自动控制原理习题及解答

自动控制原理习题及解答
自动控制原理习题及解答

自动控制原理习题及其解答

第一章(略) 第二章

例2-1 弹簧,阻尼器串并联系统如图2-1示,系统为无质量模型,试建立系统的运动方程。

解:(1) 设输入为y r ,输出为y 0。弹簧与阻尼器并联平行移动。

(2) 列写原始方程式,由于无质量按受力平衡方程,各处任何时刻,均满足∑=0F ,则

对于A 点有

021=-+K K f F F F

其中,F f 为阻尼摩擦力,F K 1,F K 2为弹性恢复力。 (3) 写中间变量关系式

022011

0)()

(y K F Y Y K F dt

y y d f F K r K r f =-=-?

=

(4) 消中间变量得 020110y K y K y K dt

dy f dt dy f r r

=-+- (5) 化标准形 r r Ky dt

dy

T y dt dy T +=+00 其中:2

15

K K T +=

为时间常数,单位[秒]。

2

11

K K K K +=

为传递函数,无量纲。

例2-2 已知单摆系统的运动如图2-2示。 (1) 写出运动方程式 (2) 求取线性化方程 解:(1)设输入外作用力为零,输出为摆角θ ,摆球质量为m 。 (2)由牛顿定律写原始方程。

h mg dt

d l m --=θθ

sin )(22

其中,l 为摆长,l θ 为运动弧长,h 为空气阻力。

(3)写中间变量关系式

)(dt

d l

h θα= 式中,α为空气阻力系数dt

d l θ

为运动线速度。

(4)消中间变量得运动方程式

图2-2 单摆运动

0s i n 22=++θθθmg dt d al dt

d ml (2-1)

此方程为二阶非线性齐次方程。

(5)线性化

由前可知,在θ =0的附近,非线性函数sin θ ≈θ ,故代入式(2-1)可得线性化方程为

022=++θθ

θmg dt d al dt

d ml

例2-3 已知机械旋转系统如图2-3所示,试列出系统运动方程。

解:(1)设输入量作用力矩M f ,输出为旋转角速度ω 。 (2)列写运动方程式

f M f dt

d J

+-=ωω

式中, f ω为阻尼力矩,其大小与转速成正比。

(3)整理成标准形为

f M f dt

d J

=+ωω

此为一阶线性微分方程,若输出变量改为θ,则由于 dt

d θω= 代入方程得二阶线性微分方程式

f M dt d f dt

d J =+θ

θ22 例2-4 设有一个倒立摆安装在马达传动车上。如图2-4所示。

图2-3 机械旋转系统

倒立摆是不稳定的,如果没有适当的控制力作用在它上面,它将随时可能向任何方向倾倒,这里只考虑二维问题,即认为倒立摆只在图2-65所示平面内运动。控制力u 作用于小车上。假设摆杆的重心位于其几何中心A 。试求该系统的运动方程式。

解:(1) 设输入为作用力u ,输出为摆角θ 。

(2) 写原始方程式,设摆杆重心A 的坐标为(X A ,y A )于是 X A =X +l sin θ X y = l cos θ

画出系统隔离体受力图如图2-5所示。

摆杆围绕重心A 点转动方程为:

θθθ

cos sin 22Hl Vl dt

d J -= (2-2)

式中,J 为摆杆围绕重心A 的转动惯量。

图2-4 倒立摆系统

图2-5 隔离体受力图

摆杆重心A 沿X 轴方向运动方程为:

H dt

x d m

A =2

2

即 H l x dt

d m =+)sin (22

θ (2-3)

摆杆重心A 沿y 轴方向运动方程为: mg V dt y d m

A -=2

2

即 mg V l dt

d m -=)cos (2

小车沿x 轴方向运动方程为:

H u dt

x

d M -=22

方程(2-2),方程(2-3)为车载倒立摆系统运动方程组。因为含有sin θ 和cos θ 项,所以为非线性微分方程组。中间变量不易相消。

(3) 当θ 很小时,可对方程组线性化,由sin θ ≈θ,同理可得到cos ≈1则方程式(2-2)式(2-3)可用线性化方程表示为:

???

????????-=-==+-=H u dt

x

d M mg V H dt

d ml dt x d m Hl Vl dt d J 222222220θθθ

用22

2

dt

d S =的算子符号将以上方程组写成代数形式,消掉中间变量V 、H 、X 得

u g m M s J ml

m

M Ml =+++--θθ)()(2 将微分算子还原后得

u dt

d g m M dt d l J ml MJ Ml -=+-++θ

θ)()(22 此为二阶线性化偏量微分方程。

例2-5 RC 无源网络电路图如图2-6所示,试采用复数阻抗法画出系统结构图,并求传递函数U c (s )/U r (s )。

解:在线性电路的计算中,引入了复阻抗的概念,则电压、电流、复阻抗之

间的关系,满足广义的欧姆定律。即:

)()

()

(s Z s I s U =

如果二端元件是电阻R 、电容C 或电感L ,则复阻抗Z (s )分别是R 、1/C s 或L s 。

(2) 用复阻抗写电路方程式:

s

C S I S V R S U S U S I s

C S I S I S U R S U S U S I c c c c C r 222221212111

111)()(1

)]

()([)(1)]()([)(1)]()([)(?

=-=?

-=?-=

(3) 将以上四式用方框图表示,并相互连接即得RC 网络结构图,见图2-6(a )。 (4) 用结构图化简法求传递函数的过程见图2-6(c )、(d )、(e )。

(5) 用梅逊公式直接由图2-6(b ) 写出传递函数U c (s )/U r (s ) 。

?

?=

∑K

G

G K

独立回路有三个:

图2-6 RC 无源网络

图2-6 (a ) (b ) (c )

(d )

S C R S C R L 11111

11-=

?-

= S C R S C R L 222221

11-=

?-

= S

C R R S C L 122131

11-=

?-

= 回路相互不接触的情况只有L 1和L 2两个回路。则

2221121121

S C R C R L L L ==

由上式可写出特征式为:

2

2211122211213211

1111)(1S C R C R S C R S C R S C R L L L L L ++++

=-++-=? 通向前路只有一条

2

2121221111

1111S C C R R S C R S C R G =

???=

由于G 1与所有回路L 1,L 2, L 3都有公共支路,属于相互有接触,则余子式为

Δ1=1

代入梅逊公式得传递函数

1

)(1

111111

212211221212

22111222112

221111++++=++++=

??=s C R C R C R s C C R R s C R C R s C R s C R s C R s C R C R G G 例2-6 有源网络如图2-7所示,试用复阻抗法求网络传递函数,并根据求得的结果,直接用于图2-8所示PI 调节器,写出传递函数。

解:图2-7中Z i 和 Z f 表示运算放大器外部电路中输入支路和反馈支路复阻抗,假设A 点为虚地,即U A ≈0,运算放大器输入阻抗很大,可略去输入电流,于是:I 1 = I 2 则有: )

()()()()()(21s Z s I s U s Z s I s U f c i i -==

故传递函数为

图2-8 PI 调节器

图2-7 有源网络

)

()()()

()(s Z s Z s U s U s G i f i c -== (2-4)

对于由运算放大器构成的调节器,式(2-4)可看作计算传递函数的一般公式,对于图2-8所

示PI 调节器,有

1)(R s Z i =

CS

R s Z f 1)( 2+

= 故

CS

R CS R R CS R s Z s Z s G i f 121211

)

()()( +=+

=-

= 例2-7 求下列微分方程的时域解x (t )。已知3)0(,0)0(==x

x 。

063

2

2=++x dt

dx

dt x d 解:对方程两端取拉氏变换为:

0)(6)0(3)(3)0()0()(2=+-+--s X x s SX x

Sx s X S 代入初始条件得到

3)()63(2=++s X S S 解出X (s )为:

2

22)2

15(

)5.1(2

15

5

3

2633)(++=

++=

S S S s X

反变换得时域解为:

)2

15sin(

5

32)(5.1t e t x t =

例2-8 已知系统结构图如图2-9所示,试用化简法求传递函数C (s )/R (s )。

解:(1)首先将含有G 2的前向通路上的分支点前移,移到下面的回环之外。如图2-10(a

图2-10 系统结构图的简化

图2-9 系统结构图

所示。

(2)将反馈环和并连部分用代数方法化简,得图2-10(b )。 (3)最后将两个方框串联相乘得图2-10(c )。

例2-9 已知系统结构图如图2-11所示,试用化简法求传递函数C (s )/R (s )。

解:

(1)将两条前馈通路分开,改画成图2-12(a )的形式。

(2)将小前馈并联支路相加,得图2-12(b )。

(3)先用串联公式,再用并联公式

将支路化简为图2-12(c )。

例2-10 已知机械系统如图2-13(a )所示,电气系统如图2-13(b )所示,试画出两系统结构图,并求出传递函数,证明它们是相似系统。

解:(1)若图2-13(a )

所示机械系统的运动方程,

图2-11 系统结构图

图2-12 系统结构图

图2-13 系统结构图 (a )机械系统

(b )电气系统

遵循以下原则并联元件的合力等于两元件上的力相加,平行移动,位移相同,串联元件各元件受力相同,总位移等于各元件相对位移之和。 微分方程组为:

??

