C-axis negative magnetoresistance and upper critical field of Bi2Sr2CaCu2O8

C-axis negative magnetoresistance and upper critical field of Bi2Sr2CaCu2O8
C-axis negative magnetoresistance and upper critical field of Bi2Sr2CaCu2O8

a r X i v :c o n d -m a t /0006089v 2 [c o n d -m a t .s u p r -c o n ] 7 J u n 2000

C-axis negative magnetoresistance and upper critical ?eld of Bi 2Sr 2CaCu 2O 8.

V.N.Zavaritsky

1,2

,M.Springford 1,and A.S.Alexandrov 3

1

H.H.Wills Physics Laboratory,University of Bristol,Bristol BS81TL,United Kingdom;2Kapitza Institute for Physical Problems,2Kosygina Str.,117334Moscow (Russia);3Department of Physics,Loughborough University,Loughborough LE11

3TU,United Kingdom

The out-of-plane resistance and the resistive upper critical ?eld of BSCCO-2212single crystals with T c 0?91?93K have been measured in magnetic ?elds up to 50T over a wide temperature range.The results are characterised by a pos-itive linear magnetoresistance in the superconducting state and a negative linear magnetoresistance in the normal state.The zero ?eld normal state c-axis resistance,the negative lin-ear normal state magnetoresistance,and the divergent upper critical ?eld H c 2(T)are explained in the framework of the bipolaron theory of superconductivity.PACS numbers:74.20.-z

High magnetic ?elds have been widely used to explore the single particle spectrum of normal and superconduct-ing metals [1].Historically,de Haas-van Alphen e?ect oscillations have provided precise and detailed informa-tion on the Fermi surface and the damping of quasipar-ticles in Landau Fermi liquids.Such oscillations have also been studied in the vortex state of many low-T c type-II superconductors [2]yielding information on the electronic many-body environment in the non-Fermi liq-uid BCS state.In the cuprates superconductors,high magnetic ?eld studies have revealed a non-Fermi liquid temperature dependence of both ab-and c-axis resistiv-ities [3]and a non-BCS divergent shape of the upper critical ?eld H c 2(T )[4–9].These studies were performed both in relatively low-T c cuprates [4,5,7–9]and in some high-T c compounds in a moderate [6](below 15T)and high (up to 60T)?eld (see Ref.[3,8]and more recent results Ref.[10]).The upper critical ?eld was deter-mined from the temperature dependence of c-axis resis-tivity with some uncertainty due to ?uctuations [6].The uncertainty was removed in the comprehensive study by Gantmakher et al [9]of the in-plane resistivity of high-quality YBa 2Cu 3O 7?δcrystals,which con?rmed the non-BCS upper critical ?eld observed in Ref.[4–8]strongly supporting the bipolaron theory of cuprates [11,12].We report here on a study in pulsed magnetic ?elds of Bi 2Sr 2CaCu 2O 8,with T c 0?91?93K ,which re-veals new features of the c-axis transport.We observe a positive linear magnetoresistance in the ?ux ?ow (super-conducting)regime and a negative linear magnetoresis-tance in the normal state.This allows for determination of the upper critical ?eld,as the point of intersection of these two regimes.We have measured H c 2(T )as a function of temperature over a wide temperature range,

0.2≤T/T c 0≤1,and ?nd a divergent behaviour con-sistent with results in other materials [4–9].We discuss this from the point of view of the bipolaron theory of superconductivity [11].

BSCCO-2212single crystals were grown by solid state reaction [13].Five samples with in-plane dimensions from ?85×110μm 2to ?26×30μm 2and thicknesses of ≈1.5?4.3μm have been thoroughly studied in pulsed ?elds.All measurements were of the longitudinal mag-netoresistance with ?eld and current directed along the c-axis.The absence of hysteresis between the data ob-tained on the rising and falling sides of the pulse,char-acterised by very di?erent values ?B/?t ,excludes any signi?cant heating of our samples.

Fig.1shows a typical measurement of the e?ect of mag-netic ?eld on the out-of-plane resistance of a BSCCO-2212single crystal below a zero-?eld critical temperature,T c 0.There is a low-?eld regime,R F F (B,T ),where a lin-ear ?eld dependence ?ts the experimental observations rather well,Fig.1.As has been suggested in Ref.[14]the origin of the ?nite c-axis resistivity below the zero ?eld transition temperature T c 0might be the interplane phase slippage promoted by thermal motion of pancake vortices inside the layers.However,this mechanism does not provide the observed ?eld dependence of the resis-tivity.A linear ?eld dependence rather suggests a usual ?ux-?ow regime.Of course,there is no such thing as ?ux ?ow resistivity for current ?owing along the ?eld di-rection.Nevertheless,a highly anisotropic structure of our Bi samples with alternating quasi-metallic and dis-ordered non-metallic layers favors the current path with the in-plane meanders.Then there is a ?nite Lorentz force applied to the vortex even in the longitudinal ge-ometry.

It is natural to attribute the high ?eld portion of the curve in Fig.1(assumed to be above H c 2)to a normal state magnetoresistance,R N (B,T),which appears to be negative and linear in B.The latter is unusual for the longitudinal transport but is also evident in other stud-ies [3,15,16].With these assumptions we can determine (i)the upper critical ?eld,H c 2(T),from the intersection of two linear approximations in Fig.1and (ii)the zero ?eld normal state c-axis resistance,R N (0,T),by extrap-olation of the normal state linear magnetoresistance to a zero ?eld.This procedure allows us to separate contri-butions originating from the normal and superconduct-ing states and,in particular,to avoid to large extent an ambiguity due to ?uctuations in the crossover region.1

Referring to Fig.2,the inset shows the?eld dependence of BSCCO-2212out-of-plane resistance normalised by its normal state?eld dependence,R N(B),thus accounting for its variation with?eld and temperature.The slope of the?ux-?ow resistance is inversely proportional to H c2 as R F F=R N×B/H c2.Indeed,H c2determined from(i) the intersection of the linear?ts mentioned above and(ii) that obtained from R F F(B)as R N(O,T)(?R F F/?B)?1 (Fig.2),are almost identical as is seen from Fig.3where the temperature dependence of H c2is presented together with the theoretical?t using the Bose-Einstein conden-sation critical?eld[11]given by

H c2(T)~(t?1?t1/2)3/2(1) with t=T/T c0.H c2(T)shows an upward tempera-ture dependence in agreement with the previous result based on the low?eld(≤15T)scaling of R(B,T)[6]and with independent results of other authors[4,5,7–9].We tried(unsuccessfully)to?t the data with the pseudo-upper-critical?eld,H?~T?1exp(?T/T0)[17]as sug-gested in Ref.[18](the dashed line in Fig.3).There-fore,the model which lies behind this equation,which is based on Josephson-coupling as the origin of the anoma-lous H c2(T),is not supported by our experiment.More-over,there is no change in the temperature dependent slope of resistivity above the superconducting transition as would be the case of superconducting domains formed well above the transition temperature.Some diamag-netism observed above the resistive T c(B)[19,18]is ex-plained as the normal state Landau diamagnetism of sin-glet bosons[20].

