一类二元有理插值的新算法

一类二元有理插值的新算法
一类二元有理插值的新算法

 第13卷第5期

 2005年10月安徽建筑工业学院学报(自然科学版)Journal of Anhui Institute of Architecture &Industry Vol.13No.5 Oct.2005

收稿日期:2003210219

基金项目:安徽建筑工业学院硕士启动基金(04061)。

作者简介:闵 杰(1978-),男,讲师,硕士,主要研究方向为算法设计与分析。

一类二元有理插值的新算法

闵 杰

(安徽建筑工业学院数理系,合肥 230022)

摘 要:把平面上的二元有理插值节点及对应的实函数值均视为一个复数值,然后使用一元有理插值的逆差商-连分式的算法以及适当的变换导出了二元有理插值的一种新算法。所得算法避免了使用分叉连分式,简化了计算。

关键词:二元有理插值;算法;连分式

中图分类号:O241.3 文献标识码:A 文章编号:100624540(2005)052036204

A ne w algorithm of bivariate rational interpolants

M IN Jie

(Depart ment of Mat hematics &Physics ,Anhui Instit ute of Architecture &Indust ry ,Hefei 230022,China )

Abstract :In t his paper ,we loo k on t he knot s in t he plane and corresponding real f unctional values as complex point s ,t hen use t he inverse 2difference algorit hm of rational interpolant s and app ropriate t ransformation ,t he recursive algorit hm is obtained in t he end.This algorit hm avoid using branched continued fractions and simplify t he comp utation.

K ey w ords :bivariate rational interpolant s ;algorit hm ;continued fractions

二元有理插值是一元有理插值的自然推广,由于点集的复杂性,它比一元情形复杂得多。二元有理插值问题的一般提法是:设f (x ,y )为定义在平面有界区域D 上的连续函数,{x 0,x 1,…,x n 1}和{y 0,y 1,…,y n 2}为实数或复数点列(不必互异)。所谓二元有理插值问题乃是寻找二元有理分式函数

R (x ,y )=N (x ,y )/M (x ,y )

其中,N (x ,y ),M (x ,y )均为二元多项式,使之满足插值条件

R (x p ,y q )=N (x p ,y q )/M (x p ,y q )=f (x p ,y q ),p =0,1,…,n 1,q =0,1,…,n 2

在现有文献中大多利用分叉连分式作为工具给出二元有理插值的算法,计算比较复杂。本文对上述二元有理插值问题中插值节点集{x 0,x 1,…,x n 1}和{y 0,y 1,…,y n 2}和对应函数值是实数点列情况

进行了讨论,然后利用插值型值点复数化的方法,即将二元有理插值结点看作是一个复数点,对应的函数值视为一个复数值,就可以把二元问题转化为一元问题来研究,下面就来介绍有关结果。1 复有理插值公式的构造

为研究问题方便,首先将二元有理插值节点集{x 0,x 1,…,x n 1}和{y 0,y 1,…,y n 2}离散化为S =

{(x i ,y i )|i =0,1,…,n ,x i ,y i ∈R},其中n =n 1n 2,则其对应的实函数值集可记为U ={u i =f (x i ,y i ),u

i

∈R ,i =0,1,…,n}。然后对二元有理插值型值点进行复数化:记Z ={z i |z i =x i +j y i ∈C ,i =0,1,…,n}来代替S ={(x i ,y i )|i =0,1,…,n ,x i ,y i ∈R ),函数值集U 用W ={w i |w i =u i +0j ,u i ∈U ,(i =0,1,…,n )}来代替,即w i =u i +0j ,其中j 2=-1。这样问题就转化为给定复插值结点集Z ={z i |z i =x i +j y i ∈C ,x i ,y i ∈R ,i =0,1,…,n}和对应的复数型的函数值集W ={w i |w i =u i +0j ,u i ∈U ,(i =0,1,…,n )},寻求有理插值函数V (z )使满足插值条件

V (z i )=w i ,i =0,1,…,n

(1) 然后就可以利用一元有理插值函数逆差商-连分式的算法来构造这种插值复数点的有理插值公式V (z )。因为Z ={z i |z i ∈C ,i =0,1,…,n}是复平面上的一个点集,可令

φ[z i ]=w i ,i =0,1,…,n (2)φ[z p ,z q ]=z q -z p w q -w p ,0≤p ,q ≤n (3)

φ[z 0,z 1,…,z k ]=z k -z k-1φ[z 0,z 1,…,z k-2,z k ]-φ[z 0,z 1,…,z k-1]

,1≤k ≤n (4)称由上述公式确定的φ[z 0,z 1,…,z k ]为被插值函数在z 0,z 1,…,z k 处的k 阶逆差商。

记b 0=φ[z 0],b 1=φ[z 0,z 1],…,b n =φ[z 0,z 1,…,z n ],那么在各阶逆差商b k =φ[z 0,z 1,…,z k ](k =

