JAVA蛇形矩阵的两种实现方法

JAVA蛇形矩阵的两种实现方法
JAVA蛇形矩阵的两种实现方法

蛇形矩阵的两种实现方法(java版本)

看到一个关于蛇形矩阵的帖子,

想了下如何一行一行打印,

无须建立二维数组存储。

基本思想如下:

把这个输出的二维数组从外到里分解为多层

每层都是一个正方形的边

从外到里称为1,2,3...层

对于一个指定维数(行=列)的二维数组,

其中某个位置的元素(x,y)

首先根据x,y计算出这个位置所在的层数,

然后根据层数计算出这层左上角元素的值,

(这个元素的位置必然是(层数-1,层数-1))

最后根据x,y计算出它相当于本层左上角元素的偏移量,

二者相加,就是(x,y)的值.

下面附上代码,欢迎大家拍砖。

程序比较粗糙,主要是算法实现,

1.public class SnakeMatrix {

2.//存储结果的二维数组

3.private int[][] data;

4.//二维数组的维数

5.private int index;

6.//0 右1下2左3上

7.private int direct;

8.public static void main(String[]args){

9. SnakeMatrix s = new SnakeMatrix(10);

10. s.print();

11. }

12.public SnakeMatrix(int i){

13.if(i<1){

14. System.out.println("参数错误");

15. System.exit(0);

16. }

17. index = i;

18. data = new int[i][i];

19.for(int j=0;j

20.for(int k=0;k

21. data[j][k] = 0;

22. }

23. }

24. direct = 0;

25.//manageData();

26. manageDataByMath();

27.

28. }

29./**

30. * 直接根据二维数组的x,y值来计算这个位置的元素值

31. * 一圈为一层,从外到内分别为1,2,3...层

32. * 首先得到这个位置元素的层数

33. * 然后计算这层左上角元素的值

34. * 再计算出这个位置(x,y)相对于左上角元素的偏移量

35. * 二者相加,就是这个位置的元素值

36. */

37.public void manageDataByMath(){

38.for(int i=0;i

39.for(int j=0;j

40. data[i][j] = getDataByPosition(i,j);

41. }

42. }

43.

44. }

45./**

46. * 数组被分为四个部分,

47. * 只看左上部分,

48. * (x,y)位置x,y的较小值就标明了这个位置的层数

49. * 其他三个部分与左上部分是对称的

50. * 映射一下关系就行了

51. * @param i

52. * @param j

53. * @return

55.public int getLevByPosition(int i,int j){

56.int mid = (int)index/2;

57.int tempi,tempj;

58.if((i+1)>mid){

59. tempi = index-i-1;

60. }else{

61. tempi = i;

62. }

63.if((j+1)>mid){

64. tempj = index-j-1;

65. }else{

66. tempj = j;

67. }

68.if(tempi

69.return tempj+1;

70. }

71./**

72. * 计算本层左上角的元素值

73. * @param i

74. * @param j

75. * @return

76. */

77.public int getDataByPosition(int i,int j){

78.int lev = getLevByPosition(i,j);

79.//每一层左上角第一个元素的值

80.int startIndex = 0;

81.//计算这个值

82.for(int temp=1;temp

83. startIndex +=((index-2*temp)*4+4);

84. }

85.return startIndex+getAdd(i,j,lev)+1;

86. }

87./**

88. * 得到偏移量

89. * @param i

90. * @param j

91. * @param lev

92. * @return

93. */

94.public int getAdd(int i,int j,int lev){

95.int add = 0;

96.//每一层的边长

97.int levEdge = index-2*(lev-1);

99.if(i+1 == (index-(lev-1))){

100.//这一层的倒数第一行

101. add = 2*levEdge-1+(index-lev-1-j);

102. }else if(i+1 == lev){

103.//这一层的第一行

104. add = j-lev+1;

105. }else{//中间行

106.if(j>((int)index/2)){

107. add = levEdge + i-lev;

108. }else{

109. add = levEdge + levEdge-2 +levEdge+(index-lev-i-1); 110. }

111. }

112.return add;

113. }

114.private void changeDirect(){

115. direct = (direct+1)%4;

116. }

117.//根据前进方向(direct)判断前方的二维数组元素是否没有赋值

118.private boolean check(int j,int k){

119.if(direct ==0){

120.if((k+1)==index){

121.return false;

122. }else if(data[j][k+1]!=0){

123.return false;

124. }

125. }else if(direct == 1){

126.if((j+1)==index){

127.return false;

128. }else if(data[j+1][k]!=0){

129.return false;

130. }

131. }else if(direct == 2){

132.if(k==0){

133.return false;

134. }else if(data[j][k-1]!=0){

135.return false;

136. }

137. }else{

138.if(j==0){

139.return false;

140. }else if(data[j-1][k]!=0){

141.return false;

142. }

143. }

144.return true;

145. }

146./**

147. * 直接根据蛇形的前进方向一个一个置二维数组的值

148. */

149.public void manageData(){

150.int j = 0;

151.int k = 0;

152. data[j][k] = 1;

153.for(int i=2;i

154.//判断能否合法赋值

155.while(!check(j,k)){

156. changeDirect();

157. }

158.if(direct == 0){

159. k++;

160. }else if(direct == 1){

161. j++;

162. }else if(direct == 2){

163. k--;

164. }else{

165. j--;

166. }

167. data[j][k] = i;

168. }

169.

170. }

171.//仅供参考,数据大了会连在一起

172.public void print(){

173.for(int i = 0;i

174.for(int j = 0;j

175.if(data[i][j]<10){

176. System.out.print(" "+data[i][j]); 177. }else if(data[i][j]>99){

178. System.out.print(" "+data[i][j]); 179. }

180.else{

181. System.out.print(" "+data[i][j]); 182. }

183. }

184. System.out.println();

185. }

186. } 187.