The temperature dependence of the zero-?eld normal state resistance R N(0,T)obtained by the linear extrap-olation described above,together with the theoretical curve(see below)are shown in the main panel of Fig.4 by black dots and the solid curve respectively.At low temperatures the high-?eld range is too short to de-?ne a linear high-?eld portion,so that an extrapola-tion to B=0to obtain directly R N(0,T)is not pos-sible.We have found experimentally that a relation R N(0.T)?R max(T)∝exp(?αT)is valid with a con-stantαin the region where both the maximum value of the resistance R max(T)(see the arrows in Fig.1inset) and R N(0,T)can be measured.The crosses in Fig.4are obtained by rescaling of R N(0.T)according to this rela-tion.The value of a dimensionless negative normal state resistance slope,S(T)=R N(0,T)?1?R N(B,T)/?B,in-creases rapidly with falling temperature with an upturn around50K(the inset in Fig.4).

In what follows,we show that the unusual features of the c-axis magnetotransport,Figs.1-4,can be broadly understood within the framework of the bipolaron theory [11,12].As shown in Fig.3,the divergent shape of H c2(T) is consistent with the Bose-Einstein condensation?eld of charged bosons pre-formed above T c.Within the the-ory the c-axis normal-state transport in cuprates is due to single unpaired polarons,except at very low temper-atures when unpaired carriers are frozen out[21].Single polarons exist as excitations with the energy k B T?=?/2or larger,where?is the bipolaron binding energy. The edges of two polaronic bands spin-split with respect to the chemical potential(pinned at the mobility edge,μ?E c≡0at low temperatures[21])depend on the magnetic?eld due to a spin and orbital magnetic shifts as

?↓,↑

2

+μ?B B±(Jσ+μB B),(2)

where J is the exchange interaction of holes with lo-calised copper electrons andσ≡is an average magnetisation of copper per site.The exchange interac-tion leads to the spin-polarised polaron bands split by 2Jσ.They are further split(the last term in Eq.(2)) and shifted by the external magnetic?eld.HereμB and μ?B are the Bohr magnetons determined with the electron m e and polaron m?mass,respectively.We assume that the mobility edge is not a?ected by the magnetic?eld because bipolarons are heavier than polarons. Assuming that k B T is less than the polaron bandwidth and noting that polarons are not degenerate at any tem-perature,we obtain for the polaron density

n p(B,T)~T d/2exp[?T?/T?μ?B B/k B T]

×cosh[(Jσ+μB B)/k B T],(3) where d is the dimensionality of the polaron energy spec-trum.The exchange splitting of the polaronic bands is responsible for the negative magnetoresistance.The characteristic temperature T s≡Jσ/k B can be estimated if the magnetisation of copper ions is known.Precise measurements of magnetic neutron scattering in high-purity high–T c single crystals of several cuprates revealed a rather low number of localised magnetic moments.The authors of these experiments noted that”what little scat-tering is observed,corresponds to?3.2%of the Cu atoms having a spin1/2”[22].Thus,withσ=0.03and J=0.15eV we obtain T S?50K.It is reasonable to assume that the polaron mobility,μp,is?eld and tem-perature independent in the relevant region of B and T because?eld orbital e?ects are suppressed due to a heavy polaron mass.The temperature dependence ofμp is al-most absent if the scattering is dominated by a random potential[23].As a result one obtains for the tempera-ture dependence of the zero?eld normal state resistivity,

R N(T)=

R0

showing no dispersion along certain directions of the two-dimensional Brillouin zone and also with the tunnelling spectra successfully described by a one-dimensional DOS [25].The magnetic?eld slope de?ned above is then given by

S(T)=μB[tanh(T s/T)?m e/m?]

R0

?1 .(5)

As seen by reference to Fig.4,these expressions are in reasonable qualitative agreement with experiment.The solid line in Fig.4is calculated from Eq.(4)using the following values of parameters:R0=1300?,T??170K ,T s=53K and T0=0.046K.The theoretical slope Eq.(5)is calculated with the same parameters and with m e/m?=0.022.

Our model of c-axis magnetotransport is supported by other independent observations.While the extrapolat-ing procedure might underestimate the magnitude of the upper critical?eld,its unusual temperature dependence is robust as demonstrated in the in-plane resistivity data [9].The fact that the negative linear c-axis magnetore-sistance is observed above the zero-?eld critical temper-ature tells us that this unusual phenomenon is a normal state feature rather than a signature of some?uctuations in the superconducting state.The measurements of the magnetic susceptibility[26]and the doping dependence of superconducting parameters[27]support the bipolaron origin of the normal state pseudogap T?.The isotope ef-fect on the normal state pseudogap observed recently[28] strongly supports its bipolaron origin as well.

In conclusion,we have measured the longitudinal out-of-plane magnetoresistance of BSCCO-2212single crys-tals in magnetic?elds up to50T.We found a quasi-linear negative magnetoresistance in the normal state and a quasi-linear positive magnetoresistance in the mixed state of BSCCO-2212.This allowed us to determine the upper critical?eld and to trace the zero?eld normal state c-axis resistance well below T c0.The shape of H c2(T), the temperature dependence of the c-axis resistance and its negative?eld slope are understood within the frame-work of the bipolaron theory of the cuprates.

This work has been partially supported by EPSRC visiting fellowship research grant Ref.:GR/L77553,by the Leverhulme Trust,F/182/AT,and by the Russian Foundation for Basic Research,GR/98-02-17485.The authors greatly appreciate enlightening discussions with Y.Ando,G.Boebinger,J.R.Cooper,N.E.Hussey,V.V. Kabanov,W.Y.Liang,and G.Zhao.We thank S.Hay-den,J.T.Jansenn,P.J.Meeson,R.Murphy,M.Bennet, and B.Wiltshire for their generous help with experimen-tal equipment and software.

normalised by the value of R N(0)(see text).

Fig.2.The temperature dependence of the?ux-?ow resistance slope.Inset:Field dependence of out-of-plane resistance of BSCCO-2212normalised by its normal state value,R N(B).The selected traces are obtained(from right to the left)at16,20,25,30,35,45,52.6,57.5,65, 70,78,and88.7K respectively.

Fig.3.The resistive upper critical?eld of BSCCO-2212as a function of temperature obtained from the in-tersections of the linear extrapolations from the normal and?ux-?ow regimes(solid circles),and as the ratio of the extrapolated R N(T)and?ux-?ow resistance slope (crosses).A?t to the Bose-Einstein condensation?eld, Eq.(1),is shown by the solid curve,while the dashed line shows a?t to the’pseudo-upper-critical?eld’of Ref.[17]. Fig.4.The zero?eld normal state c-axis resistance,

R N(0),(main panel)and the magnetic?eld slope,S(T), (inset)of BSCCO-2212?tted by Eq.(4)and Eq.(5),re-spectively.Solid symbols in the main panel correspond to the value of R N(0)obtained by the linear extrapola-tion;crosses correspond to the value of R N(0)determined from R max,as explained in the text.

4

5 ?

% 7

5 5

% 7

+F

7

7 7

F

+.

7

7 7

.

G 5))

G % ?/Τ

7 7

F

5 51

%

% 7

5 ?

7 .

6 7

7 .