1,…,n )都存在且不等于零的前提下,可以得到一个Thiele 型连分式b 0+z -z 0b 1+z -z 1b 2+…+z -z n -1b n

,表1 对应表x 0=3x 1=2x 2=1y 0=2

221y 1=11/20令此式为V (z ),若V (z k )=w k ,则V (z )就是插值复数点的有

理函数。

例1设具有非规则结构的二元有理插值节点及对应的函数值如表1所示。

将型值点离散化以及复数化后得Z ={(1+j ),(1+2j ),(2+j ),(2+2j ),(3+2j )},

W ={0+0j ,1+0j ,12

+0j ,2+0j ,2+0j},于是根据计算公式(2)~(4)可得z 0=1+j w 0=0+0j

z 1=1+2j w 1=1+0j

φ[z 0,z 1]=j z 2=2+j w 2=12+0j φ[z 0,z 2]=2 φ[z 0,z 1,z 2]=3-j 5

z 3=2+2j w 3=2+0j φ[z 0,z 3]=12+12j φ[z 0,z 1,z 3]=1+j φ[z 0,z 1,z 2,z 3]=3+j 4

z 4=3+2j w 4=2+0j φ[z 0,z 4]=1+j 2 φ[z 0,z 1,z 4]=8+4j 5

φ[z 0,z 1,z 2,z 4]=1 φ[z 0,z 1,z 2,z 3,z 4]=2+2j

所以有b 0=0+0j ,b 1=j ,b 2=3-j 5,b 3=3+j 4

,b 4=2+2j ,于是可得连分式V (z )=(0+0j )+z -(1+j )j +z -(1+2j )3-j 5+z -(2+j )3+j 4

+z -(2+2j )2+2j

可以验证V (z k )=w k ,k =0,1,2,3,4,所以V (z )就是插值复型值点的有理插值公式。2 二元有理插值的递推算法

在上述有理插值公式V (z )存在且V (z i )=w i (i =0,1,…,n )的前提下来研究二元有理插值的递推算法。

记V k (z )=A k B k =φ[z 0]+z -z 0φ[z 0,z 1]+z -z 1φ[z 0,z 1,z 2]

+…+z -z k -1φ[z 0,z 1,…,z k ]73 第5期 闵 杰:一类二元有理插值的新算法

=b0+z -z0

b1

+

z-z0

b2

+…+

z-z k-1

b k

并称V k(z)为V(z)的第k项截断连分式。

若定义A-1=1,B-1=0,A0=b0,B0=1,则根据连分式知识可知A k和B k有如下递推关系

A k=b k A k-1+(z-z k-1)A k-2

B k=b k B k-1+(z-z k-1)B k-2

显然A k和B k均为二元复多项式,而且只要计算出A n和B n就可以得到V(z)的另一种形式V(z)

=A n

B n

,然后再将分母有理化后可变形为

V(z)=V(x+jy)=

A n

B n

=

A(x,y)+A′(x,y)j

B(x,y)

=

A(x,y)

B(x,y)

+

A′(x,y)

B(x,y)

j

其中A(x,y),A′(x,y),B(x,y)均为二元实多项式。在前面的讨论中得知V(z)是插值(z i,w i)的有理插值公式,也即V(z i)=w i,所以

V(z i)=V(x i+jy i)=A(x i,y i)

B(x i,y i)

+

A′(x i,y i)

B(x i,y i)

j=w i=u i+0j

令R(x,y)=A(x,y)

B(x,y),显然由上式可得R(x i,y i)=

A(x i,y i)

B(x i,y i)

=u i且R(x,y)=A

(x,y)

B(x,y)

满足插值函

数所要求的形式,所以R(x,y)就是所要求的二元有理插值函数。令R′(x,y)=A ′(x,y)

B(x,y)

,则同理R′(x,y)是插值(x i,y i)(i=0,1,…,n),且对应函数值均为0的二元有理插值函数。

例2设S={(0,0),(1,1)(2,-1

3)},z=sin

π

2

(1+x y)的值为u0=1,u1=0,u2=1

2

,求二元有理插

值函数R(x,y)。

解:将插值节点变换为Z={0,1+j,2-1

3j},对应值W={1+0j,0+0j,

1

2

+0j},则可构造反差商

表如下

z0=0 φ[z0]=1+0j

z1=1+j φ[z1]=0+0j φ[z0,z1]=-1-j

z2=2-1

3

j φ[z2]=

1

2

+0j φ[z0,z2]=-4+

2

3

j φ[z0,z1,z2]=-

47+21j

106

所以b0=φ[z0]=1+0j,b1=φ[z0,z1]=-1-j,b2=φ[z0,z1,z2]=-47+21j

106

故插值函数为V(z)=(1+0j)+z-0

-1-j +z

-(1+j)

-47+21j

106

,显然V(z k)=w k,k=0,1,2。

设A-1=1,B-1=0,A0=b0,B0=1,则利用连分式三项递推关系式可得

A1=b1A0+(z-z0)A-1=z-(1+j)

B1=b1B0+(z-z0)B-1=-1-j

A2=b2A1+(z-z1)A0=[59(x-1)-21(y-1)]+[21(x-1)+59(y-1)]j

106

B2=b2B1+(z-z1)B0=[106x-38]+[106y-80]j

106

所以A2

B2=

[59(x-1)-21(y-1)]+[21(x-1)+59(y-1)]j

[106x-38]+[106y-80]j

=

A(x,y

)

B(x,y)

+

A′(x,y)

B(x,y)

j =

[59(x-1)-21(y-1)](106x-38)+[21(x-1)+59(y-1)](106y-80)

(106x-38)2+(106y-80)2

83安徽建筑工业学院学报(自然科学版) 第13卷

+[21(x -1)+59(y -1)](106x -38)-59(x -1)-21(y -1)](106y -80)j

(106x -38)2+(106y -80)2经验证

A (x i ,y i )

B (x i ,y i )=u i ,i =0,1,2,所以R (x ,y )=A (x ,y )B (x ,y )

=(106x -38)[59(x -1)-21(y -1)]+(106y -80)[21(x -1)+59(y -1)](106x -38)2+(106y -80)2 就是所要求的二元有理插值函数。

可见,本文所给出的二元有理插值的新算法具有一般性,因为只要在二元有理插值插值函数存在的前提下,此算法不仅适用于正规结点集,而且还适用于非正规的或离散的结点集上的二元有理插值问题。另外在计算的过程中还可以适当调整插值结点的顺序,以有利于构造出插值公式,使得这种新算法具有很大的灵活性。再利用连分式的三项递推关系式对此复插值公式进行有理化,最后采取适当的变换得到所要求的二元有理插值函数。实现了用一元有理插值的方法来构造二元有理插值函数,避免了使用了分叉连分式,这使得计算过程得到很大简化,对解决一类二元实有理插值问题具有更大的有效性。参考文献

1 朱功勤.二元逐步有理插值[J ].合肥工业大学学报(自然科学版),2000,23(1):10-15.

2 李 蔚.不规则结构上的二元有理插值[J ].工科数学,1999,15(1):92-95.

