9.4矩形、正方形同步练习(B)

9.4矩形、正方形同步练习(B)
9.4矩形、正方形同步练习(B)

9.4《矩形、正方形》同步练习(B )

第1题. 如图(1),ABC △是直角三角形,90ABC ∠=

.将ABC △补成矩形,使ABC △的两个顶点为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,那么符合条件的矩形可以画2个,矩形ABCD 和矩形AEFC . ①如图(2),ABC △是钝角三角形,按短文中的要求把它补成矩形,那么符合要求的矩形可以画出 个,在图中把它画出来. ②如图(3),ABC △是锐角三角形,且满足BC AC AB >>,按短文中的要求把它补成矩形,那么符合要求的矩形可以画出 个,在图中把它画出来.

答案:解:①1个 ②3个

第2题. 正方形ABCD 中,35CE MN MCE =∠=

,,则ANM ∠=( ) A.45

B.55

C.65

D.75

答案:B

第3题. 如图,正方形1

ABCD AB P =中,,点是对角线AC 上的一点,分

A D

F B E A

B (1) (2) (3) A

N D

B E D

答案:4

第4题. 某课外学习小组在设计一个长方形时钟钟面时,欲使长方形的宽为20厘米,时钟的中心在长方形对角线的交点上,数字2在长方形的顶点上,数字3、6、9、12标在所在边的中点上,如图所示.

(1)问长方形的长应为多少?

(2)请你在长方框上点出数字1的位置,并说明确定该位置的方法;

(3)请你在长方框上点出钟面上其余数字的位置,并写出相应的数字(说明:要画出必要的、反映解题思路的辅助线).

答案:解:(1)如图,设长方形对角线的交点为O ,数字12、2在长方形中所对应的点分别为A 、B ,连结

OA 、OB ,则106090tan 60AB

OA AOB OAB OA

=∠=∠== ,,,,

tan 60AB OA == ∴

∴长方形的长为

3分

(2)方法一:作AOB ∠的平分线,交AB C C 于点,则点处为数字1的位置.

5分

方法二:设数字1标在30AB C OC AOC ∠=

上的点处,连结,则,

tan 30AC OA ==

, 由此可确定数字1的位置.

5分

(3)如图所示.

说明:1、标对了4、8、10的得1分,都标对了的得3分; 2、用其它辅助线来确定的,只要正确均得3分; 3、没有辅助线的,最多得2分.

第5题. 矩形纸片ABCD 中,4AD =cm ,10AB =cm ,按如图方式折叠,使点B 与点D 重合,折痕为EF ,则DE = cm .

答案:295

第6题. 如图,若将四根木条钉成的矩形木框变成平行四边形ABCD 的形状,并使其面积为矩形面积的一半,则这个平行四边形的最小内角等于 .

答案:30

第7题. 如图,以ABC △的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断ABC △与AEG △面积之间的关系,并说明理由.

(1) 园林小路,曲径通幽,如图2所示,小路由 白色的正方形理石和黑色的三角形理石铺成.已知中

间的所有正方形的面积之和是a 平方米,内圈的所有

三角形的面积之和是b 平方米,这条小路一共占地多 少平方米?

D C '

C B A F

E B

F B D

内 外

(1) 答案:解:ABC △与AEG △面积相等

过点C 作CM AB ⊥于M ,过点G 作GN EA ⊥交EA 延长线于N ,则

A M C ∠=90ANG ∠=

四边形ABDE 和四边形ACFG 都是正方形

90180

BAE CAG AB AE AC AG BAC EAG ∴∠=∠===∴∠+∠=

,,

180EAG GAN BAC GAN

∠+∠=∴∠=∠

ACM AGN ∴△≌△ 11

22

ABC AEG CM GN S AB CM S AE GN ∴==

= △△,

ABC AEG S S ∴=△△

(2) 解:由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和

∴这条小路的面积为(2)a b +平方米.

第8题. 如图,四边形ABCD 是矩形,对角线AC BD 、相交于O CE OB ,∥,交AB 的延长线于E ,试说明AC 与CE 的关系.

答案:解:AC CE =理由如下: CD AB CE OB ∥,∥, ∴四边形BECD 是平行四边形. EC BD ∴=.

B

D

..

AC BD CE AC ∴=∴=

第9题. 如图所示,四边形ABCD 是正方形,E 在BC 的延长线上,如果BE BD =,且2AB =cm ,求E ∠和BE 的长.

答案:解: 四边形ABCD 是正方形,且2AB =cm ,

451804567.5.

2

BD BE BD BE DBE E EDB ∴====∴=∠=-∴∠=∠== ,,

第10题. 下列说法正确的是( )

A.两边平行,一组对角相等的四边形是平行四边形. B.四个角都是直角的四边形是正方形.

C.两条对角线相等且互相垂直的四边形是正方形. D.有一个角是直角,一组对边平行的四边形是矩形.

答案:A

第11题. 已知矩形ABCD ,对角线AC BD 、相交于O AE BD BE AC ,∥,∥,AE 、 BE 相交于E ,试判定四边形OAEB 的形状.

AE BD BE AC ∥,∥,

∴四边形OAEB 是一个平行四边形.

又 四边形ABCD 是一个矩形,AC BD =, 即:OA OB =

OAEB ∴

是一个菱形.

第12题. 如图所示,

ABCD 中,AQ BN CN DQ 、,、分别是DAB ABC ∠∠,,BCD ∠,CDA ∠的平

分线,AQ 与BN 交于P CN ,与DQ 交于M ,在不添加其他条件的情况下,试写出一个由上述条件推出的结论,并给出证明过程.(要求:推理过程中要用到“平行四边形”和“角平分线”这两个条件).

答案:解:结论:四边形PQMN 是一个矩形. 理由如下: 四边形ABCD 是一个平行四边形.

180AD BC DAB ABC ∴∴∠+∠= ∥,.

又AQ BN 、分别是DAB ABC ∠∠,的角平分线.

11

12.

221112()18090.

22ABC BAD ABC BAD ∴∠=∠∠=∠∴∠+∠=∠+∠==

,×

90APB ∴∠= ,同理90BNM AQD ∠=∠= .

∴四边形PQMN 是矩形.