188.}

java数组之二维数组

数组的元素也可以是数组,每个数组的一个元素都是由一个一维数组构成,被称为二维数组。同样,多维数组可以看作是数组的数组,即N维数组的每一个元素就是一个N-1维数组。如:三维数组中的每一个元素都是一个二维数组。多维数组的定义即初始化与二维数组的基本类似,因此本节主要讲述二维数组。 1 、二维数组的声明 二维数组声明的一般格式如下: 数据类型数组名[][]; 或者格式如下: 数据类型[][] 数组名; 其中数据类型与一维数组的相同,它既可以是基本数据类型,也可以是复合数据类型,数组名可以是任意合法的变量名。下面是数组声明举例。 char ch[][]; double[][] d; String[][] str; 与一维数组的声明相同,二维数组也不需要规定其中任意一维的长度,下面的声明都是不合法的。 char ch[4][]; double[][5] d; String[6][7] str; 2、二维数组的初始化 二维数组的初始化也分为直接初始化和动态初始化两种方式。直接初始化必须在声明时开始,如下 ··124面的例子所示。 int array[][] = {{1,2},{2,4},{4,8}}; 二维数组的动态初始化又可分为两种方式:一种是直接规定每一维的长度,并分配所需的内存空间,另一种是从高维开始,分别为每一维规定长度并分配内存空间。

直接为每一维分配内存的格式如下: 变量名= new 数据类型[二维长度][一维长度]; 其中二维长度和一维长度都是大于0的整数,如下所示。 int array[][]; array = new int[3][5]; array是一个二维数组,二维长度为3,array[0]、array[1]、array[2]都是一维数组,长度都是5。分别分配内存格式如下: 变量名= new 数据类型[二维长度][]; 变量名[0] = new 数据类型[一维长度0]; 变量名[1] = new 数据类型[一维长度1]; 变量名[2] = new 数据类型[一维长度2]; ... 变量名[二维长度-1] = new 数据类型[一维长度n]; 下面是一个二维数组初始化的实例。 Int array[][]; //声明int类型二维数组array A = new int[3][]; //为二维分配内存空间 A[0] = new int[5]; //为A[0]的一维分配内存空间 A[1] = new int[5]; //为A[1]的一维分配内存空间 A[2] = new int[5]; //为A[2]的一维分配内存空间 3、二维数组的空间模型

三元组表示稀疏矩阵的转置(一般算法和快速算法)

一、设计要求 1.1 问题描述 稀疏矩阵是指那些多数元素为零的矩阵。利用稀疏特点进行存储和计算可以大大节省存储空间,提高计算效率。求一个稀疏矩阵A的转置矩阵B。 1.2需求分析 (1)以“带行逻辑链接信息”的三元组顺序表表示稀疏矩阵,实现稀疏矩阵的转置运算。(2)稀疏矩阵的输入形式采用三元组表示,运算结果则以通常的阵列形式列出。 (3)首先提示用户输入矩阵的行数、列数、非零元个数,再采用三元组表示方法输入矩阵,然后进行转置运算,该系统可以采用两种方法,一种为一般算法,另一种为快速转置算法。(4)程序需要给出菜单项,用户按照菜单提示进行相应的操作。 二、概要设计 2.1存储结构设计 采用“带行逻辑链接信息”的三元组顺序表表示矩阵的存储结构。三元组定义为:typedef struct { int i;//非零元的行下标 int j;//非零元的列下标 ElemType e; //非零元素值 }Triple; 矩阵定义为: Typedef struct { Triple data[MAXSIZE+1]; //非零元三元组表 int rpos[MAXRC+1]; //各行第一个非零元的位置表 int mu,nu,tu; //矩阵的行数、列数和非零元个数 }RLSMatrix; 例如有矩阵A,它与其三元组表的对应关系如图

2.2 系统功能设计 本系统通过菜单提示用户首先选择稀疏矩阵转置方法,然后提示用户采用三元组表示法输入数据创建一个稀疏矩阵,再进行矩阵的转置操作,并以通常的阵列形式输出结果。主要实现以下功能。 (1)创建稀疏矩阵。采用带行逻辑连接信息的三元组表表示法,提示用户输入矩阵的行数、列数、非零元个数以及各非零元所在的行、列、值。 (2)矩阵转置。<1>采用一般算法进行矩阵的转置操作,再以阵列形式输出转置矩阵B。 <2>采用快速转置的方法完成此操作,并以阵列形式输出转置矩阵B。 三、模块设计 3.1 模块设计 程序包括两个模块:主程序模块、矩阵运算模块。 3.2 系统子程序及其功能设计 系统共设置了8个子程序,各子程序的函数名及功能说明如下。 (1)CreateSMatrix(RLSMatrix &M) //创建稀疏矩阵 (2)void DestroySMatrix(RLSMatrix &M) //销毁稀疏矩阵 (3)void PrinRLSMatrix(RLSMatrix M) //遍历稀疏矩阵 (4)void print(RLSMatrix A) //打印矩阵函数,输出以阵列形式表示的矩阵 (5)TransposeSMatrix(RLSMatrix M,RLSMatrix &T) //求稀疏矩阵的转置的一般算法(6)FastTransposeSMatrix(RLSMatrix M,RLSMatrix &T) //快速转置算法 (7)void showtip() //工作区函数,显示程序菜单 (8)void main() //主函数