3 朱功勤,王洪燕.离散点集上向量有理插值算法与特征性质[J ].高校计算数学学报,1998,20(3):315-320.

4 王家正.矩形网格上一类二元有理插值问题[J ].工科数学,1999,15(2):92-95.

5 朱功勤,顾传青,檀结庆.多元有理逼近方法[M ].北京:中国科学技术出版社,1996:1-108.

6 王仁宏,朱功勤.有理函数逼近及其应用[M ].北京:科学出版社,2004:1-101.9

3 第5期 闵 杰:

一类二元有理插值的新算法

常见的插值方法及其原理

常见的插值方法及其原理 这一节无可避免要接触一些数学知识,为了让本文通俗易懂,我们尽量绕开讨厌的公式等。为了进一步的简化难度,我们把讨论从二维图像降到一维上。 首先来看看最简单的‘最临近像素插值’。 A,B是原图上已经有的点,现在我们要知道其中间X位置处的像素值。我们找出X位置和A,B位置之间的距离d1,d2,如图,d2要小于d1,所以我们就认为X处像素值的大小就等于B处像素值的大小。 显然,这种方法是非常苯的,同时会带来明显的失真。在A,B中点处的像素值会突然出现一个跳跃,这就是为什么会出现马赛克和锯齿等明显走样的原因。最临近插值法唯一的优点就是速度快。 图10,最临近法插值原理 接下来是稍微复杂点的‘线性插值’(Linear) 线性插值也很好理解,AB两点的像素值之间,我们认为是直线变化的,要求X点处的值,只需要找到对应位置直线上的一点即可。换句话说,A,B间任意一点的值只跟A,B有关。由于插值的结果是连续的,所以视觉上会比最小临近法要好一些。线性插值速度稍微要慢一点,但是效果要好不少。如果讲究速度,这是个不错的折衷。 图11,线性插值原理

其他插值方法 立方插值,样条插值等等,他们的目的是试图让插值的曲线显得更平滑,为了达到这个目的,他们不得不利用到周围若干范围内的点,这里的数学原理就不再详述了。 图12,高级的插值原理 如图,要求B,C之间X的值,需要利用B,C周围A,B,C,D四个点的像素值,通过某种计算,得到光滑的曲线,从而算出X的值来。计算量显然要比前两种大许多。 好了,以上就是基本知识。所谓两次线性和两次立方实际上就是把刚才的分析拓展到二维空间上,在宽和高方向上作两次插值的意思。在以上的基础上,有的软件还发展了更复杂的改进的插值方式譬如S-SPline, Turbo Photo等。他们的目的是使边缘的表现更完美。

计算方法 课内实验 插值法与函数逼近

《计算方法》课内实验报告 学生姓名:张学阳1009300132 及学号: 学院: 理学院 班级: 数学101 课程名称:计算方法 实验题目:插值法与函数逼近 指导教师 宋云飞讲师 姓名及职称: 朱秀丽讲师 尚宝欣讲师 2012年10月15日

目录 一、实验题目.......................................................... 错误!未定义书签。 二、实验目的.......................................................... 错误!未定义书签。 三、实验内容.......................................................... 错误!未定义书签。 四、实现结果.......................................................... 错误!未定义书签。 五、实验体会或遇到问题 (6)

插值法与函数逼近 二、实验目的 1.熟悉matlab 编写及运行数值计算程序的方法。 2.进一步理解插值法及函数逼近方法的理论基础。 3.进一步掌握给定数据后应用插值法及函数逼近方法进行数据处理并给出图示结果的实际操作过程。 三、实验内容 1.已知函数在下列各点的值为 试用4次牛顿插值多项式)(4x P 及三次样条函数)(x S (自然边界条件)对数据进行插值。给出求解过程,并用图给出 (){},10,1,0),()(,08.02.0,,4 ===+=i x S y x P y i x y x i i i i i 及。 2.下列数据点的插值 可以得到平方根函数的近似。 (1)用这9个点作8次多项式插值)(8x L 。 (2)用三次样条(第一类边界条件)插值给出)(x S 。 给出求解过程,在区间[0,64]上作图,从得到的结果看,在区间[0,64]上哪种插值结果更精确?在区间[0,1]上两种插值哪个更精确? 3.由实验给出数据表 试求3次、4次多项式的曲线拟合,再根据数据曲线形状,求一个另外函数的拟合曲线。给出求解过程,用图表示实验数据曲线及三种拟合曲线。

求多元函数极限的方法

求多元函数极限的方法 【摘要】对于大部分学生,尤其是初接触高等数学的同学而言,极限是一道很难过的关,因为那种“无限逼近”却又“无法达到”的抽象对于刚刚结束中学数学学习,习惯于具体图形分析、函数计算的同学来说,在思维上有了更高的要求。而对于高等数学来讲,极限又是相当重要的基础,不管是函数连续性的验证,亦或是单侧导数的求解,极限都是很重要的一个环节,它就相当于一条线惯于始终,所以说学好极限,是学好高等数学的一个起点。【1】 【关键词】多元函数;求极限多种方法;求极限常出现的错误 【引言】之前学过如连续、导数微分和积分等都要用极和秋极限的方法,例如:利用定义来求极限、用柯西收敛准则、利用两边夹定理等等。这些方法虽然简便易于理解和掌握,但对 于一些特殊的极限题目很难解决,例如:设0a >,10a >,2 12(3) 3n n n n a a a a a a ++=+求lim n n a →∞的问题题目尽给出了第n 项和第n +1项的关系若用利用定义来求极限、用柯西收敛准则 1 ! lim ! n k n k n =→∞ ∑及求一些复合函数极限的问题本文将探讨一些特殊的求极限的方法,对某些用常 见方法不易求解的题目运用此方法可以容易地解出。【2】本文将从多个方面,通过利用极限的性质及相关概念和几个典型例题对常用求极限的方法进行解析,并列出容易出错的地方。 1 利用极限定义的思想观察函数的极限 例1、讨论当x → 12时函数y =21 x x +的极限。我们列出了当x →12 时某些函数值,考察 从列表可以看出,当x 趋向于2时,y 就趋向于0.7,即x →2 时,y =21 x x +的极限是0.75。 2、利用四则运算法则求极限 例2(1)求2 3 32 1 lim(4)x x x →-+ (2)221 lim 21 x x x →-+ 解(2)2 21lim 21x x x →-+=2 2 2 lim(1)3lim(21)5 x x x x →→-=+ 3、利用无穷小量与无穷大量的关系及无穷小量的性质求极限 例3求0 1 lim sin x x x →

