东风EQ1090E型汽车前轮制动器的设计

东风EQ1090E型汽车前轮制动器的设计
东风EQ1090E型汽车前轮制动器的设计

河南科技大学

本科毕业设计(论文)

题目:东风EQ1090E型汽车前轮

制动器的设计

姓名:

专业:

学号:

指导教师:

河南科技大学

二0一三年五月

目录

摘要................................................................... I Abstract ................................................................ I I 绪论 (1)

第1章制动器的结构简介及方案的确定 (3)

1.1盘式制动器.............................................................................................. 错误!未定义书签。

1.2鼓式制动器....................................... 错误!未定义书签。

1.2.1领从蹄式制动器 (6)

1.2.2单向双领蹄式制动器 (9)

1.2.3双向双领蹄式制动器 (10)

1.2.4双从蹄式制动器 (11)

1.2.5单向增力式制动器 (11)

1.2.6双向增力式制动器 (12)

1.3方案的确定 (13)

第2章理想制动力及其分配 (14)

2.1 东风EQ1090E型汽车前轮制动器的设计参数

2.2 制动力与制动力分配系数 (14)

2.3 同步附着系数 (19)

2.4制动器最大制动力矩 (20)

第3章制动器的设计计算 (21)

3.1 鼓式制动器的结构参数 (21)

3.1.1 制动鼓内径D (21)

3.1.2 摩擦衬片宽度b和包角β (22)

β (23)

3.1.3 摩擦衬片起始角

F作用线的距离e (24)

3.1.4 制动器中心到张开力

3.1.5 制动蹄支承点位置坐标a和c (24)

3.1.6 摩擦片摩擦系数f (24)

3.2 固定凸轮式的计算 (24)

3.2.1 凸轮张开机构的参数确定和特性计算

3.2.2 固定式凸轮制动器的制动因数计算

3.3 制动蹄片上的制动力矩 (31)

3.4 行车制动效能计算 (34)

3.5 驻车制动计算 (34)

3.6 摩擦衬片的磨损特性计算 (36)

第4章制动器的结构及主要零部件设计 (38)

4.1制动蹄 (38)

4.2制动鼓 (38)

4.3摩擦衬片 (39)

4.4摩擦材料 (40)

4.5蹄与鼓之间的间隙自动调整装置 (41)

4.6制动支承装置 (42)

4.7制动轮缸 (42)

4.8张开机构 (42)

4.9制动蹄回位弹簧 (43)

第5章主要零部件的强度计算与校核

5.1凸轮轴的强度校核

5.2凸轮轴上花键的强度校核

第6章结论 (48)

致谢 (49)

参考文献 (50)

摘要

(想要本文装配图和零件图与本人联系qq:994166684保

证原创)

随着汽车保有量的增加,带来的安全问题也越来越值得人们关注,汽车的制动系统就变成了人们主要考查车辆的一项重要指标。据有关资料介绍,在由于车辆本身的问题而造成的交通事故中,制动系统故障引起的事故为总数的45%。可见,制动系统是保证行车安全的极为重要的一个系统。如何提高汽车制动性也成了热点的研究话题。。

该设计选定的是东风EQ1090E型汽车前轮制动器的研究和设计,通过对制动器的分类选择,选定出合适的制动器,然后对各个参数进行计算并且校核,最后对各个零件进行结构设计,最后完成整个制动器的设计与装配。

关键词:制动系统,东风货车,鼓式制动器

Abstract

With the increase in car ownership has brought more security issues, and more worthy of attention, the braking system of the car has become a major test is an important indicator of the vehicle. According to the information in the vehicle itself caused a traffic accident, 45% of the total brake system failure caused by accidents. Visible, the brake system is very important in order to ensure road safety systems. How to improve the automobile brake has become a hot research topic ..

Car front wheel brake of Dongfeng EQ1090E, research and design, classification brake, select the appropriate brake, and then calculate the design of each of the selected parameters and check the last part of the structural design, and finally, in order to complete the design and assembly the entire brake.

Key words: Braking systems ,Dongfeng truck , Drum brake

绪论

目前,随着汽车行业的日益兴旺,对汽车零件的要求也越来越高,制动系执行机构制动器的设计缺陷导致汽车制动系统的忽视进而使汽车交通事故现象越来越严重。因此正确的制动器设计应该被准确深入研究。

车辆的制动系统性能是其重要性能之一,它直接关系到交通的安全。重大交通事故的发生,往往与制动距离过长,紧急制动时车轮抱死发生侧滑、甩尾、失去方向稳定性等情况有关。防抱死制动系统是一种在制动时能自动调节制动管路压力,使车轮不致抱死,以提高汽车行驶稳定性和制动安全性的自动调节系统。防抱死制动系统能够提高车辆安全性,具有明显的社会效益和经济效益。

在国外,计算机仿真技术越来越多地用于汽车的研究开发和设计制造中,虚拟样机技术得到快速发展。对于尚未完成或者处于经济性、安全性等因素的考虑,无法通过试验进行验证的设计研究,往往需要借助系统仿真来实现这一要求。随着计算机软硬件技术的发展,计算机对数据的处理能力有了突飞猛进的提高,这也使得计算机仿真技术的运用成为可能,虚拟样机技术已成为解决工程问题的一种快速、有效的手段。采用仿真方法研究汽车的各项性能时,需对汽车作适当的简化,然后应用简化模型进行计算分析。随着简化程度的不同,必然会使计算结果与实际情况之间存在不同程度的偏差。随着计算机技术的发展,在深入研究制动振动与噪声的过程中有限元方法越来越成为一种必不可少的建模方法。有限元法的基本思想试将连续的求解区域离散为一组有限个、且按一定方式互相联结在一起的单元的组合体。它利用每一个单元内假设的近似函数来分片地表示全求解域上待求的场函数。单元内的近似函数通常由未知场函数或其导数在单元的各个结点的数值和其插值函数来表达。这样,一个问题的有限元分析中,未知场函数及其导数在各个结点上的数值就成为新的未知量(即自由度),从而使一个连续的无限自由度问题变成离散的有限自由度问题。一经求解出这些未知量,就可以通过插值函数计算出各个单元内场函数的近似值,从而得到整个求解域上的近似解。与传统的集中参数法相比,有限元法允许有复杂的几何形状以及边界和加载条件。

另外,国内来讲,一些学者运用有限元模型对鼓式制动器进行了研究,但其中研究制动过程中的温度场问题和接触问题的较多。蒋伟康对于摩擦引起的鼓式制动器制动尖叫提出了鼓式制动器尖叫是振动的特性仅取决于制动鼓和蹄片的观点,建立了一种三维解析模型并用于分析制动鼓的固有模态及其稳定性。他发现当制动鼓与蹄片间的摩擦系数小于临界摩擦系数时,制动鼓不会发生自激振动,制动器也不会发生尖叫。而朱新潮等人则通过建立鼓式制动器高频噪声问题的结构闭环耦合模型,用Hamilton

变分原理推导该问题的结构闭环耦合动力学方程,并针对实车通过改变制动底板的结构参数,利用该模型进行计算分析。王宣峰对鼓式制动器的凸轮式形成较完整的理论。杨柳用 simlink 对整车系统建立数学模型。给出很好的鼓式制动器simlink 数学模型。吴永海将计算机辅助设计引入汽车制动系统的设计中,免除了繁琐的设计计算,对机械设计过程的进一步发展也有很好的提示作用。

随着汽车安全性的日益提高,汽车制动系统也历经了数次变迁和改进。从最初的皮革摩擦制动,到后来的鼓式、盘式制动器,再到机械式ABS制动系统,紧接着伴随电子技术的发展又出现了模拟电子ABS制动系统、数字式电控ABS制动系统,等等。近10年来,西方发达国家又兴起了对汽车线控系统的研究,线控制动系统应运而生,并开展了对电控机械制动系统的研究。简单来说,电控机械制动系统就是把原来液压或者压缩空气驱动的部分改为电动机驱动,借以提高响应速度,增加制动效能, 同时大大简化了结构,降低了装配和维护的难度。