JAVA一维数组二维数组运用的例子

题目:定义一个一维数组存储10个学生名字;定义一个二维数组存储这10个学生的6门课(C程序设计、物理、英语、高数、体育、政治)的成绩; 程序应具有下列功能: (1)按名字查询某位同学成绩 (2)查询某个科目不及格的人数,及学生名单 代码如下: import java.util.*; public class Test{ public static void main(String[]args){ Scanner input=new Scanner(System.in); String[]name={"a","b","c","d","e","f","g","h","i","l"};//存储学生的名字 int[][] grade={{50,60,70,80,90,10},{40,90,80,60,40,70},{60,80,70,60,40,90},{50,60,70,80,90,10}, {60,80,70,60,40,90},{60,70,80,90,70,70},{60,80,70,60,40,90},{60,80,70,60,40,90},{70, 80,90,70,70,70},{60,80,70,60,40,90}};//存储学生各科成绩 System.out.println("输入要查询成绩的学生名字:"); String chioce=input.nextLine(); for(int i=0;i<10;i++) { if(name[i].equals(chioce)) {System.out.println("学生:"+name[i]+"的成绩如下:"); System.out.println("C程序设计:"+grade[i][0]+"物理:"+grade[i][1]+"英 语:"+grade[i][2]+"高数:"+grade[i][3]+"体育:"+grade[i][4]+"政治:"+grade[i][5]+"\n"); break;} } System.out.println("******************************************************");

稀疏矩阵的建立与转置

实验2 稀疏矩阵的建立与转置 一、实验目的 掌握特殊矩阵的存储和操作算法。 二、实验内容及问题描述 实现用三元组保存稀疏矩阵并实现矩阵转置的算法。 三、实验步骤 1. 定义稀疏矩阵的三元组形式的存储结构。 2. 实现三元组矩阵的传统转置算法。 3. 实现三元组矩阵的快速转置算法。 4. 输入矩阵非零元素,测试自己完成的算法。 四、程序流程图

五、概要设计 矩阵是很多的科学与工程计算中研究的数学对象。在此,我们感兴趣的是,从数学结构这门学科着眼,如何存储矩阵的元从而使矩阵的各种运算有效的进行。本来,用二维数组存储矩阵,在逻辑上意义是很明确的,也很容易理解,操作也很容易和方便。但是在数值分析中经常出现一些阶数很高的矩阵,同时,在矩阵中又有很多值相同或者都为零的元素,可以对这种矩阵进行压缩存储:对多个值相同的元素只分配一个存储空间;对零元素不分配空间。稀疏矩阵的定义是一个模糊的定义:即非零元个数较零元个数较少的矩阵。例如下图所示的矩阵 为一个稀疏矩阵。为了实现稀疏矩阵的这种存储结构,引入三元组这种数据结构。三元组的线性表顺存储形式如下图: 六、详细设计 sanyuanzu.h 头文件 #define max 100 typedef struct { int row,col; int e; }Triple;//定义三元组 typedef struct { Triple data[max]; int mu,nu,tu; }TSMatrix;///*定义三元组的稀疏矩阵*/ void creat( TSMatrix &M) ; void fasttrans(TSMatrix A,TSMatrix &B);

数据结构与算法 特殊矩阵和稀疏矩阵

常熟理工学院 《数据结构与算法》实验指导与报告书 _2017-2018_____学年第__1__ 学期 专业:物联网工程 实验名称:特殊矩阵和稀疏矩阵 实验地点: N6-210 指导教师:聂盼红 计算机科学与工程学院 2017

实验五特殊矩阵和稀疏矩阵 【实验目的】 1、掌握数组的结构类型(静态的内存空间配置);通过数组的引用下标转换成该数据在内存中的地址; 2、掌握对称矩阵的压缩存储表示; 3、掌握稀疏矩阵的压缩存储-三元组表表示,以及稀疏矩阵的转置算法。 【实验学时】 2学时 【实验预习】 回答以下问题: 1、什么是对称矩阵?写出对称矩阵压缩存储sa[k]与aij之间的对应关系。 若n阶矩阵A中的元素满足下述性质:a ij=a ji,则称为n阶对称矩阵。 sa[k]与矩阵元素a ij之间存在着一一对应的关系: 若i>=j,k=i*(i+1)/2+j; 若i

的关系。(注意C程序中,i,j,k均从0开始) (2)调试程序与运行。对称矩阵存储下三角部分即i>=j。 对称矩阵为3,9,1,4,7 9,5,2,5,8 1,2,5,2,4 4,5,2,1,7 7,8,4,7,9 参考程序如下: #include<> #define N 5 int main() { int upper[N][N]= {{3,9,1,4,7}, {9,5,2,5,8}, {1,2,5,2,4}, {4,5,2,1,7}, {7,8,4,7,9} }; /*对称矩阵*/ int rowMajor[15]; /*存储转换数据后以行为主的数组*/ int Index; /*数组的索引值*/ int i,j; printf("Two dimensional upper triangular array:\n"); for (i=0; i

关于java用二维数组编杨辉三角(具体到步骤)

import javax.swing.JOptionPane; // import是引入的意思,javax.swing是sun为我们提 供的一个包,包中有一个类叫JoptionPane。 JOptionPane 是有助于方便地弹出要求用户提供值或向 其发出通知的标准对话框。它是用来编写图形用户界 面的一个类。 合起来讲就是:导入包javax.swing中JOptionPane这个 类,这样在你的这个文件中就能使用这个类了。 public class YH //public 是公开访问接口class是指这个java程序建立的类 YH是该程序的自定义命名。 { public static void main(String args[]) //公开访问的,static静态的,void无返回值的,main ()是方法执行入口,()里面为方法名。 { String row; // String 类型的传递是引用传递。也即是地址传递。 传的是row的地址。 int row1; //定义整型变量row1 row=JOptionPane.showInputDialog("输入行数:"); //将图形界面显示的“输入行数”获取 到的值,赋值给row row1=Integer.parseInt(row); // Integer.parseint(row)就是把整形对象Integer转换成 基本数据类型int(整数)。即把row转换为int型,方便接 下来为二维数组赋值。 int ss[][]=new int[row1][row1]; //用row1的赋值构建二维数组。 int i,j; //定义整型的i和j。其中i代表行,j代表列。 ss[0][0]=1; //为二维数组附上初值 ss[1][0]=1; ss[1][1]=1; //同上 for(i=2;i