第13题. 已知如图,正方形ABCD 中,E 为CD 边上一点,F 为BC 延长线上一点,且CE CF =. (1)求证:.BCE DCF △≌△

(2)若30FDC ∠=

,求BEF ∠的度数. A

B C

P N

2 1

答案:(1)证明: 四边形ABCD 是正方形, .90B C D C B C E D C F ∴=∠=∠=

又.CE CF BCE DCF = ,△≌△

(2)由以上可知:.30BEC DFC FDC ∠=∠∠= ,

60.5045.

6045105.

DFC BEC CE CF CEF CFE BEF ∴∠=∴∠==∴∠=∠=∴∠=+=

,,

第14题. 矩形且有一般平行四边形不具有的性质是( ) A.对角相等 B.对边相等 C.对角线互相平分 D.四个角是直角

答案:D

第15题. 矩形的两条对角线所成的钝角为120

,若一条对角线长是2,那么矩形的周长为( ) A.6.0

B.5.8

C.2(1+

D.5.2

答案:C

第16题. 如图所示,在正方形ABCD 中,E 为CD 上一点,延长BC 至F ,使C F C E =,连结DF BE ,与DF 相交于G ,则下面结论错误的是( ) A.BE DF = B.BG DF ⊥ C.90DFC CEB ∠+∠=

D.90FDC ABG ∠+∠=

A B

C D

E F

答案:C

第17题. 如图所示,在矩形ABCD 中,2BC AE BD =,⊥于E ,30BAE ∠=

,那么ECD △的面积是( )

A.

C.

2

D.

2

答案:C

第18题. 如图,正方形ABCD 内作正三角形ABE 连结DE CE 、,则EDC ∠= .

答案:15

第19题. 已知正方形ABCD 中,对角线AC 的长为12cm ,P 为AB 上任一点,则点P 到AC BD 、的距离之和为 .

答案:6cm

第20题. 如图所示,矩形ABCD 沿AE 折叠,使D 落在BC 边上的F 点处,如果10AD =, 6AB =,求AFE △的面积.

E A

C D

答案:解:由题意知:AFE ADE △≌△,

9010.AFE D AF AD EF DE ∴∠=∠==== ,,

68.108 2.

AB BF CF =∴==∴=-= ,

设DE x =,则EF x =,6CE x =- 则:222

EF EC CF =+ 即:2

2

2

(6)2x x =-+,

解得103

x =

10.3

111050

10.

2233AEF EF S AF EF ∴=

∴=== △××

第21题. 如图所示,菱形ABCD 的对角线相交于点O DE AC CE BD DE ,∥,∥,、 CF 相交于E ,试判定四边形OCED 的形状.

答案:解:四边形OCED 是矩形,理由如下: DE AC CE BD ∥,∥, ∴四边形OCED 是平行四边形. 四边形ABCD 是菱形, AC BD ∴⊥. 即:90DOC ∠=

∴四边形OCED 是矩形.

A B C E D

第22题. 公园里有一块正方形的土地,准备把它分成面积相等的四部分,以便于栽种不同品种的花卉,请你设计一个划分的方案,把草图画出来,至少三种方案.

答案:如下图:

第23题. 如图,在矩形ABCD 中,BD 是对角线,30ABD ∠=

,将ABD △沿直线BD 折叠,点A 落在点

E 处,则CDE ∠等于多少度?

答案:解:由题意可知: 90.ABD EBD E A ABD EBD ∠=∠=∠=∠ △≌△,, 3060EBD BDE ∴∠=∠= ,.

又60ADB ∠=

30.

603030.

BDC CDE ∴∠=∴∠=-=

第24题. 如图,正方形ABCD 中,对角线交点为O E ,为OB 上的一点,DG AE ⊥于G ,DG 交OA 于F .求证:OE OF =.

D E

A B

E D O G F

2 1 C

答案:解: 四边形ABCD 是正方形, OA OD ∴=.

且90AOD AOE ∠=∠=

190290.

.

1 2...

DFO AFG DFO AFG AOE DOF OE OF ∴∠+∠=∠+∠=∠=∠∴∠=∠∴∴=

,△≌△

第25题. 已知正方形ABCD 中,M 是AB 的中点,E 是AB 延长线上一点,MN DM ⊥且交CBE ∠的平分线于N .(如左图)

(1)求证:DM MN =.

(2)若将上述条件中的“M 是AB 的中点”“改为M 是AB 上的任意一点”其余条件不变(如右图),则结论“MD MN =”还能成立吗?如果成立,请证明:如果不成立,请说明理由.

答案:证明:(1)在AD 上截取AF AM =,则AF BM =.

90.

45135.

AF AM A AFM DFM =∠=∴∠=∴∠=

,,

又BN 是CBE ∠的角平分线,

45.135.

190.

N B E MBN DM MN DMA ∴∠=∴∠=∴∠+∠=

⊥,

又290.DMA ∠+∠=

2 1.

..

D F M M B N D M M N ∴∠=∠∴∴=△≌△ (2)成立.证法同(1)类似.

A B C D M N E A

B C

F M N

1

2

第26题. 矩形具有而平行四边形不一定具有的性质是()

A.对角线相等B.对角线平分每一组对角

C.对角线互相平分D.对角线互相垂直

答案:A

第27题. 正方形具有而菱形不具有的性质是()

A.对角线互相平分B.对角线互相垂直

C.对角线相等D.对角线平分一组对角

答案:C

第28题. 正方形的对角线为2,则它的面积为.

