浅谈数学思想和数学方法

浅谈数学思想和数学方法
浅谈数学思想和数学方法

山西师范大学现代文理学院本科毕业论文浅谈中学数学思想和数学方法

姓名

系别

专业

班级

学号

指导教师

答辩日期

成绩

浅谈中学数学思想和数学方法

内容摘要

近年来随着我国教育事业的发展,人们越来越重视对数学教育的研究,数学教学大纲也在不断的改进。而数学的核心成分是数学思想和数学方法,掌握数学思想和方法比掌握数学知识更加重要。本文就数学思想和数学方法的概念,两者之间的区别和联系,它们的基本种类及在题目中的应用进行了简单的研究,以加强对数学知识的理解性记忆和数学能力、数学素质的提高。

数学思想和方法是对数学内容的高度的概括和总结。掌握数学思想和方法,有利于培养学生创新思维和发散思维,加深学生对数学的迁移和应用,提高处理在自然和社会中出现的数学问题的技巧和能力。

【关键词】数学思想数学方法种类应用

Plain talk middle school mathematical thought and

mathematical methods

Abstract

In recent years, with the development of education in our country, there is a growing emphasis on the study of mathematics education, mathematics syllabus are constantly improving. The core component of the mathematics is mathematical ideas and mathematical methods to grasp mathematical ideas and methods to grasp mathematical knowledge are more important. Simple concept of mathematical thinking and mathematical methods, the difference between the two and their basic types and title, in order to strengthen the understanding of memory and math ability of mathematical knowledge, mathematical qualities improved.

Mathematical ideas and methods are the height of summary of the mathematics content. Mastering them is benefit for students' creative thinking and divergent thinking, deepen student migration and application of mathematics, and improve the skills and ability to deal with mathematical problems in the natural and social.

【Key Words】Mathematical thought Mathematical method kinds application.

目录

引言 (1)

一、数学思想和数学方法 (1)

二、数学思想及应用 (2)

(一)化归的思想 (2)

(二)数形结合的思想 (3)

(三)函数和方程的思想 (4)

(四)分类讨论的思想 (4)

三、数学方法及应用 (5)

(一)待定系数法 (5)

(二)数学归纳法 (6)

(三)反证法 (7)

(四)三角法 (8)

(五)构造法 (8)

四、小结 (10)

参考文献 (10)

致谢 (11)

浅谈中学数学思想和数学方法

学生姓名: 指导教师:

引言

数学作为一门科学,是人们从数学活动中总结出来的。数学可以分为三个部分:数

学知识、数学思想和数学方法①

。这三部分中,数学思想最重要,是数学的灵魂,数学方法是数学的外在表现形式,数学知识则是基础部分。数学思想和数学方法是对数学内容的高度的概括和总结,是人们在长期的社会实践中提炼出的抽象的思维形式.作为数学的核心,数学思想和数学方法是整个数学的基础部分,是对数学在应用领域的归纳和总结,是对数学本质的深刻认识.它比数学知识更具有普遍性,可以应用到社会生活中的各个领域,是人们处理不同问题的方法和手段。

《全日制普通高级中学数学教学大纲》中对中学生应掌握的基础知识作了明确规定,要求中学生必须掌握定理、公式中反映出来的数学思想和数学方法。

一、数学思想和数学方法

数学思想是指“识之中经过思维活数量关系反映到人的意现实世界的空间形式和

动而产生的结果”,是贯穿于数学领域的具有概括性、抽象性的内容。它是在基础数学知

识和理论的基础上,为了数学教育而发展和壮大起来的,并日渐趋于完善。中学阶段接触到的数学思想都比较简单,有化归的思想、函数和方程的思想、分类讨论思想、数形结合的思想等等.这些数学思想形成了一个整体化的数学思想系统.其中,化归的思想是其核心部分。

数学方法是数学思想的外在表现形式,指人们利用数学思想解决数学问题的手段、途径,并从这些途径中抽象出的操作性强的规则和模式。数学方法是数学思想的外化形式,注重程序性,可操作性。在中学阶段,经常用到的数学方法有反证法、待定系数法、数学归纳法等。

通常人们习惯把数学思想和方法统为数学思想方法,将两者混为一谈,这是不对的。数学思想和数学方法两个不同的概念,它们有相同点,也有不同点。

数学思想和方法是不同的,它们表现的方式不同。通常,数学思想注重理论知识,是人们对数学理论与内容的本质认识,指引着数学活动的完成。而数学方法则倾向于技巧性,是解决某一数学问题的具体途径,有一定的规则性。因此可以认为,数学思想是内容,方法是形式。

数学思想和方法虽然各有其特点,但它们之间也是相互联系的。数学思想是数学方法产生的基础,指导数学方法的实施;而数学方法蕴含在数学思想之中,是数学思想的具体表现形式,而且数学方法在的使用又可以进一步完善数学思想。总之,两者相辅相

呈,共同组成数学的一部分。

二、数学思想及应用

在中学阶段,接触到的数学思想有:化归的思想、数形结合的思想、函数和方程思想、分类讨论的思想这四种。 (一)化归的思想

把所要解决的问题通过一系列步骤化为已经解决了的或者较为简单的问题去处理的思想就是化归的思想。化归的思想是数学思想的重要组成部分,是解读数学思想的一把钥匙。

化归的进程,一般是:划归—定向—联想—分析—观察.如表1: 表1:

例1 、求实数x ,使

x

x 1

-

+

x

11-=x .