基于三元组表表示的稀疏矩阵的快速转置算法及其改进

基于三元组表表示的稀疏矩阵的快速转置算法及其改进 摘要:介绍基于三元组表表示的稀疏矩阵的快速转置算法,此算法在转置前需要先确定原矩阵中各列第一个非零元在转置矩阵中的位置,在此使用2个数组作为辅助空间,为了减少算法所需的辅助空间,通过引入2个简单变量提出一种改进算法。该改进算法在时间复杂度保持不变的情况下,空间复杂度比原算法节省一半。 需求分析:矩阵作为许多科学与工程计算的数据对象,必然是计算机处理的数据对象之 一。在实际应用中,常会遇到一些阶数很高,同时又有许多值相同的元素或零元素的矩阵,在这类矩阵中,如果值相同的元素或零元素在矩阵中的分配没有规律,则称之为稀疏矩阵。为了节省存储空间,常对稀疏矩阵进行压缩存储。压缩存储的基本思想就是:对多个值相同的元素只分配1个存储空间,对零元素不分配存储空间。换句话说,就是只存储稀疏矩阵中的非零元素。稀疏矩阵可以采取不同的压缩存储方法,对于不同的压缩存储方法,矩阵运算的实现也就不同。 1.稀疏矩阵的三元组表表示法 根据压缩存储的基本思想,这里只存储稀疏矩阵中的非零元素,因此,除了存储非零元的值以外,还必须同时记下它所在行和列的位置(i,j),即矩阵中的1个非零元aij由1个三元组(i,j,aij)惟一确定。由此可知,稀疏矩阵可由表示非零元的三元组表及其行列数惟一确定。对于稀疏矩阵的三元组表采取不同的组织方法即可得到稀疏矩阵的不同压缩存储方法,用三元组数组(三元组顺序表)来表示稀疏矩阵即为稀疏矩阵的三元组表表示法。三元组数组中的元素按照三元组对应的矩阵元素在原矩阵中的位置,以行优先的顺序依次存放。 三元组表的类型说明如下: # define MAXSIZE 1000 /*非零元素的个数最多为 1000*/ typedef struct { int row,col; /*该非零元素的行下标和列下标*/ ElementType e; /*该非零元素的值*/ }Triple; typedef struct { Triple data[MAXSIZE+1]; /*非零元素的三元组表, data[0]未用*/ int m,n,len; /*矩阵的行数、列数和非零元素的个数*/ }TSMatrix; 2.稀疏矩阵的快速转置算法 待转置矩阵source和转置后矩阵dest分别用三元组表A和B表示,依次按三元组表A中三元组的次序进行转置,转置后直接放到三元组表B的正确位置上。这种转置算法称为快速转置算法。为了能将待转置三元组表A中元素一次定位到三元组表B的正确位置上,需要预先计算以下数据: 1)待转置矩阵source每一列中非零元素的个数(即转置后矩阵dest每一行中非零元素的个 数)。

稀疏矩阵(算法与数据结构课程设计)

稀疏矩阵 一、问题描述 假若在n m ?阶中,有t 个元素不为零,令n m t ?=δ称为矩阵的稀疏因子。通常认为≤δ0.05时称为稀疏矩阵。稀疏矩阵的研究大大的减少了数据在计算机中存储所需的空间,然而,它们的运算却与普通矩阵有所差异。通过本次实验实现稀疏矩阵的转置、加法和乘法等多种运算。 二、基本要求 1、稀疏矩阵采用三元组表示,建立稀疏矩阵,并能按矩阵和三元组方式输出; 2、编写算法,完成稀疏矩阵的转置操作; 3、编写算法,完成对两个具有相同行列数的稀疏矩阵进行求和操作; 4、编写算法,对前一矩阵行数与后一矩阵列数相等的两个矩阵,完成两个稀疏矩阵的相乘操作。 三、测试数据 1、转置操作的测试数据: ??????? ? ?00200013000010020100 2、相加操作的测试数据: ??????? ? ?002000130000100 20100 ??????? ??00200010000210030300 3、相乘操作的测试数据: ?????? ? ??000000030040 0021 ??????? ??001002000021 四、算法思想 1、三元组结构类型为Triple ,用i 表示元素的行,j 表示元素的列,e 表示元素值。稀疏矩阵的结构类型为TSMatrix ,用数组data[]表示三元组,mu 表示行数,nu 表示列数,tu 表示非零元个数。 2、稀疏矩阵转置的算法思想 将需要转置的矩阵a 所有元素存储在三元组表a.data 中,按照矩阵a 的列序来转置。