牛顿插值法原理及应用

牛顿插值法 插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。为了克服这一缺点,提出了牛顿插值。牛顿插值通过求各阶差商,递推得到的一个公式: f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0 )...(x-xn-1)+Rn(x)。 插值函数 插值函数的概念及相关性质[1] 定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点 x0,x1,…xn上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数. 称x1,x2,…xn 为插值节点,称[a,b]为插值区间。 定理:n次代数插值问题的解存在且唯一。

牛顿插值法C程序 程序框图#include void main() { float x[11],y[11][11],xx,temp,newton; int i,j,n; printf("Newton插值:\n请输入要运算的值:x="); scanf("%f",&xx); printf("请输入插值的次数(n<11):n="); scanf("%d",&n); printf("请输入%d组值:\n",n+1); for(i=0;i

实验四插值法

实验四、插值法 插值法是函数逼近的一种重要方法,它是数值积分、微分方程数值解等数值计算的基础与工具,其中多项式插值是最常用和最基本的方法。拉格朗日插值多项式的优点是表达式简单明确,形式对称,便于记忆,它的缺点是如果想要增加插值节点,公式必须整个改变,这就增加了计算工作量。而牛顿插值多项式对此做了改进,当增加一个节点时只需在原牛顿插值多项式基础上增加一项,此时原有的项无需改变,从而达到节省计算次数、节约存储单元、应用较少节点达到应有精度的目的。 一、实验目的 1、理解插值的基本概念,掌握各种插值方法,包括拉格朗日插值和牛顿插值等,注意其不同特点; 2、通过实验进一步理解并掌握各种插值的基本算法。 二、Matlab命令和程序 命令poly:创建一个向量,其分量为一个多项式的系数,该多项式具有给定的根。 命令polyval:求多项式的值, 命令 conv: 创建一个向量,其分量为一个多项式的系数,该多项式是另外两个多项式的积 polyval(C,2> >> P=poly(2> P=1 -2

Q=poly(3> Q=1 -3 >> conv(P,Q> ans= 1 -5 6 >> polyval(P,2> ans= 1、拉格朗日插值( 基于N+1个点,计算拉格朗日多项式> function [C,L]=lagran(X,Y> %input --X is a vector that contains a list of abscissasb5E2RGbCAP % Y is a vector that contains a list of ordinatesp1EanqFDPw %output--C is a matrix that contains the coefficient of the lagraneDXDiTa9E3d % interplatory polynomial % -- L is a matrix that contains the Lagrange coefficent polynomialsRTCrpUDGiT w=length(X>。 n=w-1。

Surfer插值方法介绍 中英混合版

一篇英文文章,用百度翻译翻译的 还有一篇中文文章供参考 满满的诚意,求赏金 ABSTRACT SURFER is a contouring and 3D surface mapping program, which quickly and easily transforms random surveying data, using interpolation, into continuous curved face contours. In particular, the new version, SURFER 8.0, provides over twelve interpolation methods, each having specific functions and related parameters. In this study, the 5 meter DTM was used as test data to compare the various interpolation results; the accuracy of these results was then discussed and evaluated. 摘要 冲浪是一个轮廓和三维表面的绘制程序,并迅速和容易地变换随机测量数据,使用插值,成连续的曲面轮廓。特别是,新版本,上网8,提供超过十二的插值方法,每一个具有特定功能和相关参数。在这项研究中,5米DTM作为测试数据,比较不同的插值结果;讨论和评价,然后这些结果的准确性。 1. INTRODUCTION How to adequately use exist numerous wide-distributed height points has been an important topic in the field of spatial information. Normally, contouring is the way to accurately describe the terrain relief by means of Scenography, Shading, Hachure and Layer Tinting in a way which is best fit to the habit of human vision. Presently, discretely collected height points have to be interpolated to form curved faces, the selection of spatial interpolation methods decide the quality, accuracy and follow-up analysis applications. Interpolation methods are used here to calculated the unknown heights of interested points by referring to the elevation information of neighboring points. There are a great many commercial interpolation software, however, most of them are tiny and designed to solve specific problems with limited versatility. The SURFER is a software developed by US GOLDEN company, and the newest version 8.0 contains up to 12 interpolation methods to been free chosen for various needs. Users are suggested to first have the basic understanding of every interpolation methods before he or she can effectively select parameters in every interpolation methods. In the following paper, we will introduce every interpolation method in SURFER. 1。简介 如何充分利用现有的众多分布高度点一直是空间信息领域的一个重要课题.。通常,轮廓是准确地运用透视法,描述地形的阴影,Hachure和分层设色的一种方式,是人的视觉习惯,最适合。 目前,离散采集高程点必须插值曲面形状、空间插值方法的选择决定的质量,精度和后续分析中的应用。这里采用插值法计算邻近点的高程信息,计算感兴趣点的未知高度.。有许多商业插值软件,但是,他们大多是微小的,旨在解决特定问题的有限多功能性。上网是一个由美国黄金公司开发的软件,最新版本8包含