答案:2

AC=,则另一条对角线BD=.第29题. 已知矩形ABCD一条对角线13

答案:13

第30题. 要使一个正方形体积变为原来的8倍,它的边长必须增大为原来的倍.答案:2

1.矩形ABCD对角线是10cm,那么矩形的周长最大是_______,此时两条对角线分成的四个小三角形的周长的和是 2.如图矩形ABCD中,AE⊥BD于E,∠BAE=30°,BE=1cm,那么DE的长为_ 3、直角三角形斜边上的高与中线分别是5cm和6cm,则它的面积为___ 4.如图,△ABC中,∠ACB=90度,点D、E分别为AC、AB的中点,点F在BC 延长线上,且∠CDF=∠A,求证:四边形DECF是平行四边形; 5.已知:如图,在△ABC中,∠BAC≠90°∠ABC=2∠C,AD⊥AC,交BC或CB的延长线D。试说明:DC=2AB. 6、在△ABC中,∠C=90°,AC=BC,AD=BD,PE⊥AC于点E,PF⊥BC于点F。求证:DE=DF 7、如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N 分别是边AB、BC的中点,则PM+PN的最小值是_______. 8.若菱形的周长为24 cm,一个内角为60°,则菱形的面积为__。 9、菱形的周长为40cm,两条对角线长的比是3:4。求两对角线长分别是。 10、已知如图,菱形ABCD中,E是AB的中点,且DE⊥AB,AE=2。 求(1)∠ABC的度数;(2)对角线AC、BD的长;(3)菱形ABCD的面积。 11、已知:如图,AD平分∠BAC,DE∥AC交AB于E,DF∥AB交AC于F.求证:四边形AEDF是菱形; 12、如图,边长为a的菱形ABCD中,∠DAB=60度,E是异于A、D两点的动点,F是CD 上的动点,满足AE+CF=a。证明:不论E、F怎样移动,△BEF总是正三角形。 13、如图,Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足为D,交AB于E,又点F在DE的延长线上,且AF=CE,求证:四边形ACEF是菱形。

/ 平行四边形、矩形、菱形、正方形 1.已知:如图,在?ABCD中,点E、F是对角线AC上的两点,且AE=CF.求证:BF∥DE. 2.如图,平行四边形ABCD的对角线AC、BD交于点O,EF过点O且与BC、AD分别交于点E、F.试猜想线段AE、CF的关系,并说明理由. ` 3.如图,四边形ABCD是平行四边形,E、F分别是BC、AD上的点,∠1=∠2.求证:AF=CE. "4.已知:如图,在平行四边形ABCD中,点M在边AD上,且AM=DM.CM、BA的延长线相交于点E.求证: (1)AE=AB; (2)如果BM平分∠ABC,求证:BM⊥CE. / 5.如图,在?ABCD中,点E、F在BD上,且BE=AB,DF=CD. 求证:四边形AECF是平行四边形. ,

6.在?ABCD中,E,F分别是AB,DC上的点,且AE=CF,连接DE,BF,AF.(1)求证:四边形DEBF是平行四边形; (2)若AF平分∠DAB,AE=3,DE=4,BE=5,求AF的长. } 7.如图,在四边形ABCD中,AD∥BC,AC与BD交于点E,点E是BD的中点,延长CD到点F,使DF=CD,连接AF, (1)求证:AE=CE; (2)求证:四边形ABDF是平行四边形; ; (3)若AB=2,AF=4,∠F=30°, 则四边形ABCF 的面积为.8.如图,在?ABCD中,E,F分别是AC上两点,BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF 为平行四边形. ~ 9.已知:如图,点E、F在线段BD上,AB=CD,∠B=∠D,BF=DE. 求证:(1)AE=CF;(2)AF∥CE. ~

第19章 矩形、菱形与正方形测试题 一、选择题(每小题3分,共30分) 1、关于四边形ABCD ①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC 和BD 相等;以上四个条件中可以判定四边形ABCD 是平行四边形的有( )。 (A ) 1个 (B )2个 (C )3个 (D )4个 2、若顺次连结四边形ABCD 各边中点所得四边形是矩形,则四边形ABCD 必定是( ) A 、菱形 B 、对角线相互垂直的四边形 C 、正方形 D 、对角线相等的四边形 3、如图1,大正方形中有2个小正方形,如果它们的面积分别是S 1、S 2,那么S 1、S 2的大小关系是( ) A.S 1 > S 2 B.S 1 = S 2 C.S 1

完美矩形 一般房屋的装修,客厅地面铺设地砖,通常都是使用同样大小的正方形地砖.而若客厅里的矩形地面上,方砖大小各不相同,砖与砖之间、砖与墙之间没有空隙,并且能使每块方砖都保持完整,那将是多么奇怪别致啊. 如果一个矩形的内部能用一些大小各不相同的正方形铺满,既不重叠,又无缝隙,就称它为完美矩形(perfect rectangle),或者叫做完全长方形.完美矩形非常罕见.一旦遇到,总会立刻吸引人们注意,多看几眼. 图1 在图1中,画着一个完美矩形的例子,它是用10个不同大小的正方形拼成的.其中最小的一个正方形内写着数字3,表明它的边长是3,其他正方形内用字母表示边长. 图中这些用字母表示的正方形边长各是多少呢? 从图1可看出各线段长满足以下关系式:a=g+3, h=g-3, b=a+3-d, c=b-d, f=d-e, h=d+f+3, c=b+e, k=f+h, e+c=f+k. 这样就构成了一个九元一次方程组.由前六个式子可得g=2d.由此容易求出a =25,b=17,c=23, d=11,e=6,f=5, g=22,h=19,k=24.矩形的长和宽分别是65和47. 这是一个非常好的例子,因为相对说来,它的矩形边长很小,正方形个数又少,只有10个,叫做10阶完美矩形. 组成完美矩形的正方形个数能不能更少些呢? 图2是一个9阶完美矩形的例子,它的长和宽分别是33和32,组成它的9个正方形,边长从小到大,顺次是1,4,7,8,9,10,14,15,18.

图2 正方形的个数还能不能再减少呢?能不能用8个边长各不相同的正方形拼合成一个矩形? 这是不可能的,数学上已经证明,完美矩形的最低阶数是9. 完美矩形的例子,再次说明了,在简单的生活现象里,隐含着许多数学的道理,等待我们去研究和探索.

矩形、菱形与正方形专题训练(含答案) 班级________姓名________成绩________ 一、选择题(每小题3分,共30分) 1.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°, 则矩形ABCD的面积是( ) A.12 B.24 C.12 3 D.163 第1题图第2题图第3题图第4题图 2.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( ) A.14 B.15 C.16 D.17 3.如图,将矩形ABCD沿对角线BD折叠,使点C与点C′重合.若AB=2,则C′D的长为( ) A.1 B.2 C.3 D.4 4.如图,在△ABC中,AC=BC,点D,E分别是边AB,AC的中点.将△ADE绕点E旋转180°得△CFE, 则四边形ADCF一定是( ) A.矩形 B.菱形 C.正方形 D.梯形 5.由菱形的两条对角线的交点向各边引垂线,以各垂足为顶点的四边形是( ) A.平行四边形 B.矩形 C.菱形 D.正方形 6.如图,?ABCD的周长为16 cm,AC,BD相交于点O,OE⊥AC交AD于点E,则△DCE的周长为( ) A.4 cm B.6 cm C.8 cm D.10 cm 第6题图第9题图第10题图 7.菱形的周长为8 cm,高为1 cm,则菱形两邻角度数比为( ) A.3∶1 B.4∶1 C.5∶1 D.6∶1 8.用两块完全相同的直角三角形拼下列图形:①平行四边形,②矩形,③菱形,④正方形,⑤等 腰三角形,⑥等边三角形,一定能拼成的图形是( ) A.①④⑤ B.②⑤⑥ C.①②③ D.①②⑤ 9.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+ S2的值为( ) A.16 B.17 C.18 D.19 10.如图,F为正方形ABCD的边AD上一点,CE⊥CF交AB的延长线于点E,若正方形ABCD的面积 为64,△CEF的面积为50,则△CBE的面积为( )