由于人们对制动性能要求的不断提高,传统的液压或者空气制动系统在加入大量电子控制系统(如ABS、TCS、ESP)后,结构和管路布置越来越复杂,加大了液压(空气)回路泄漏的隐患,同时装配和维修的难度也随之提高;因此,结构相对简单、功能集成可靠的电控机械制动系统越来越受到青睐。可以预见,EMB将最终取代1传统的液压(空气)制动器,成为未来汽车制动系统的发展方向。

经过分析国内外发展的状况,我结合自己的实际研究了一下东风EQ1090E型汽车的前轮制动器,希望可以使他的前轮制动器发挥更好的制动效能。其实,东风

EQ9100E(EQ140-1)型汽车是我国自行设计制造的一种结构新颖、性能先进、节省能源的、质量稳定的新型中型载货汽车。我希望通过本次的设计可以使这款汽车的前轮制动器得以改善。其中包括汽车行驶制动的安全性可以有所提高;在保证功能和强度的要求下,尽量减小整备质量;尽量使用通用件,以便降低制造成本;工作可靠,结构简单,装卸方便,便于维修、调整。我认为,制动系是汽车的一个重要组成部分,它直接影响汽车的行驶安全性。随着高速公路的迅速发展和汽车密度的日益增大,交通事故时有发生。因此,保证汽车行驶安全,提高汽车的制动性能,优化汽车制动系的结构是非常重要的。

第1章制动器的结构简介及方案的确定

1.1盘式制动器

由工作面积不大的摩擦块与其金属背板组成制动块,每个制动器中有2-4块,这些制动块及其促动装置都装在横跨制动盘两侧的夹钳形支架中。钳盘式制动器散热能力强,热稳定性好,故大多数轿车和轻型货车广泛采用这种制动器。

①定钳盘式制动器

定钳盘式制动器的制动钳固定安装在车桥上,既不能旋转,也不能沿制动盘轴线方向移动,因而其中必须在制动盘两侧都装设制动块促动装置,以便分别将两侧的制动块压向制动盘。

缺点:1)油缸较多,使制动钳结构复杂;2)油缸分置于制动盘两侧,必须用跨越制动盘的钳内油道或外部油管来连通。这必然使得制动钳的尺寸过大,难以安装在现代化轿车的轮内;3)热负荷大时,油缸和跨越制动盘的油管或油道中的制动液容易受热汽化;4)若要兼用于驻车制动,则必须加装一个机械促动的驻车制动钳。

②浮钳盘式制动器

浮钳盘式制动器的制动钳一般是设计得可以相对于制动盘轴向滑动。其中只在制动盘的内侧设置油缸,而外侧的制动块附装在钳体上。

③全盘式制动器

制动盘的的全部工作面可同时与摩擦片接触。全盘式制动器主要用于重型汽车。

1.2 鼓式制动器

汽车制动器除各种缓速装置外,几乎都是机械摩擦式的,即是利用固定元件与旋转元件工作表面间的摩擦而产生制动力矩使汽车减速或停车的,根据旋转元件的不同分为鼓式和盘式两大类,不过对于重型车来说,由于车速一般不是很高,鼓式刹车蹄的耐用程度也比盘式制动器高,而且盘式制动器比鼓式制动器要贵些,因此许多重型车至今仍使用四轮鼓式的设计。其工作原理如图3.1所示。

1、2—制动蹄 3、5—支承销 4—制动鼓

图 1.1 鼓式制动器工作原理

带有摩擦片的制动蹄1、2通过支承销5、3铰装在制动底版上。制动时,轮缸活

塞(转动凸轮轴)对制动蹄施加张开力P ,使其绕支承销转动,并抵靠在制动鼓4表面上。这是制动蹄1、2分别受到制动鼓作用的法向反力1Y 、2Y ,和切向力1X 、2X ,而制动蹄的切向反力对制动鼓产生一个与其旋转方向相反的制动力矩(1X +2X )R ,(R 为制动鼓工作半径),从而达到使汽车减速的目的。

制动系应满足如下要求:

(1)能适应有关标准和法规的规定。

(2)具有足够的制动效能,包括行车制动效能和驻坡制动效能。

(3)工作可靠。

(4)制动效能的热稳定性好。

(5)制动效能的水稳定性好。

(6)制动时的操纵稳定性好。

(7)制动踏板和手柄的位置和行程符合人机工程学要求。

(8)作用滞后的时间要尽可能地短。

(9)制动时制动系噪声尽可能小,且无异常声响。

(10)与悬架、转向装置不产生运动干涉,在车轮跳动或汽车转向时不会引起自行制

动。

(11)能全天候使用,气温高时液压制动管路不应有气阻现象;气温低时气制动管路

不应出现结冰。

(12)制动系的机件应使用寿命长、制造成本低;对摩擦材料的选择也应考虑到环保要求,应力求减小制动时飞散到大气中的有害于人体的石棉纤维。

鼓式制动器一般可按其制动蹄受力情况进行分类(见图1-1),它们的制动效能、制动鼓的受力平衡状态以及车轮旋转方向对制动效能的影响均不同。

图1-1 制动器的结构形式

鼓式制动器的各种结构形式如图1-2a-f所示。

图1-2 鼓式制动器示意图

(a )领从蹄式(用凸轮张开);(b )领从蹄式(用制动轮缸张开);(c )双领蹄式(非双向,

平衡式);(d )双向双领蹄式;(e )单向增力式;(f )双向增力式

不同形式鼓式制动器的主要区别有:(1)蹄片固定支点的数量和位置不同。(2)

张开装置的形式与数量不同。(3)制动时两蹄片之间有无相互作用。

因蹄片的固定支点和张开力位置不同,使不同形式鼓式制动器的领、从蹄数量有

差别,并使制动效能不一样。

在单位输入压力或力的作用下所输出的力或力矩,称为制动效能。在评比不同形

式制动器的效能时,常用一种称为制动效能因素的无因次指标。制动效能因素的定义为:在制动鼓或制动盘的作用半径R 上所得到的摩擦力(/M R μ)与输入力0F 之比,即

0M K F R

μ= 式中,K 为制动器效能因素;R 为制动器输出的制动力矩。

制动效能的稳定性是指其效能因素K 对摩擦因素 的敏感性。使用中 随温度和水

湿程度变化。要求制动器的效能稳定性好,即是其效能对 的变化敏感性小。

1.2.1领从蹄式制动器

如图1-2(a)、(b)所示,图上方的旋向箭头代表汽车前进时制动鼓的旋转方向(制

动鼓正向旋转),蹄1为领蹄,蹄2为从蹄。汽车倒车时制动鼓的变为反向旋转,随之领蹄与从蹄相互对调。制动鼓正、反向旋转时总具有一个领蹄和一个从蹄的内张型鼓式制动器称为领从蹄式制动器。由图1-2(a)、(b)可见,领蹄所受的摩擦力使蹄压得更紧,即摩擦力矩具有“增势”作用,故又称增势蹄;而从蹄所受的摩擦力使蹄有离开制动鼓的趋势,即摩擦力矩具有“减势”作用,故又称减势蹄。“增势”作用使领蹄所受的法向反力增大,而“减势”作用使从蹄所受的法向反力减小。

对于两蹄的张开力P P P ==21的领从蹄式制动器结构,如图1-2(b)所示,两蹄压

紧制动鼓的法向力相等。但当制动鼓旋转并制动时,领蹄由于摩擦力矩的“增势”作用,使其进一步压紧制动鼓而使其所受的法向反力加大;从蹄由于摩擦力矩的“减势”作用而使其所受的法向反力减小。这样,由于两蹄所受的法向反力不等,不能相互平衡,其差值由车轮轮毂轴承承受。这种制动时两蹄法向反力不能相互平衡的制动器也称为非平衡式制动器。液压或楔块驱动的领从蹄式制动器均为非平衡式结构,也叫做简单非平衡式制动器。非平衡式制动器将对轮毂轴承造成附加径向载荷,而且领蹄摩擦衬片表面的单位压力大于从蹄的,磨损较严重。为使衬片寿命均衡,可将从蹄的摩

擦衬片包角适当地减小。

对于如图1-2 (a)所示具有定心凸轮张开装置的领从蹄式制动器,制动时,凸轮机构保证了两蹄等位移,作用于两蹄上的法向反力和由此产生的制动力矩分别相等,而作用于两蹄的张开力P1、P2则不等,且必然有P1