插值法实验报告

实验二插值法 1、实验目的: 1、掌握直接利用拉格郎日插值多项式计算函数在已知点的函数值;观察拉格郎日插值的龙格现象。 2、了解Hermite插值法、三次样条插值法原理,结合计算公式,确定函数值。 2、实验要求: 1)认真分析题目的条件和要求,复习相关的理论知识,选择适当的解决方案和算法; 2)编写上机实验程序,作好上机前的准备工作; 3)上机调试程序,并试算各种方案,记录计算的结果(包括必要的中间结果); 4)分析和解释计算结果; 5)按照要求书写实验报告; 3、实验内容: 1) 用拉格郎日插值公式确定函数值;对函数f(x)进行拉格郎日插值,并对f(x)与插值多项式的曲线作比较。 已知函数表:(0.56160,0.82741)、(0.56280,0.82659)、(0.56401,0.82577)、(0.56521,0.82495)用三次拉格朗日插值多项式求x=0.5635时函数近似值。 2) 求满足插值条件的插值多项式及余项 1) 4、题目:插值法 5、原理: 拉格郎日插值原理: n次拉格朗日插值多项式为:L n (x)=y l (x)+y 1 l 1 (x)+y 2 l 2 (x)+…+y n l n (x)

n=1时,称为线性插值, L 1(x)=y (x-x 1 )/(x -x 1 )+y 1 (x-x )/(x 1 -x )=y +(y 1 -x )(x-x )/(x 1 -x ) n=2时,称为二次插值或抛物线插值, L 2(x)=y (x-x 1 )(x-x 2 )/(x -x 1 )/(x -x 2 )+y 1 (x-x )(x-x 2 )/(x 1 -x )/(x 1 -x 2 )+y 2 (x -x 0)(x-x 1 )/(x 2 -x )/(x 2 -x 1 ) n=i时, Li= (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n) (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n) 6、设计思想: 拉格朗日插值法是根据n + 1个点x0, x1, ... x n(x0 < x1 < ... x n)的函数值f (x0), f (x1) , ... , f (x n)推出n次多項式p(x),然后n次多項式p (x)求出任意的点x对应的函数值f (x)的算法。 7、对应程序: 1 ) 三次拉格朗日插值多项式求x=0.5635时函数近似值 #include"stdio.h" #define n 5 void main() { int i,j; float x[n],y[n]; float x1; float a=1; float b=1; float lx=0; printf("\n请输入想要求解的X:\n x="); scanf("%f",&x1); printf("请输入所有点的横纵坐标:\n"); for(i=1;i

Matlab中插值函数汇总和使用说明.

告: Matlab中插值函数汇总和使用说明收藏 命令1 interp1 功能一维数据插值(表格查找。该命令对数据点之间计算内插值。它找出一元函数f(x在中间点的数值。其中函数f(x由所给数据决定。x:原始数据点 Y:原始数据点 xi:插值点 Yi:插值点 格式 (1yi = interp1(x,Y,xi 返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y 的内插值决定。参量x 指定数据Y 的点。 若Y 为一矩阵,则按Y 的每列计算。yi 是阶数为length(xi*size(Y,2的输出矩阵。 (2yi = interp1(Y,xi 假定x=1:N,其中N 为向量Y 的长度,或者为矩阵Y 的行数。 (3yi = interp1(x,Y,xi,method 用指定的算法计算插值: ’nearest’:最近邻点插值,直接完成计算; ’linear’:线性插值(缺省方式,直接完成计算;

’spline’:三次样条函数插值。对于该方法,命令interp1 调用函数spline、ppval、mkpp、umkpp。这些命令生成一系列用于分段多项式操作的函 数。命令spline 用它们执行三次样条函数插值; ’pchip’:分段三次Hermite 插值。对于该方法,命令interp1 调用函数p chip,用于对向量x 与y 执行分段三次内插值。该方法保留单调性与数据的外形; ’cubic’:与’pchip’操作相同; ’v5cubic’:在MATLAB 5.0 中的三次插值。 对于超出x 范围的xi 的分量,使用方法’nearest’、’linear’、’v5cubic’的插值算法,相应地将返回NaN。对其他的方法,interp1 将对超出的分量执行外插值算法。 (4yi = interp1(x,Y,xi,method,'extrap' 对于超出x 范围的xi 中的分量将执行特殊的外插值法extrap。 (5yi = interp1(x,Y,xi,method,extrapval 确定超出x 范围的xi 中的分量的外插值extrapval,其值通常取NaN 或0。 例1 1.>>x = 0:10; y = x.*sin(x; 2.>>xx = 0:.25:10; yy = interp1(x,y,xx; 3.>>plot(x,y,'kd',xx,yy 复制代码 例2 1.>> year = 1900:10:2010;

三次样条插值方法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

三次样条插值方法的应用 一、问题背景 分段低次插值函数往往具有很好的收敛性,计算过程简单,稳定性好,并且易于在在电子计算机上实现,但其光滑性较差,对于像高速飞机的机翼形线船体放样等型值线往往要求具有二阶光滑度,即有二阶连续导数,早期工程师制图时,把富有弹性的细长木条(即所谓的样条)用压铁固定在样点上,在其他地方让他自由弯曲,然后沿木条画下曲线,称为样条曲线。样条曲线实际上是由分段三次曲线并接而成,在连接点即样点上要求二阶导数连续,从数学上加以概括就得到数学样条这一概念。下面我们讨论最常用的三次样条函数及其应用。 二、数学模型 样条函数可以给出光滑的插值曲线(面),因此在数值逼近、常微分方程和偏微分方程的数值解及科学和工程的计算中起着重要的作用。 设区间[]b ,a 上给定有关划分b x x n =<<<= 10x a ,S 为[]b ,a 上满足下面条件的函数。 ● )(b a C S ,2∈; ● S 在每个子区间[]1,+i i x x 上是三次多项式。 则称S 为关于划分的三次样条函数。常用的三次样条函数的边界条件有三种类型: ● Ⅰ型 ()()n n n f x S f x S ''0'',==。 ● Ⅱ型 ()()n n n f x S f x S ''''0'''',==,其特殊情况为()()0''''==n n x S x S 。 ● Ⅲ型 ()() 3,2,1,0,0==j x S x S n j j ,此条件称为周期样条函数。 鉴于Ⅱ型三次样条插值函数在实际应用中的重要地位,在此主要对它进行详细介绍。 三、算法及流程 按照传统的编程方法,可将公式直接转换为MATLAB 可是别的语言即可;另一种是运用矩阵运算,发挥MATLAB 在矩阵运算上的优势。两种方法都可以方便地得到结果。方法二更直观,但计算系数时要特别注意。这里计算的是方法一的程序,采用的是Ⅱ型边界条件,取名为spline2.m 。 Matlab 代码如下: function s=spline2(x0,y0,y21,y2n,x) %s=spline2(x0,y0,y21,y2n,x) %x0,y0 are existed points,x are insert points,y21,y2n are the second