为了找到a的每一列中所有非零元素,需要对其三元组表a.data扫描一遍,由于a.data 是以a的行需序为主序来存放每个非零元的,由此得到的就是a的转置矩阵的三元组表,将其储存在b.data中。 3、稀疏矩阵相加的算法思想 比较满足条件(行数及列数都相同的两个矩阵)的两个稀疏矩阵中不为0的元素的行数及列数(即i与j),将i与j都相等的前后两个元素值e相加,保持i,j不变储存在新的三元组中,不等的则分别储存在此新三元组中。最后得到的这个新三元组表就是两个矩阵的和矩阵的三元组表。 4、稀疏矩阵相乘的算法思想 两个相乘的矩阵为M与N,对M中每个元素M.data[p](p=1,2,…,M.tu),找到N中所有满足条件M.data[p].j=N.data[q].i的元素N.data[q],求得M.data[p].v和N.data[q].v 的乘积,又T(i,j)=∑M(i,k)×N(k,j),乘积矩阵T中每个元素的值是个累计和,这个乘积M.data[p].v×N.data[q].v只是T[i][j]中的一部分。为便于操作,应对每个元素设一累计和的变量,其初值是零,然后扫描数组M,求得相应元素的乘积并累加到适当的求累计和的变量上。由于T中元素的行号和M中元素的行号一致,又M中元素排列是以M的行序为主序的,由此可对T进行逐行处理,先求得累计求和的中间结果(T的一行),然后再压缩存储到Q.data中去。 五、模块划分 1、Status CreateM(TSMatrix *M, int a[],int row, int col),创立三元组; 2、void PrintM(TSMatrix M),按数组方式输出; 3、void PrintM3(TSMatrix M),按三元组方式输出; 4、Status TransposeSMatrix(TSMatrix M, TSMatrix *T),稀疏矩阵的转置; 5、Status MultSMatrix(TSMatrix M, TSMatrix N, TSMatrix *Q),稀疏矩阵加法; 6、Status MultSMatrix(TSMatrix M, TSMatrix N, TSMatrix *Q),稀疏矩阵相乘; 7、main(),主函数。 六、数据结构//(ADT) 1、三元组结构类型 typedef struct { int i,j; ElemType e; } Triple; 2、稀疏矩阵 typedef struct { Triple data[MAXSIZE+1];

Java_数组练习题目

一填空题 1)数组的元素通过数组下标来访问,数组Array的长度为元素的个数 (Array.length)。 2)Java中数组的下标的数据类型是整形。 3)不用下标变量就可以访问数组的方法是数组名。 4)数组最小的下标是0 。 5)arraycopy()的最后一个参数指明复制元素的个数。 6)向方法传递数组参数时,传递的是数组的引用。 7)数组初始化包括数组的声明,创建,初始化。 8)数组下标访问超出索引范围时抛出数组越界异常 9)浮点型数组的默认值是0.0f 。 10)对象型数组的默认值是null 。 二选择题 1.下面错误的初始化语句是_A B D__ A. char str[]="hello"; B. char str[100]="hello"; C. char str[]={'h','e','l','l','o'}; D. char str[]={'hello'}; 2.定义了一维int型数组a[10]后,下面错误的引用是_B_ A. a[0]=1; B. a[10]=2; C. a[0]=5*2; D. a[1]=a[2]*a[0]; 3.下面的二维数组初始化语句中,正确的是__B__ A. float b[2][2]={0.1,0.2,0.3,0.4}; B. int a[][]={{1,2},{3,4}}; C. int a[2][]= {{1,2},{3,4}}; D. float a[2][2]={0}; 4.引用数组元素时,数组下标可以是__D__ A. 整型常量 B. 整型变量 C. 整型表达式 D. 以上均可 5.定义了int型二维数组a[6][7]后,数组元素a[3][4]前的数组元素个数为__C__ A. 24 B. 25 C. 18 D. 17 6.下列初始化字符数组的语句中,正确的是_B___ A. char str[5]="hello"; B. char str[]={'h','e','l','l','o','\0'}; C. char str[5]={"hi"}; D. char str[100]=""; 7.数组在Java中储存在 C 中 A. 栈 B. 队列 C. 堆 D. 链表

稀疏矩阵的运算(完美版)

专业课程设计I报告(2011 / 2012 学年第二学期) 题目稀疏矩阵的转换 专业软件工程 学生姓名张鹏宇 班级学号 09003018 指导教师张卫丰 指导单位计算机学院软件工程系 日期 2012年6月18号

指导教师成绩评定表

附件: 稀疏矩阵的转换 一、课题内容和要求 1.问题描述 设计程序用十字链表实现稀疏矩阵的加、减、乘、转置。 2.需求分析 (1)设计函数建立稀疏矩阵,初始化值。 (2)设计函数输出稀疏矩阵的值。 (3)构造函数进行两个稀疏矩阵相加,输出最终的稀疏矩阵。 (4)构造函数进行两个稀疏矩阵相减,输出最终的稀疏矩阵。 (5)构造函数进行两个稀疏矩阵的相乘,输出最终的稀疏矩阵。 (6)构造函数进行稀疏矩阵的转置,并输出结果。 (7)退出系统。 二、设计思路分析 (1)设计函数建立稀疏矩阵,初始化值。 (2)设计函数输出稀疏矩阵的值。 (3)构造函数进行两个稀疏矩阵相加,输出最终的稀疏矩阵。 (4)构造函数进行两个稀疏矩阵相减,输出最终的稀疏矩阵。 (5)构造函数进行两个稀疏矩阵的相乘,输出最终的稀疏矩阵。 (6)构造函数进行稀疏矩阵的转置,并输出结果。 (7)退出系统。 三、概要设计 为了实现以上功能,可以从3个方面着手设计。 1.主界面设计 为了实现对稀疏矩阵的多种算法功能的管理,首先设计一个含有多个菜单项的主

控菜单子程序以链接系统的各项子功能,方便用户交互式使用本系统。本系统主控菜单运行界面如图所示。 2.存储结构设计 本系统采用单链表结构存储稀疏矩阵的具体信息。其中:全部结点的信息用头结点为指针数组的单链表存储。 3.系统功能设计 本系统除了要完成稀疏矩阵的初始化功能外还设置了4个子功能菜单。稀疏矩阵的初始化由函数i typedef int ElemType 实现。建立稀疏矩阵用void Creat()实现,依据读入的行数和列数以及非零元素的个数,分别设定每个非零元素的信息。4个子功能的设计描述如下。 (1)稀疏矩阵的加法: 此功能由函数void Xiangjia( )实现,当用户选择该功能,系统即提示用户初始化要进行加法的两个矩阵的信息。然后进行加法,最后输出结果。 (2)稀疏矩阵的乘法: 此功能由函数void Xiangcheng( )实现。当用户选择该功能,系统提示输