领从蹄式制动器的两个蹄常有固定的支点。张开装置有凸轮式(见图1-2(a)、图1-3、图1-4)、楔块式(见图1-5、图1-6)、曲柄式(参见图1-12)和具有两个或四个等直径活塞的制动轮缸式的(见图1-2(b)、图1-7、图1-8)。后者可保证作用在两蹄上的张开力相等并用液压驱动,而凸轮式、楔块式和曲柄式等张开装置则用气压驱动。当张开装置中的制动凸轮和制动楔块都是浮动的时,也能保证两蹄张开力相等,这时的凸轮称为平衡凸轮。也有非平衡式的制动凸轮,其中心是固定的,不能浮动,所以不能保证作用在两蹄上的张开力相等。

图1-3 S凸轮制动器

图1-4 楔块式张开装置及其受力简图

图1-5 S凸轮式车轮制动器

1—制动蹄;2—凸轮;3—制动底板;4—调整臂;5—凸轮支座及制动气室;6—滚轮

图1-6 楔块式张开装置的车轮制动器

1—制动蹄;2—制动底板;3—制动气室;4—楔块;5—滚轮

6—柱塞;7—档块;8—棘爪;9—调整螺钉;10—调整套筒

图1-7 制动轮缸具有两个个等直径活塞的车轮制动器

1—活塞;2—活塞支承圈;3—密封圈;4—支承;5—制动底板;6—制动蹄

7—支承销;8—青铜偏心轮;9—制动蹄定位销;10—驻车制动传动装置

图1-8制动轮缸具有四个等直径活塞的车轮制动器

1—制动蹄;2—制动底板;3—制动器间隙调整凸轮;4—偏心支承销领从蹄式制动器的效能及稳定性均处于中等水平,但由于其在汽车前进和倒车时的制动性能不变,结构简单,造价较低,也便于附装驻车制动机构,故仍广泛用作中、重型载货汽车的前、后轮以及轿车的后轮制动器。

1.2.2单向双领蹄式制动器

当汽车前进时,若两制动蹄均为领蹄的制动器,称为双领蹄式制动器。但这种制动器在汽车倒车时,两制动蹄又都变为从蹄,因此,它又称为单向双领蹄式制动器。如图1-9 (c)所示,两制动蹄各用一个单活塞制动轮缸推动,两套制动蹄、制动轮缸等

机件在制动底板上是以制动底板中心作对称布置的,因此两蹄对鼓作用的合力恰好相互平衡,故属于平衡式制动器。

单向双领蹄式制动器根据其调整方法的不同,又有多种结构方案,如图1-9所示。

图1-9 单向双领蹄式制动器的机构方案(液压驱动)(a)一般形式;(b)偏心调整;(c)轮缸上调整;(d)浮动蹄片,轮缸支座端调整;(e)浮动蹄片,轮缸偏心机构调整

双领蹄式制动器有高的正向制动效能,但倒车时则变为双从蹄式,使制动效能大降。中级轿车的前制动器常用这种型式,这是由于这类汽车前进制动时,前轴的动轴荷及附着力大于后轴,而倒车时则相反,采用这种结构作为前轮制动器并与领从蹄式后轮制动器相匹配,则可较容易地获得所希望的前、后轮制动力分配并使前、后轮制动器的许多零件有相同的尺寸。它不用于后轮还由于有两个互相成中心对称的制动轮缸,难于附加驻车制动驱动机构。

1.2.3双向双领蹄式制动器

当制动鼓正向和反向旋转时两制动蹄均为领蹄的制动器,称为双向双领蹄式制动器。如图3-2(d)及图3-11、图3-12所示。

图1-10 双向双领蹄式制动器的结构方案(液压驱动)

(a)一般形式;(b)偏心机构调整;(c)轮缸上调整

其两蹄的两端均为浮式支承,不是支承在支承销上,而是支承在两个活塞制动轮缸的支座上(图1-2(d)、图1-10)或其他张开装置的支座上(图1-11、图1-12)。

图1-11 曲柄机构制动器(气压驱动)图1-12 双楔制动器(气压驱动)

当制动时,油压使两个制动轮缸的两侧活塞(图1-10)或其他张开装置的两侧(图

1-11、图1-12)均向外移动,使两制动蹄均压紧在制动鼓的内圆柱面上。制动鼓靠摩擦力带动两制动蹄转过一小角度,使两制动蹄的转动方向均与制动鼓的旋转方向一致;当制动鼓反向旋转时,其过程类同但方向相反。因此,制动鼓在正向、反向旋转时两制动蹄均为领蹄,故称为双向双领蹄式制动器。它也属于平衡式制动器。由于这种制动器在汽车前进和倒退时的性能不变,故广泛用于中、轻型载货汽车和部分轿车的前、后轮。但用作后轮制动器时,需另设中央制动器。

1.2.4双从蹄式制动器

双从蹄式制动器的两蹄片各有一个固定支点,而且两固定支点位于两蹄片的不同端,并用各有一个活塞的两轮缸张开蹄片,其结构形式与单向双领蹄式相反。

双从蹄式制动器的制动效能稳定性最好,但因制动效能最低,所以很少采用。

1.2.5单向增力式制动器

如图1-2(e)所示,两蹄下端以顶杆相连接,第二制动蹄支承在其上端制动底板上的支承销上。当汽车前进时,第一制动蹄被单活塞的制动轮缸推压到制动鼓的内圆柱面上。制动鼓靠摩擦力带动第一制动蹄转过一小角度,进而经顶杆推动第二制动蹄也压向制动鼓的工作表面并支承在其上端的支承销上。显然,第一制动蹄为一增势的领蹄,而第二制动蹄不仅是一个增势领蹄,而且经顶杆传给它的推力Q要比制动轮缸给第一制动蹄的推力P大很多,使第二制动蹄的制动力矩比第一制动蹄的制动力矩大2~3倍之多。由于制动时两蹄的法向反力不能互相平衡,因此属于一种非平衡式制动器。

虽然这种制动器在汽车前进制动时,其制动效能很高,且高于前述各种制动器,但在倒车制动时,其制动效能却是最低的。因此,仅用于少数轻、中型货车和轿车上

作前轮制动器。

1.2.6双向增力式制动器

如图1-2(f)所示,将单向增力式制动器的单活塞制动轮缸换以双活塞式制动轮缸,其上端的支承销也作为两蹄可共用的,则成为双向增力式制动器。对双向增力式制动器来说,不论汽车前进制动或倒退制动,该制动器均为增力式制动器。只是当制动鼓正向旋转时,前制动蹄为第一制动蹄,后制动蹄为第二制动蹄;而反向旋转时,第一制动蹄与第二制动蹄正好对调。第一制动蹄是增势领蹄,第二制动蹄不仅是增势领蹄,而且经顶杆传给它的推力Q要比制动轮缸给第一蹄或第二蹄的推力大很多。但制动时作用于第二蹄上端的制动轮缸推力起着减小第二蹄与支承销间压紧力的作用。双向增力式制动器也是属于非平衡式制动器。图3-14给出了双向增力式制动器(浮动支承)的几种结构方案,图1-14给出了双向增力式制动器(固定支点)另外几种结构方案。

双向增力式制动器在高级轿车上用得较多,而且往往将其作为行车制动与驻车制动共用的制动器,但行车制动是由液压通过制动轮缸产生制动蹄的张开力进行制动,而驻车制动则是用制动操纵手柄通过纲索拉绳及杠杆等操纵。另外,它也广泛用于汽车中央制动器,因为驻车制动要求制动器正、反向的制动效能都很高,而且驻车制动若不用于应急制动时不会产生高温,因而热衰退问题并不突出。

图3-13 双向增力式制动器(浮动支承)的结构方案

图3-14双向增力式制动器(固定支点)的结构方案

(a)一般形式;(b)浮动形式;(c)中心调整

1.3方案的确定

考虑到制动器的效能因素和制动器效能的稳定性,且领从蹄式制动器的蹄片与制动鼓之间的间隙易于调整,便于附装驻车制动装置,根据设计车型的特点及制动要求,并考虑到使结构简单,造价较低,也便于附装驻车制动机构等因数,本文选择凸轮式领从蹄式制动器作为设计方案。