求二元函数极限地几种方法

精彩文档 1.二元函数极限概念分析 定义1 设函数f 在2D R ?上有定义,0P 是D 的聚点,A 是一个确定的实数.如果对于任意给定的正数ε,总存在某正数δ,使得00(;)P U P D δ∈时,都有 ()f P A ε-<, 则称f 在D 上当0P P →时,以A 为极限,记0 lim ()P P P D f P A →∈=. 上述极限又称为二重极限. 2.二元函数极限的求法 2.1 利用二元函数的连续性 命题 若函数(,)f x y 在点00(,)x y 处连续,则 0000(,)(,) lim (,)(,)x y x y f x y f x y →=. 例1 求2 (,)2f x y x xy =+ 在点(1,2)的极限. 解: 因为2 (,)2f x y x xy =+在点(1,2)处连续,所以 12 212 2lim (,) lim(2) 12125.x y x y f x y x xy →→→→=+=+??= 例2 求极限()()2 21,1,21 lim y x y x +→. 解: 因函数在()1,1点的邻域内连续,故可直接代入求极限,即 ()()221,1,21 lim y x y x +→=3 1.

精彩文档 2.2 利用恒等变形法 将二元函数进行恒等变形,例如分母或分子有理化等. 例3 求 00 x y →→ 解: 00 x y →→ 00 x y →→= 00 x y →→= 00 1. 4 x y →→==-例4 ()() 2 2 220,0,321 )31)(21(lim y x y x y x +-++→. 解: 原式()() ( ) ) () () ,0,02 211lim 231x y x y →+= ++ ()( 22 ,0,0lim x y →= + 11022 = +=.

几种插值法比较与应用

多种插值法比较与应用 (一)Lagrange 插值 1. Lagrange 插值基函数 n+1个n 次多项式 ∏ ≠=--=n k j j j k j k x x x x x l 0)( n k ,,1,0ΛΛ= 称为Lagrange 插值基函数 2. Lagrange 插值多项式 设给定n+1个互异点))(,(k k x f x ,n k ,,1,0ΛΛ=,j i x x ≠,j i ≠,满足插值条件 )()(k k n x f x L =,n k ,,1,0ΛΛ= 的n 次多项式 ∏∏ ∏=≠==--==n k n k j j j k j k k n k k n x x x x x f x l x f x L 0 00 ))(()()()( 为Lagrange 插值多项式,称 ∏=+-+=-=n j j x n n x x n f x L x f x E 0 )1()()!1()()()()(ξ 为插值余项,其中),()(b a x x ∈=ξξ (二)Newton 插值 1.差商的定义 )(x f 关于i x 的零阶差商 )(][i i x f x f = )(x f 关于i x ,j x 的一阶差商

i j i j j i x x x f x f x x f --= ][][],[ 依次类推,)(x f 关于i x ,1+i x ,……,k i x +的k 阶差商 i k i k i i k i i k i i i x x x x f x x f x x x f --= +-+++++] ,,[],,[],,,[111ΛΛΛΛΛ 2. Newton 插值多项式 设给定的n+1个互异点))(,(k k x f x ,n k ,,1,0ΛΛ=,j i x x ≠,j i ≠, 称满足条件 )()(k k n x f x N =,n k ,,1,0ΛΛ= 的n 次多项式 )()](,,,[)](,[][)(10100100---++-+=n n n x x x x x x x f x x x x f x f x N ΛΛΛΛΛ 为Newton 插值多项式,称 ],[,)(],,,[)()()(010b a x x x x x x f x N x f x E n j j n n ∈-=-=∏=ΛΛ 为插值余项。 (三)Hermite 插值 设],[)(1b a C x f ∈,已知互异点0x ,1x ,…,],[b a x n ∈及所对应的函数值为0f ,1f ,…,n f ,导数值为'0f ,'1f ,…,'n f ,则满足条件 n i f x H f x H i i n i i n ,,1,0,)(,)(''1212Λ===++ 的12+n 次Hermite 插值多项式为 )()()(0 '12x f x f x H j n j j j n j i n βα∏∏=++= 其中 )())((,)]()(21[)(2 2'x l x x x l x l x x x j j j j j j j j ---=βα

数值分析(计算方法)实验一

《数值分析》 课程实验指导书 实验一 函数插值方法 一、问题提出 对于给定的一元函数)(x f y =的n+1个节点值(),0,1,,j j y f x j n == 。试用Lagrange 公式求其插值多项式或分段二次Lagrange 插值多项式。 数据如下: (1) j x 0.4 0.55 0.65 0.80 0.95 1.05 j y 0.41075 0.57815 0.69675 0.90 1.00 1.25382 求五次Lagrange 多项式5L ()x ,和分段三次插值多项式,计算(0.596)f ,(0.99)f 的值。(提示:结果为(0.596)0.625732f ≈, (0.99) 1.05423f ≈ ) (2) j x 1 2 3 4 5 6 7 j y 0.368 0.135 0.050 0.018 0.007 0.002 0.001 试构造Lagrange 多项式6L ()x ,计算的(1.8)f ,(6.15)f 值。(提示:结果为(1.8)0.164762f ≈, (6.15)0.001266f ≈ ) 二、要求 1、 利用Lagrange 插值公式 00,()n n i n k k i i k k i x x L x y x x ==≠??-= ?-??∑∏编写出插值多项式程序; 2、 给出插值多项式或分段三次插值多项式的表达式; 3、 根据节点选取原则,对问题(2)用三点插值或二点插值,其结果如何; 4、 对此插值问题用Newton 插值多项式其结果如何。