稀疏矩阵快速转置

题目:假设稀疏矩阵A采用三元组表表示,编写程序实现该矩阵的快速转置 要求:输入一个稀疏矩阵A,由程序将其转换成三元组表存储;转置后的三元组表,由程序将其转换成矩阵形式后输出。 一、需求分析 1.用户可以根据自己的需求输入任意一个稀疏矩阵,通过程序将其转换成三元组存储方式; 2.并且能够完成矩阵的转置功能,要求需要使用的方法是快速转置的方法。 3.最后要够显示原矩阵和转置后的矩阵让用户能进行比较。 4.程序执行的命令包括: (1)构造稀疏矩阵M (2)求转转矩阵T (3)显示(打印)矩阵 二、概要设计 ⒈为实现上述算法,需要线性表的抽象数据类型: ADT SparseMatrix { 数据对象:D={a ij :|a ij ∈TermSet,i=1…m,m≥0,j=1…n,n≥0 m和n分别成为矩阵的行数和列数 } 数据关系:R={Row,Col} Row ={|1≤i≤m,1≤j≤n-1 } Col ={|1≤i≤m-1,1≤j≤n } 基本操作: CreateSMtrix(& M) 操作结果:创建稀疏矩阵M。 DestroySMaix(&M) 初始条件:稀疏矩阵M已存在。 操作结果:销毁稀疏矩阵M。 PrintSMatrix(L) 初始条件:稀疏矩阵M已经存在。 操作结果:输出稀疏矩阵M。 CopySMatrix(M,&T) 初始条件:稀疏矩阵M已经存在。 操作结果:由稀疏矩阵M复制得到T。 TransposeSMatrix(M,&T) 初始条件:稀疏矩阵M已经存在。 操作结果:求稀疏矩阵M的转转矩阵T。 }ADT SparseMatrix 2. 本程序有三个模块: ⑴主程序模块 main(){ 初始化; { 接受命令; 显示结果; }

java数组的概念和作用

1 数组的概念 和其他语言一样,Java也提供数组支持,数组是属于引用类型,即数组是一个 对象。 强调数组的类型是引用类型。 数组的基本概念及作用 数组是相同数据类型元素的集合 数组本身是引用数据类型,即对象。但是数组可以存储基本数据类型,也可以存储引用数据类型。 数组的举例 int [] a = new int []{1,2,3,4,5}; String [] s = new String []{"小熊","小小熊","小小小熊"}; Employee [] e=new Employee[10];(Employee是自定义类) 2 数组的声明 数组的声明的两种方式: 数据类型 [] 数组名字例如:int [] a; 数据类型数组的名字 [] 例如: int a []; 注意: 在Java语言中两种声明方法没有任何区别,但是建议大家用第一种,避免混淆a的数据类型。 数组在声明后还只是一个空指针,不能使用,要想使用必须创建。 数组创建的三种方式:

?//声明数组的同时,根据指定的长度分配内存,但数组中元素值都为默认的初始化值 char[] chAry = new char[10]; ?//声明数组并分配内存,同时将其初始化 ?int[] ary1 = new int[]{1, 2, 3, 4, 5}; ?//与前一种方式相同,仅仅只是语法相对简略 ?int[] ary2 = {1, 2, 3, 4, 5}; 从另一个角度,数组创建可以分为动态和静态两种 动态创建数组(没有为元素赋值,可以结合for循环进行赋值) char[] chAry = new char[10]; 静态创建数组,在创建的时候,即为每个元素赋初值 int[] ary1 = new int[]{1, 2, 3, 4, 5}; 数组的长度 数组的长度:length属性 int [] b1 = new int []{1,2,3,4,5,6,7}; System.out.println(b1.length); 注意:数组的长度是属性,String的长度是length(); 创建数组的时候必须指定数组的长度,而且一经定义则不允许改变。 数组的长度虽然是7,但是在内存中实际给8个位置,另外一个存储7. 数组之间赋值 在C语言中,不可以将数组直接赋值给另一个数组;

稀疏矩阵的运算(完美版)

专业课程设计I报告( 2011 / 2012 学年第二学期) 题目稀疏矩阵的转换 专业软件工程 学生姓名张鹏宇 班级学号 09003018 指导教师张卫丰 指导单位计算机学院软件工程系 日期 2012年6月18号

指导教师成绩评定表

附件: 稀疏矩阵的转换 一、课题内容和要求 1.问题描述 设计程序用十字链表实现稀疏矩阵的加、减、乘、转置。 2.需求分析 (1)设计函数建立稀疏矩阵,初始化值。 (2)设计函数输出稀疏矩阵的值。 (3)构造函数进行两个稀疏矩阵相加,输出最终的稀疏矩阵。 (4)构造函数进行两个稀疏矩阵相减,输出最终的稀疏矩阵。 (5)构造函数进行两个稀疏矩阵的相乘,输出最终的稀疏矩阵。 (6)构造函数进行稀疏矩阵的转置,并输出结果。 (7)退出系统。 二、设计思路分析 (1)设计函数建立稀疏矩阵,初始化值。 (2)设计函数输出稀疏矩阵的值。 (3)构造函数进行两个稀疏矩阵相加,输出最终的稀疏矩阵。 (4)构造函数进行两个稀疏矩阵相减,输出最终的稀疏矩阵。 (5)构造函数进行两个稀疏矩阵的相乘,输出最终的稀疏矩阵。 (6)构造函数进行稀疏矩阵的转置,并输出结果。 (7)退出系统。 三、概要设计 为了实现以上功能,可以从3个方面着手设计。 1.主界面设计 为了实现对稀疏矩阵的多种算法功能的管理,首先设计一个含有多个菜单项的主控菜单子程序以链接系统的各项子功能,方便用户交互式使用本系统。本系统主控菜单运行界面如图所示。