第2章 理想制动力及其分配

2.1 东风EQ1090E 型汽车前轮制动器的设计参数

①空车总重 G 。=4080 kg

②满载总重 Ga =9290 kg

③ 负荷分配 满载:Ga 前=2360kg Ga=6930kg

④质心高度 空载:hg 。=845mm 满载:hga=1170mm

⑤轴距 L=3950mm (前轴至平衡轴中心)

⑥轮胎 9.00-20-10PR 滚动半径r=229mm

⑦制动力分配系数 空载:β=0.38 满载:β=0.38

⑧质心距前轴距离 空载:mm L 210001= 满载:mm L a 29501=

质心距后轴距离 空载:mm L 185002= 满载:mm L a 10002=

[注]:本文在计算过程中,为了方便计算,取:1kg=10N;g=102s m ; 计算单位全部采用国际单位制。

2.2 制动力与制动力分配系数

汽车制动时,如果忽略路面对车轮的滚动阻力矩和汽车回转质量的惯性力矩,则

任一角速度?>0的车轮,其力矩平衡方程为:

0=-e B f r F T 式(2-1) 式中:

f T ——制动器对车轮作用的制动力矩,即制动器的摩擦力矩,其方向与车轮旋

转方向相反,N ·m ;

B F ——地面作用于车轮上的制动力,之间的摩擦力,又称为地面制即地面与轮胎动力,其方向与汽车行驶方向相反,N ;

e r ——车轮有效半径,m 。

令 f F = f T /e r 式(2-2)

即制动器制动力,它是在轮胎周缘克服制动器摩擦力矩所需的力,因此又称为制

动周缘力。f F 与地面制动力B F 的方向相反,当车轮角速度ω>0时,大小亦相等,且f F 仅由制动器结构参数所决定。即f F 取决于制动器的结构型式、尺寸、摩擦副的摩擦系

中北大学 课程设计说明书 学生姓名:学号: 学院(系):机电工程学院 专业:车辆工程 题目:夏利汽车盘式制动器方案设计 综合成绩: 职称: 年月日

目录 一、夏利汽车主要性能参数---------------------4 二、制动器的形式-----------------------------5 三、盘式制动器主要参数的确定-----------------7 四、盘式制动器制动力矩的设计计算-------------9 五、盘式制动器制器的校核计算----------------10 1.前轮制动器制动力矩的校核计算 2.摩擦衬片的磨损特性计算 六、经过计算最终确定后轮制动器的参数--------13 七、设计小结--------------------------------13 八、设计参考资料----------------------------13

轿车前轮制动器设计说明书前言汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全,汽车制动系的工作可靠性显得日益重要。也只有制动性能良好、制动系工作可靠的汽车,才能充分发挥其动力性能。本次课程设计根据任务要求只对夏利汽车盘式制动器方案设计。

一、汽车主要性能参数 主要尺寸和参数: (1)、轴距:L=2405mm (2)、总质量:M=900kg (3)、质心高度:0.65m (4)、车轮半径:165mm (5)、轮辋内径:120mm (6)、附着系数:0.8 (7)、制动力分配比:后制动力/总制动力=0.19 (8)、前轴负荷率:60%;即质心到前后轴距离分别为 L1=L?(1?60%)=962mm L2=L?60%=1443mm (9)、轮胎参数:165/70R13; 轮胎有效半径r e为: 轮胎有效半径=轮辋半径+(名义断面宽度×高宽比) 所以轮胎有效半径r e=(240 2 +165×70%)=235.5mm (10)、制动性能要求:初速度为50KM/h时,制动距离为15m。则 满足制动性能要求的制动减速度由:S=1 3.6(τ2‘+τ2“ 2 )μ0+μ02 25.92 a bmax 计算最大减速度 a bmax,其中μ0=U =50Km/h;S=15m;τ2‘= 0.05s;τ2“=0.2s。经计算得 最大减速度 a bmax≈7.47m s2 ?

第1章绪论 1.1研究的目的和意义 盘式制动器具有散热性好、制动效能稳定、抗水衰退能力强、易于保养和维修等优点,可广泛应用于飞机、铁路、车辆和项目机械。对盘式制动器的早期研究侧重于实验研究其摩擦特性,随着用户对其制动性能和使用寿命要求的不断提高,有关其基础理论与应用方面的研究也在深入进行。 高速行驶的轿车,因为频繁使用制动,制动器的摩擦将会产生大量的热,使制动器温度急剧上升,这些热如果不能很好地散出,就会大大影响制动性能,出现所谓的制动效能热衰退现象,制动器直接关乎生命。因此,制动器的设计是汽车的设计过程中非常重要的一环,确定制动器结构类型,设计制动器中传动的主要零部件,对主要零部件进行校核,对优化汽车制动性能和经济性能,培养我们严谨的设计能力及规范的设计程序具有重要意义,使我们在机械加工工艺规程编制、编写技术文件及查阅技术文献等各个方面受到一次综合性的训练,通过零件图、装配图绘制,使我们对AutoCAD绘制软件的使用能力得到进一步的提高。 1.2制动系统国内外现状及发展趋势 汽车制动系是汽车总要组成部分,其作用是将行驶中的汽车减速或停车。汽车制动系直接影响着汽车行驶的安全性和停车的可靠性。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全、停车可靠,汽车制动系的工作可靠性显得日益重要。也只有制动性良好、制动系工作可靠的汽车,才能从份发挥其动力性能。 汽车制动系至少应有两套独立的制动装置,即行车制动装置和驻车制动装置;重型汽车或经常在山区行驶的汽车要增设应急制动装置及辅助制动装置;牵引汽车还应有自动制动装置。 汽车制动装置用于使行驶中的汽车强制减速或停车,并使汽车在下短坡时保持适当的稳定车速。构常采用双回路或多回路机构,以保证其工作可靠。 驻车制动装置用于汽车可靠而无时间限制的停驻在一定位置甚至在斜坡上,它也有助于汽车在坡路上起步。驻车制动装置应采用机械式驱动机构而不是用液压或气压驱动,以免其产生故障。 应急制动装置用于当行车制动装置意外发生故障而失效时,则可以用机械力源<如强力压缩弹簧)实现汽车制动。应急制动装置不必是独立的制动系统,它可利用行车制动装置或驻车制动装置的某些制动器件。应急制动装置也不是每车必备的,因为普

汽车盘式制动器设计 摘要:本文主要是介绍盘式制动器的分类以及各种盘式制动器的优缺点,对所选车型制动器的选用方案进行了选择,针对盘式制动器做了主要的设计计算,同时分析了汽车在各种附着系数道路上的制动过程,对前后制动力分配系数和同步附着系数、利用附着系数、制动效率等做了计算。在满足制动法规要求及设计原则要求的前提下,提高了汽车的制动性能。 关键词:盘式制动器;制动力分配系数;同步附着系数;利用附着系数;制动效率

Automobile disc brake design Abstract:This paper is mainly the disc brake of the classification and various kinds of disc brake of the advantages and disadvantages are introduced, the selection scheme of the chosen vehicle brake was selected and for disc brake do the main design calculation and analysis of the car in a variety of attachment coefficient road on the braking process of, of braking force distribution coefficient and the synchronous adhesion coefficient, utilization coefficient of adhesion, braking efficiency calculated. Under the premise of meeting the requirements of the braking regulation requirement and design principle and improve the braking performance of automobile. Key words: Disc brake,Braking force distribution,coefficient,Synchronization coefficient,Synchronous adhesion coefficient,The use of adhesion coefficient,Braking efficiency