四、实验分析: Lagrange 插值多项式的表达式: 1,,2,1,)()()(, )()(1111+=--==∏∑+≠=+=n i x x x x x l x l y x L n i j j j i j i n i i i 。 其中)(x l i 被称为插值基函数,实际上是一个n 次多项式。)(x l i 的这种表示具有较好的对称性。公式具有两大优点:(1)求插值多项式,不需要求解线性方程组,当已知数据点较多时,此公式更能显示出优越性。(2)函数值可以用符号形式表示,数据点未确定的纵坐标可用多项式表示。 Newton 插值多项式如下: 10010,()()[,,]()k n n j k k j j k N x f x f x x x x -==≠=+?-∑∏ 其中: 00,0()()[,,]k i k i i j j j i k f x x x f x x ==≠-=∑∏ Newton 插值多项式的优点是:当每增加一个节点时,只增加一项多项式。 三、实验程序及注释 1、m 程序: function [c,l]=lagran(x,y) % x 为n 个节点的横坐标组成的向量,y 为纵坐标所组成的向量 % c 为所得插值函数的系数所组成的向量 w=length(x); n=w-1; l=zeros(w,w); for k=1:n+1 v=1; for j=1:n+1 if k~=j v=conv(v,poly(x(j)))/(x(k)-x(j)); end end l(k,:)=v; end c=y*l; function fi=Lagran_(x,f,xi) fi=zeros(size(xi)); n=length(f); for i=1:n

[整理]matlab绘制二元函数图形.

MATL AB绘制二元函数的图形 【实验目的】 1.了解二元函数图形的绘制。 2.了解空间曲面等高线的绘制。 3.了解多元函数插值的方法。 4.学习、掌握MATLAB软件有关的命令。 【实验内容】 画出函数2 2y z+ =的图形,并画出其等高线。 x 【实验准备】 1.曲线绘图的MATLAB命令 MATLAB中主要用mesh,surf命令绘制二元函数图形。主要命令mesh(x,y,z)画网格曲面,这里x,y,z是数据矩阵,分别表示数据点的横坐标,纵坐标和函数值,该命令将数据点在空间中描出,并连成网格。 surf(x,y,z)画完整曲面,这里x,y,z是数据矩阵,分别表示数据点的横坐标,纵坐标和函数值,该命令将数据点所表示曲面画出。 【实验重点】 1. 二元函数图形的描点法 2. 曲面交线的计算 3. 地形图的生成

【实验难点】 1. 二元函数图形的描点法 2. 曲面交线的计算 【实验方法与步骤】 练习1画出函数2 2y =的图形,其中]3,3 x z+ ? - y x。 ∈ , [ ]3,3 [ (- ) 用MATLAB作图的程序代码为 >>clear; >>x=-3:0.1:3; %x的范围为[-3,3] >>y=-3:0.1:3; %y的范围为[-3,3] >>[X,Y]=meshgrid(x,y); %将向量x,y指定的区域转化为矩阵X,Y >>Z=sqrt(X.^2+Y.^2); %产生函数值Z >>mesh(X,Y,Z) 运行结果为

图5.3 如果画等高线,用contour,contour3命令。 contour画二维等高线。 contour3画三维等高线。画图5.3所示的三维等高线的MA TLAB 代码为 >>clear; >>x=-3:0.1:3; >>y=-3:0.1:3; >>[X,Y]=meshgrid(x,y); >>Z=sqrt(X.^2+Y.^2); >>contour3(X,Y,Z,10); %画10条等高线 >>xlabel('X-axis'),ylabel('Y-axis'),zlabel('Z-axis'); %三个坐标轴的

数学分析下——二元函数的极限课后习题

第二节 二元函数的极限 1、试求下列极限(包括非正常极限): (1)(,)(0,0)lim x y x 2y 2x 2+y 2 ; (2)(,)(0,0)lim x y 1+x 2+y 2x 2+y 2 ; (3) (,)(0,0) lim x y x 2+y 21+x 2+y 2 -1 ; (4)(,)(0,0)lim x y xy+1 x 4+y 4 ; (5)(,) (1,2)lim x y 12x-y ; (6)(,)(0,0)lim x y (x+y)sin 1 x 2+y 2 ; (7)(,)(0,0)lim x y sin(x 2+y 2)x 2+y 2 x 2+y 2 . 2、讨论下列函数在点(0,0)的重极限与累次极限: (1)f(x,y)=y 2x 2+y 2 ; (2)f(x,y)=(x+y)sin 1x sin 1y ; (3)f(x,y)=x 2y 2x 2y 2+(x-y)2 ; (4)f(x,y)=x 3+y 3 x 2+y ; (5)f(x,y)=ysin 1x ; (6)f(x,y)=x 2y 2 x 3+y 3 ; (7)f(x,y)=e x -e y sinxy . 3、证明:若1 。 (a,b) lim (x,y )f(x,y)存在且等于A ;2。 y 在b 的某邻域内,有 lim x a f(x,y)= (y)则 y b lim a lim x f(x,y)=A. 4、试应用ε—δ定义证明 (x,y)(0,0)lim x 2y x 2+y 2 =0. 5、叙述并证明:二元函数极限的唯一性定理、局部有界性定理与局部保号性定理. 6、试写出下列类型极限的精确定义: (1) (x,y) ( ,) lim f(x,y)=A ; (2) (x,y) (0, ) lim f(x,y)=A. 7、试求下列极限: (1) (x,y) ( , )lim x 2+y 2 x 4+y 4 ; (2)(x,y)(, ) lim (x 2+y 2)e -(x+y);