第十六讲完美的正方形 有一组邻边相等并且有一个角是直角的平行四边形是正方形,换句话说:正方形是各边都相等的矩形,正方形是各角都相等的菱形,正方形既是矩形又是菱形,它具有矩形和菱形的一切性质. 矩形、菱形,正方形都是特殊的四边形,它们的概念交错,关系复杂,性质有许多相似之处,一些判定和性质定理又是可逆的,所以在学习中注重概念的理解,着眼于概念间的区别与联系. 连正方形的对角线,能得到特殊三角形、全等三角形,由于正方形常常与直角三角形联系在一起,所以在解有关正方形问题时要用到直角三角形性质,具有代数风格,体现数形结合思想.熟悉以下基本图形,基本结论: 例题求解 【例1】如图,若四边形ABCD是正方形,△CDE是等边三角形,则∠EAB的度数为.(2001年北京市竞赛题) 思路点拨图中还有等腰三角形,利用等腰三角形性质计算. 注可以证明,在所有用长相等的四边形中,正方形的面积最大. 我们熟悉的“七巧板”,那是把一块正方形板切分成三角形、正方形、平行四边形的7块,用它可以拼出许多巧妙的图形,“七巧板”是我国古代人民智慧的结晶. 【例2】如图,在正方形ABCD中,O是对角线AC、BD的交点,过O作OC⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的长为( ) A.7 B.5 C.4 D.3. (2001年江苏省泰州市中考题) 思路点拨AE、CF、EF不在同一个三角形中,运用全等三角形寻找相等的线段,使分散的条件集中到同一个三角形中. 【例3】如图,正方形ABCD中,E、F是AB、BC边上两点,且EF=AC+FC,DG⊥EF于G,求证:DC=DA.(重庆市竞赛题)

华师大版八年级下册第19章矩形菱形正方形单元复习题 一、选择题(4分×12=48分) 1、下列图形中,是中心对称但不一定是轴对称图形的是(D) A.等边三角形B.矩形C.菱形D.平行四边形 2、下列命题正确的是(D) A.一组对边相等,另一组对边平行的四边形一定是平行四边形 B.对角线相等的四边形一定是矩形 C.两条对角线互相垂直的四边形一定是正方形 D.两条对角线相等且互相垂直平分的四边形一定是正方形 3、矩形,菱形,正方形都具有的性质是(C) A.每一条对角线平分一组对角B.对角线相等 C.对角线互相平分 D.对角线互相垂直 4、如图,已知四边形ABCD是平行四边形,下列结论中不正确的是(D) A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形 C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形 5、如图,菱形ABCD中,∠B=60°,AB=2cm,E、F分别是BC、CD的中点,连接AE、EF、AF,则△AEF的周长为(B) A.2cm B.3cm C.4cm D.3cm 6、菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为(C) A.3:1 B.4:1 C.5:1 D.6:1

7、如图,已知矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8, AB=4,则DE的长为(C) A.3 B.4 C.5 D.6 8、平行四边形ABCD中,AB≠BC,其四个内角的角平分线所围成的四边形一定是(D)A.有一个角为30°的平行四边形 B.有一个角为45°的平行四边形 C.有一个角为60°的平行四边形 D.矩形 9、(2015辽宁省朝阳)如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE 沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时, 则点B′到BC的距离为(A) A.1或2 B. 2或3C. 3或4D. 4或5 10、如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为(C) A.28°B.52°C.62°D.72°

(第10 F A B C D H E ① ② ③ ④ ⑤ 矩形、菱形与正方形 练习题 一、选择题 1.如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2 ,四边形ABCD 面积是11cm 2 ,则①②③④四个平行四边形周长的总和为( ) (A )48cm (B )36cm (C )24cm (D )18cm 2.图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),……,则第n 个图形的周长是 (A )2n (B )4n (C )12n +(D )22n + 3.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为 A.17 B.17 C.18 D.19 4.如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC =3,则折痕CE 的长为 A.2 3 B. 33 2 C. 3 D.6 5.(2011浙江衢州,1,3新颜,如图为一农村民居侧面截图,屋坡AF AG 、分别架在墙体的点B 、点C 处,且AB AC =,侧面四边形BDEC 为矩形,若测得 100FAG ∠=?,则FBD ∠=( ) A. 35° B. 40° C. 55° D. 70° 6.如图,在矩形ABCD 中,对角线AC ,BD 交于点O .已知∠AOB = 60°,AC =16,则图中长度为8的线段有( ) A .2条 B .4条 C .5 条 D .6条 图1 图2 图3 ……

已知:在矩形ABCD 中,AE ⊥BD 于E , ∠DAE=3∠BAE ,求:∠EAC 的度数。 已知:直角梯形ABCD 中,BC=CD=a 且∠BCD=60?,E 、F 分别为梯形的腰AB 、 DC 的中点,求:EF 的长。 已知:在等腰梯形ABCD 中,AB ∥DC , AD=BC ,E 、F 分别为AD 、BC 的中点,BD 平分∠ABC 交EF 于G ,EG=18,GF=10 求:等腰梯形ABCD 的周长。 如图所示,矩形ABCD 中,M 是BC 的中点,且MA ⊥MD ,若 _ E _ F _ A _ B _ D _ C _ G _ A _ B _ D _ C _ E _ F

矩形的周长为36cm ,求此矩形的面积。 已知:梯形ABCD 中,AB ∥CD ,AC ⊥CB , AC 平分∠A ,又∠B=60?,梯形的周长是 20cm, 求:AB 的长。 已知:如图,平行四边形ABCD 的四个内角的平分线分别相交于点E ,F ,G ,H ,求证:四边形EFGH 是矩形。 _ A _ B _ D _ C