?

??=-=-+-=+=y K F y x

f F x x K x x

f F F F i i 202010121)()()(

取拉氏变换,并整理成因果关系有:

?????

????

?

?+=

=-+=)()(1

)()(1)()]()()[(()(202

011s y s F s f s x s F K s y S x s x K s f s F i 画结构图如图2-14:

求传递函数为:

s

k f s k f s k f s k f s k f s f k s f k s f k s f k s X s X i 1

222112

211221122110)1)(1()

1)(1( )11)((1)1

1)(

()

()(+++++=

+++++= (2)写图2-13(b )所示电气系统的运动方程,按电路理论,遵循的定律与机械系统相似,

即并联元件总电流等于两元件电流之和,电压相等。串联元件电流相等,总电压等于各元件分电压之和,可见,电压与位移互为相似量电流与力互为相似量。 运动方程可直接用复阻抗写出:

???

?

?

?

???

+=-=

-+-=+=)()()]()([1)()]()([()]()([1)()(2220201121s E s C s I s E s E R s I s E s E s C s E s E R s I s I s I C c i i i 整理成因果关系:

图2-14 机械系统结构图

????

?????

+==

-+=)()()(1

)()]()()[(1()(22022011s E IR s E s I S

C s E s E s E s C R s I C c i 画结构图如图2-15所示:

求传递函数为:

S C R s C R S C R S C R S C R S

C R S C R S C R s C R s E s E i 2122112211221122110)1)(1()

1)(1( )

1)(11(1)

1)(1(

)()(+++++=+++++=

对上述两个系统传递函数,结构图进行比较后可以看出。两个系统是相似的。机一电系

统之间相似量的对应关系见表2-1。

例2-11 RC 网络如图2-16所示,其中u 1为网络输入量,u 2

为网络输出量。 (1)画出网络结构图;

(2)求传递函数U 2(s )/ U 1(s )。 解:(1) 用复阻抗写出原始方程组。

输入回路 s C I I I R U 2211111

)(++=

输出回路 s

C I I I R U 2212221)(++= 中间回路 21211)1

(I s

C R R I ?+

= (3)整理成因果关系式。

?????

?+-=

s C I I U R I 22

111

11)(1 ??

?

???+=1121112s C R s C R I I

图2-15 电气系统结构图

图2-16 RC 网络

s

C I I I R U 2212221)

(++= 即可画出结构图如图2-17 所示。

(4) 用梅逊公式求出:

?

?+?+?=

3

3221112G G G U U s

C s C R s C s C R R s C R s C s C s C R s C s C R 2121212

1212121211

1111

1

11?

+++++?++=

1

)(1)(1112212212112122121+++++++=

s C R C R C R s C C R R s C R R s C C R R

例2-12 已知系统的信号流图如图2-18所示,试求传递函数C (s )/ R (s )。

解: 单独回路4个,即

∑----=21321G G G G G L a

两个互不接触的回路有4组,即

∑+++=321323121G G G G G G G G G L

L c

b

三个互不接触的回路有1组,即

∑-=321G G G L L L

f e d

于是,得特征式为

3

21323121321221 1G G G G G G G G G G G G L L L

L L L f

e d c

b a

+++++++=-+-

=?∑∑∑

从源点R 到阱节点C 的前向通路共有4条,其前向通路总增益以及余因子式分别为

K G G G P 3211= 11=?

K G G P 322= 121G +=? K G G P 313= 231G +=? K G G G P 3214-= 14=?

图2-17 网络结构图

图2-18 信号流图

因此,传递函数为

?

?+?+?+?=4433221

1)()(P P P P

s R s C 3

21323121321231132221)

1()1(G G G G G G G G G G G G G K G G G K G G ++++++++++=

第三章

例3-1 系统的结构图如图3-1所示。

已知传递函数 )12.0/(10)(+=s s G 。 今欲采用加负反馈的办法,将过渡过程时间t s 减小为原来的0.1倍,并保证总放大系数不变。试确定参数K h 和K 0的数值。

解 首先求出系统的传递函数φ(s ),并整理为标准式,然后与指标、参数的条件对照。 一阶系统的过渡过程时间t s 与其时间常数成正比。根据要求,总传递函数应为

)

110/2.0(10

)(+=

s s φ

H

H K s K s G K s G K s R s C 1012.010)(1)()()(00++=+= )()11012.0(101100s s K K K H

H

φ=+++=

比较系数得

???

??=+=+10

10110101100

H H

K K K 解之得

9.0=H K 、100=K

解毕。

例3-10 某系统在输入信号r (t )=(1+t )1(t )作用下,测得输出响应为:

t e t t c 109.0)9.0()(--+= (t ≥0)

已知初始条件为零,试求系统的传递函数)(s φ。 解 因为

22111)(s

s s s s R +=+=

)10()1(10109.09.01)]([)(2

2++=+-+=

=s s s s s s

t c L s C 故系统传递函数为

1

1.01)()()(+==

s s R s C s φ 解毕。

例3-3 设控制系统如图3-2所示。

试分析参数b 的取值对系统阶跃响应动态性能的影响。 解 由图得闭环传递函数为

1

)()(++=

s bK T K

s φ

系统是一阶的。动态性能指标为

)

(3)(2.2)(69.0bK T t bK T t bK T t s r d +=+=+= 因此,b 的取值大将会使阶跃响应的延迟时间、上升时间和调节时间都加长。解毕。 例 3-12 设二阶控制系统的单位阶跃响应曲线如图3-34所示。试确定系统的传递函数。

解 首先明显看出,在单位阶跃作用下响应的稳态值为3,故此系统的增益不是1,而是

3。系统模型为

22

223)(n

n n

s s s ω

ξωωφ++=

然后由响应的%p M 、p t 及相应公式,即可换算出ξ、n ω。

%333

3

4)()()(%=-=∞∞-=c c t c M p p

1+Ts K 4 3

0 0.1 t

图3-34 二阶控制系统的单位阶跃

响应

h (t )

1.0=p t (s )

由公式得

%

33%2

1/

==--ξπξe M p

1

.012

=-=

ξ

ωπn p t

换算求解得: 33.0=ξ、 2

.33=n ω

解毕。

例3-13 设系统如图3-35所示。如果要求系统的超调量等于%15,峰值时间等于0.8s ,试确定增益K 1和速度反馈系数K t 。同时,确定在此K 1和K t 数值下系统的延迟时间、上升时间和调节时间。

解 由图示得闭环特征方程为

0)1(112=+++K s K K s t

21n K ω

=,

n

n

t t K ωωξ212

+=

由已知条件

8

.0115

.0%21/2

=-=

==--t

n p p t e M t t ξ

ωπξπξ

解得

1588.4,517.0-==s n t ωξ

于是

05.211=K 178

.021

1

==-K K n

t t ωξ s t n

t t d 297.02.06.012

=++=

ωξξ

R (s )

C (s )

图3-35

)

1(1+s s K 1+K t s

s t t

n t t

n r 538.01arccos 122=--=

--=

ξ

ωξπξ

ωβπ

s t n

t s 476.15

.3==

ωξ

解毕。

例3-14 设控制系统如图3-36所示。试设计反馈通道传递函数H (s ),使系统阻尼比提高到希望的ξ1值,但保持增益K 及自然频率ωn 不变。

解 由图得闭环传递函数

)

(2)(22

2

2

s H K s s K s n

n

n n ωωξωωφ+++=

在题意要求下,应取 s K s H t =)( 此时,闭环特征方程为:

0)2(2

2=+++n n n t s KK s ωωωξ

令: 122ξωξ=+n t KK ,解出,n t K K ωξξ/)(21-=

故反馈通道传递函数为:

n

K s

s H ωξξ)(2)(1-=

解毕。

例3-15 系统特征方程为

020510203023456=+++++s s s s s

试判断系统的稳定性。

解 特征式各项系数均大于零,是保证系统稳定的必要条件。上述方程中s 一次项的系数为零,故系统肯定不稳定。解毕。

例3-16 已知系统特征方程式为

0516188234=++++s s s s

R (s ) C (s )

图3-36 例

3-14 控制系统结构图 H (s )

2

222n

n n s s K ωξωω++

试用劳斯判据判断系统的稳定情况。

解 劳斯表为

4s 1 18 5 3s 8 16 0

2s

168161188=?-? 580

158=?-?