目录 绪论 (3) 一、设计任务书 (3) 二、盘式制动器结构形式简介 ................... 错误!未定义书签。 2.1、盘式制动器的分类...................... 错误!未定义书签。 2.2、盘式制动器的优缺点.................... 错误!未定义书签。 2.3、该车制动器结构的最终选择.............. 错误!未定义书签。 三、制动器的参数和设计 ....................... 错误!未定义书签。 3.1、制动盘直径 ........................... 错误!未定义书签。 3.2、制动盘厚度 ........................... 错误!未定义书签。 3.3、摩擦衬块的内半径和外半径.............. 错误!未定义书签。 3.4、摩擦衬块面积 ......................... 错误!未定义书签。 3.5、制动轮缸压强 ......................... 错误!未定义书签。 3.6、摩擦力的计算和摩擦系数的验算.......... 错误!未定义书签。 3.7、制动力矩的计算和验算.................. 错误!未定义书签。 3.8、驻车制动计算 ......................... 错误!未定义书签。 四、制动器的主要零部件的结构设计 ............. 错误!未定义书签。 4.1、制动盘 ............................... 错误!未定义书签。 4.2、制动钳 ............................... 错误!未定义书签。 4.3、制动块 ............................... 错误!未定义书签。 4.4、摩擦材料 ............................. 错误!未定义书签。

制动器设计说明书

摘要 制动器可以分两大类,工业制动器和汽车制动器,汽车制动器又分为行车制动器(脚刹)和驻车制动器。在行车过程中,一般都采用行车制动(脚刹),便于在前进的过程中减速停车,不单是使汽车保持不动。若行车制动失灵时才采用驻车制动。当车停稳后,就要使用驻车制动(手刹),防止车辆前滑和后溜。停车后一般除使用驻车制动外,上坡要将档位挂在一档(防止后溜),下坡要将档位挂在倒档(防止前滑)。 使机械运转部件停止或减速所必须施加的阻力矩称为制动力矩。制动力矩是设计、选用制动器的依据,其大小由机械的型式和工作要求决定。制动器上所用摩擦材料(制动件)的性能直接影响制动过程,而影响其性能的主要因素为工作温度和温升速度。摩擦材料应具备高而稳定的摩擦系数和良好的耐磨性。摩擦材料分金属和非金属两类。前者常用的有铸铁、钢、青铜和粉末冶金摩擦材料等,后者有皮革、橡胶、木材和石棉等。 臂架式盘式制动器是一种新型的主要适用于起重运输机械的制动装置。本论文着重介绍了其特点、关键零部件的选择或设计计算方法、主要性能参数及一些台架试验结果。除此之外还着重介绍了制动臂、松闸器等关键部件的设计参数及注意事项,同时细节方面对于制动器的静力矩也做了详细的计算设计。 Abstract Brakes can be divided into two categories, industrial brakes and automotive bra kes, automotive brake is divided into brake (foot brake) and the parking brake. In the driving process, generally used brake (foot brake), to facilitate the p rocess of deceleration in the forward stop, not just the car to remain intact. If the traffic Zhidongshiling when using the parking brake. When the car comple tely stopped, it has to use the parking brake (hand brake), to prevent the vehi cle front and rear slip slide. After stopping the general addition to the parki ng brake, the uphill hanging in a stall to stall (after the slide to prevent), downhill to hang in the reverse gear (to prevent forward slip.) Mechanical moving parts to stop or slow down the resistance of the moment must be applied as the brake torque. Braking torque is the design, selection based o n the brake, the size of the pattern and work by the mechanical requirements of the decision. Friction material used on brake (brake parts) directly affects t he performance of the braking process, and the main factors affecting the perfo rmance of the working temperature and the temperature rise speed. Friction mate rial should have high and stable friction coefficient and good wear resistance. Metallic and nonmetallic friction materials sub-categories. The former are com monly used cast iron, steel, bronze, and powder metallurgy friction materials, which have leather, rubber, wood and asbestos. Disc brake arm frame is a new major for the braking device handling equipment. This paper focuses on its characteristics, key components of the selection or d esign methods, the main performance parameters and some bench test results. Hig hlights in addition to the brake arm, loose brake components, etc. The key desi gn parameters and considerations, while the details of the static torque for th e brake has also done a detailed calculation of design.

盘式制动器设计说明书 一汽车制动系概述 使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已经停驶的汽车保持不动,这些作用统称为汽车制动。 对汽车起到制动作用的是作用在汽车上,其方向与汽车行驶方向相反的外力。作用在行驶汽车上的滚动阻力,上坡阻力,空气阻力都能对汽车起制动作用,但这外力的大小是随机的,不可控制的。因此,汽车上必须设一系列专门装置,以便驾驶员能根据道路和交通等情况,借以使外界在汽车上某些部分施加一定的力,对汽车进行一定程度的强制制动。这种可控制的对汽车进行制动的外力,统称为制动力。这样的一系列专门装置即成为制动系。 1 制动系的功用:使汽车以适当的减速度降速行驶直至停车;在下坡行驶时,使汽车保持适当的稳定车速;使汽车可靠的停在原地或--=-坡道上。 2 制动系的组成 任何制动系都具有以下四个基本组成部分: (1)供能装置——包括供给、调节制动所需能量以及改善传能介质状态的各种部件。其中,产生制动能量的部位称为制动能源。 (2)控制装置——包括产生制动动作和控制制动效果的各种部件。 (3)传动装置——包括将制动能量传输到制动器的各个部件。 (4)制动器——产生阻碍车辆的运动或运动趋势的力的部件,其中也包括辅助制动系中的缓速装置。 较为完善的制动系还具有制动力调节装置以及报警装置、压力保护装置等附加装置。 3 制动系的类型 (1)按制动系的功用分类 1)行车制动系——使行使中的汽车减低速度甚至停车的一套专门装置。 2)驻车制动系——是以停止的汽车驻留在原地不动的一套装置。 3)第二制动系——在行车制动系失效的情况下,保证汽车仍能实现减速或停车的一套装置。在许多国家的制动法规中规定,第二制动系是汽车必须具备的。 4)辅助制动系——在汽车长下坡时用以稳定车速的一套装置。 (2)按制动系的制动能源分类 1)人力制动系——以驾驶员的肢体作为唯一的制动能源的制动系。 2)动力制动系——完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的制动系。 3)伺服制动系——兼用人力和发动机动力进行制动的制动系。 按照制动能量的传输方式,制动系又可分为机械式、液压式、气压式和电磁等。同时采用两种以上传能方式的制动系,可称为组合式制动系。 4 设计制动系时应满足如下主要要求: 1)具有足够的制动效能。行车制动能力是用一定制动初速度下的制动减速度和制动距离两相指标来评定的;驻坡能力是以汽车在良好路面上能可靠的停驻的最大坡度来评定的。详见GB/T7258-2004

三、课程设计过程 (一)设计制动器的要求: 1、具有良好的制动效能—其评价指标有:制动距离、制动减速度、制动力和制动时间。 2、操纵轻便—即操纵制动系统所需的力不应过大。对于人力液压制动系最大踏板力不大于(500N)(轿车)和700N (货车),踏板行程货车不大于150mm ,轿车不大于120mm 。 3、制动稳定性好—即制动时,前后车轮制动力分配合理,左右车轮上的制动力矩基本相等,汽车不跑偏、不甩尾;磨损后间隙应能调整! 4、制动平顺性好—制动力矩能迅速而平稳的增加,也能迅速而彻底的解除。 5、散热性好—即连续制动好,摩擦片的抗“热衰退”能力要高(指摩擦片抵抗因高温分解变质引起的摩擦系数降低);水湿后恢复能力快。 6、对挂车的制动系,还要求挂车的制动作用略早于主车;挂车自行脱钩时能自动进行应急制动。 (二)制动器设计的计算过程: 设计条件:车重2t,重量分配60%、40%,轮胎型175/75R14,时速70k m/h ,最大刹车距离11m 。 1. 汽车所需制动力矩的计算 根据已知条件,汽车所需制动力矩: M=G/g·j·r k (N ·m) 206 .321j )(v S ?= (m/s 2) 式中:rk — 轮胎最大半径 (m); S — 实际制动距离 (m); v 0 — 制动初速度 (km /h )。 2 17018211 3.6j ??=?= ???? (m/s 2) m=G/g=2000kg 查表可知,r k 取0.300m 。 M=G/g·j ·rk =2000·18·0.300=10800(N·m) 前轮子上的制动器所需提供的制动力矩: M ’=M/2?60%=3240(N·m) 为确保安全起见,取安全系数为1.20,则M ’’=1.20M’=3888(N·m) 2. 制动器主要参数的确定 (1)制动盘的直径D 制动盘直径D 希望尽量大些,这时制动盘的有效半径得以增大,就可以降低制动钳的夹紧力,降低摩擦衬块的单位压力和工作温度。但制动盘直径D 受轮辋直径的限制。通常,制动盘的直径D选择为轮辋直径的70%~79%,而总质量大于2t 的汽车应取其上限。 轮辋名义直径14in=355.6mm 根据布置尺寸需要,制动盘的直径D 取276m m。 验证,276/355.6=77.6%,符合要求。 制动盘材料选用珠光体灰铸铁,其结构形状为礼帽型。制动盘在工作时不仅承受着制动块