2.存储结构设计 本系统采用单链表结构存储稀疏矩阵的具体信息。其中:全部结点的信息用头结点为指针数组的单链表存储。 3.系统功能设计 本系统除了要完成稀疏矩阵的初始化功能外还设置了4个子功能菜单。稀疏矩阵的初始化由函数i typedef int ElemType 实现。建立稀疏矩阵用void Creat()实现,依据读入的行数和列数以及非零元素的个数,分别设定每个非零元素的信息。4个子功能的设计描述如下。 (1)稀疏矩阵的加法: 此功能由函数void Xiangjia( )实现,当用户选择该功能,系统即提示用户初始化要进行加法的两个矩阵的信息。然后进行加法,最后输出结果。 (2)稀疏矩阵的乘法: 此功能由函数void Xiangcheng( )实现。当用户选择该功能,系统提示输入要进行相乘的两个矩阵的详细信息。然后进行相乘,最后得到结果。 (3)稀疏矩阵的转置: 此功能由函数void Zhuanzhi( )实现。当用户选择该功能,系统提示用户初始

Java数组练习题(带答案)

一填空题 1)数组的元素通过下标来访问,数组Array的长度为Array.length 。 2)数组复制时,"="将一个数组的引用传递给另一个数组。 3)JVM将数组存储在栈(堆或栈)中。 4)数组的二分查找法运用的前提条件是数组已经排序。 5)Java中数组的下标的数据类型是整型。 6)数组最小的下标是0 。 7)arraycopy()的最后一个参数指明复制元素的个数。 8)向方法传递数组参数时,传递的是数组的引用。 9)数组初始化包括数组的申明,创建和初始化。 10)数组下标访问超出索引范围时抛出数组越界异常 11)浮点型数组的默认值是0.0f 。 12)数组创建后其大小不能改变。 二选择题 1.下面错误的初始化语句是_ABD__ A. char str[]="hello"; B. char str[100]="hello"; C. char str[]={'h','e','l','l','o'}; D. char str[]={'hello'}; 2.定义了一维int型数组a[10]后,下面错误的引用是_B__ A. a[0]=1; B. a[10]=2; C. a[0]=5*2; D. a[1]=a[2]*a[0]; 3.下面的二维数组初始化语句中,正确的是____ A. float b[2][2]={0.1,0.2,0.3,0.4}; B. int a[][]={{1,2},{3,4}}; C. int a[2][]= {{1,2},{3,4}}; D. float a[2][2]={0}; 4.引用数组元素时,数组下标可以是_D___ A. 整型常量 B. 整型变量 C. 整型表达式 D. 以上均可 5.定义了int型二维数组a[6][7]后,数组元素a[3][4]前的数组元素个数为____ A. 24 B. 25 C. 18 D. 17 6.下列初始化字符数组的语句中,正确的是__B__ A. char str[5]="hello"; B. char str[]={'h','e','l','l','o','\0'}; C. char str[5]={"hi"}; D. char str[100]=""; 7.数组在Java中储存在 C 中 A. 栈 B. 队列 C. 堆 D. 链表 8.下面程序的运行结果是____ main() { int a[][]={{1,2,3},{4,5,6}}; System.out.printf("%d", a[1][1]); } A. 3 B. 4 C. 5 D. 6 9.下面程序的运行结果是_C___ main() {

稀疏矩阵基本操作实验报告

稀疏矩阵基本操作实验报告 一、实验内容 稀疏矩阵的压缩储存结构,以及稀疏矩阵的三元组表表示方法下的转置、相加、相 乘等算法 二、实验目的 1. 熟悉数组、矩阵的定义和基本操作 2. 熟悉稀疏矩阵的储存方式和基本运算 3. 理解稀疏矩阵的三元组表类型定义,掌握稀疏矩阵的输入、输出和转置算法 三、实验原理 1. 使用三元组储存矩阵中的非零元素(三元组分别储存非零元素的行下标,列下标和 元素值)。除了三元组表本身,储存一个稀疏矩阵还需要额外的三个变量,分别储 存矩阵的非零元个数,矩阵的行数和矩阵的列数。 2. 稀疏矩阵的创建算法: 第一步:根据矩阵创建一个二维数组,表示原始矩阵 第二步:取出二维数组中的元素(从第一个元素开始取),判断取出元素是否为非零元素,如果为非零元素,把该非零元素的数值以及行下标和列下表储存到三元数 组表里,否则取出下一个元素,重复该步骤。 第三步:重复第二步,知道二维数组中所有的元素已经取出。 3. 稀疏矩阵倒置算法:

第一步:判断进行倒置的矩阵是否为空矩阵,如果是,则直接返回错误信息。 第二步:计算要倒置的矩阵每列非零元素的数量,存入到num 数组(其中num[i] 代表矩阵中第i 列非零元素的个数)。以及倒置后矩阵每行首非零元的位置,存入cpot 数组中(其中cpot 表示倒置后矩阵每行非零元的位置,对应表示原矩阵每列中第 一个非零元的位置)。 第三步:确定倒置后矩阵的行数和列数。 第四步:取出表示要导致矩阵中三元组表元素{e, I, j} (第一次取出第一个,依次取出下一个元素),从第二步cpot 数组中确定该元素倒置后存放的位置(cpot[j] ),把该元素的行下标和列下标倒置以后放入新表的指定位置中。cpot[j] 变量加一。 第五步:重复第四步,直到三元组表中所有的元素都完成倒置。 第六步:把完成倒置运算的三元组表输出。 4. 稀疏矩阵加法算法: 第一步:检查相加两个矩阵的行数和列数是否相同,如果相同,则进入第二步,否 则输出错误信息。 第二步:定义变量i 和j,用于控制三元组表的遍历。 第三步:比较变量矩阵M 中第i 个元素和矩阵N 中第j 个元素,如果两个元素是同一行元素,如果不是则进入第四步,如果是,再继续比较两个元素是否为同一列元 素,如果是,把两个元素值相加,放到三元组表中;否则把列下表小的元素依次放 到三元组表中。进入第五步 第四步:如果矩阵M 中第i 个元素的行下标大于矩阵N 中第j 个元素的行下标,则把矩阵N 中第j 个元素所在行的所有非零元素添加到三元组表中;如果矩阵M 中第