1s 5.1316

5

81616=?-? 0

0s 55

.130

1655.13=?-?

由于特征方程式中所有系数均为正值,且劳斯行列表左端第一列的所有项均具有正号,满足系统稳定的充分和必要条件,所以系统是稳定的。解毕。

例3-17 已知系统特征方程为

053222345=+++++s s s s s

试判断系统稳定性。

解 本例是应用劳斯判据判断系统稳定性的一种特殊情况。如果在劳斯行列表中某一行的第一列项等于零,但其余各项不等于零或没有,这时可用一个很小的正数ε来代替为零的一项,从而可使劳斯行列表继续算下去。 劳斯行列式为

5s 1 2 3 4s 1 2 5 3s 0≈ε 2-

2s

ε

ε2

2+ 5

1

s 225442

+---εεε

0s 5

由劳斯行列表可见,第三行第一列系数为零,可用一个很小的正数ε来代替;第四行第一列系数为(2ε+2/ε,当ε趋于零时为正数;第五行第一列系数为(-4ε-4-5ε2)/(2ε+2),当ε趋于零时为2-。由于第一列变号两次,故有两个根在右半s 平面,所以系统是不稳定的。

解毕。

例3-18 已知系统特征方程为

0161620128223456=++++++s s s s s s

试求:(1)在s 右半平面的根的个数;(2)虚根。

解 如果劳斯行列表中某一行所有系数都等于零,则表明在根平面内存在对原点对称的实根,共轭虚根或(和)共轭复数根。此时,可利用上一行的系数构成辅助多项式,并对辅助多项式求导,将导数的系数构成新行,以代替全部为零的一行,继续计算劳斯行列表。对原点对称的根可由辅助方程(令辅助多项式等于零)求得。 劳斯行列表为

6s 1 8 20 16 5s 2 12 16 4s 2 12 16 3s 0 0

由于3

s 行中各项系数全为零,于是可利用4

s 行中的系数构成辅助多项式,即

16122)(24++=s s s P

求辅助多项式对s 的导数,得

s s s

s dP 248)

(3+= 原劳斯行列表中s 3行各项,用上述方程式的系数,即8和24代替。此时,劳斯行列表变为

6

s 1 8 20 5s 2 12 16

4s 2 12 16 3s 8 24 2s 6 16 1s 2.67 0s 16

新劳斯行列表中第一列没有变号,所以没有根在右半平面。 对原点对称的根可解辅助方程求得。令

01612224=++s s

得到

2j s ±=和2j s ±=

解毕。

例3-19 单位反馈控制系统的开环传递函数为

)

1)(1()(2

+++=

cs bs as s K

s G 试求: (1)位置误差系数,速度误差系数和加速度误差系数;

(2)当参考输入为)(1t r ?,)(1t rt ?和)(12

t rt ?时系统的稳态误差。

解 根据误差系数公式,有

位置误差系数为

∞=+++==→→)

1)(1(lim

)(lim 2

cs bs as s K

s G K s s p 速度误差系数为

K cs bs as s K

s s sG K s s v =+++?

==→→)

1)(1(lim )(lim 20

加速度误差系数为

0)

1)(1(lim )(lim 2

20

20

=+++?

==→→cs bs as s K

s s G s K s s a 对应于不同的参考输入信号,系统的稳态误差有所不同。 参考输入为)(1t r ?,即阶跃函数输入时系统的稳态误差为

011=∞

+=+=

r

K r e p ss

参考输入为)(1t rt ?,即斜坡函数输入时系统的稳态误差为

K

r K r e v ss ==

参考输入为)(12

t rt ?,即抛物线函数输入时系统的稳态误差为

∞===

22r K r e a ss 解毕。

例3-20 单位反馈控制系统的开环传递函数为

)

1)(1(10

)(21s T s T s s G ++=

输入信号为r (t )=A+ωt ,A 为常量,ω=0.5弧度/秒。试求系统的稳态误差。

解 实际系统的输入信号,往往是阶跃函数、斜坡函数和抛物线函数等典型信号的组合。

此时,输入信号的一般形式可表示为

22102

1

)(t r t r r t r ++=

系统的稳态误差,可应用叠加原理求出,即系统的稳态误差是各部分输入所引起的误差的总和。所以,系统的稳态误差可按下式计算:

a

v p ss K r

K r K r e 2101+++=

对于本例,系统的稳态误差为

v

p ss K K A e ω

+

+=

1 本题给定的开环传递函数中只含一个积分环节,即系统为1型系统,所以

∞=p K

10)

1)(1(10

lim )(lim 210

=++?

==→→s T s T s s s sG K s s v

系统的稳态误差为

05.010

5

.0101011===+∞+=++=

ωωωA K K A e v p ss

解毕。

例3-21 控制系统的结构图如图3-37所示。假设输入信号为r (t )=at (a 为任意常数)。

证明:通过适当地调节K i 的值,该系统对斜坡输入的响应的稳态误差能达到零。

解 系统的闭环传递函数为

K

Ts s s K K s R s C i +++=)1()1()()( 即

)()

1()(2s R K

s Ts s K K s C i ?+++=

因此

R (s )

C (s )

图3-37 例3-21控制系统的结构图

K i s+1

)

1(+Ts s K

)()()(2

2s R K s Ts s KK s Ts s C s R i ???

?

???++-+=- 当输入信号为r (t )=at 时,系统的稳态误差为

K KK a K

s Ts KK Ts a K s Ts KK Ts a s a K s Ts s KK s Ts s e i i s i s i s ss )1()]1([lim )

1(lim lim 20202220-=++-+=++-+=???????++-+=→→→

要使系统对斜坡输入的响应的稳态误差为零,即e ss =0,必须满足

01=-i KK

所以

K K i /1=

解毕。

例3-22 设单位负反馈系统开环传递函数为1

)(+=Ts K K s G g p

。如果要求系统的位置稳态

误差e ss =0,单位阶跃响应的超调量M p %=4.3%,试问K p 、K g 、T ,各参数之间应保持什么关系?

解 开环传递函数

)2()

1(/)1()(2

n n

g p g

p s s T

s s T K K Ts s K K s G ξωω+=+=+=

显然

T

K K g

p n =

2ω T

n 1

2=

ξω 解得:

24/1ξ=T K K g p

由于要求

%3.4%100%2

1/

≤?=--ξξe M p

故应有ξ ≥0.707。于是,各参数之间应有如下关系

5.0≤T K K g p

本例为I 型系统,位置稳态误差e ss =0的要求自然满足。解毕。 例3-23 设复合控制系统如图3-38所示。其中

自动控制原理基本知识测试题

第一章自动控制的一般概念 一、填空题 1.(稳定性)、(快速性)和(快速性)是对自动控制系统性能的基本要求。 2.线性控制系统的特点是可以使用(叠加)原理,而非线性控制系统则不能。 3.根据系统给定值信号特点,控制系统可分为(定值)控制系统、(随动)控制系统和(程序)控制系统。 4.自动控制的基本方式有(开环)控制、(闭环)控制和(复合)控制。 5.一个简单自动控制系统主要由(被控对象)、(执行器)、(控制器)和(测量变送器)四个基本环节组成。 6.自动控制系统过度过程有(单调)过程、(衰减振荡)过程、(等幅振荡)过程和(发散振荡)过程。 二、单项选择题 1.下列系统中属于开环控制的为( C )。 A.自动跟踪雷达 B.无人驾驶车 C.普通车床 D.家用空调器 2.下列系统属于闭环控制系统的为( D )。 A.自动流水线 B.传统交通红绿灯控制 C.普通车床 D.家用电冰箱 3.下列系统属于定值控制系统的为( C )。 A.自动化流水线 B.自动跟踪雷达 C.家用电冰箱 D.家用微波炉 4.下列系统属于随动控制系统的为( B )。 A.自动化流水线 B.火炮自动跟踪系统 C.家用空调器 D.家用电冰箱 5.下列系统属于程序控制系统的为( B )。 A.家用空调器 B.传统交通红绿灯控制 C.普通车床 D.火炮自动跟踪系统 6.( C )为按照系统给定值信号特点定义的控制系统。 A.连续控制系统 B.离散控制系统 C.随动控制系统 D.线性控制系统 7.下列不是对自动控制系统性能的基本要求的是( B )。 A.稳定性 B.复现性 C.快速性 D.准确性 8.下列不是自动控制系统基本方式的是( C )。 A.开环控制 B.闭环控制 C.前馈控制 D.复合控制 9.下列不是自动控制系统的基本组成环节的是( B )。 A.被控对象 B.被控变量 C.控制器 D.测量变送器 10.自动控制系统不稳定的过度过程是( A )。 A.发散振荡过程 B.衰减振荡过程 C.单调过程 D.以上都不是 第二章自动控制系统的数学模型 一、填空题 1.数学模型是指描述系统(输入)、(输出)变量以及系统内部各变量之间(动态关系)的数学表达式。 2.常用的数学模型有(微分方程)、(传递函数)以及状态空间表达式等。 3.(结构图)和(信号流图),是在数学表达式基础演化而来的数学模型的图示形式。 4.线性定常系统的传递函数定义:在(零初始)条件下,系统的(输出)量的拉氏变换与(输入)量拉氏变换之比。 5.系统的传递函数完全由系统的(结构、参数)决定,与(输入信号)的形式无关。 6.传递函数的拉氏变换为该系统的(脉冲响应)函数。 7.令线性定常系统传递函数的分子多项式为零,则可得到系统的(零)点。 8.令线性定常系统传递函数的分母多项式为零,则可得到系统的(极)点。 9.令线性定常系统传递函数的分母多项式为零,则可得到系统的(特征)方程。 10.方框图的基本连接方式有(串联)连接、(并联)连接和(反馈)连接。 二、单项选择题 1.以下关于数学模型的描述,错误的是( A ) A.信号流图不是数学模型的图示 B.数学模型是描述系统输入、输出变量以及系统内部河变量之间的动态关系的数学表达式 C.常用的数学模型有微分方程、传递函数及状态空间表达式等 D.系统数学模型的建立方法有解析法和实验法两类 2.以下关于传递函数的描述,错误的是( B ) A.传递函数是复变量s的有理真分式函数 B.传递函数取决于系统和元件的结构和参数,并与外作用及初始条件有关 C.传递函数是一种动态数学模型

自动控制原理课后习题答案

1.2根据题1.2图所示的电动机速度控制系统工作原理 (1)将a,b 与c,d 用线连接成负反馈系统; ( 2)画出系统 框图。 c d + - 发电机 解: (1) a 接d,b 接c. (2) 系 统 框 图 如下 1.3题1.3图所示为液位自动控制系统原理示意图。在任何情况下,希望页面高度c 维持不变,说明系统工作原理并画出系统框图。

解: 工作原理:当打开用水开关时,液面下降,浮子下降,从而通过电位器分压,使得电动机两端出现正向电压,电动机正转带动减速器旋转,开大控制阀,使得进水量增加,液面上升。同理,当液面上升时,浮子上升,通过电位器,使得电动机两端出现负向电压,从而带动减速器反向转动控制阀,减小进水量,从而达到稳定液面的目的。 系统框图如下: 2.1试求下列函数的拉式变换,设t<0时,x(t)=0: (1) x(t)=2+3t+4t 2 解: X(S)= s 2 +23s +38 s

(2) x(t)=5sin2t-2cos2t 解:X(S)=5 422+S -242+S S =4 2102+-S S (3) x(t)=1-e t T 1- 解:X(S)=S 1- T S 11+ = S 1-1 +ST T = ) 1(1 +ST S (4) x(t)=e t 4.0-cos12t 解:X(S)=2 212 )4.0(4 .0+++S S 2.2试求下列象函数X(S)的拉式反变换x(t): (1) X(S)= ) 2)(1(++s s s 解:= )(S X )2)(1(++s s s =1 122+-+S S t t e e t x ---=∴22)( (2) X(S)=) 1(1 522 2++-s s s s 解:=)(S X ) 1(1522 2++-s s s s =15 12+-+S S S

自动控制原理考试复习题

《自动控制原理》复习题 一、选择题(每小题 2 分,共 10分。请将答案填在下面的表格内) 【1题】典型二阶系统单位阶跃响应如图,则可以确定该系统:(A 、D 、E ) A 、是0.707ξ<的欠阻尼系统 B 、开环增益2K = C 、超调量%80%σ= D 、调节时间2s t t = E 、是0型系统 【2题】若系统(A 、D 、E ) A 、开环稳定,闭环不一定稳定。 B .开环稳定,闭环一定不稳定。 C .开环不稳定,闭环一定不稳定。 D .开环不稳定,闭环不一定不稳定。 E .开环临界稳定,闭环不一定不稳定。 【3题】由以下条件,可以确定闭环系统的动态性能(,%s t σ)(A 、C 、D 、E ) A .闭环极点 B .开环零极点 C .闭环零极点 D .开环零极点和开环增益 E .闭环零极点及闭环增益 【4题】系统结构图如下,G(s)分别如下,∞→=0*K ,应画ο 0根轨迹者为 (C 、D 、E )

A 、)3)(2()1(*-+-s s s K B 、)3)(2() 1(*---s s s K C 、)3)(2()1(*-+-s s s K D 、)3)(2()1(*s s s K +-- E 、) 3)(2() 1(*s s s K --- 【5题】) 1() 1()(++= Ts s s K s GH v τ,在m t t r =)(时,0=ss e 的必要条件有:(A ,E ) A 、m v > B 、0>τ C 、T >τ D 、0>K E 、2≤v 二、计算题(每题 15 分,共 15分) 已知在零初始条件下,系统的单位阶跃响应为 t t e e t c --+-=221)( 试求系统的传递函数和脉冲响应。 解 单位阶跃输入时,有s s R 1 )(= ,依题意 s s s s s s s s C 1)2)(1(2311221)(?+++=+++-= (5分) ∴ ) 2)(1(2 3)()()(+++== s s s s R s C s G (5分) []t t e e s s L s G L t k -----=?? ? ???+++-==21 1 42411)()( (5分) 三、计算题(每题 15 分,共 15分) 已知系统脉冲响应 t e t k 25.10125.0)(-= 试求系统闭环传递函数)(s Φ。 解 Φ()()./(.)s L k t s ==+00125125 (15分) 四、计算题(每题 15 分,共 15分) 已知系统结构图如图所示。

自动控制原理期末考试复习题及答案

一、 填空题 1、线性定常连续控制系统按其输入量的变化规律特性可分为_恒值控制_系统、随动系统与_程序控制_系统。 2、传递函数为 [12(s+10)] / {(s+2)[(s/3)+1](s+30)} 的系统的零点为_-10_, 极点为_-2__, 增益为_____2_______。 3、构成方框图的四种基本符号就是: 信号线、比较点、传递环节的方框与引出点 。 4、我们将 一对靠得很近的闭环零、极点 称为偶极子。 5、自动控制系统的基本控制方式有反馈控制方式、_开环控制方式与_复合控制方式_。 6、已知一系统单位脉冲响应为t e t g 5.16)(-=,则该系统的传递函数为 。 7、自动控制系统包含_被控对象_与自动控制装置两大部分。 8、线性系统数学模型的其中五种形式就是微分方程、传递函数、__差分方程_、脉冲传递函数_、__方框图与信号流图_。 9、_相角条件_就是确定平面上根轨迹的充分必要条件,而用_幅值条件__确定根轨迹上 各点的根轨迹增益k*的值。当n-m ≥_2_时, 开环n 个极点之与等于闭环n 个极点之与。 10、已知一系统单位脉冲响应为 t e t g 25.13)(-=,则系统的传递函数为_ _。 11、当∞→ω时比例微分环节的相位就是: A 、90 A 、ο90 B 、ο90- C 、ο45 D 、ο45- 12、对自动控制的性能要求可归纳为_稳定性__、_快速性_与准确性三个方面, 在阶跃 响应性能指标中,调节时间体现的就是这三个方面中的_快速性___,而稳态误差体现的就是_稳定性与准确性_。 13、当且仅当离散特征方程的全部特征根均分布在Z 平面上的_单位圆 _内,即所有特征根的模均小于___1____,相应的线性定常离散系统才就是稳定的。 14、下列系统中属于开环控制系统的就是 D 、普通数控加工系统