如图,在矩形ABCD 中,E 是AD 上一点,F 是AB 上一点,EF CE =,且 ,2EF CE DE cm ⊥=,矩形ABCD 的周长为16cm ,求AE 与CF 的长. 已知,在矩形ABCD 中,AE ⊥BD ,E 是垂足, ∠DAE ∶∠EAB=2∶1,求∠CAE 的度数。 如图所示,已知菱形ABCD 中,E 、F 分别在BC 和CD 上,且∠B=∠EAF=60°,∠BAE=15°,求∠CEF 的度数。 如图,在△ABC 中,AB=BC ,D 、E 、F 分别是BC 、AC 、AB 上的中点,(1)求证四边形BDEF 是菱形。(2)若AB=12cm ,求菱形BDEF 的周长? A B D C E O

矩形、菱形、正方形(解答题) 1.如图,在平行四边形ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF; (2)当四边形AECF为菱形时,求出该菱形的面积. 2.如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD 的延长线于点F,求证:DF=BE. 3.如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由. 4.已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF. 5.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的

垂线交BA的延长线于点E. (1)证明:四边形ACDE是平行四边形; (2)若AC=8,BD=6,求△ADE的周长. 6.如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=6,∠BAD=60°,且AB>6. (1)求∠EPF的大小; (2)若AP=10,求AE+AF的值; (3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值. 7.如图,在△ABC中,∠ACB=90°,D,E分别为AC,AB的中点,BF∥CE交DE 的延长线于点F. (1)求证:四边形ECBF是平行四边形; (2)当∠A=30°时,求证:四边形ECBF是菱形. 8.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,AC与BD相交于点O,连接CD (1)求∠AOD的度数; (2)求证:四边形ABCD是菱形.

完美正方形 完美正方形 「完美正方形」是指在一正方形内切割出大小都相异的小正方形.而我们的研究,则放宽条件,允许同样大小的正方形不超过三个. 我们先估算出正方形中可切割的最大正方形边长范围,再以方格纸手画的方式找出边长1至25的解,在过程中,我们发现可用放大的方式解决边长为合数的正方形. 因此我们将重点放在边长为质数的正方形,我们将正方形分割成两个连续整数边长的正方形,则剩下少一单位的缺角正方形区域.我们探讨缺角正方形区域的解,再讨论分析回原来的正方形.最后解出了边长1至100中全部有解的正方形. 对於更大边长的正方形,我们的方法也可行.所以我们以流程图来表示解决问题的过程,并用电脑试算边长1至1000的完美正方形. 研究动机 在暑假专书研读:名人趣题妙解书中,我们看到了塔尔塔利亚的巧分格纸,觉得很感兴趣,所以我们将完美正方形与巧分格纸两个融合,当作我们科展的题目. 研究目的 「完美正方形」是指,在一正方形内切割成不同大小,边长为整数的正方形,且这些切割出的正方形,均不能全等,这个主题在文献上有不错的研究成果.而我们的研究,则放宽条件,允许每一种同样大小的正方形不超过三个,希望可以探讨边长1~100中哪些正方形有解,哪些正方形无解如果有解如何切割 文献探讨 1926年,苏联数学家鲁金对"完美正方形"的存在提出了猜想.到1938年,他们终于找到了一个由63个大小不同的正方形组成的大正方形,人们称它为63阶的完美正方形.次年有人给出了一个39阶的完美正方形.1964年,塔特的学生,滑铁卢大学的威尔逊博士找到了一个25阶的完美正方形.1948年,威尔科克斯提出了一个24阶的完美正方形,在往后的30年中,人们一度以为24就是完美正方形的最小阶.1978年,荷兰特温特技术大学的杜依维斯蒂尤,用大型电子电脑算出了一个21阶的完美正方形.这是完美正方形的最终目标了.因为鲁金曾证明,小於21阶的完美正方形是不存在的.

矩形的习题精选 性质 1、下列性中,矩形具有而质平行四边形不一定具有的是() A、对边相等 B、对角相等 C、对角线相等 D、对边 平行 2. 在矩形ABCD 中,/ AOD=130 °,则/ ACB=_ _ 3?已知矩形的一条对角线长是8cm,两条对角线的一个交角为60 °,则矩 形的周长为_______ 4?矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长 的和是86cm,对角线是13cm,那么矩形的周长是 _______________ 5?如图所示,矩形ABCD中,AE丄BD于E,/ BAE=30 BE=1cm,那么DE的长为_______ 6、直角三角形斜边上的高与中线分别是5cm和6cm, 则它的面积为7、已知,在Rt△ ABC中,BD为斜边AC上的中线,若/ A=35 °,那么 / DBC= &如图,矩形ABCD中,AC与BD交于O点,BE丄AC于E, CF丄BD 于F. 求证:BE=CF.

9?如图,△ ABC 中,/ ACB=90度,点D 、E 分别为AC 、AB 的中点,点 F 在BC 延长线上,且/ CDF= / A ,求证:四边形DECF 是平行四边形; F c B 10. 已知:如图,在△ ABC 中,/ BAC 工90° / ABC=2 / C , AD 丄 AC ,交 11、在厶 ABC 中,/ C=90O , AC=BC , AD=BD , PE 丄 AC 于点 E , PF 、判定 1、下列检查一个门框是否为矩形的方法中正确的是( C ) C .用曲尺测量门框的三个角, 是否都是直角 是否互相垂直 2、平行四边形 ABCD , E 是CD 的中点,△ ABE 是等边三角形,求证: 四边形ABCD 是矩形 BC 或CB 的延长线 D 。试说明:DC=2AB. 丄BC 于点F 。求证:DE=DF A .测量两条对角线,是否相等 是否互相平分 B .测量两条对角线, D .用曲尺测量对角线, A