课程设计(论文)任务书

成绩评定表

目录 一、盘式制动器的工作原理和构造 1.1 定钳盘式制动器-----------------------------------------------1 1.2 浮钳盘式制动器-----------------------------------------------1 1.3 全盘式制动器-------------------------------------------------2 二、关于盘式刹车优缺点 2.1盘式刹车优点-------------------------------------------------2 2.2盘式刹车缺点-------------------------------------------------3 2.3刹车故障的判断-----------------------------------------------3 三、盘式制动器的常见故障及排除 3.1油管故障-----------------------------------------------------4 3.2制动盘故障-制动力不足疲软----------------------------------5 3.3制动钳故障-制动后跑偏----------------------------------------6 3.4制动分泵故障-制动发卡----------------------------------------7 3.5分泵故障-加力泵喷出制动液------------------------------------8 四、分析 分析各个故障----------------------------------------------------9 五、参考文献

原始数据: 整车质量:空载:1550kg ;满载:2000kg 质心位置:a=L 1=1.35m ;b=L 2=1.25m 质心高度:空载:hg=0.95m ;满载:hg=0.85m 轴 距:L=2.6m 轮 距: L 0=1.8m 最高车速:160km/h 车轮工作半径:370mm 轮毂直径:140mm 轮缸直径:54mm 轮 胎:195/60R14 85H 1.同步附着系数的分析 (1)当0φφ<时:制动时总是前轮先抱死,这是一种稳定工况,但丧失了转向能力; (2)当0φφ>时:制动时总是后轮先抱死,这时容易发生后轴侧滑而使汽车失去方向稳定性; (3)当0φφ=时:制动时汽车前、后轮同时抱死,是一种稳定工况,但也丧失了转向能力。 分析表明,汽车在同步附着系数为0φ的路面上制动(前、后车轮同时抱死)时,其制动减速度为g qg dt du 0φ==,即0φ=q ,q 为制动强度。而在其他附着系数φ的路面上制动时,达到前轮或后轮即将抱死的制动强度φ

根据相关资料查出轿车≥0φ0.6,故取6.00=φ. 同步附着系数:=0φ0.6 2.确定前后轴制动力矩分配系数β 常用前制动器制动力与汽车总制动力之比来表明分配的比例,称为制动器制动 力分配系数,用β表示,即:u F F u 1 =β,21u u u F F F += 式中,1u F :前制动器制动力;2u F :后制动器制动力;u F :制动器总制动力。 由于已经确定同步附着系数,则分配系数可由下式得到: 根据公式:L h L g 02φβ+= 得:68.06 .285.06.025.1=?+=β 3.制动器制动力矩的确定 为了保证汽车有良好的制动效能,要求合理地确定前,后轮制动器的制动力矩。 根据汽车满载在沥青,混凝土路面上紧急制动到前轮抱死拖滑,计算出后轮制动器的最大制动力矩2M μ 由轮胎与路面附着系数所决定的前后轴最大附着力矩: e g r qh L L G M ?υ)(1max 2-= 式中:?:该车所能遇到的最大附着系数; q :制动强度; e r :车轮有效半径; max 2μM :后轴最大制动力矩;

目录 第1章概述 (1) 1.1 鼓式制动器的简介 (1) 1.2鼓式制动器的组成固件 (1) 1.3鼓式制动器的工作原理 (1) 1.4鼓式制动器的产品特性 (2) 1.5设计基本要求和整车性能参数 (2) 第2章鼓式制动器的设计计算 (2) 2.1车辆前后轮制动力的分析 (2) 2.2前、后轮制动力分配系数β的确定 (5) 2.3制动器最大制动力矩 (6) 第3章制动器结构设计与计算 (6) 3.1制动鼓壁厚的确定 (6) 3.2制动鼓式厚度N (6) 3.3动蹄摩擦衬片的包角β和宽度b (7) 3.4P的作用线至制动器中心的距离α (7) 3.5制动蹄支销中心的坐标位置是k与c (8) 3.6摩擦片摩擦系数f (8) 第4章制动器主要零部件的结构设计 (8) 4.1制动鼓 (8) 4.2制动蹄 (8) 4.3制动底板 (9) 4.4制动蹄的支承 (9) 4.5制动轮缸 (9) 4.6制动器间隙 (9) 第5章校核 (10) 5.1制动器的热量和温升的核算 (10) 5.2制动器的摩擦衬片校核 (11) 5.3驻车制动计算 (11)

第1章概述 1.1鼓式制动器的简介 鼓式制动器也叫块式制动器,是靠制动块在制动轮上压紧来实现刹车的。鼓式制动是早期设计的制动系统,其刹车鼓的设计1902年就已经使用在马车上了,直到1920年左右才开始在汽车工业广泛应用。现在鼓式制动器的主流是内张式,它的制动块(刹车蹄)位于制动轮内侧,在刹车的时候制动块向外张开,摩擦制动轮的内侧,达到刹车的目的。近三十年中,鼓式制动器在轿车领域上已经逐步退出让位给盘式制动器。但由于成本比较低,仍然在一些经济类轿车中使用,主要用于制动负荷比较小的后轮和驻车制动。 1.2 鼓式制动器的组成固件 鼓式制动器的旋转元件是制动鼓,固定元件是制动蹄。制动时制动蹄鼓式制动器在促动装置作用下向外旋转,外表面的摩擦片压靠到制动鼓的内圆柱面上,对鼓产生制动摩擦力矩。 凡对蹄端加力使蹄转动的装置统称为制动蹄促动装置,制动蹄促动装置有轮缸、凸轮和楔。 以液压制动轮缸作为制动蹄促动装置的制动器称为轮缸式制动器;以凸轮作为促动装置的制动器称为凸轮式制动器;用楔作为促动装置的制动器称为楔式制动器。 鼓式制动器比较复杂的地方在于,许多鼓式制动器都是自作用的。当制动蹄与鼓发生接触时,会出现某种楔入动作,其效果是借助更大的制动力将制动蹄压入鼓中。楔入动作提供的额外制动力,可让鼓式制动器使用比盘式制动器所用的更小的活塞。但是,由于存在楔入动作,在松开制动器时,必须使制动蹄脱离鼓。这就是需要一些弹簧的原因。弹簧有助于将制动蹄固定到位,并在调节臂驱动之后使它返回。 1.3 鼓式制动器的工作原理 在轿车制动鼓上,一般只有一个轮缸,在制动时轮缸受到来自总泵液力后,轮缸两端活塞会同时顶向左右制动蹄的蹄端,作用力相等。但由于车轮是旋转的,制动鼓作用于制动蹄的压力左右不对称,造成自行增力或自行减力的作用。因此,业内将自行增力的一侧制动蹄称为领蹄,自行减力的一侧制动蹄称为从蹄,领蹄的摩擦力矩是从蹄的2~2.5倍,两制动蹄摩擦衬片的磨损程度也就不一样。 为了保持良好的制动效率,制动蹄与制动鼓之间要有一个最佳间隙值。随着摩擦衬片磨损,制动蹄与制动鼓之间的间隙增大,需要有一个调整间隙的机构。过去的鼓式制动器间隙需要人工调整,用塞尺调整间隙。现在轿车鼓式制动器都是采用自动调整方式,摩擦衬片磨损后会自动调整与制动鼓间隙。当间隙增大时,制动蹄推出量超过一定范围时,调整间隙机构会将调整杆(棘爪)拉到与调整齿下一个齿接合的位置,从而增加连杆的长度,