分析:由b c a 2=+,可以联想到等差中项的概念,即2

x

x

x 1-

x

11-的等差

中项,变

x

x 1-

x 11-

成d x -2、d x

+2。 解:

x

x 1-

+

x 1

1-=22x ?,

∴2

x

x

x 1-,

x

1

1-

的等差中项. 设

x

x 1-

=2

x

d - ①, x 11-=2

x

d + ○2

22-○12,得2

121-=x d ○3

○3代入○1,整理得2

11

???

? ??--x x =0, 解得2

5

1±=

x . x >0,∴ 2

5

1±=

x . (二)数形结合的思想

数形结合是根据数学题目中的条件和问题的联系,分析其中蕴含的代数信息和几何意义,结合相关公式定理将两者巧妙地结合在一起的方法。既研究“数”的时候结合“形”,研究“形”时结合“数”,从而使问题简化。

例2、直线L 的方程为:x =-2p (p >0),椭圆中心D (2+2p

,0),焦点在x 轴上,长

半轴为2,短半轴为1,它的左顶点为A 。问p 在什么范围内取值,椭圆上有四个不同的点,它们中每一个点到点A 的距离等于该点到直线L 的距离?①

分析:由到点A 的距离等于到直线L 的距离,从而想到抛物线定义,进而将问题转化为抛物线和椭圆有四个交点,两方程联立求解。本题将有交点的几何问题转化成方程有解的代数问题。

解:由已知得:a =2,b =1, A (

2

p

,0),设椭圆与双曲线方程,有: ???

????=++-=14)]22([222

2y p x px

y ∴2

x -(4-7p )x +(2p +4

2

p )=0

∴?=16-64p +482p >0,即32p -4p +1>0,得:p <3

1

或p >1。

结合范围(2p ,4+2

p )内两根,设)(x f =2

x -(4-7p )x +(2p +42p ),

2p <274p -<4+2p 即p <21

,且)2(p f >0、

)2

4(p

f +>0即p >-4+23。

∴-4+23

(三)函数和方程的思想

函数和方程的思想是两个概念。函数思想,即利用函数去解决问题的方法,主要利

用函数的性质。数量关系入手方程思想,只从问题的

,方法建立方程使问题解决的。 例3、(2012 山东卷)已知等差数列}{n a 的前5项和为105,且5102a a =. ⑴求数列}{n a 的通项公式;

⑵对任意*N m ∈,将数列}{n a 中不大于m 27的项的个数记为m b .求数列}{n b 的前m 项和m S .

解:⑴由已知得: ???+=+=+)4(29105

105111d a d a d a

解得1a =7,1d =7,

∴通项公式为n n a n 77)1(7=?-+=.

⑵由m n n a 277≤=,得127-≤m n , 即127-=m m b .

497

712121==-++m m k k b b , ∴}{n b 是公比为49的等比数列,

∴()

()

14948

74914917-=--=n m m S

(四)分类讨论的思想

分类讨论的思想,当问题出现多种情况无法继续综合分析时,需要对各种情况加以

分类,求出各种情况下的结论的思想。注意:分类对象的确定性,标准的统一性,划分

科学性,做到不遗漏、不重复。

例4、设1∈=x R x A {R x B ∈=}06)1(322>++-a x a x ,B A D =, 求集合D (用区间表示);(2012 广东理). 解:B :06)1(322>++-a x a x

因为[])13)(3(3624)1(32

--=??-+-=?a a a a ,且1

1当13

1<

1?,此时06)1(322=++-a x a x 有两根,设为1x 、2x ,且1x <2x ,则4)13)(3(3)1(31---+=

a a a x ,4

)

13)(3(3)1(32--++=a a a x

于是{1x x x B <=或}2x x >. 当310<

3

21>+=+a x x ,0321>=a x x ,所以012>>x x ,此时),(),0(21+∞?=x x D ;当0≤a 时,0321≤=a x x ,所以0,021>≤x x ,此时),(2+∞=x D .

综上所述,当131<

当31

0<

13)(3(3)1(31---+=a a a x ,

4

)

13)(3(3)1(32--++=

a a a x .

三、数学方法及应用

等几种方法、数学归纳法、三角法数学方法有待定系数法在中学阶段经常用到的。

下面就常用的几种方法做出分析。 (一)待定系数法

待定系数法就是根据题目中所给变量的函数关系,设出未知数,然后根据题目要求确定未知数的方法。主要是寻找关系式。

例5、已知函数1

3422+++=x n

x mx y ,[]1,7-∈y ,求n m ,。

解 变形为:()0)(342=-+--n y x x m y ,由已知得0≠-m y .