Java中数组的声明

Java中数组的声明 一维数组的声明: 在Java中,数组是独立的对象,有自身的方法,不是变量的集合。 数组的声明: 类型标识符数组名[ ] 或者类型标识符[] 数组名。 数组的长度是在创建的时候决定的。 数组的创建方法: 先声明后创建: int array[]; array = new int[10]; 在声明的同时创建: int array[] = new int[10]; 直接赋值: int array[]= new int[1,2,3,4]; 数组下标从0开始。 数组是引用类型,他的元素相当于类的成员变量,因此数组分配空间后,每个元素也被按照成员变量的规则被隐士地初始化。如: public class Testpublic static void main(Stirng [] args)?? int [] a = new int [5]; ?? Date[] days=new Date[3]; ?? System.out.println(a[3]); ?? System.out.println(days[2]);} class Dateint year,month,day; Date(int year,int month,int day)?? this.year=year; ?? this.month=month; ?? this.day=day;} 结果将是:0????? null 数组的拷贝 最有效率的方法是使用https://www.360docs.net/doc/e116824762.html,ng.System类的静态方法: public static void arraycopy(object src,int srcPos,object dest, ???????????????? int destPos,int length) 可以用于数组src从第srcPos项元素开始的length个元素拷贝到目标数组从destPos项开始的length个位置。 如果源数据数目超过目标数组的边界,系统就会抛出异常。 二维数组 float[][] numthree;???????????? //定义一个float类型的2维数组 numthree=new float[5][5];?????? //为它分配5行5列的空间大小 numthree[0][0]=1.1f;??????????? //通过下标索引去访问???? 1行1列= 1.1 numthree[1][0]=1.2f;????????????????????????????????? // 2行1列=1.2 numthree[2][0]=1.3f;????????????????????????????????? // 3行1列=1.3 numthree[3][0]=1.4f;????????????????????????????????? // 4行1列=1.4

稀疏矩阵数据结构与算法

稀疏矩阵数据结构与算法 §1转置算法 稀疏矩阵在数据结构中不是重点,但是稀疏矩阵既是数据处理的大范围内,又具有一般程序设计与算法结构的基本特征。大学阶段遇到的科学计算类程序不多,稀疏矩阵运算(转置、乘法)的算法是应掌握的起步阶段 算法对运算数据关联范围的设置不同,导致稀疏矩阵的转置算法的效率不同。 一.稀疏矩阵转置程序1的分析

1.什么是转置 M mn-->T nm,其中a ij=b ji (1≤i≤m, 1≤j≤n。i,j可看作与M,T无关的表示,也可以看作矩阵M为主动的下标表示方法),而且a ij∈M, b ji∈T。 矩阵M已知,矩阵T未知。因此在编程时,应考虑以哪个矩阵为算法主序,这是一个出发点。 (1)M,T的行列互换à两个矩阵的行数mu列数nu互换, T.mu=M.nu=n ,T.nu=M.mu=m,以T为主动。 (2)矩阵元素T(i,j)=M(j,i),矩阵T的第i行第j列元素与矩阵M的第j 行第i列元素相等。以T的元素为驱动,因为能从M的元素得到T的元素,所以建立表达式就能得到T元素的值。(在程序中,是否用矩阵T的顺序为算法线索?) 转置矩阵的非0元个数相同,T.tu=M.tu (3)对0元素多的稀疏矩阵的转置而言,与一般矩阵的转置不同。稀疏矩阵的非0元素a ij,在程序中用三元组(i,j,a ij)表示,i,j表示行数列数。因为不再按照矩阵的结构m行n列转置,不使用二维数组作为存储,所以必须记录每一个非0元素所在行列的位置。在规则的二维数组中,矩阵的行列通过元素的下标识别,元素在矩阵中的位置通过下标得到。因

此一般矩阵用二维数组为存储结构。二维数组是物理存储结构的逻辑形式,可称为逻辑存储结构。 2.稀疏矩阵的一维数组存储结构 从操作系统可知,数据的存储方式有三种:连续(顺序)方式,链接方式,索引方式。矩阵不能直接用在计算机中,应选择顺序存储结构二维数组,存放元素。稀疏矩阵的非0元以矩阵行序为序存储在一维数组中,每一行元素的数目不同,可称为非规则数组。 从稀疏矩阵到一维数组是从矩阵结构到以元素次序为主序的逻辑结构变换。稀疏矩阵的一维数组的非0元素是记录(i,j,a ij)。稀疏矩阵三元组表的顺序存储方式,称为三元组顺序表,选用一维数组。三元组表还可用链表表示。 ****这里有两个转换或者两个关系。1.数学表示实体到计算机存储实体的转换。eg.矩阵到一维数组;2.数学逻辑结构到存储逻辑结构的转换。eg.矩阵的行列结构+稀疏矩阵非0元素到一维数组中非0元同行同列+顺序表示的转换。*****注释 数据结构:三元组顺序表 //----稀疏矩阵的三元组表顺序存储表示----// #define MAXSIZE 12500 Typedef struct{

相关文档
最新文档