SubBytes)、行移位(ShiftRows)、列混淆(MixColumns)和轮密钥加(AddRoundKey)。 下图给出了AES加解密的流程,从图中可以看出: 1)解密算法的每一步分别对应加密算法的逆操作 2)加解密所有操作的顺序正好是相反,保证了算法的正确性。 另外,加解密中每轮的密钥分别由种子密钥经过密钥扩展算法得到。算法中16字节的明文、密文和轮子密钥都以一个4x4的矩阵表示。 3.1字节替代 字节代替的主要功能是通过S盒完成一个字节到另外一个字节的映射。AES定义了一个S盒和一个逆S盒,用于提供密码算法的混淆性。 S盒:

对称加密算法的设计与实现 精品

延 边 大 学 ( 二 〇 一 三 年 五 月 摘 要 本 科 毕 业 论 文 本科毕业设计 题 目:基于D E S 的对称加密算法的 设计与实现 学生姓名:周莹冰 学 院:工学院 专 业:数字媒体技术 班 级:2009级 指导教师:李永珍 副教授

随着信息时代的来临,信息的安全性变得尤为重要,而对数据进行加密是行之有效的能保证信息安全性的方法。DES算法是众多数据加密算法中的一种,在过去的几十年中在数据加密领域有着举足轻重的地位,然而随着计算机技术的发展,DES算法的安全性也被大大地降低,针对DES的暴力破解所用的时间在逐年减少,为了能使DES这种优秀的加密算法能够重新使用,本文将针对就DES的暴力破解提供一种有效的解决方案:基于DES算法迭代算法的改进,对DES的密钥长度进行了扩展。使DES的安全性得到了增强,同时相较于DES算法的改进算法3DES算法,效率上会比3DES高,安全性上也不会逊色于3DES。 关键词:DES;密钥扩展;迭代算法; Abstract

With the coming of information age, information security has become especially important, and to encrypt data is effective to ensure the security of the information. DES algorithm is one of data encryption algorithms, in the past few decades has a pivotal position in the field of data encryption. however, with the development of computer technology, the security of DES algorithm also has been greatly reduced, the time of brute force of DES has been reducing year by year, in order to make this good encryption algorithm can be used again, this article will focus on the DES of brute force to provide an effective solution: based on iterative algorithm of DES algorithm, and extended the length of DES key. To make the security of DES more enhanced, at the same time, compared with the 3 DES algorithm, the efficiency will be higher than 3 DES, and security will not inferior to 3 DES. Key word: DES; key expansion;iterative algorithm

128位AES加密算法

声明文件 AES.h #ifndef _AES_H_#define _AES_H_ #include class CAES {public: /* * 功能:初始化 * 参数:key —密钥,必须是16字节(128bit) */ CAES(const BYTE key[16]); ~CAES(); /* * 功能:加密,加密后的字节串长度只会是16字节的整数倍 * 参数:src_data —需要加密的字节串,不允许为空 * src_len — src_data长度,不允许为0 * dst_data —指向加密后字节串的指针,如果该指针为空或者dst_len小于加密后所需的字节长度,函数内部会自动分配空间 * dst_len — dst_data长度 * release_dst —函数内部自动分配空间时是否删除现有空间 * 返回值: 加密字节串长度 */ size_t Encrypt(IN const void* const src_data, IN size_t src_len, OUT void*& dst_data, IN size_t dst_len, IN bool release_dst = false); /* * 功能:解密 * 参数:data — [IN] 需要解密的字节串,不允许为空 * [OUT]解密后的字节串 * len —字节串长度,该长度必须是16字节(128bit)的整数倍 */ void Decrypt(IN OUT void* data, IN size_t len); /* * 功能: 获取待加密的字节串被加密后字节长度 * 参数: src_len —需要加密的字节串长度 * 返回值: 加密后字节串长度 */ size_t GetEncryptDataLen(IN size_t src_len) const; private: // 对data前16字节进行加密 void Encrypt(BYTE* data); // 对data前16字节进行解密 void Decrypt(BYTE* data);