汽车盘式制动器的维护与保养 汽车制动系统目前广泛使用的是摩擦式制动器,就其摩擦的结构形式可分成鼓式、盘式和带式三种。盘式制动器已广泛应用于各级轿车、轻型车、载货汽车、豪华客车及重型载货汽车等方面。因此,做好汽车盘式制动器的维护与保养至关重要。 一、盘式制动器维保养时的注意事项 拆卸车辆时要小心,避免损害制动器管路;拆卸车轮时,一定不要损伤制动盘、外部管路、放气螺钉以及挡泥板;安装非标准或偏位车轮时,需确保其与制动钳不接触;维修盘式制动器时,不要用气压软管或干刷子来清洁盘式制动器总成,要使用专业的真空吸尘器,避免呼吸制动器灰尘;仔细调整车轮轴承,消除轮端余隙;活塞回位从主缸储液罐中吸出的制动液应重新补足;行车前,应多次踩动制动踏板,使制动间隙达到规定要求;为防止制动块摩擦衬片的快速磨损,车辆行驶中不要对制动踏板施加压力(制动工况除外);液压系统排气时,可用木锤轻敲制动钳,以帮助清除制动液的气泡;用压缩空气吹取制动钳活塞时要小心,最好用厚布做缓冲垫,气体压力由小到大,逐渐增大。若活塞吹不出,可关断气源,用木锤轻敲制动钳,再试着通入压缩空气;卸转动盘而拆下制动钳时,在两侧制动块之间放置厚挡板,以防止制动钳的活塞被挤出轮缸;制动钳为两半壳时,不要解体。油脂、机油、制动液或任何其它异物不得触及制动摩擦块、制动卡钳、制动盘表面以及轮毂外表面;小心的对待制动盘和卡钳,避免损坏制动盘、刮伤或擦伤制动摩擦块。 二、盘式制动器的维护与保养的要点 1. 制动器摩擦衬片的维保 前轮或所有四轮上装有盘式制动器的汽车,需定期地检查制动器摩擦衬片(每行车12~15km)。靠举升机或安全架将车升起,在举升机或安全架上要确保居中与安全。车轮与轮毂轴承总成的关系在重新组装之后要确保恰当的车轮平衡,从前制动盘安装面卸下车轮与轮胎总成,小心别损伤制动卡钳、盘式制动盘罩(若有)以及前轮转向节,重新将夹持制动盘的两个车轮螺母装在轮毂轴承总成上。不用拆卸卡钳就能检查摩擦衬片,通过查看制动钳的每一端来检查外卡钳两端,这些区域是制动摩擦块磨损发生率最高的区域,还要检查内侧制动衬片上的摩擦衬片,确信没有过早磨损,若出现光泽(发亮或光滑)、烧损或被污物或制动液污染,则更换制动摩擦块,透过检查孔察看内制动摩擦块和摩擦衬片,有些进口车没有检查孔。 在装有浮动卡钳的车上,要检查内外摩擦衬片的磨损是否均匀。若内侧的磨损比外侧的多,则需大修卡钳。反之,则总成的滑动元件可能黏附、弯曲、或损坏。在任何情况下,制动器的不均匀磨损是制动器衬片或卡钳需要维修时的信号。当然,如果制动器在发出高震荡制动尖叫声时,要立即想到这表明系统需要维修。

错误!未找到引用源。盘式制动器设计说明书 一汽车制动系概述 使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已经停驶的汽车保持不动,这些作用统称为汽车制动。 对汽车起到制动作用的是作用在汽车上,其方向与汽车行驶方向相反的外力。作用在行驶汽车上的滚动阻力,上坡阻力,空气阻力都能对汽车起制动作用,但这外力的大小是随机的,不可控制的。因此,汽车上必须设一系列专门装置,以便驾驶员能根据道路和交通等情况,借以使外界在汽车上某些部分施加一定的力,对汽车进行一定程度的强制制动。这种可控制的对汽车进行制动的外力,统称为制动力。这样的一系列专门装置即成为制动系。 1 制动系的功用:使汽车以适当的减速度降速行驶直至停车;在下坡行驶时,使汽车保持适当的稳定车速;使汽车可靠的停在原地或--=-坡道上。 2 制动系的组成 任何制动系都具有以下四个基本组成部分: (1)供能装置——包括供给、调节制动所需能量以及改善传能介质状态的各种部件。其中,产生制动能量的部位称为制动能源。 (2)控制装置——包括产生制动动作和控制制动效果的各种部件。 (3)传动装置——包括将制动能量传输到制动器的各个部件。 (4)制动器——产生阻碍车辆的运动或运动趋势的力的部件,其中也包括辅助制动系中的缓速装置。 较为完善的制动系还具有制动力调节装置以及报警装置、压力保护装置等附加装置。 3 制动系的类型 (1)按制动系的功用分类 1)行车制动系——使行使中的汽车减低速度甚至停车的一套专门装置。 2)驻车制动系——是以停止的汽车驻留在原地不动的一套装置。 3)第二制动系——在行车制动系失效的情况下,保证汽车仍能实现减速或停车的一套装置。在许多国家的制动法规中规定,第二制动系是汽车必须具备的。 4)辅助制动系——在汽车长下坡时用以稳定车速的一套装置。 (2)按制动系的制动能源分类 1)人力制动系——以驾驶员的肢体作为唯一的制动能源的制动系。 2)动力制动系——完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的制动系。 3)伺服制动系——兼用人力和发动机动力进行制动的制动系。 按照制动能量的传输方式,制动系又可分为机械式、液压式、气压式和电磁等。同时采用两种以上传能方式的制动系,可称为组合式制动系。 4 设计制动系时应满足如下主要要求: 1)具有足够的制动效能。行车制动能力是用一定制动初速度下的制动减速度和制动距离两相指标来评定的;驻坡能力是以汽车在良好路面上能可靠的停驻

大学生方程式赛车制动系统设计方案分析 摘要:本文介绍了大学生方程式赛车制动的设计,首先介绍了汽车制动系统的设计意义、研究现状以及设计目标,然后对制动系统进行分析与选择,确定方案采用简单人力液压制动双回路前后盘式制动器。最后对制动性能进行了详细分析。 关键词:方程式赛车,制动,盘式制动器 Abstract:This paper mainly introduces the design of breaking system of the Formula Student.First of all,breaking system's development,structure and category are shown.Then analysis and the choice of the braking system are done.At last, the plan adopting hydroid two-back-way brake with front disc and rear disc.Finally,the paper shows analysis of brake performance. Keywords:formula car,braking,braking disc 随着社会的迅速发展和人民生活水平的不断提高,汽车越来越成为现代交通工具中用得最多、最普遍、也运用得最方便的一种。汽车制动系统是汽车底盘上的一个重要系统,它是制约汽车运动的装置。汽车的制动性能直接影响汽车的行驶安全性。现在公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性的要求越来越高,为保证人身和车辆安全,汽车配备十分可靠的制动系统显得尤为重要。 一、制动系统的设计分析 车辆在形式过程中要频繁进行制动操作,由于制动性能的好坏直接关系到交通和人身安全,因此制动性能是车辆非常重要的性能之一,改善汽车的制动性能始终是汽车设计制造和使用部门的重要任务。当车辆制动时,由于车辆受到与行驶方向相反的外力,所以才导致汽车的速度逐步减小到0,对这一过程中车辆受力情况的分析有助于制动系统的分析和设计,因此制动过程受力情况分析是车辆试验和设计的基础,由于这一过程较为复杂,因此一般在实际中只能建立简化模型分析,通常人们从三个方面来对制动系统进行分析和评价:制动效能:即制动距离与制动减速度;制动效能的恒定性:即热衰退性;制动时汽车方向的稳定性。 二、制动装置的选择分析

汽车构造课程设计说明书 设计名称:汽车制动器设计 设计时间 2009年10-12月 系别机电工程系 专业汽车服务工程 班级 12班 姓名 *** 指导教师 *** 2009 年 10 月12

目录 一、设计任务书 (1) 二、制动方案的拟定 (2) 三、各种形式制动器现状比较 (4) 四、整个传动系统运动和动力参数的选择与计算 (5) 五、传动零件的设计计算 (12) 六、总体布局 (13) 七、总结 (17) 八、参考资料 (17)