变电所母线桥的动稳定校验

变电所母线桥的动稳定校验 随着用电负荷的快速增长,许多变电所都对主变进行了增容,并对相关设备进行了调换和校验,但往往会忽视主变母线桥的动稳定校验,事实上此项工作非常重要。当主变增容后,由于阻抗发生了变化,短路电流将会增大许多,一旦发生短路,产生的电动力有可能会对母线桥产生破坏。特别是户内母线桥由于安装时受地理位置的限制,绝缘子间的跨距较长,受到破坏的可能性更大,所以应加强此项工作。 下面以我局35kV/10kv胡店变电所#2主变增容为例来谈谈如何进行主变母线桥的动稳定校验和校验中应注意的问题。 1短路电流计算 图1为胡店变电所的系统主接线图。(略) 已知#1主变容量为10000kVA,短路电压为7.42%,#2主变容量为12500kVA,短路电压为7.48%(增容前短路电压为7.73%)。 取系统基准容量为100MVA,则#1主变短路电压标么值 X1=7.42/100×100×1000/10000=0.742, #2主变短路电压标么值 X2=7.48/100×100×1000/12500=0.5984 胡店变电所最大运行方式系统到35kV母线上的电抗标么值为0.2778。 ∴#1主变与#2主变的并联电抗为: X12=X1×X2/(X1+X2)=0.33125; 最大运行方式下系统到10kV母线上的组合电抗为: X=0.2778+0.33125=0.60875

∴10kV母线上的三相短路电流为:Id=100000/0.60875*√3*10.5,冲击电流:I sh=2.55I =23032.875A。 d 2动稳定校验 (1)10kV母线桥的动稳定校验: 进行母线桥动稳定校验应注意以下两点: ①电动力的计算,经过对外边相所受的力,中间相所受的力以及三相和二相电动力进行比较,三相短路时中间相所受的力最大,所以计算时必须以此为依据。 ②母线及其支架都具有弹性和质量,组成一弹性系统,所以应计算应力系数,计及共振的影响。根据以上两点,校验过程如下: 已知母线桥为8×80mm2的铝排,相间中心线间距离为210mm,先计算应力系数: ∵频率系数N f=3.56,弹性模量E=7×10.7 Pa,单位长度铝排质量M=1.568kg/m,绝缘子间跨距2m,则一阶固有频率: f’=(N f/L2)*√(EI/M)=110Hz 查表可得动态应力系数β=1.3。 ∴单位长度铝排所受的电动力为: f ph=1.73×10-7I sh2/a×β=568.1N/m ∵三相铝排水平布置,∴截面系数W=bh2/6=85333mm3,根据铝排的最大应力可确定绝缘子间允许的最大跨距为: L MAX=√10*σal*W/ f ph=3.24m ∵胡店变主变母线桥绝缘子间最大跨距为2m,小于绝缘子间的最大允许跨距。

华师秋《高等数学文》在线作业

华师16秋《高等数学(文)》在线作业

————————————————————————————————作者:————————————————————————————————日期:

一、单选题(共 20 道试题,共 40 分。) V 1. y=xsin3x,则y=( )。 . (-os3x+3sin3x)x . (sin3x+3xos3x)x . (os3x+sin3x)x . (sin3x+xos3x)x 标准答案: 2. f(x)在某点连续是f(x)在该点可微的() . 充分条件 . 必要条件 . 充分必要条件 . 既非充分又非必要条件 标准答案: 3. x→5时,函数|x-5|/(x-5)的极限是() . 0 . ∞ . 1 . 不存在 标准答案: 4. 当x→0时,ln(1+x)与x比较是()。 . 高阶无穷小量 . 等价无穷小量 . 非等价的同阶无穷小量 . 低阶无穷小量 标准答案: 5. 当x→0时,下列变量为无穷大量的是()。 . xsinx . sinx/x . ^x . (1+sinx)/x 标准答案: 6. 极值反映的是函数的()性质。 . 局部 . 全体 . 单调增加 . 单调减少 标准答案: 7. ()是函数f(x)=1/2x的原函数。 . F(x)=ln2x . F(x)=-1/x^2 . F(x)=ln(2+x) . F(x)=lnx/2 标准答案: 8. 若f(x)是奇函数,g(x)是偶函数,且f[g(x)]有意义,则f[g(x)]是()

. 奇函数 . 非奇非偶函数 . 偶函数或奇函数 标准答案: 9. 曲线y=(4+x)/(4-x)在点(2,3)的切线的斜率是()。 . 2 . -2 . 1 . -1 标准答案: 10. 曲线y=f(x)在点(x0,f(x0))的切线存在是函数y=f(x)在x0处可导的 . 充分条件 . 必要条件 . 充分必要条件 . 既非充分又非必要条件 标准答案: 11. 如果函数f(x)的定义域为(-1,0),则下列函数中,()的定义域为(0,1). f(1-x) . f(x-1) . f(x+1) . f(x2-1) 标准答案: 12. 偶函数的定义域一定是( )。 . 包含原点的区间 . 关于原点对称 . (-∞,+∞) . 以上说法都不对 标准答案: 13. 函数y=x^2+1在区间[-2,1]上的最大值是()。 . 1 . 2 . 5 . 不存在 标准答案: 14. 设函数f(x)=|x|,则函数在点x=0处() . 连续且可导 . 连续且可微 . 连续不可导 . 不连续不可微 标准答案: 15. 曲线y=xlnx-x在x=处的切线方程是()。 . y=-x- . y=x-

母线电动力及动热稳定性计算

母线电动力及动热稳定性计算 1 目的和范围 本文档为电气产品的母线电动力、动稳定、热稳定计算指导文件,作为产品结构设计安全指导文件的方案设计阶段指导文件,用于母线电动力、动稳定性、热稳定性计算的选型指导。 2 参加文件 表1 3 术语和缩略语 表2 4 母线电动力、动稳定、热稳定计算 4.1 载流导体的电动力计算 4.1.1 同一平面内圆细导体上的电动力计算

? 当同一平面内导体1l 和2l 分别流过1I 和2I 电流时(见图1),导体1l 上的电动力计 算 h F K I I 4210 π μ= 式中 F ——导体1l 上的电动力(N ) 0μ——真空磁导率,m H 60104.0-?=πμ; 1I 、2I ——流过导体1l 和2l 的电流(A ); h K ——回路系数,见表1。 图1 圆细导体上的电动力 表1 回路系数h K 表 两导体相互位置及示意图 h K 平 行 21l l = ∞=1l 时,a l K h 2= ∞≠1l 时,?? ? ???-+=l a l a a l K h 2)(12 21l l ≠ 22 2) ()(1l a m l a l a K h ++-+= 22)()1(l a m +-- l a m =

? 当导体1l 和2l 分别流过1I 和2I 电流时,沿1l 导体任意单位长度上各点的电动力计 算 f 124K f I I d μ= π 式中 f ——1l 导体任意单位长度上的电动力(m N ); f K ——与同一平面内两导体的长度和相互位置有关的系数,见表2。 表2 f K 系数表

4.1.2 两平行矩形截面导体上的电动力计算 两矩形导体(母线)在b <<a ,且b >>h 的情况下,其单位长度上的电动力F 的 计算见表3。 当矩形导体的b 与a 和h 的尺寸相比不可忽略时,可按下式计算 712 210x L F I I K a -=? 式中 F -两导体相互作用的电动力,N ; L -母线支承点间的距离,m ; a -导体间距,m ; 1I 、2I -流过两个矩形母线的电流,A ; x K -导体截面形状系数; 表3 两矩形导体单位长度上的电动力 4.1.3 三相母线短路时的电动力计算