对称加密+非对称加密+5大安全算法

对称加密算法: 采用单钥密码的加密方法,同一个密钥可以同时用来加密和解密,这种加密方法称为对称加密,也称为单密钥加密。常用的单向加密算法: 1、DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合;DES算法把64位的明文输入块变为64位的密文输出块,它所使用的密钥也是64位(实际用到了56位,第8、16、24、3 2、40、48、56、64位是校验位,使得每个密钥都有奇数个1),其算法主要分为两步: 1)初始置换 其功能是把输入的64位数据块按位重新组合,并把输出分为L0、R0两部分,每部分各长32位,其置换规则为将输入的第58位换到第一位,第50位换到第2位......依此类推,最后一位是原来的第7位。L0、R0则是换位输出后的两部分,L0是输出的左32位,R0是右32位,例:设置换前的输入值为D1D2D3......D64,则经过初始置换后的结果为:L0=D58D50......D8;R0=D57D49 (7) 2)逆置换 经过16次迭代运算后,得到L16、R16,将此作为输入,进行逆置换,逆置换正好是初始置换的逆运算,由此即得到密文输出。 此算法是对称加密算法体系中的代表,在计算机网络系统中广泛使用。 2、3DES(Triple DES):是基于DES,对一块数据用三个不同的密钥进行三次加密,强度更高;3DES(即Triple DES)是DES向AES过渡的加密算法,它使用3条56位的

密钥对数据进行三次加密。是DES的一个更安全的变形。它以DES为基本模块,通过组合分组方法设计出分组加密算法。比起最初的DES,3DES更为安全。 该方法使用两个密钥,执行三次DES算法,加密的过程是加密-解密-加密,解密的过程是解密-加密-解密。 3DES加密过程为:C=Ek3(Dk2(Ek1(P))) 3DES解密过程为:P=Dk1(EK2(Dk3(C))) 采用两个密钥进行三重加密的好处有: ①两个密钥合起来有效密钥长度有112bit,可以满足商业应用的需要,若采用总长为168bit的三个密钥,会产生不必要的开销。 ②加密时采用加密-解密-加密,而不是加密-加密-加密的形式,这样有效的实现了与现有DES系统的向后兼容问题。因为当K1=K2时,三重DES的效果就和原来的DES一样,有助于逐渐推广三重DES。 ③三重DES具有足够的安全性,还没有关于攻破3DES的报道。 3、AES(Advanced Encryption Standard):高级加密标准,是下一代的加密算法标准,速度快,安全级别高,支持128、192、256、512位密钥的加密; 4、Blowfish 对称加密的算法特征: 1、加密方和解密方使用同一个密钥; 2、加密解密的速度比较快,适合数据比较长时的使用; 3、密钥传输的过程不安全,且容易被破解,密钥管理也比较麻烦; 优缺点: 对称加密算法的优点是算法公开、计算量小、加密速度快、加密效率高。 对称加密算法的缺点是在数据传送前,发送方和接收方必须商定好秘钥,然后使双方都能保存好秘钥。其次如果一方的秘钥被泄露,那么加密信息也就不安全了。另外,每对用户每次使用对称加密算法时,都需要使用其他人不知道的独一秘钥,这会使得收、发双方所拥有的钥匙数量巨大,密钥管理成为双方的负担。 简述:优点:算法简单,加密解密容易,效率高,执行快。 缺点:相对来说不算特别安全,只有一把钥匙,密文如果被拦截,且密钥也被劫持,那么,信息很容易被破译。 非对称加密算法: 对称加密算法在加密和解密时使用的是同一个秘钥;而非对称加密算法需要两个密钥来进行加密和解密,这两个密钥是公开密钥(public key,简称公钥)和私有密钥(private key,简称私钥)。 与对称加密算法不同,非对称加密算法需要两个密钥:公开密钥(publickey)和私有密钥(privatekey)。公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密;如果用私有密钥对数据进行加密,那么只有用对应的公开密钥才能解密。因为加密和解密使用的是两个不同的密钥,所以这种算法叫作非对称加密算法。

相关文档
最新文档