自动控制原理例题详解-相平面法例题解析相平面法例题超详细步骤解析

相平面法例题解析: 要求: 1.正确求出对于非线性系统在每个线性区的相轨迹方程,也就是e e - 之间关系的方程(或c c - )。会画相轨迹(模型中是给具体数的)。※※关键是确定开关线方 程。 2. ※※※如果发生自持振荡,计算振幅和周期。 注意相平面法一般应: 1)按照信号流向与传输关系。线性部分产生导数关系,非线性部分形成不同分区。连在一 起就形成了不同线性分区对应的运动方程,即含有c 或者e 的运动方程。 2)※※※根据不同线性分区对应的运动方程的条件方程确定开关线方程。开关线方程确定很关键。 3)※※※根据不同线性分区对应的运动方程,利用解析法(分离变量积分法或者消去t 法) 不同线性分区对应的相轨迹方程,即c c - 和e e - 之间关系。 4)※根据不同分区的初始值绘制出相轨迹,并求出稳态误差和超调、以及自持振荡的周期和振幅等。 例2 问题1. 用相平面法分析系统在输入r (t ) = 4.1(t )时的运动情况。 问题2. 如果发生自持振荡 ,求自持振荡的周期和振幅。 解:问题1:1)设系统结构图,死区特性的表达式: 0,||2 2,22,2x e x e e x e e =≤?? =->??=+<-? 2)线性部分: 2 ()1 ()C s X s s =,则微分方程为:c x = 3)绘制e e - 平面相轨迹图。因为e r c =-,c r e =-,c r e =- ,c r e =- 。代入则 e x r =-+ (1) 当0t >,0r = ,0r = 。代入,则各区的运动方程0,||2I 2,2II 2,2III e e e e e e e e =≤--?? =->---??=--<----? 由于非线性特性有3个分区,相平面e e -分为3个线性区。 注意,当相平面选好后,输入代入后,最后代入非线性特性。 4) 系统开关线:2e =±。 5) 由题意知初始条件(0)(0)(0)4e r c =-=,(0)(0)(0)0e r c =-= 在II 区,则从

自动控制原理习题集与答案解析

第一章 习题答案 1-1 根据题1-1图所示的电动机速度控制系统工作原理图 (1) 将a ,b 与c ,d 用线连接成负反馈状态; (2) 画出系统方框图。 解 (1)负反馈连接方式为:d a ?,c b ?; (2)系统方框图如图解1-1 所示。 1-2 题1-2图是仓库大门自动控制系统原理示意图。试说明系统自动控制大门开闭的工作原理,并画出系统方框图。 题1-2图 仓库大门自动开闭控制系统 解 当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。系统方框图如图解1-2所示。

1-3 题1-3图为工业炉温自动控制系统的工作原理图。分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。 题1-3图 炉温自动控制系统原理图 解 加热炉采用电加热方式运行,加热器所产生的热量与调压器电压c u 的平方成正比,c u 增高,炉温就上升,c u 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。炉子的实际温度用热电偶测量,输出电压 f u 。f u 作为系统的反馈电压与给定电压r u 进行比较,得出偏差电压e u ,经电压放大器、功率放大器放大成a u 后,作为控制电动机的电枢电压。 在正常情况下,炉温等于某个期望值T °C ,热电偶的输出电压 f u 正好等于给定电压r u 。此时,0=-=f r e u u u ,故01==a u u ,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使c u 保持一定的数值。这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。 当炉膛温度T °C 由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以下的控制过程: 控制的结果是使炉膛温度回升,直至T °C 的实际值等于期望值为止。 ?→T C ?→↑→↑→↑→↑→↑→↓→↓T u u u u u c a e f θ1C ↑ 系统中,加热炉是被控对象,炉温是被控量,给定量是由给定电位器设定的电压r u (表征炉温的希望值)。系统方框图见图解1-3。

自动控制原理课后习题答案第四章

第 四 章 4-4 设单位反馈控制系统开环传递函数如下,试概略绘出相应的闭环根轨迹图(要求确定分离点坐标d): (1) )15.0)(12.0()(++= s s s K s G (2))12()1()(++=s s s K s G 解:(1))5)(2()15.0)(12.0()(* ++=++=s s s K s s s K s G ,K K 10*= ① n =3,根轨迹有3条分支; ② 起点:p1=0,p2=-2,p3=-5;没有零点,终点:3条根轨迹趋向于无穷远处。 ③ 实轴上的根轨迹:[-2,0],(5,-∞-]; ④ 渐进线: 373520-=--= a σ,πππ?,33)12(±=+=K a ; ⑤ 分离点:051211=++++d d d 求解得:79.31-=d (舍去),88.02-=d ; 作出根轨迹如图所示: (2) *(1)(1)()(21)(0.5)K s K s G s s s s s ++= =++,*0.5K K = ① n =2,根轨迹有2条分支; ② 起点:p1=0,p2=-0.5,;终点: 11z =-,1n m -=条根轨迹趋向于无穷远处。 ③ 实轴上的根轨迹:[-0.5,0],(,1-∞-]; ④ 分离点:1110.51d d d +=++ 求解得:1 0.29d =-,2 1.707d =-; 作出根轨迹如图所示:

4-6 设单位反馈控制系统的开环传递函数如下,要求: 确定 )20)(10()()(2+++=*s s s z s K s G 产生纯虚根为±j1的z值和*K 值。 解: 020030)()20)(10()(**234*2=++++=++++=z K s K s s s z s K s s s s D 令j s =代入0)(=s D ,并令其实部、虚部分别为零,即: 02001)]1(Re[*=+-=z K j D ,030)]1(Im[*=+-=K j D 解得:63.6,30*==z K 画出根轨迹如图所示: 4-10 设单位反馈控制系统的开环传递函数 )102.0)(101.0()(++= s s s K s G 要求: (1) 画出准确根轨迹(至少校验三点); (2) 确定系统的临界稳定开环增益K c; (3) 确定与系统临界阻尼比相应的开环增益K 。 分析:利用解析法,采用逐个描点的方法画出系统闭环根轨迹。然后将s j ω=代入特征方程中,求解纯虚根的开环增益,或是利用劳斯判据求解临界稳定的开环增益。对于临界阻尼比相应的开环增益即为实轴上的分离点对应的开环增益。

自动控制原理课后习题答案

. 第一章引论 1-1 试描述自动控制系统基本组成,并比较开环控制系统和闭环控制系统的特点。答: 自动控制系统一般都是反馈控制系统,主要由控制装置、被控部分、测量元件组成。控制装置是由具有一定职能的各种基本元件组成的,按其职能分,主要有给定元件、比较元件、校正元件和放大元件。如下图所示为自动控制系统的基本组成。 开环控制系统是指控制器与被控对象之间只有顺向作用,而没有反向联系的控制过程。此时,系统构成没有传感器对输出信号的检测部分。开环控制的特点是:输出不影响输入,结构简单,通常容易实现;系统的精度与组成的元器件精度密切相关;系统的稳定性不是主要问题;系统的控制精度取决于系统事先的调整精度,对于工作过程中受到的扰动或特性参数的变化无法自动补偿。 闭环控制的特点是:输出影响输入,即通过传感器检测输出信号,然后将此信号与输入信号比较,再将其偏差送入控制器,所以能削弱或抑制干扰;可由低精度元件组成高精度系统。 闭环系统与开环系统比较的关键,是在于其结构有无反馈环节。 < 1-2 请说明自动控制系统的基本性能要求。 答: 自动控制系统的基本要求概括来讲,就是要求系统具有稳定性、快速性和准确性。 稳定性是对系统的基本要求,不稳定的系统不能实现预定任务。稳定性通常由系统的结构决定与外界因素无关。对恒值系统,要求当系统受到扰动后,经过一定时间的调整能够回到原来的期望值(例如恒温控制系统)。对随动系统,被控制量始终跟踪参量的变化(例如炮轰飞机装置)。 快速性是对过渡过程的形式和快慢提出要求,因此快速性一般也称为动态特性。在系统稳定的前提下,希望过渡过程进行得越快越好,但如果要求过渡过程时间很短,可能使动态误差过大,合理的设计应该兼顾这两方面的要求。 准确性用稳态误差来衡量。在给定输入信号作用下,当系统达到稳态后,其实际输出与所期望的输出之差叫做给定稳态误差。显然,这种误差越小,表示系统的精度