完美的正方形,完善的变式题 襄阳市三十三中刘敏 关键词:正方形,性质与综合运用,变式题型,构造全等三角形,图形的旋转变换,相似的性质。 摘要:有史以来,正方形是以具有的最多的性质和最美观的形象而被称为完美的正方形,结合正方形的性质的一些变式题型也在习题的逐渐演变中完善结构,通过正方形的性质与三角形相关性质的结合构造全等及相似三角形解决问题成为老师们研究的主要课题,本文就其中一种题型变式说明正方形的特殊性质的应用的广泛性。 正方形在日常生活中应用非常广泛,军队的出操用方队,门上的福字用正方形红纸写,家庭装修用正方形的地板砖。这些应用都反映出正方形美丽与特殊性。 正方形四条边都相等,四个角都是直角,对角线互相垂直平分且相等,每一条对角线平分一组对角。这么多的性质综合在一起,构建出了完美的图形。 要研究这个完美的图形,就要学会运用它的性质解决相关的问题,而在学习的过程中,相关的题型变式就相应地突现了其性质的作用。 一.温故而知新,从三角形中找关系。 在学习三角形的全等时有这样一个题目: 如图:△ABC中,A D⊥BC于D,AD=BD, DE=DC。判断线段BE与AC的关系并证明。 证明:证明方法是利用“边角边”定理证 明△BDE≌△ADC,然后就可以用全等三角形的 对应边及对应角相等的性质证明出线段BE与 AC的关系为相等且垂直。 此题反映了等腰直角三角形的性质应用 和线段的两种关系:数量和位置,这是一般在 猜想证明题中的常见的两种关系。 所以此题图形连接线段EC,把条件改为等 腰直角形ADB和EDC中其它条件不变,猜想关 系,结论是不变的!图形变换中的结论不变性的辩证思维就体现出来了。 那么这和正方形有什么联系呢? 如图:正方形MBDA和EDCF中,连接BE和AC,试判断线段BE与AC的 关系并证明。 由图可以得到条件A D⊥BC于D,AD=BD, DE=DC。从而得到和上题一样的证明方式。于 是这个图形就把三角形的知识与正方形联系 起来了。 二.图形变化,结论不变,从变式题型 中找规律。 仍然用上面的题目,现在让这个图形变 化一下,如图:正方形ABCG和DEFG中,连

第二十二讲完美的正方形 有一组邻边相等并且有一个角是直角的平行四边形是正方形,换句话说:正方形是各边都相等的矩形,正方形是各角都相等的菱形,正方形既是矩形又是菱形,它具有矩形和菱形的一切性质. 矩形、菱形,正方形都是特殊的四边形,它们的概念交错,关系复杂,性质有许多相似之处,一些判定和性质定理又是可逆的,所以在学习中注重概念的理解,着眼于概念间的区别与联系. 连正方形的对角线,能得到特殊三角形、全等三角形,由于正方形常常与直角三角形联系在一起,所以在解有关正方形问题时要用到直角三角形性质,具有代数风格,体现数形结合思想.熟悉以下基本图形,基本结论: 例题精讲 【例1】如图,若四边形ABCD是正方形,△CDE是等边三角形,则∠EAB的度数为. 思路点拨图中还有等腰三角形,利用等腰三角形性质计算. 注可以证明,在所有用长相等的四边形中,正方形的面积最大. 我们熟悉的“七巧板”,那是把一块正方形板切分成三角形、正方形、平行四边形的7块,用它可以拼出许多巧妙的图形,“七巧板”是我国古代人民智慧的结晶. 【例2】如图,在正方形ABCD中,O是对角线AC、BD的交点,过O作OC⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的长为( ) A.7 B.5 C.4 D.3 思路点拨AE、CF、EF不在同一个三角形中,运用全等三角形寻找相等的线段,使分散的条件集中到同一个三角形中. 【例3】如图,正方形ABCD中,E、F是AB、BC边上两点,且EF=AC+FC,DG⊥EF 于G,求证:DC=DA. 思路点拨构造AE+FC的线段是解本例的关键. 【例4】已知正方形ABCD中,M是AB的中点,E是AB延长线上一点,MN⊥DM 且交∠CBZ的平分线于N(如图甲).

矩形的习题精选 一、性质 1、下列性质中,矩形具有而平行四边形不一定具有的是( C ) A 、对边相等 B 、对角相等 C 、对角线相等 D 、对边平行 2.在矩形ABCD 中,∠AOD=130°,则∠ACB=_25度_ _ 3.已知矩形的一条对角线长是8cm ,两条对角线的一个交角为60°,则矩形的周长为__14cm____ 4.矩形ABCD 被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86cm , 对角线是13cm ,那么矩形的周长是_____60cm_______ 5.如图所示,矩形ABCD 中,AE ⊥BD 于E ,∠BAE=30°,BE=1cm ,那么DE 的长为_3cm____ 6、直角三角形斜边上的高与中线分别是5cm 和6cm ,则它的面积为15cm___ 7、已知,在Rt △ABC 中,BD 为斜边AC 上的中线,若∠A=35°,那么∠DBC= 35度 。 8、如图,矩形ABCD 中,AC 与BD 交于O 点,BE ⊥AC 于E ,CF ⊥BD 于F. 求证:BE=CF.

9.如图,△ABC中,∠ACB=90度,点D、E分别为AC、AB的中点,点F在BC延长线上,且∠CDF=∠A,求证:四边形DECF 是平行四边形; 10.已知:如图,在△ABC中,∠BAC≠90°∠ABC=2∠C,AD⊥AC,交BC或CB的延长线D。试说明:DC=2AB. 11、在△ABC中,∠C=90O,AC=BC,AD=BD,PE⊥AC于点E,PF ⊥BC于点F。求证:DE=DF 二、判定 1、下列检查一个门框是否为矩形的方法中正确的是(C ) A.测量两条对角线,是否相等B.测量两条对角线,是否互相平分 C.用曲尺测量门框的三个角,是否都是直角D.用曲尺测量对角线,是否互相垂直 2、平行四边形ABCD,E是CD的中点,△ABE是等边三角形,求证:

在学习中,我们会遇到这样的问题,将一个大的正方形分割成若干个小的正方形.对于这样的问题,许多同学不知所措,现在我们来讨论如何将一个大正方形分割小正方形.首先,我们容易知道,一个正方形不能分割成2个、3个或5个小正方形.下面,假设一个正方形可以分割成n个小正方形(n≠2,3,5),究竟如何分法.当n=4时,情形比较简单,分割方法如图1,即将正方形的每边2等分即可.进一步推广便知,当正方形n=k2(k≥2)时分法如图1~3,即将正方形每边k等分,一共可得n=k2个小正方形,它们的大小是一样的.现将图1中的1个小正方形分割成4个,即可增加3个,一共可得7个,依此方法继续,又可得10个、13个……(如图4~6)可见,一个大正方形总可以分割成n=3k+1(k≥2)个小正方形;当n=3k+2(k≥2)时,根据上面的思路,最简单的情形是8个小正方形,就是说,只要能分成8个小正方形,那么8+3个,8+3×2个……都可以得到.怎样才能分成8个呢?刚才的思路是由4个小正方形进一步分割成7个、10个、13个或者更多的.现在我们倒回来想,将较多个数的正方形进行适当拼合,减少数量,...... 完美的正方形分割 正方形四四方方,简单匀称,是完美的几何图形之一。它有许多引人入胜的问题,例如,正方形或某些长方形可以分割成大小相同的小正方形,那么它能否分割成大小不同的若干个小正方形呢?这就是有名的“正方分割问题”。 对这一问题的研究,不少人倾注了大量的心血,取得了令人瞩目的成果。 二十世纪三十年代,一个长方形的完美的正方分割(如图1,图中数字表示所在正方形的边长,下同),已成为熟知的事实。到了本世纪四十年代,人们又发现了另一个同样有名的长方形的正方分割,如图2。它们都是由九个规格不同的正方形所组成,为方便起见,我们称它们为九阶的。 图1 图2 现已证明:低于九阶的长方形的正方分割不存在,并且,在九阶的长方形的正方分割中,只有这两种形式。因而图1、图2是两个最完美的长方形的正方分割。 数学家们在当时是怎样想出上面这些分割的方法呢?他们也与我们遇到一个新问题时一样,总是通过不断地尝试,细致地分析,反复地构思,孜孜以求,锲而不舍,才达到成功的。比如,在初中的基础上,拟出一个图形,如图3,设它是一个长方形的正方分割。为便于分析,我们引进三个未知数,设其中的三个小正方形的边长分别为x、y、z。由此顺次推出其他正方形的边长为x+y,2x+y,y-z,y-2z,y-3z,2y-5z。

菱形的习题精选 一、性质 1.小明和小亮在做一道习题,若四边形ABCD是平行四边形,请补充条件

10、已知如图,菱形ABCD中,E是AB的中点,且DE⊥AB,AE=2。 求(1)∠ABC的度数;(2)对角线AC、BD的长;(3) 菱形ABCD的面积。 11、已知:如图,AD平分∠BAC,DE∥AC交AB于E,DF∥AB交AC于F. 求证:四边形AEDF是菱形; 12、如图,边长为a的菱形ABCD中,∠DAB=60度,E是异于A、D两点的动点,F是CD上的动点,满足AE+CF=a。证明:不论E、F怎样移动,△BEF总是正三角形。 二、判定 1、□ABCD的对角线AC与BD相交于点O, (1)若AB=AD,则□ABCD是形;(2)若AC=BD,则□ABCD 是形; (3)若∠ABC是直角,则□ABCD是形;(4)若∠BAO=∠DAO,则□ABCD是形。 2、下列条件中,不能判定四边形ABCD为菱形的是(). A、AC⊥BD ,AC与BD互相平分B、AB=BC=CD=DA C、AB=BC,AD=CD,且AC⊥BD D、AB=CD,AD=BC,AC⊥BD

矩形菱形正方形练习题及答案

矩形的习题精选 性质 1.下列性中,矩形具有而质平行四边形不一定具有的是() A、对边相等 B、对角相等 C、对角线相等 D、对 边平行 2.在矩形ABCD 中,/ AOD=130 °,则/ ACB=_ _ 3.已知矩形的一条对角线长是8cm,两条对角线的一个交角为60°,贝U矩 形的周长为_______ 4.矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长 的和是86cm,对角线是13cm,那么矩形的周长是 ___________________ 5.如图所示,矩形ABCD中,AE丄BD于E,/ BAE=30 BE=1cm,那么DE的长为 _________ 6、直角三角形斜边上的高与中线分别是5cm和6cm,则 它的面积为7、已知,在Rt△ ABC中,BD为斜边AC上的中线,若/ A=35 °,那么 / DBC= &如图,矩形ABCD中,AC与BD交于0点,BE丄AC于E, CF丄BD 于F. 求证:BE=CF.

9.如图,△ ABC 中,/ ACB=90度,点D 、E 分别为AC 、AB 的中点,点 F 在BC 延长线上,且/ CDF= / A ,求证:四边形DECF 八 是平行四边形; F c B 10.已知:如图,在△ ABC 中,/ BAC 工 90° / ABC=2 / C , AD 丄 AC , 11、在厶 ABC 中,/ C=90O , AC=BC , AD=BD , PE 丄 AC 于点 E , PF 丄BC 于点F 。求证:DE=DF N 二、判定 1、下列检查一个门框是否为矩形的方法中正确的是( C ) 是否互相平分 C .用曲尺测量门框的三个角, 是否都是直角 D .用曲尺测量对角线, 是否互相垂直 2、平行四边形 ABCD , E 是CD 的中点,△ ABE 是等边三角形,求证: 四边形交BC 或CB 的延长线 D 。试说明:DC=2AB. A .测量两条对角线,是否相等 B .测量两条对角线,

数学阅读材料16 1 若一个矩形可以分割为大小不一的正方形,则称之为完美矩形(perfect rectangle );如果一个正方形可以分割成若干个大小不一的小正方形,则称这个正方形为完美正方形(perfect square ).完美正方形当然是完美矩形. 首先考虑一下,为何定义里面要强调“大小不一”?若允许相同,任何正方形都可以分割为若干小正方形,问题就很平凡. 例1.十个不同大小的正方形拼成给出了一个完美矩形,最小的一个正方形边长为3,你能求出矩形的边长吗? 分析:我们用a 、b 、c 、d 、e 、f 、g 、h 、k 分别表示每个正方形的边长,不难得到以下关系式:a =g +3,h =g -3,b =a +3-d ,e =b -d ,f =d -e ,h =d +f +3,c =b +e ,k =f +h ,e +c =f +k .解出:a =25, b =17, c =23,d =11, e =6, f =5, g =22, h =19, k =24. 所以,矩形的长和宽分别是65和47.它可以分割为10个正方形,因此叫做10阶完美矩形.当然,未知数的个数也可以不必这么多,你可以思考一下:设出哪几个正方形的边长就够了? 下面是一个9阶完美矩形,其长和宽分别是33和32,组成它的9个正方形边长从小到大依次是:1,4,7,8,9,10,14,15,18.据说这个完美矩形是剑桥大学的学生(布鲁克斯等4人,后来都是著名的组合学家)在1938年发现的.你可以尝试用方程组自己求出它们的边长,培养一点小小的成就感 . 完美矩形的最小阶数是9,且仅有两种构图,见上图。 我们再欣赏几个10阶完美矩形: 完美矩形与完美正方形