一、设计任务书 题目: 已知条件:(1)假设地面的附着系数足够大; (2)车重2.2t (3)前后重量分配:40%,60% (4)蹄、盘正压力的分布状态可由自行假设 (5)轮胎型号195/80R14 (6)制动初速度100km/h (7)最大急刹车距离为18m (8)工作环境:设定为高温状态 (9)制动摩擦系数取值范围:0.25≤f≤0.55 (10制动器具体结构可参考汽车实验室相关制动器结构,也自行设计。 前后轮重量分配示意图

二、制动方案的拟定 汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全,汽车制动系的工作可靠性显得日益重要。也只有制动性能良好、制动系工作可靠的汽车,才能充分发挥其动力性能。 汽车制动系至少应有两套独立的制动装置,即行车制动装置和驻车制动装置;重型汽车或经常在山区行驶的汽车要增设应急制动装置及辅助制动装置;牵引汽车应有自动制动装置。 任何一套制动装置均由制动器和制动驱动机构两部分组成。制动器有鼓式与盘式之分。行车制动是用脚踩下制动踏板操纵车轮制动器来制动全部车轮,而驻车制动则多采用手制动杆操纵,且具有专门的中央制动器或利用车轮制动器进行制动。中央制动器位于变速器之后的传动系中,用于制动变速器第二轴或传动轴。行车制动和驻车制动这两套制动装置必须具有独立的制动驱动机构。行车制动装置的驱动机构,分液压和气压两种型式。用液压传递操纵力时还应有制动主缸和制动轮缸以及管路;用气压操纵时还应有空气压缩机、气路管道、贮气筒、控制阀和制动气室等。 过去,大多数汽车的驻车制动和应急制动都使用中央制动器,其优点是制动位于主减速器之前的变速器第二轴或传动轴的制动力矩较小,容易满足操纵手力小的要求。但在用作应急制动时,往往使传动轴超载。现代汽车由于车速提高,对应急制动的可靠性要求更严,因此,在中、高级轿车和部分总质量在1.5t以下的载货汽车上,多在后轮制动器上附加手操纵的机械式驱动机构,使之兼起驻车制动和应急制动的作用,从而取消了中央制动器。 汽车制动系设计的程序

2009年第10期 科技经济市场 1汽车工业的发展 在人类历史发展的过程中,“衣”、“食”、“住”、“行”始终是人类生存的四大需要,是人类发展、进步的最重要的基本条件。而在“四大需要”中,“行”或“交通”的变化,在人类社会发展过程中 是最突出的,它对社会进步的影响也是最大的。 汽车是作为一种交通工具而产生的,但发展到今天已经不能把它理解为单纯的“行”的手段。因为“汽车化”改变了当代世界的面貌,它已经成为当代物质文明与进步象征及文明形态的一种代表。中国汽车工业的振兴也必然会使中国的面貌焕然一新,在繁荣经济,促进四个现代化的实现,提高中国人民的生活水平,推动社会与地球上近四分之一的人类进步方面,发挥巨大的作用。 2汽车零部件的工业现状及水平 在汽车行驶过程中,其零部件承受的载荷的大小和性质受着许多因素的影响。汽车的可靠性与在其使用期间作用在其零部件上的实际载荷有关。由于汽车的使用条件非常复杂,时间也不固定,有影响且变化的因素很多,致使在零件中的应力值会在很大的范围内变动,甚至应力性质也会改变。因此,确定汽车零部件所承受的实际载荷要比确定其他机械产品的载荷复杂很 多。而引起零件产生应力的力有些是恒定的(例如重力、 零件装配时产生的预紧力或过盈力),有些是不定的(例如汽车起步时和制动时产生的力,零件制造误差引起的力,发动机工作工况改变而引起转矩及力的改变,行驶阻力引起的力等等)。在设计中为了校核零件的静强度,首先就要确定其危险断面及其所承受的最大载荷;为了校核零件的疲劳强度,除了可按相关文献给出的计算方法进行疲劳强度的计算校核外,还常常以其实测的载荷谱为基础编制加载语并按加载谱的加载程序加载,在疲劳试验台上进行试验验证。可见,在设计中为了进行零部件的强度设计,首先要弄清其载荷工况、破坏机理,以便采取相应的强度计算方法进行有效的设计。 3汽车设计技术的发展 汽车设计技术在近百年中也经历了由经验设计发展到以科学实验和技术分析为基础的设计阶段,进而自60年代中期在设计中引入电子计算机后又形成了计算机辅助设计(CAD)等新方法,并使设计逐步实现半自动化和自动化。参阅相关权威资料了解到汽车设计的直接目的有以下三点: (1)提高汽车的技术水平,使其承载能力更强,使用性能更好,更安全,更可靠,更经济,更舒适,更机动,更方便,动力性更好,污染更少; (2)改善汽车的外观造型,特别对轿车来讲改善车身艺术效果,使其更美观、更科学、更新颖、更有时代感,往往是车型设计 的重要目的,也是提高市场竞争力的重要手段; (3)改善汽车的经济效果,调整汽车在产品系列中的档次,以便改善其市场竞争地位并获得更大的经济效益。 电子计算机的出现和在工程设计中的推广应用,使汽车设 计技术飞跃发展,设计过程完全改观。 汽车结构参数及性能参数等的优化选择与匹配、 零部件的强度核算与寿命预测、产品有关方面的模拟计算或仿真分析、车身的美工造型等等设计方案的选择及定型、设计图纸的绘制,均可在计算机上进行。 4盘式制动器设计、计算分析模块4.1概述 在轿车和中小型客车的设计中,一般其结构形式为前轮制动器采用浮钳式制动器,后轮制动器采用领从蹄自动定义浮销式鼓式制动器。而对总重大于20KN-40KN 的客车而言,前轮也有采用固定钳式盘式制动器,后轮采用自增力自动定义浮销式鼓式制动器。 在根据汽车的整车参数分析了汽车的制动力、制动力矩之后,就可以根据具体的制动器结构形式作相关设计、计算、分析等工作。 4.2基本原理(1)确定柱式制动器制动钳体主要结构参数的计算方法:在初步计算制动器制动钳体结构参数时,盘式制动器效能因数BF 的值可定为0.8。根据汽车前轮所需的最大理论制动力矩,初步选取制动钳体缸孔直径D 1可由下面的公式算出: M μ1=(P 1-P 10)Awc 1ηa .BF 1r 1……………1-1式中:Awc 1—盘式制动器制动钳体缸也的工作面积:(mm 2) BF 1—盘式制动器制动效能因数;P 10—前制动管路的开启压力;(M pa 或N/mm 2)ηa —主缸以后的机械效率;r l —制动盘有效半径;(m)P 1—前制动管压;(M pa 或N/mm 2)(2)确定盘式制动器计算用的最大制动力矩: 由于考虑到汽车实际制动时的最大输出制动力矩与理论值受很多因素影响而发生改变,如制动衬片与制动盘接触时不一定非常均匀使加制动力、制动衬片的摩擦系数受温度变化而发生改变等一些因素。这样用于计算的最大制动力矩应由下面公式算出: M 'u 1max=1.2M u 1max …………………1-2式中:M 'u 1max —用于计算的最大制动力矩(N.m ) M u 1max —单个前轮制动器理论最大制动力矩(N.m ) 作者简介:王亮,在读硕士,现工作在淮阴工学院,承担汽车服务工程专业的课程讲授工作。 汽车液压盘式制动器设计研究 王 亮关荣 (淮阴工学院,江苏淮安223001) 摘 要:本文主要是研究汽车液压盘式制动器设计计算程序, 通过运用V isual B asic 6.0软件和A ccess 数据库实现制动系的计算机辅助设计,基于制动器中的零部件数目较多,在掌握了汽车工业发展的历史和现状、 汽车设计技术理论知识构成以及汽车零部件的工业现状及水平的基础上,选取具有代表性的汽车液压盘式制动器设计、计算分析模块。从模块功能的概述、基本原理以及程序设计流程三个方面进行完整的模块设计说明。从而实现汽车液压盘式制动器设计的自动化,提升整车的安全性能。 关键词: 制动系;程序库;盘式制动器;模块技术平台 趤趽

相关文档
最新文档