自动控制原理期末考试题A卷

A 卷 一、填空题(每空 1 分,共10分) 1、 在水箱水温控制系统中,受控对象为 ,被控量为 。 2、 对自动控制的性能要求可归纳为___________、快速性和准确性三个方面, 在阶跃响应性能指标中,调节时间体现的是这三个方面中的______________,而稳态误差体现的是______________。 3、 闭环系统的根轨迹起始于开环传递函数的 ,终止于开环传递函数的 或无穷远。 4、 PID 控制器的输入-输出关系的时域表达式是 ,其相应的传递函数为 。 5、 香农采样定理指出:如采样器的输入信号e(t)具有有限宽带,且有直到ωh 的频率分量,则使信号e(t) 完满地从采样信号e*(t) 中恢复过来的采样周期T 要满足下列条件:________________。 二、选择题(每题 2 分,共10分) 1、 设系统的传递函数为G (S )=1 52512++s s ,则系统的阻尼比为( )。 A .21 B .1 C .51 D .25 1 2、 非单位负反馈系统,其前向通道传递函数为G(S),反馈通道传递函数为H(S),当输入信号为R(S),则从输入端定义的误差E(S)为 ( ) A 、 ()()()E S R S G S =? B 、()()()()E S R S G S H S =?? C 、()()()()E S R S G S H S =?- D 、()()()() E S R S G S H S =- 3、 伯德图中的低频段反映了系统的( )。 A .稳态性能 B .动态性能 C .抗高频干扰能力 D ..以上都不是 4、 已知某些系统的开环传递函数如下,属于最小相位系统的是( )。 A 、 (2)(1)K s s s -+ B 、(1)(5K s s s +-+) C 、2(1)K s s s +- D 、(1)(2) K s s s -- 5、 已知系统的开环传递函数为 100(0.11)(5)s s ++,则该系统的开环增益为 ( )。 A 、 100 B 、1000 C 、20 D 、不能确定

自动控制原理试题库(含答案)

一、填空题(每空 1 分,共15分) 1、反馈控制又称偏差控制,其控制作用是通过给定值与反馈量的差值进行的。 2、复合控制有两种基本形式:即按输入的前馈复合控制和按扰动的前馈复合控制。 3、两个传递函数分别为G 1(s)与G 2(s)的环节,以并联方式连接,其等效传递函数为()G s ,则G(s)为G1(s)+G2(s)(用G 1(s)与G 2(s) 表示)。 4、典型二阶系统极点分布如图1所示, 则无阻尼自然频率= n ω 阻尼比=ξ ,0.7072 = 该系统的特征方程为2220s s ++= , 该系统的单位阶跃响应曲线为衰减振荡。 5、若某系统的单位脉冲响应为0.20.5()105t t g t e e --=+, 则该系统的传递函数G(s)为 105 0.20.5s s s s +++。 6、根轨迹起始于开环极点,终止于开环零点。 7、设某最小相位系统的相频特性为101()()90()tg tg T ?ωτωω--=--,则该系统的 开环传递函数为(1) (1)K s s Ts τ++。 8、PI 控制器的输入-输出关系的时域表达式是 1 ()[()()]p u t K e t e t dt T =+ ?, 其相应的传递函数为 1 [1] p K Ts + ,由于积分环节的引入,可以改善系统的稳态性 能。 1、在水箱水温控制系统中,受控对象为水箱,被控量为水温。 2、自动控制系统有两种基本控制方式,当控制装置与受控对象之间只有顺向作用而无反向联系时,称为开环控制系统;当控制装置与受控对象之间不但有顺向作用而且还有反向联系时,称为闭环控制系统;含有测速发电机的电动机速度控制系统,属于闭环控制系统。 3、稳定是对控制系统最基本的要求,若一个控制系统的响应曲线为衰减振荡,则该系统稳定。判断一个闭环线性控制系统是否稳定,在时域分析中采用劳斯判据;在频域分析中采用奈奎斯特判据。 4、传递函数是指在零初始条件下、线性定常控制系统的输出拉氏变换与输入拉

自动控制原理课后答案

第一章 1-1 图1-2是液位自动控制系统原理示意图。在任意情况下,希望液面高度c维持不变,试说明系统工作原理并画出系统方块图。 图1-2 液位自动控制系统 解:被控对象:水箱;被控量:水箱的实际水位;给定量电位器设定水位(表征液位的希望值);比较元件:电位器;执行元件:电动机;控制任务:保持水箱液位高度不变。 工作原理:当电位电刷位于中点(对应)时,电动机静止不动,控制阀门有一定的开度,流入水量与流出水量相等,从而使液面保持给定高度,一旦流入水量或流出水量发生变化时,液面高度就会偏离给定高度。 当液面升高时,浮子也相应升高,通过杠杆作用,使电位器电刷由中点位置下移,从而给电动机提供一定的控制电压,驱动电动机,通过减速器带动进水阀门向减小开度的方向转动,从而减少流入的水量,使液面逐渐降低,浮子位置也相应下降,直到电位器电刷回到中点位置,电动机的控制电压为零,系统重新处于平衡状态,液面恢复给定高度。 反之,若液面降低,则通过自动控制作用,增大进水阀门开度,加大流入水量,使液面升高到给定高度。 系统方块图如图所示: 1-10 下列各式是描述系统的微分方程,其中c(t)为输出量,r (t)为输入量,试判断哪些是线性定常或时变系统,哪些是非线性系统 (1); (2); (3); (4); (5); (6); (7) 解:(1)因为c(t)的表达式中包含变量的二次项,所以该系统为非线性系统。 (2)因为该微分方程不含变量及其导数的高次幂或乘积项,且各项系数均为常数,所以该系统为线性定常系统。 (3)该微分方程不含变量及其导数的高次幂或乘积项,所以该系统为线性系统,但第一项的系数为t,是随时间变化的变量,因此该系统为线性时变系统。 (4)因为c(t)的表达式中r(t)的系数为非线性函数,所以该系统为非线性系统。 (5)因为该微分方程不含变量及其导数的高次幂或乘积项,且各项系数均为常数,所以该系统为线性定常系统。 (6)因为c(t)的表达式中包含变量的二次项,表示二次曲线关系,所以该系统为非线性系统。 (7)因为c(t)的表达式可写为,其中,所以该系统可看作是线性时变系统。

自动控制原理习题解析

自动控制原理习题解析

《自动控制原理》试卷(一)A 一、 求系统传递函数)(/)(s R s C (10分) 二、 系统结构图如图所示,τ 取何值时,系统才能稳定 ? (10分) 三、已知负反馈系统的开环传递函数为, 42) 2()(2+++=s s s K s W k (1) 试画出以K 为参数系统的根轨迹; (2) 证明根轨迹的复数部分为 圆 弧 。 (15分)

SHAPE \* MERGEFORMAT 四、已知一单位闭环系统的开环传递函数 为 )15.0(100)(+= s s s W K ,现加入串联校正装置:101.01 1.0)(++=s s s W c , 试: (20分) (1) 判断此校正装置属于引前校正还是迟后校正? (2) 绘制校正前、后系统及校正装置的对数幅频特性。 (3) 计算校正后的相位裕量。 五、非线性系统结构如图所示,设输入r=0, 绘制起始点在 )0(,1)0(00==>=c c c c && 的c c &-平面上的相轨迹。 (15分) 六、采样控制系统如图所示,已知s T K 2.0, 10==: (15分) 1.求出系统的开环脉冲传递函数。 2.当输入为 ) (1*)(1*)(1)(2 21t t t t t t r ++=时,求稳态误差 ss e 。

七、用奈氏稳定判据判断如下图所示系统的稳定性。其中,(1)─(3)为线性系统,(4)─(6)为非线性系统。 (15分) 《自动控制原理》试卷(一)A 标准答案及评分标准 一、求系统传递函数)(/)(s R s C (10分) G 3 G 1 G 2 H 3 H 2 H 1 - - + - + +