高等数学B(二)教学大纲

《高等数学B(二)》教学大纲 本课程依据全校理工类专业2015版人才培养方案,理工类本科数学基础课程教学基本要求制定,也依据了2015年教育部高等学校大学数学课程教学指导委员会关于大学数学课程教学的基本要求。 课程名称:高等数学B(二) 课程代码:BB-2 课程管理:数理学院(或部)高等数学教研室 教学对象:全校理工类专业 教学时数:总时数64 学时,其中理论教学64 学时,实验实训0 学时。 课程学分:4.0 课程开设学期:2 课程性质:专业基础课 课程衔接:(1)先修课程初等数学(2)后续课程概率论与数理统计 一、课程教学目标及要求 通过本课程的学习,要使学生获得空间解析几何与向量代数、多元函数微分学、多元函数积分学、常微分方程及无穷级数等基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。 要求学生理解数学的基本概念和基本定理,培养学生的抽象思维能力和逻辑思维能力。熟悉高等数学的基本公式和基本方法,掌握常用公式和方法,提高计算能力。 二、教学内容及要求 第六章空间解析几何与向量代数 (一)教学目标 使学生掌握向量概念及有关运算;掌握平面方程、空间直线方程的各种形式;熟悉平面与平面、直线与直线、平面与直线之间的交角公式及平行、垂直条件;掌握常用的二次曲面的标准方程及其图形。 (二)知识点及要求 第一节向量及其线性运算 1、理解空间直角坐标系,向量的概念及其表示。 2、掌握向量的线性运算,向量的模与方向余弦的计算。 第二节数量积与向量积 1、理解两向量的数量积与向量积的概念。 2、掌握向量的数量积和向量积的运算。 第三节平面及其方程 1、理解平面的点法式方程,平面的一般方程,两平面的夹角。 2、掌握平面方程及其求法,平面与平面间几何位置的判定。 第四节空间直线及其方程 1、理解空间直线的一般方程、对称式方程与参数方程,两直线的夹角,直线与平 面的夹角。 2、掌握空间直线方程及其求法,会利用直线、平面相互关系(平行、垂直、相交

高压电缆热稳定校验计算书

筠连县分水岭煤业有限责任公司 井 下 高 压 电 缆 热 稳 定 性 校 验 计 算 书 巡司二煤矿 编制:机电科 筠连县分水岭煤业有限责任公司

井下高压电缆热稳定校验计算书 一、概述: 根据《煤矿安全规程》第453条及456条之规定,对我矿入井高压电缆进行热稳定校验。 二、确定供电方式 我矿高压供电采用分列运行供电方式,地面变电所、井下变电所均采用单母线分段分列供电方式运行,各种主要负荷分接于不同母线段。 三、井下高压电缆明细: 矿上有两趟主进线,引至巡司变电站不同母线段,一趟931线,另一趟925线。井下中央变电所由地面配电房10KV输入。 入井一回路:MYJV22-8.7/10KV 3*50mm2--800m(10KV) 入井二回路:MYJV22-8.7/10KV 3*50mm2--800m(10KV) 四、校验计算 1、井下入井回路高压电缆热稳定性校验 已知条件:该条高压电缆型号为,MYJV22-8.7/10KV 3*50mm2 ,800m,电缆长度为800m=0.8km。 (1)计算电网阻抗 查附表一,短路电流的周期分量稳定性为 电抗:X=0.072*0.8=0.0576Ω; 电阻:R=0.407*0.8=0.3256 Ω; (2)三相短路电流的计算

A Z I 5.174693305 .0310000 3v 3=?== ∞ (3)电缆热稳定校验 由于断路器的燃弧时间及固有动作时间之和约为t=0.05S; 查附表二得热稳定计算系数取K=142; 故电缆最小热值稳定截面为 23mm 51.2705.0142/5.17469t )/(min ===∞)(K I S Smin<50mm 2 故选用 MYJV 22 -8.7/10KV 3*50 电缆热稳定校验合格,符合要求。 附表一:三相电缆在工作温度时的阻抗值(Ω/Km ) 电缆截面S (mm 2 ) 4 6 10 16 2 5 35 50 70 95 120 150 185 240 交联聚乙烯 R 4.988 3.325 2.035 1.272 0.814 0.581 0.407 0.291 0.214 0.169 0.136 0.11 0.085 X 0.093 0.093 0.087 0.082 0.075 0.072 0.072 0.069 0.069 0.069 0.07 0.07 0.07 附表二 不同绝缘导体的热稳定计算系数 绝缘材料 芯线起始温度(° C ) 芯线最高允许温度(°C ) 系数K 聚氯乙烯 70 160 115(114) 普通橡胶 75 200 131 乙丙橡胶 90 250 143(142) 油浸纸绝缘 80 160 107 交联聚乙烯 90 250 142

高等数学2课程教学大纲

高等数学A2 课程教学大纲 课程编号:10009B6 学时:90 学分:5 适用对象:理学类、工科类本科专业 先修课程:高等数学A1 考核要求:闭卷考试,总成绩=平时成绩20%+期末成绩80% 使用教材及主要参考书: 同济大学数学系主编,《高等数学》(下册),高等教育出版社,2002 年, 第五版 黄立宏主编,《高等数学》(上下册),复旦大学出版社,2006 年陈兰祥主编,《高等数学典型题精解》,学苑出版社,2001 年陈文灯主编,《考研数学复习指南(理工类)》,世界图书版公司2006年李远东、刘庆珍编,《高等数学的基本理论与方法》,重庆大学出版社,1995年 钱吉林主编,《高等数学辞典》,华中师范大学出版社,1999 年一、课程的性质和任务 高等数学课程是高等学校理工科各专业学生的一门必修的重要基础理论课,为学习后继课程(如大学物理等)奠定必要的基础,是为培养我国社会主义现代化建设所需要的高质量、高素质专门人才服务的。二、教学目的与要求 通过本课程的学习,使学生获得向量代数和空间解析几何、多元函数微分学、多元函数积分学、无穷级数(包括傅立叶级数)等方面的基本概念、基本理论和基本运算技能。 在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生具有比较熟练的运算能力和综合运用所学知识去分析问题和解决问 题的能力。 三、学时分配

第八章多元函数微分法及其应用18 第九章重积分16 第十章曲线积分与曲面积分16 第十一章无穷级数18 总复习 6 四、教学中应注意的问题 1. 考虑学生的差异性,注意因材施教; 2. 考虑数学学科的抽象性,注意数形结合; 3. 考虑数学与现实生活的关系,注意在教学中多讲身边的数学, 使学生树立“学数学是为了用数学”的观点,培养学生“用数学”的好习惯。 五、教学内容 第七章:空间解析几何与向量代数 1 ?基本内容: 向量及其线性运算,数量积,向量积,曲面及其方程,空间曲线及其方程,平面及其方程,空间直线及其方程。 2 ?教学基本要求: (1)理解空间直角坐标系、理解向量的概念及其表示; (2)掌握向量的运算(线性运算、点乘法、叉乘法、)了解两个向量垂直、平行的条件; (3)掌握单位向量,方向余弦、向量的坐标表达式以及用坐标表达式进行向量运算的方法; (4)平面的方程和直线的方程及其求法,会利用平面、直线的相互关系解决有关问题 (5)理解曲面的方程的概念,了解常用二次曲面的方程及其图形,了解以坐标轴为旋转的旋转曲面及母线平行于坐标轴的柱面方程; (6)了解空间曲线的参数方程和一般方程; (7)了解曲面的交线在坐标平面上的投影。 3 ?教学重点与难点: 教学重点:向量的运算(线性运算、点乘法、叉乘法),两个向量垂直、平行的条件,向量方向余弦、向量的坐标表达式以及用坐标表达式进行向量运算,平面的方程和直线的方程及其求法,曲面方程的