几种插值法的应用和比较

插值法的应用与比较 信科1302 万贤浩 13271038 1格朗日插值法 在数值分析中,拉格朗日插值法是以法国十八世纪数学家约瑟夫·路易斯·拉格朗日命名的一种多项式插值方法.许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解.如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值.这样的多项式称为拉格朗日(插值)多项式.数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数.拉格朗日插值法最早被英国数学家爱德华·华林于1779年发现,不久后由莱昂哈德·欧拉再次发现.1795年,拉格朗日在其著作《师范学校数学基础教程》中发表了这个插值方法,从此他的名字就和这个方法联系在一起. 1.1拉格朗日插值多项式 图1 已知平面上四个点:(?9, 5), (?4, 2), (?1, ?2), (7, 9),拉格朗日多项式:)(x L (黑色)穿过所有点.而每个基本多项式:)(00x l y ,)(11x l y , )(22x l y 以及)(x l y ??各穿过对应的一点,并在其它的三个点的x 值上取零. 对于给定的若1+n 个点),(00y x ,),(11y x ,………),(n n y x ,对应于它们的次数不超过n 的拉格朗日多项式L 只有一个.如果计入次数更高的多项式,则有无穷个,因为所有与L 相差 ))((10x x x x --λ……)(n x x -的多项式都满足条件. 对某个多项式函数,已知有给定的1+k 个取值点: ),(00y x ,……,),(k k y x ,

计算方法-插值方法实验

实验一插值方法 一. 实验目的 (1)熟悉数值插值方法的基本思想,解决某些实际插值问题,加深对数值插值方法 的理解。 (2)熟悉Matlab 编程环境,利用Matlab 实现具体的插值算法,并进行可视化显示。 二. 实验要求 用Matlab 软件实现Lagrange 插值、分段线性插值、三次Hermite 插值、Aitken 逐步插值算法,并用实例在计算机上计算和作图。 三. 实验内容 1. 实验题目 (1 ) 已 知概 率积 分dx e y x x ?-= 2 2 π 的数据表 构造适合该数据表的一次、二次和三次Lagrange 插值公式,输出公式及其图形,并计算x =0.472时的积分值。 答: ①一次插值公式: 输入下面内容就可以得到一次插值结果 >> X=[0.47,0.48];Y=[0.4937452,0.5027498]; >> x=0.472; >> (x-X(2))/(X(1)-X(2))*Y(1)+(x-X(1))/(X(2)-X(1))*Y(2) ans =0.495546120000000 >> ②两次插值公式为: 输入下面内容就可以得到两次插值结果 >> X=[0.46,0.47,0.48];Y=[0.4846555,0.4937452,0.5027498]; >> x=0.472; >>(x-X(2))*(x-X(3))/((X(1)-X(2))*(X(1)-X(3)))*Y(1)+(x-X(1))*(x-X(3))/((X(2)-X(1))*(X(2)-X(3)))*Y(2)+(x-X(2))*(x-X(1))/((X(3)-X(2))*(X(3)-X(1)))*Y(3) i 0 1 2 3 x 0.46 047 0.48 0.49 y 0.4846555 0.4937452 0.5027498 0.5116683

(整理)二元函数极限的求法.

二元函数极限的求法 数学与统计学院、数学与应用数学、0701班,湖北,黄石,435002 1.引言 多元函数的极限在高等数学中非常重要,但由于多元函数的自变量多,因此对于判断其极限存在与否及其求法,比起一元函数的极限就显得比较困难.求极限和证明极限的方法很多,一般我们常用定义法,初等变形法,两边夹准则,阶的估计等.在这几种方法中,定义法是基础,但是比较繁琐,其他方法有的较易,有的较难,让人不知道从何下手.因此,我们有必要总结探讨出比较容易好的方法去求多元函数的极限.多元函数极限在现在的生活中也有很大的用处,比如工程计算方面.从以上来看,研究归纳总结多元函数极限的求法问题是有意义和必要的.本文主要研究二元函数极限的定义以及二元函数极限求解的几种方法,并以实例加以说明. 2.二元函数极限的定义 定义1 设E 是2R 的一个子集,R 是实数集,f 是一个规律,如果对E 中的每一点(,)x y ,通过规律f ,在R 中有唯一的一个u 与此对应,则称f 是定义在E 上的一个二元函数,它在点(,)x y 的函数值是u ,并记此值为(,)f x y ,即(,)u f x y =. 有时,二元函数可以用空间的一块曲面表示出来,这为研究问题提供了直观想象.例如,二元函数222y x R x --=就是一个上半球面,球心在原点,半径为R ,此函数定义域为满足关系式222R y x ≤+的x ,y 全体,即 }|),{(222R y x y x D ≤+=.又如,xy Z =是马鞍面. 知道多元函数的定义之后,在我们求多元函数极限之前我们必须知道多

元函数极限的定义. 定义2 设E 是2R 的一个开集,A 是一个常数,二元函数()(,)f M f x y =在点()000,M x y E ∈附近有定义.如果0>?ε,0>?δ,当()00,r M M δ<<时,有()f M A ε-<,就称A 是二元函数在0M 点的极限.记为()0 lim M M f M A →=或 ()()0f M A M M →→. 定义的等价叙述 1 :设E 是2R 的一个开集,A 是一个常数,二元函数 ()(,)f M f x y =在点()000,M x y E ∈附近有定义.如果0>?ε,0>?δ,当()() 22 000x x y y δ< -+-<时,有(,)f x y A ε-<,就称A 是二元函数在0 M 点的极限。记为()0 lim M M f M A →=或()()0f M A M M →→. 定义的等价叙述2: 设E 是2R 的一个开集,A 是一个常数,二元函数 ()(,)f M f x y =在点()000,M x y E ∈附近有定义.如果0>?ε,0>?δ,当 000,0x x y y δδ<-<<-<且()()00,,x y x y ≠时, 有(,)f x y A ε-<,就称A 是二元函数在0M 点的极限.记为 ()0 l i m M M f M A →=或 ()()0f M A M M →→. 注:(1)和一元函数的情形一样,如果0 lim ()M M f M A →=,则当M 以任何 点列及任何方式趋于0M 时,()f M 的极限是A ;反之,M 以任何方式及任何点列趋于0M 时,()f M 的极限是A .但若M 在某一点列或沿某一曲线0M →时,()f M 的极限为A ,还不能肯定()f M 在0M 的极限是A . 二元函数的极限较之一元函数的极限而言,要复杂得多,特别是自变量的变化趋势,较之一元函数要复杂.

相关文档
最新文档