2019 年中考数学专题复习 第二十一讲矩形菱形正方形 【基础知识回顾】 一、矩形: 1、定义:有一个角是角的平行四边形叫做矩形 2、矩形的性质: ⑴矩形的四个角都 ⑵矩形的对角线 3、矩形的判定: ⑴用定义判定 ⑵有三个角是直角的是矩形 ⑶对角线相等的是矩形 【名师提醒:1、矩形是对称图形,对称中心是,矩形又是对称图形,对称轴有条2、矩形被它的对角线分成四个全等的 三角形和两对全等的三角形3、矩形中常见题目是对角线相交成600 或1200 角时,利用直角三角形、等边三角形等图形的性质解决问题】 二、菱形: 1、定义:有一组邻边的平行四边形叫做菱形 2、菱形的性质:⑴菱形的四条边都 ⑵菱形的对角线且每条对角线 3、菱形的判定:⑴用定义判定 ⑵对角线互相垂直的是菱形 ⑶四条边都相等的是菱形 【名师提醒:1、菱形既是对称图形,也是对称图形,它有条对称轴,分别是2、菱形被对角线分成四个全等的三角形和两对全等的三角形3、菱形的面积可以用平行四边形面积公式计算,也可以用两对角线积的来计算4、菱形常见题目是内角为1200 或600 时,利用等边三角形或直角三角形的相关知识解决的题目】 三、正方形:

1、定义:有一组邻边相等的是正方形,或有一个角是直角的 是正方形 2、性质:⑴正方形四个角都都是角, ⑵正方形四边条都 ⑶正方形两对角线、且每条对角线平分 一组内角 3、判定:⑴先证是矩形,再证 ⑵先证是菱形,再证 【名师提醒:1、菱形、正方形具有平行四边形的所有性质,正方形具有以上特殊四边形的所有性质。这四者之间的关系可表示为: 2、正方形也既是对称图形,又是对称图形,有条对称轴 3、几种特殊四边形的性质和判定都是从、、三个方面来看的,要注意它们的区别和联系】 【重点考点例析】 考点一:矩形的性质 例1 (2018?杭州)如图,已知点P 是矩形ABCD 内一点(不含边界),设∠PAD=θ1,∠PBA=θ2,∠PCB=θ3,∠PDC=θ4,若∠APB=80°,∠CPD=50°,则()A.(θ1+θ4)-(θ2+θ3)=30° B.(θ2+θ4)-(θ1+θ3)=40° C.(θ1+θ2)-(θ3+θ4)=70° D.(θ1+θ2)+(θ3+θ4)=180°

初三数学 菱形矩形正方形证明题 1.已知:如图,在ABCD Y 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点 E 与点C 重合,得GFC △. (1)求证:BE DG =; (2)若60B ∠=°,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论. 2.如图,在正方形ABCD 中,CE DF ⊥.若10cm CE =,求DF 的长. 3.如图,在△ABC 中,AB =AC ,D 是BC 的中点,连结AD ,在AD 的延长线上取一点E ,连结BE ,CE . (1)求证:△ABE ≌△ACE (2)当AE 与AD 满足什么数量关系时,四边形ABEC 是菱形?并说明理由. F C B E A A D G C B F E

4.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E. (1)试找出一个与△AED全等的三角形,并加以证明. (2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH 的值,并说明理由. 5.如图,ABCD是正方形.G是BC 上的一点,DE⊥AG于E,BF⊥AG于F.(1)求证:ABF DAE △≌△; (2)求证:DE EF FB =+. 6.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE 的延长线于点F,且AF=BD,连结BF。 (1)求证:BD=CD; (2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论。 A D E F C B

7.如图 ,ABCD 是菱形,对角线AC 与BD 相交于O ,306ACD BD ∠==°,. (1)求证:△ABD 是正三角形; (2)求 AC 的长(结果可保留根号). O D A

平行四边形、矩形、菱形、正方形 1.已知:如图,在?ABCD中,点E、F是对角线AC上的两点,且AE=CF.求证:BF∥DE. 2.如图,平行四边形ABCD的对角线AC、BD交于点O,EF过点O且与BC、AD分别交于点E、F.试猜想线段AE、CF的关系,并说明理由. 3.如图,四边形ABCD是平行四边形,E、F分别是BC、AD上的点,∠1=∠2.求证:AF=CE.4.已知:如图,在平行四边形ABCD中,点M在边AD上,且AM=DM.CM、BA的延长线相交于点E.求证: (1)AE=AB; (2)如果BM平分∠ABC,求证:BM⊥CE. 5.如图,在?ABCD中,点E、F在BD上,且BE=AB,DF=CD. 求证:四边形AECF是平行四边形. 6.在?ABCD中,E,F分别是AB,DC上的点,且AE=CF,连接DE,BF, AF.(1)求证:四边形DEBF是平行四边形; (2)若AF平分∠DAB,AE=3,DE=4,BE=5,求AF 的长.

7.如图,在四边形ABCD中,AD∥BC,AC与BD交于点E,点E是BD的中点,延长CD到点F,使DF=CD,连接AF, (1)求证:AE=CE; (2)求证:四边形ABDF是平行四边形; (3)若AB=2,AF=4,∠F=30°, 则四边形ABCF 的面积为. 8.如图,在?ABCD中,E,F分别是AC上两点,BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF 为平行四边形.9.已知:如图,点E、F在线段BD上,AB=CD,∠B=∠D,BF=DE. 求证:(1)AE=CF;(2)AF∥CE. 10.如图所示,?ABCD中,E,F分别是AB、CD上的点,AE=CF,M、N分别是DE、BF的中点.(1)求证:四边形ENFM是平行四边形. (2)若∠ABC=2∠A,求∠A的度数.

相关文档
最新文档