热稳定性校验(主焦

井下高压开关、供电电缆动热稳定性校验 一、-350中央变电所开关断路器开断能力及电缆热稳定性校验 1 23 G 35kV 2 Uz%=7.5△P N.T =12kW △P N.T =3.11kW S N.T =8MVA 6kV S1点三相短路电流计算: 35kV 变压器阻抗: 2 22.1. u %7.5 6.30.37()1001008z N T N T U Z S ?===Ω? 35kV 变压器电阻:2 22.1.22. 6.30.0120.007()8 N T N T N T U R P S =?=?=Ω 35kV 变压器电抗:10.37()X = ==Ω 电缆电抗:02(x )0.415000.08780 0.66()1000 1000i L X ??+?== =Ω∑ 电缆电阻:02(x )0.11815000.118780 0.27()1000 1000 i L R ??+?== =Ω∑ 总阻抗: 21.370.66) 1.06( Z ==Ω S1点三相短路电流:(3)1 3.43()d I KA === S2点三相短路电流计算: S2点所用电缆为MY-3×70+1×25,长400米,变压器容量为500KV A ,查表的:(2)2d I =2.5KA

S2点三相短路电流:32 d d =2.88I I KA = 1、架空线路、入井电缆的热稳定性校验。已知供电负荷为3128.02KV A ,电压为6KV ,需用系数0.62,功率因数cos 0.78φ=,架空线路长度1.5km ,电缆长度780m (1)按经济电流密度选择电缆,计算容量为 3128.020.62 2486.37cos 0.78 kp S KVA φ?= ==。 电缆的长时工作电流Ig 为239.25 Ig === A 按长时允许电流校验电缆截面查煤矿供电表5-15得MYJV42-3×185-6/6截面长时允许电流为479A/6kV 、大于239.25A 符合要求。 (2)按电压损失校验,配电线路允许电压损失5%得 60000.1300Uy V ?=?=,线路的实际电压损失 109.1L U COS DS φφ?====,U ?小于300V 电压损失满足要求 (3)热稳定性条件校验,短路电流的周期分量稳定性为 电缆最小允许热稳定截面积: 3 2min d =S I mm 其中:i t ----断路器分断时间,一般取0.25s ; C----电缆热稳定系数,一般取100,环境温度35℃,电缆温升不超过120℃时,铜芯电缆聚乙烯电缆熔化温度为130℃,电

华中师范大学人才培养方案

历史学专业本科人才培养方案★专业编号:832 历史学专业本科人才培养方案 一、专业培养目标及基本要求 培养目标: 本专业依据“研教双优”人才培养模式培养具有良好的政治思想素质、有较强的学习和研究能力、扎实的专业技能的一流师资和应用型人才。 基本要求: 扎实掌握本专业的基本理论和基本知识,了解本专业的发展趋势和新进展;具有科学的思维方法和探索精神,具备一定的科学研究能力和专业技能。 具体要求毕业生应获得以下几方面的知识和能力: 1.在大学平台课的基础上,掌握历史学的基本理论和中国历史、世界历史比较系统的基本知识; 2.通过专业学习和训练,形成一定的历史学研究能力; 3.较熟悉地掌握古汉语和一门外国语,能阅读中外历史文献和资料; 4.了解相关学科基本理论,具有较强的综合应用能力; 5.掌握科学的教育理论和教学方法,具备教师基本技能。 二、主要课程 中国古代史、中国近代史、中国现代史、中华人民共和国史、历史科学概论、世界古代史、世界中世纪史、世界近代史、世界现代史、世界当代史、中国史学史、西方史学史、中国历史地理、中国历史文选、教育学、心理学等。 三、学制 4年 四、授予学位 历史学学士 五、教学时间分配表 (续表)

六、课程教学学时、学分分布表 注:专业类必修课指学科基础必修课与专业必修课;专业类选修课指学科基础选修课与专业选修课 七、课程计划表 (续表)

(续表)

(续表) (续表)

八、说明 1.本专业必须修满教学计划规定的167学分方可毕业。其中通识教育必修课35学分,通识教育选修课12学分,专业必修课67学分,专业选修课34学分,实践环节19学分,必修课学分不能以选修课学分代替; 2.教师教育课程分必修、选修共20学分,必修课为教育学基础3学分、心理学基础3学分、教师口语1学分、教师书法1学分、多媒体技术与应用2学分、现代教育技术2学分、历史教学技能训练1学分、历史学科教学论2学分,共15学分;选修课5学分(教育、心理类3学分,学科教育类2学分); 3.本专业学生必须选修12个学分的综合素质课。其中必须理科类不得少于4学分,艺体类不少于2学分,其他6学分建议从文学院、政法学院、经济学院、管理学院、美术学院、音乐学院等院选修; 4.专业实践包括第二学年暑期专业考察(2学分)和第三学年暑期专业研究实践“历史记忆中的家乡”(2学分); 5.本专业共开设双学位课程49学分。修满双学位课程28学分,可申请本专业辅修结业证书;修满42学分并完成辅修论文及答辩,可申请本专业双学位学士证书; 6.学生需同时修满规定的专业课程学分和素质拓展学分方可毕业。素质拓展学分要求:学生需获取20个必修学分,10个选修学分,具体修取办法见教学管理规章制度中的相关规定。

高压电缆热稳定校验计算书

*作品编号:DG13485201600078972981* 创作者:玫霸* 筠连县分水岭煤业有限责任公司 井 下 高 压 电 缆 热 稳 定 性 校 验 计 算 书 巡司二煤矿

编制:机电科 筠连县分水岭煤业有限责任公司 井下高压电缆热稳定校验计算书 一、概述: 根据《煤矿安全规程》第453条及456条之规定,对我矿入井高压电缆进行热稳定校验。 二、确定供电方式 我矿高压供电采用分列运行供电方式,地面变电所、井下变电所均采用单母线分段分列供电方式运行,各种主要负荷分接于不同母线段。 三、井下高压电缆明细: 矿上有两趟主进线,引至巡司变电站不同母线段,一趟931线,另一趟925线。井下中央变电所由地面配电房10KV输入。 入井一回路:MYJV22-8.7/10KV 3*50mm2--800m(10KV) 入井二回路:MYJV22-8.7/10KV 3*50mm2--800m(10KV) 四、校验计算 1、井下入井回路高压电缆热稳定性校验 已知条件:该条高压电缆型号为,MYJV22-8.7/10KV 3*50mm2 ,800m,电缆长度为800m=0.8km。 (1)计算电网阻抗 查附表一,短路电流的周期分量稳定性为