自动控制原理课后习题答案

第一章引论 1-1 试描述自动控制系统基本组成,并比较开环控制系统和闭环控制系统的特点。答: 自动控制系统一般都是反馈控制系统,主要由控制装置、被控部分、测量元件组成。控制装置是由具有一定职能的各种基本元件组成的,按其职能分,主要有给定元件、比较元件、校正元件和放大元件。如下图所示为自动控制系统的基本组成。 开环控制系统是指控制器与被控对象之间只有顺向作用,而没有反向联系的控制过程。此时,系统构成没有传感器对输出信号的检测部分。开环控制的特点是:输出不影响输入,结构简单,通常容易实现;系统的精度与组成的元器件精度密切相关;系统的稳定性不是主要问题;系统的控制精度取决于系统事先的调整精度,对于工作过程中受到的扰动或特性参数的变化无法自动补偿。 闭环控制的特点是:输出影响输入,即通过传感器检测输出信号,然后将此信号与输入信号比较,再将其偏差送入控制器,所以能削弱或抑制干扰;可由低精度元件组成高精度系统。 闭环系统与开环系统比较的关键,是在于其结构有无反馈环节。 1-2 请说明自动控制系统的基本性能要求。 答: 自动控制系统的基本要求概括来讲,就是要求系统具有稳定性、快速性和准确性。 稳定性是对系统的基本要求,不稳定的系统不能实现预定任务。稳定性通常由系统的结构决定与外界因素无关。对恒值系统,要求当系统受到扰动后,经过一定时间的调整能够回到原来的期望值(例如恒温控制系统)。对随动系统,被控制量始终跟踪参量的变化(例如炮轰飞机装置)。 快速性是对过渡过程的形式和快慢提出要求,因此快速性一般也称为动态特性。在系统稳定的前提下,希望过渡过程进行得越快越好,但如果要求过渡过程时间很短,可能使动态误差过大,合理的设计应该兼顾这两方面的要求。 准确性用稳态误差来衡量。在给定输入信号作用下,当系统达到稳态后,其实际输出与所期望的输出之差叫做给定稳态误差。显然,这种误差越小,表示系统的精度越高,准确性越好。当准确性与快速性有矛盾时,应兼顾这两方面的要求。 1-3 请给出图1-4炉温控制系统的方框图。 答:

自动控制原理试卷习题

自动控制 (A )试卷 一、系统结构如图所示,u1为输入, u2为输出,试求 1.求网络的传递函数G(s)=U1(s)/U2(s) 讨论元件R1,R2,C1,C2参数的选择对系统的稳定性是否有影响。(15分) 2 二、图示系统,试求, 2. 当输入r(t)=0,n(t)=1(t)时,系统的稳态误差ess; 3. 当输入r(t)=1(t),n(t)=1(t)时,系统的稳态误差ess; 4. 若要减小稳态误差,则应如何调整K1,K2?(15分)

三.已知单位负反馈系统的开环传递函数为. ) () )( ( ) ( 1 Ts s 1 s 1 2s K s G 2++ + = 试确定当闭环系统稳定时,T,K应满足的条件。(15分) 四、已知系统的结构图如图所示, 5.画出当∞ → : K变化时,系统的根轨迹图; 6.用根轨迹法确定,使系统具有阻尼比50. = ζ时,K 的取值及闭环极点(共轭复根)。(15分)

五、已知最小相位系统的对数幅频特性渐近特性曲线, 1.试求系统的开环传递函数G (s ); 2.求出系统的相角裕量γ; 3.判断闭环系统的稳定性。(15分) 六、设单位反馈系统的开环传递函数如下, 2 s 158 s -+= )()(s H s G 7. 试画出系统的乃奎斯特曲线; 8. 用乃氏判据判断系统的稳定性(15分) 七、已知单位反馈系统的开环传递函数为 1)s(2s 4 G +=)(s 使设计一串联滞后校正装置,使系统的相角裕量

040≥γ,幅值裕量10db K g ≥,并保持原有的开环增 益值。(10分) 自动控制理论B 9. 试求图示系统的输出z 变换C(z).(20 分)

(完整版)自动控制原理课后习题及答案

第一章 绪论 1-1 试比较开环控制系统和闭环控制系统的优缺点. 解答:1开环系统 (1) 优点:结构简单,成本低,工作稳定。用于系统输入信号及扰动作用能预先知道时,可得到满意的效果。 (2) 缺点:不能自动调节被控量的偏差。因此系统元器件参数变化,外来未知扰动存在时,控制精度差。 2 闭环系统 ⑴优点:不管由于干扰或由于系统本身结构参数变化所引起的被控量 偏离给定值,都会产生控制作用去清除此偏差,所以控制精度较高。它是一种按偏差调节的控制系统。在实际中应用广泛。 ⑵缺点:主要缺点是被控量可能出现波动,严重时系统无法工作。 1-2 什么叫反馈?为什么闭环控制系统常采用负反馈?试举例说 明之。 解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反馈。 闭环控制系统常采用负反馈。由1-1中的描述的闭环系统的优点所证明。例如,一个温度控制系统通过热电阻(或热电偶)检测出当前炉子的温度,再与温度值相比较,去控制加热系统,以达到设定值。 1-3 试判断下列微分方程所描述的系统属于何种类型(线性,非 线性,定常,时变)? (1)22 ()()() 234()56()d y t dy t du t y t u t dt dt dt ++=+ (2)()2()y t u t =+ (3)()()2()4()dy t du t t y t u t dt dt +=+ (4)() 2()()sin dy t y t u t t dt ω+= (5)22 ()() ()2()3()d y t dy t y t y t u t dt dt ++= (6)2() ()2() dy t y t u t dt +=

自动控制原理习题解答

1. 系统的传递函数 ,求在输入信号 作用下系统的稳态输出。 解: 稳态输出 2.单位反馈系统的开环传递函数为: ,试分别计算闭环系统的阻尼比ζ和无阻尼自然振荡角频率 解:闭环传递函数: ,所以 3.控制系统如图如示。已知输入信号 试求系统的稳定误差 。 . 解:1.判别稳定性。 系统的闭环特征方程为: 系统稳定条件:1 均大于0 2 由劳斯表,第一列元素应大于 . 2.求稳态误差: 系统为 型。当 时,稳态误差 当 时,稳态误差 当 时,稳态误差 系统的总稳态误差: 4.已知最小相位系统的对数幅频曲线如下图所示。试写出他的传递函数。 解:传递函数: 5.已知系统的开环传递函数为 ,用劳斯判据判定系统闭环稳定性; 并判断S 平面右半平面和虚轴上根的情况。 10()0.51G s s =+()10sin 6.3r t t =10()0.51 G j j ωω=+ 6.36.3( 6.3) 3.03( 6.3)0.572.4 G j G j arctg ωω===∠=-- 3.0310sin(6.372.4)30.3sin(6.372.4)ss C t t =?-=- )4(16)(+=s s s G k 16416)(2++=Φs s s s rad n n /4,162==ωω24n ζω=0.5ζ=)(121)(1)(1)(2t t t t t t r ?+?+=0 )1()1(12=+++s K K s T s m m τ01123=+++m m m K K s K K s s T ττ ,,,1m m K K T m T >τII )(1)(1t t r =0 1=ss e 2()1()r t t t =?)(121)(23t t t r =02=ss e m a ss K K k e 1311==m ss ss ss ss K K e e e e 13211=++=11.010)(+=s s G 2322()(2910)s G s s s s s +=+++n ω

自动控制原理课后习题答案第二章

第二章 2-3试证明图2-5( a )的电网络与(b)的机械系统有相同的数学模型。 分析首先需要对两个不同的系统分别求解各自的微分表达式,然后两者进行对比,找岀两者之 间系数的对应关系。对于电网络,在求微分方程时,关键就是将元件利用复阻抗表示,然后利用电压、电阻和电流之间的关系推导系统的传递函数,然后变换成微分方程的形式,对于机械系统,关键就是系统的力学分析,然后利用牛顿定律列岀系统的方程,最后联立求微分方程。 证明:(a)根据复阻抗概念可得: 即取A、B两点进行受力分析,可得: 整理可得: 经比较可以看岀,电网络( a)和机械系统(b)两者参数的相似关系为 2-5 设初始条件均为零,试用拉氏变换法求解下列微分方程式,并概略绘制x(t)曲线,指岀各方程式的模态。 (1) (2 ) 2-7由运算放大器组成的控制系统模拟电路如图2-6所示,试求闭环传递函数U c ( s )/U r ( s)。 图2-6 控制系统模拟电路 解:由图可得 联立上式消去中间变量U1和U2,可得: 2-8某位置随动系统原理方块图如图2-7所示。已知电位器最大工作角度,功率放大级放

大系数为K3,要求:

(1) 分别求岀电位器传递系数 K 0、第一级和第二级放大器的比例系数 K 1和K 2; (2) 画岀系统结构图; (3) 简化结构图,求系统传递函数。 图2-7 位置随动系统原理图 (2)假设电动机时间常数为 Tm 忽略电枢电感的影响,可得直流电动机的传递函数为 式中Km 为电动机的传递系数,单位为。 又设测速发电机的斜率为,则其传递函数为 由此可画岀系统的结构图如下: (3)简化后可得系统的传递函数为 2-9若某系统在阶跃输入 r(t)=1(t) 时,零初始条件下的输岀 响应,试求系统的传递函数 和脉冲响应。 分析:利用拉普拉斯变换将输入和输出的时间域表示变成频域表示, 进而求解出系统的传递函数, 然后对传递函数进行反变换求岀系统的脉冲响应函数。 解:(1),则系统的传递函数 (2)系统的脉冲响应 2-10试简化图2-9中的系统结构图,并求传递函数 C(s)/R(s ) 和C(s)/N(s) 分析:分别假定 R(s)=o 和N(s)=O ,画出各自的结构图,然后对系统结构图进行等效变换, 将其化成最简单的形式,从而求解系统的传递函数。 解:(a )令N (s )= 0,简化结构图如图所示: 可求出: 分析:利用机械原理和放大器原理求解放大系数, 构图,求岀系统的传递函数。 解:(1) 然后求解电动机的传递函数, 从而画岀系统结

自动控制原理 课后习题答案

第1章控制系统概述 【课后自测】 1-1 试列举几个日常生活中的开环控制与闭环控制系统,说明它们的工作原理并比较开环控制与闭环控制的优缺点。 解:开环控制——半自动、全自动洗衣机的洗衣过程。 工作原理:被控制量为衣服的干净度。洗衣人先观察衣服的脏污程度,根据自己的经验,设定洗涤、漂洗时间,洗衣机按照设定程序完成洗涤漂洗任务。系统输出量(即衣服的干净度)的信息没有通过任何装置反馈到输入端,对系统的控制不起作用,因此为开环控制。 闭环控制——卫生间蓄水箱的蓄水量控制系统与空调、冰箱的温度控制系统。 工作原理:以卫生间蓄水箱蓄水量控制为例,系统的被控制量(输出量)为蓄水箱水位(反应蓄水量)。水位由浮子测量,并通过杠杆作用于供水阀门(即反馈至输入端),控制供水量,形成闭环控制。当水位达到蓄水量上限高度时,阀门全关(按要求事先设计好杠杆比例),系统处于平衡状态。一旦用水,水位降低,浮子随之下沉,通过杠杆打开供水阀门,下沉越深,阀门开度越大,供水量越大,直到水位升至蓄水量上限高度,阀门全关,系统再次处于平衡状态。 1-2 自动控制系统通常有哪些环节组成?各个环节分别的作用就是什么? 解:自动控制系统包括被控对象、给定元件、检测反馈元件、比较元件、放大元件与执行元件。各个基本单元的功能如下: (1)被控对象—又称受控对象或对象,指在控制过程中受到操纵控制的机器设备或过程。 (2)给定元件—可以设置系统控制指令的装置,可用于给出与期望输出量相对应的系统输入量。 (3)检测反馈元件—测量被控量的实际值并将其转换为与输入信号同类的物理量,再反馈到系统输入端作比较,一般为各类传感器。 (4)比较元件—把测量元件检测的被控量实际值与给定元件给出的给定值进行比较,分析计算并产生反应两者差值的偏差信号。常用的比较元件有差动放大器、机械差动装置与电桥等。 (5)放大元件—当比较元件产生的偏差信号比较微弱不足以驱动执行元件动作时,可通过放大元件将微弱信号作线性放大。如电压偏差信号,可用电子管、晶体管、集成电路、晶闸管等组成的电压放大器与功率放大级加以放大。 (6)执行元件—用于驱动被控对象,达到改变被控量的目的。用来作为执行元件的有阀、电动机、液压马达等。 (7)校正元件:又称补偿元件,它就是结构或参数便于调整的元件,用串联或反馈的方式连接在系统中,以改善控制系统的动态性能与稳态性能。 1-3 试阐述对自动控制系统的基本要求。 解:自动控制系统的基本要求概括来讲,就就是要求系统具有稳定性、准确性与快速性。 稳定性就是对系统最基本的要求,不稳定的系统就是无法正常工作的,不能实现预定控制

自动控制原理第二版 冯巧玲 北航第一章习题及答案

《自动控制原理》习题解答 郑州轻工业学院 电气信息工程学院

第一章习题及答案 1-1 根据题1-1图所示的电动机速度控制系统工作原理图 (1) 将a ,b 与c ,d 用线连接成负反馈状态; (2) 画出系统方框图。 解 (1)负反馈连接方式为:d a ?,c b ?; (2)系统方框图如图解1-1 所示。 1-2 题1-2图是仓库大门自动控制系统原理示意图。试说明系统自动控制大门开闭的工作原理,并画出系统方框图。 题1-2图 仓库大门自动开闭控制系统 解 当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。与此同时,和大

门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。系统方框图如图解1-2所示。 1-3 题1-3图为工业炉温自动控制系统的工作原理图。分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。 题1-3图 炉温自动控制系统原理图 解 加热炉采用电加热方式运行,加热器所产生的热量与调压器电压c u 的平方成正比,c u 增高,炉温就上升,c u 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。炉子的实际温度用热电偶测量,输出电压f u 。f u 作为系统的反馈电压与给定电压r u 进行比较,得出偏差电压e u ,经电压放大器、功率放大器放大成a u 后,作为控制电动机的电枢电压。 在正常情况下,炉温等于某个期望值T °C ,热电偶的输出电压f u 正好等于给定电压r u 。此时,0=-=f r e u u u ,故01==a u u ,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使c u 保持一定的数值。这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。 当炉膛温度T °C 由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以下的控制过程,控制的结果是使炉膛温度回升,直至T °C 的实际值等于期望值为止。

自动控制原理试题库含答案

自动控制原理试题库含 答案 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

一、填空题(每空 1 分,共15分) 1、反馈控制又称偏差控制,其控制作用是通过给定值与反馈量的差值进行的。 2、复合控制有两种基本形式:即按输入的前馈复合控制和按扰动的前馈复合控制。 3、两个传递函数分别为G 1(s)与G 2(s)的环节,以并联方式连接,其等效传递函数为 ()G s ,则G(s)为G1(s)+G2(s)(用G 1(s)与G 2(s) 表示)。 4、典型二阶系统极点分布如图1所示, 则无阻尼自然频率 n ω 阻尼比=ξ,0.7072 = 该系统的特征方程为2220s s ++= , 该系统的单位阶跃响应曲线为衰减振荡。 5、若某系统的单位脉冲响应为0.20.5()105t t g t e e --=+, 则该系统的传递函数G(s)为 105 0.20.5s s s s + ++。 6、根轨迹起始于开环极点,终止于开环零点。 7、设某最小相位系统的相频特性为101()()90()tg tg T ?ωτωω--=--,则该系统的开环传 递函数为(1) (1)K s s Ts τ++。 8、PI 控制器的输入-输出关系的时域表达式是 1 ()[()()]p u t K e t e t dt T =+ ?, 其相应的传递函数为 1 [1] p K Ts + ,由于积分环节的引入,可以改善系统的稳态性能。 1、在水箱水温控制系统中,受控对象为水箱,被控量为水温。

2、自动控制系统有两种基本控制方式,当控制装置与受控对象之间只有顺向作用而无反向联系时,称为开环控制系统;当控制装置与受控对象之间不但有顺向作用而且还有反向联系时,称为闭环控制系统;含有测速发电机的电动机速度控制系统,属于闭环控制系统。 3、稳定是对控制系统最基本的要求,若一个控制系统的响应曲线为衰减振荡,则该系统稳定。判断一个闭环线性控制系统是否稳定,在时域分析中采用劳斯判据;在频域分析中采用奈奎斯特判据。 4、传递函数是指在零初始条件下、线性定常控制系统的输出拉氏变换与输入拉氏变换之比。 5、设系统的开环传递函数为 2(1)(1) K s s Ts τ++ 为arctan 180arctan T τωω--。 6、频域性能指标与时域性能指标有着对应关系,开环频域性能指标中的幅值穿越频率 c ω对应时域性能指标调整时间s t ,它们反映了系统动态过程的。 1、对自动控制系统的基本要求可以概括为三个方面,即:稳定性、快速性和准确性。 2、控制系统的输出拉氏变换与输入拉氏变换在零初始条件下的比值称为传递函数。一阶系统传函标准形式是1 ()1 G s Ts = +,二阶系统传函标准形式是22 2 ()2n n n G s s s ωζωω=++。 3、在经典控制理论中,可采用劳斯判据、根轨迹法或奈奎斯特判据等方法判断线性控制系统稳定性。 4、控制系统的数学模型,取决于系统结构和参数, 与外作用及初始条件无关。

相关文档
最新文档