电抗:X=0.072*0.8=0.0576Ω; 电阻:R=0.407*0.8=0.3256 Ω; (2)三相短路电流的计算 (3)电缆热稳定校验 由于断路器的燃弧时间及固有动作时间之和约为t=0.05S; 查附表二得热稳定计算系数取K=142; 故电缆最小热值稳定截面为 Smin<50mm2故选用 MYJV22 -8.7/10KV 3*50 电缆热稳定校验合格,符合要求。 附表一:三相电缆在工作温度时的阻抗值(Ω/Km)

华中师范大学教育学专业参考书目

华中师范大学教育学专业参考书目 华中师范大学教育学考研参考书目,鉴于出现很多想报考教育学硕士研究生 的同学们,苦于找不到参考的书籍这一情况,凯程教育第一时间整理了如下 书籍,希望对考研的同学们提供点帮助。 随着越来越多的人加入考研大军,研究生就业问题近年来也成为热点话题。官方发布的研究生总体就业率高达95%以上,但有的专业首次就业率甚至低至5.56%。究竟什么才是真实的情况,也许永远也无法知道,但多几个渠道了解信息,或许能在作决定时提供帮助。 七成高校研究生就业率超95% 凯程考研以"专业、负责、创新、分享"的办学理念,突出"高命中率、强时效性、全面一条龙服务"的特色,成为考研学子选择专业课辅导的首选。10年来已有千余位考生在凯程的帮助下顺利考取全国著名高校,引发业界强烈关注。 主要参考书目 教育经济与管理专业(教育学院) 《教育学》王道俊、王汉澜主编,人民教育出版社1999年版 《当代教育学》袁振国,教育科学出版社 《教育投入与产出》王善迈,河北教育出版社 《教育经济学新编》范先佐,人民教育出版社2010年版 《学校管理学新编》萧宗六、余白,华中师范大学出版社 《新编教育管理学》修订版,吴志宏、魏志春等主编,华东师范大学出版社 注:311教育学专业基础综合考试大纲由国家统一制订 课程与教学论(历史学院) 《历史教育学》王铎全上海教育出版社 《中学历史教学法》于友西高等教育出版社

课程与教学论复试科目参考书目(数据与统计学院) 《数学教育学》,吴宪芳、华中师范大学出版社 或《中学数学教材教法》总论,十三院校协编、高等教育出版社 课程与教学论、教育硕士(物理科学与技术学院) 《力学》漆安慎等高等教育出版社(《力学》潘武明科学出版社)《电磁学》赵凯华高等教育出版社(《电磁学》陈义成科学出版社)《光学教程》姚启均高等教育出版社 《中学物理新课程教学概论》主编:阎金铎,郭玉英,北京师范大学出版集团2008年2月 《现代基础物理教育学》主编:李来政何熊智,华中师范大学出版社2004年8月 《大学物理实验》主编:熊永红等科学出版社2007年8月 有机化学、物理化学、分析化学、无机化学、高分子化学与物理、农药学(化学学院) 《物理化学》万洪文詹正坤主编高等教育出版社(面向21世纪教材)《物理化学解题指南》陈平初、詹正坤、万洪文编,高等教育出版社 《物理化学》南京大学傅献彩等编著(第四版),高等教育出版社 《有机化学》(上下册)尹冬冬主编高等教育出版社 《有机化学》五所师大合编,曾昭琼主编第三版上下册,高教出版社,北京《有机化学实验》五所师大合编,曾昭琼主编第三版,高教出版社,北京生物化学:(生命科学学院) 《生物化学教程》王镜岩等,高等教育出版社,2008年

华中师范大学高等数学C真题

院(系 ): 专业: 年级: 学生 姓名: 学号: --- -- -- --- -- -- -- --- -- -- -- --- -- -- -- --- -- -- -- -- -- -- 密 -- -- -- -- --- -- -- -- --- -- -- -- --- -- -- - 封 --- -- -- --- -- -- -- --- -- -- -- -- -- 线 ---- -- -- -- --- -- -- -- --- -- -- -- --- -- -- -- --- -- -- -- --- -- -- -- --

第 1 页(共页)

------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------

第 2 页(共页)

------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------

第 3 页(共页)

案例--变电所母线桥的动稳定校验

案例--变电所母线桥的动稳定校验 朱时光修改 下面以35kV/10kv某变电所#2主变增容为例来谈谈如何进行主变母线桥的动稳定校验和校验中应注意的问题。 1短路电流计算 图1为某变电所的系统主接线图。(略) 已知#1主变容量为10000kVA,短路电压为7.42%,#2主变容量原为1000为kVA 增容为12500kVA,短路电压为7.48%。 取系统基准容量为100MVA,则#1主变短路电压标么值 X1=7.42/100×100×1000/10000=0.742, #2主变短路电压标么值 X2=7.48/100×100×1000/12500=0.5984 假定某变电所最大运行方式系统到35kV母线上的电抗标么值为0.2778。 ∴#1主变与#2主变的并联电抗为: X12=X1×X2/(X1+X2)=0.33125; 最大运行方式下系统到10kV母线上的组合电抗为: X=0.2778+0.33125=0.60875 ∴10kV母线上的三相短路电流为:Id=100000/0.60875*√3*10.5=9.04KA,冲击电流:I s h=2.55I d=23.05KA。 2动稳定校验

(1)10kV母线桥的动稳定校验: 进行母线桥动稳定校验应注意以下两点: ①电动力的计算,经过对外边相所受的力,中间相所受的力以及三相和二相电动力进行比较,三相短路时中间相所受的力最大,所以计算时必须以此为依据。 ②母线及其支架都具有弹性和质量,组成一弹性系统,所以应计算应力系数,计及共振的影响。 根据以上两点,校验过程如下: 已知母线桥为8×80mm2的铝排,相间中心线间距离A为210mm,先计算应力系数: 6Kg/Cm2, ∵频率系数N f=3.56,弹性模量E=0.71×10 -4kg.s2/cm2,绝缘子间跨距2m, 单位长度铝排质量M=0.176X10 截面惯性矩J=bh3/12=34.13c m4或取惯性半径(查表)与母线截面的积, ∵三相铝排水平布置,∴截面系数W=bh2/6=8.55Cm3, 则一阶固有频率: f0=(3.56/L2)*√(EJ/M)=104(Hz) 查表可得动态应力系数β=1.33。 ∴铝母排所受的最大机械应力为: σMAX=1.7248×10-3I s h2(L2/Aw)×β=270.35 kg/c m2<σ允许=500 根据铝排的最大应力可确定绝缘子间允许的最大跨距为:(简化公式可查表) L MAX=1838√a/ I s h=366(c m) ∵某变主变母线桥绝缘子间最大跨距为2m,小于绝缘子间的最大允许跨距。

高等数学习题册参考答案

《高等数学》习题册参考答案 说明 本参考答案与现在的习题册中的题目有个别的不同,使用时请认真比对,以防弄错. 第一册参考答案 第一章 §1.1 1.??? ????+≤≤--<≤<≤+=--. ),(2, , , 0 , 211010101T t T T t a v T t v t at v v a v a v v a v v 图形为: 2.B. 3.)]()([)]()([)(2 121x f x f x f x f x f --+-+=, 其中)]()([)(21x f x f x F -+=为偶函数,而)]()([)(2 1x f x f x G --=为奇函数. 4.??? ????=<≤-<≤-<≤=.6 ,0, 64 ,)4(, 42 ,)2(, 20 ,)(22 2x x x x x x x x f 5.???.)]([,)2()]([,)1(单调减单调性相反,则单调增;单调性相同,则x g f g f x g f g f 6.无界. 7.(1)否,定义域不同;(2)否,对应法则不同;(3)否,定义域不同. §1.2 1.(1))1 ,0()0 ,1(?-=D ;(2)} , ,{2 Z ∈+≠=k k k x x D πππ;(3))1 ,0(=D . 2.1 ,4-==b a . 3.?????>-=<=,0 ,1,0 ,0 , 0 ,1 )]([x x x x g f ???? ???>=<=-. 1 ,,1 ,1 ,1 , )]([1x e x x e x f g 4.(1)]2 ,0[,)1arcsin(2 =-=D x y ; (2)Y ∞ =+=+=0 2 2),( , )(tan log 1k a k k D x y πππ. 5.(1)x x x f f 1 )]([-= ; (2)x x f f 1 )(1][=. 6.+∞<<=-h r V r h h r 2 ,2312 2π. 7.(1)a x =)(?; (2)h x x +=2)(?; (3)h a a h x x ) 1()(-= ?. §1.9 1.1-=e a . 2.(1)1=x 和2=x 都是无穷间断点(属第Ⅱ类); (2)1 ,0==x x 和1-=x 是间断点,其中:1是可去间断点(极限为21)(属第Ⅰ类); 0是跳跃间断点(左极限1-,右极限1)(属第Ⅰ类);-1 是无穷间断点(属第Ⅱ类); (3)0=x 为无穷间断点(属第Ⅱ类),1=x 为跳跃间断点(属第Ⅰ类) (注意:+∞==∞ +-→- e e x x x 11 lim ,而0lim 11 ==∞--→+ e e x x x );

铜排动热稳定校验

都是需要考虑的,特别是母桥距离比较长的时候。需要计算出现短路故障时的电动力,绝缘子类固定件的安装距离、绝缘子安装件的抗屈服力等。不很少有人会特别计算,我感觉是大家都自觉不自觉的把母线规格放大了,所以基本上不用计算。 4 母线的热效应和电动力效应 4.1母线的热效应 4.1.1母线的热效应是指母线在规定的条件下能够承载的因电流流过而产生的热效应。在开关设备和控制设备中指在规定的使用和性能条件下,在规定的时间内,母线承载的额定短时耐受电流(IK)。 4.1.2根据额定短时耐受电流来确定母线最小截面 根据GB3906-1991《3.6-40.5kV交流金属封闭开关设备和控制设备》[附录F]中公式:S=(I/a)(t/△θ)1/2来确定母线的最小截面。 式中: S—母线最小截面,mm2; I--额定短时耐受电流,A; a—材质系数,铜为13,铝为8.5; t--额定短路持续时间,s; △θ—温升(K),对于裸导体一般取180K,对于4s持续时间取215K。 如对于31.5kA/4S系统,选用铜母线最小截面积为: S=(31500/13)×(4/215)1/2=330 mm2 铝母线最小截面积与铜母线最小截面积关系为: SAl=1.62SCu 式中, SAl为铝母线的最小截面积;SCu为铜母线的最小截面积。 如对于31.5kA/4S系统,铝母线最小截面积为: SAl=1.62×330 =540 mm2 根据DL404-1997《户内交流高压开关柜订货技术条件》中7.4.3条规定,接地汇流排以及与之连接的导体截面,应能通过铭牌额定短路开断电流的87%,可以计算出各种系统短路容量下(短路时间按4S)的接地母线最小截面积。 如对于31.5kA/4S系统,接地铜母线最小截面积为: S=330×86.7% =287mm2 根据以上公式计算,对应各种额定短时耐受电流时,开关设备和控制设备中对应几种常用的额定短时耐受电流,母线最小截面及所用铜母线和铝母线的最小规格见表1: 表1 母线kA/4s 25 31.5 40 63 80 设备中铜母线规格50×6 60×6 80×6或60×8 80×10 100×10 接地铜母线规格50×5 50×6 50×8 80×8 80×10 设备中铝母线规格80×6或60×8 80×8 100×8或80×10 设备中铜母线 最小截面(mm2)260 330 420 660 840 设备中铝母线 最小截面(mm2)425 540 685 1075 1365 4.2 母线的电动力效应 母线是承载电流的导体,当有电流流过时势必在母线上产生作用力。母线受电流的作用力与

《高等数学(1)》练习题库

华中师范大学网络教育 《高等数学(1)》练习测试题库 一.选择题 1.函数y= 1 12+x 是( ) A.偶函数 B.奇函数 C 单调函数 D 无界函数 2.设f(sin 2x )=cosx+1,则f(x)为( ) A 2x 2-2 B 2-2x 2 C 1+x 2 D 1-x 2 3.下列数列为单调递增数列的有( ) A .0.9 ,0.99,0.999,0.9999 B .23,32,45,5 4 C .{f(n)},其中f(n)=?????-+为偶数,为奇数n n n n n n 1,1 D. {n n 212+} 4.数列有界是数列收敛的( ) A .充分条件 B. 必要条件 C.充要条件 D 既非充分也非必要 5.下列命题正确的是( ) A .发散数列必无界 B .两无界数列之和必无界 C .两发散数列之和必发散 D .两收敛数列之和必收敛 6.=--→1 )1sin(lim 21x x x ( ) A.1 B.0 C.2 D.1/2 7.设=+∞→x x x k )1(lim e 6 则k=( ) A.1 B.2 C.6 D.1/6 8.当x →1时,下列与无穷小(x-1)等价的无穷小是( ) A.x 2-1 B. x 3-1 C.(x-1)2 D.sin(x-1) 9.f(x)在点x=x 0处有定义是f(x)在x=x 0处连续的( ) A.必要条件 B.充分条件 C.充分必要条件 D.无关条件 10、当|x|<1时,y= ( ) A 、是连续的 B 、无界函数

C、有最大值与最小值 D、无最小值 11、设函数f(x)=(1-x)cotx要使f(x)在点:x=0连续,则应补充定义f(0)为() A、B、e C、-e D、-e-1 12、下列有跳跃间断点x=0的函数为() A、 xarctan1/x B、arctan1/x C、tan1/x D、cos1/x 13、设f(x)在点x 0连续,g(x)在点x 不连续,则下列结论成立是() A、f(x)+g(x)在点x 必不连续 B、f(x)×g(x)在点x 必不连续须有 C、复合函数f[g(x)]在点x 必不连续 D、在点x0必不连续 在区间(- ∞,+ ∞)上连续,且f(x)=0,则a,b满足14、设f(x)= () A、a>0,b>0 B、a>0,b<0 C、a<0,b>0 D、a<0,b<0 15、若函数f(x)在点x 0连续,则下列复合函数在x 也连续的有() A、 B、 C、tan[f(x)] D、f[f(x)] 16、函数f(x)=tanx能取最小最大值的区间是下列区间中的() A、[0,л] B、(0,л) C、[-л/4,л/4] D、(-л/4,л/4) 17、在闭区间[a ,b]上连续是函数f(x)有界的() A、充分条件 B、必要条件 C、充要条件 D、无关条件 18、f(a)f(b) <0是在[a,b]上连续的函f(x)数在(a,b)内取零值的()

各种最小截面-热稳定校验公式

配三P211,母线、电缆 热稳定校验 * M 弹■ M 期 H 屯艮科特乐七许?葛■童 代> < ■ It ■ 1ft W (71 e w f7 J0^13k¥ ±??Litt ■电* ? 耳 ?0 ffl 1) 917 Ift 若 e 若 90 ta i) 蓟(K H ?- ?k¥ 交?■匕 ■變?电霍 ? ¥ H Eft III 1攝 ? 书 sn tH n tSQ fl 齡 CS 1) Xfi [性 1] II 3: I 虞匚RiQk.j I 丹J £■定电已tn^lLkXP ?圣.?菖■艸是?唯力电ID ■?—■守?》I ?的 y 匚?启■电力離■罕■?龜E 盧青相七,怕章■盘u 迹IT IVM (?.Arc?a ?時 ?x*x*r IAV ?2a?n*A^trft??iiMRC. i.ffjt^r. ■■■鼻尢寺■■弁血雹* H asg?^HVK4hi!?*,??覽奔?■議鹰倉i<0P ? 导体和电器选择规范 DL/T5222 , 7.1.8条 裸导体 的热稳定校验(公式与配三一样) T 柞淵麼 r 50 55 八门 65 70 75 7 』I 95 100 1.05 合金 95 $3 KQ SK7 ?s 81 7申 77 75 73 1S1 17? 门* 174 1.71 lft'J 166 IM Ibl 157 155 低压配电设计规范 GB50054-2011,3.2.14条,保护导体的截面选择 系数K 的选择见附录A 交流电气装置的接地设计规范, 接地导体(线) 的最小 截面选择 哄井7 廉人允iT 铜 电 t 40% 样电斗3(rs 卜电斗20% 诅度9 徊供舸统城 舸供川坨终 恂臂世井 700 249 167 1M 119 B00 259 173 150 IZ4 SM 26& 179 1S5 1J8 ,附录E 黑EB&険■饮霸盒帰工■艰?肝盘转■冨■■担用孟旳??塞鼻?c

华中师范大学继续教育学院官方自考自考专套

华中师范大学继续教育学院官方自考自考专套(升)本 华中师范大学是国家教育部直属重点综合性师范大学,是国家“211工程”重点建设高校,是国家首批具有博士、硕士学位授予权的高校之一,同时也是国家培养中、高等学校师资和其他各类高级专门人才的重要基地。 华中师范大学是湖北省高等教育自学考试最早主办和主考院校之一。根据湖北《省教育厅、省自考委关于进一步明确普通高等学校开展高等教育自学考试全日制助学活动有关事项的通知》精神,我院将面向社会主办“高等教育自学考试独立本科段专升本课程辅导(业余)助学班”,为广大求学者提供一个更高学历层次的就学平台。 一、招生对象与专业 1、招生对象:在校学习的专科生为主 2、招生专业: 专业设置学制学历层次学习形式授予学位学费 教育学两年独立本科段业余(周末)教育学学士3000元/年 学前教育两年独立本科段业余(周末)教育学学士3000元/年 行政管理 两年独立本科段业余(周末)管理学学士3000元/年(电子管理) 大众传播两年独立本科段业余(周末)管理学学士3000元/年 商务英语两年独立本科段业余(周末)文学学士3000元/年 会计(注册会计师方 两年独立本科段业余(周末)管理学学士3000元/年向) 艺术设计两年独立本科段业余(周末)文学学士3500元/年

二、教学与管理模式 专套本学制两年,其教学辅导与考试计划同步实施,可利用双休日、寒暑假或根据实际需要灵活安排教学。按照湖北省自考委颁布的专业课程计划和考试计划组织教学,并参加湖北省自考委组织的统一考试(每年分别安排在四月、七月、十月份考试)。 三、办学优势 1、专本套读:在读的大专生,在参加专科学习的同时,可套读本科,大大缩短了学习周期,在取得专科毕业证书的同时,又能获取华中师范大学的本科文凭,增强考生的自主创业能力与就业竞争力。符合学位授予条件的,还可由华中师范大学授予学士学位。 2.免考课程:国家承认学历的各类高等学校专科毕业生报考自学考试本科专业,可免考公共政治课;凡取得大学英语四级及以上证书,或者大学专科三个学期英语考试成绩合格者,可免考英语(二)课程。各类高等学校毕业生,报考自学考试本科专业,除按照上述规定免考课程外,还可免考与原所学专业相对应的公共基础课程。 3.沟通课程:沟通课程的成绩记载方法为平时成绩加统考成绩,平时成绩占40分(由我校任课教师和班主任通过平时上课出勤、作业、测验、考试给出成绩),统考成绩占60分。可缓解一次性考试的压力。 4.学位申请:凡三门学位课程平均成绩达到70分(单科65分)以上,通过大学英语四级或湖北省学位英语考试者,可获得华中师范大学授予的学士学位。

北京大学2016-2017学年第2学期高等数学A期末考试试卷

实用标准文档 北京大学高等数学A 期末考试试卷 2016~2017学年第2 学期 考试科目:高等数学A 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业 一、填空题(本大题共5小题,每小题3分,共15分) 1.二元函数2ln(21)z y x =-+的定义域为 。 2. 设向量(2,1,2)a =,(4,1,10)b =-,c b a λ=-,且a c ⊥,则λ= 。 3.经过(4,0,2)-和(5,1,7)且平行于x 轴的平面方程为 。 4.设yz u x =,则du = 。 5.级数11 (1)n p n n ∞ =-∑,当p 满足 条件时级数条件收敛。 二、单项选择题(本大题共5小题,每小题3分,共15分) 1.微分方程2()'xy x y y +=的通解是 ( ) A .2x y Ce = B .22x y Ce = C .22y y e Cx = D .2y e Cxy = 2.求极限 (,)(0,0)lim x y →= ( ) A . 14 B .12- C .1 4 - D .12 3.直线: 327 x y z L ==-和平面:3278 0x y z π-+-=的位置关系是 ( ) A .直线L 平行于平面π B .直线L 在平面π上

C .直线L 垂直于平面π D .直线L 与平面π斜交 4.D 是闭区域2222{(,)|}x y a x y b ≤+≤, 则D σ= ( ) A .33()2 b a π - B .332()3b a π- C .334()3b a π- D .333()2b a π- 5.下列级数收敛的是 ( ) A .11(1)(4)n n n ∞ =++∑ B .2111n n n ∞=++∑ C .1121n n ∞=-∑ D .1 n ∞ = 三、计算题(本大题共7小题,每小题7分,共49分) 1. 求微分方程'x y y e +=满足初始条件0x =,2y =的特解。 2. 计算二重积分22 D x y dxdy x y ++?? ,其中22{(,)1,1}D x y x y x y =+≤+≥。 3.设(,)z z x y =为方程2sin(23)43x y z x y z +-=-+确定的隐函数,求z z x y ??+??。

相关文档
最新文档