0))((4)34(2≥----=?∴n y m y 即 )12()(2-++-mn y n m y 0≤ ○

1 不等式○

1的解集为(-1,7),则-1、7是方程)12()(2-++-mn y n m y =0的两根,代入得:???=-++-=-+++012)(749012)(1mn n m mn n m 得???==15n m 或???==51

n m

(二)数学归纳法

数学归纳法可以用来证明与n (n ∈N )相关的命题。过程分三步:第一步是证明当n =0n (0n =0或1)时结论成立;第二步是假设在n =k 时命题成立,证明n =k +1时命题也成立;第三步,由第一、二步就可以断定对一切n ≥0n 的自然数结论都正确。 运用数学归纳法证明问题时,关键是第二步的推理,在这步要正确的推导和运算,

逐步缩小自己解得的结果与结论之间的差距,从而证明题目结论的成立。

例6、(2012 重庆)设数列}{n a 的前n 项和n S 满足121a S a S n n +=+,其中02≠a 。 求证:}{n a 是首项为1的等比数列;

证明:用数学归纳法证明1

2

-=n n a a

当1=n 时,1122a S a S += ,得11221a a a a a +=+,得122a a a =,又02≠a ,得11=a ,所以结论成立。

假设k n =时命题成立, 1

2

-=k k a a 。则,

k k k S S a -=++11=()-+12a S a k ()112a S a k +-=)(12--k k S S a =k a a 2=k

a 2

所以1+=k n 时,结论也成立。

例7、数列}{n a 通项公式是n n n a 23-=,*N n ∈,且11=a .证明:对一切n *∈N ,有

2

31...1121<+++n a a a . 证明:因为n n n n n 2223233111=?≥?=----,所以1323-≥-n n n ,所以

13

1

1-≤n n a ○

1当1=n 时,左边111==a ,右边2

3

=,命题成立.

○2假设当k n =(2≥k ,N k ∈)时成立,即2

3

2311

<-∑

=k

i i i 成立.为了证明当1+=k n 时命题也成立,我们先证明不等式:

11231++-i i

i 231

31-?

(1≥i ,N i ∈). 要证11231++-i i

i 2

331

1?-+,需证i i i i 23323111?->-+++,需证32->-,该式子明显成立,所以112

31++-i i

i 231

31-?. 当1+=k n 时,∑∑∑===-+<-+-=-k i i i k

i i i k

i i i 1

11231311231231231<23

23311=?+,所以命题在1+=k n 时也成立.

综合○

1○2,可得,对一切正整数n ,有2

3

1...1121<+++n a a a . (三)反证法

反证法不想前面介绍的方法,是一种间接论证的方法,在肯定题设的基础上否定结

论,推出与假设矛盾的结论,从而证明原命题成立。 反证法证明分三步:

第一步:假设结论错误,推出相反的结论;

第二步:再假设的基础上,正确推导,找出矛盾; 第三步:假设不成立,证明原命题成立。

运用反证法作题时,一定要用假设进行推导。如果证明的题目中出现“至少”、“至多”、“不全是”、“唯一”等这样的字眼时,可以尝试用反证法进行证明,进而使问题简单化、清晰化,即正难则反。

常见的否定有: 至多有一个??→?反面全都是,至少有一个??→?反面都不,不全是??→?反面全是,唯一??→?反面至少有两个。

例8、若下列方程:03442=+-+a ax x ,0)1(22=+--a x a x ,0222=-+a ax x 至少有一个方程有实根。求实数a 的取值范围。①

分析:至少有一个方程有实根,反面就是:三个方程都没有实根。先求出反面情况时a 的范围,再求补集就是所要的答案了。

解:设三个方程都没有实根,则有: ?????<--=?<--=?<-+=?0)2(4404)1(0)34(41623

2

2221a a a a a a

解得: ???

?

?

??

??<<>-<<<-02,3112123a a a a 或 即123-<<-a

所以当2

3

1-≤-≥a a 或时,三个方程至少有一个方程有实根。

例9、已知等差数列a 、b 、c 中的三个数都是正数,且公差不为零。求证:它们的

倒数组成的数列a 1、b

1

、c 1不可能是等差数列。

分析:本体的题断是否定式,可以用反证法证明。

证明:假设a 1、b

1

、c 1成等差数列,则-b 1a 1=-c 1b 1,即cb c b ab b a -=

-。 因为0≠-=-c b b a ,0,0,0>>>c b a ,所以bc

ab 1

1=

,即a =c 。 这与a 、b 、c 是公差不为零的等差数列矛盾,故a 1、b

1

、c 1不可能是等差数列。

(四)三角法

所谓三角法,就是把所求问题转化为含有三角函数问题的方法.使复杂问题简单化,从

而更好的解题。再用三角法解题的时候,要特别注意化为三角函数后未知量的取值范围,慎重审题.

例10、 设R y x ∈、且x y x 62322=+,求22y x +的范围。 解:对条件和结论都可以进行三角换元(转化为三角问题):

由x y x 6232

2=+得132)1(22=+-y x ,设??

???==-ααsin 26

cos 1y x ,则 22y x +==+++ααα22sin 23cos cos 21αα2cos 2

1

cos 2231-++

]4,0[25

cos 2cos 212∈++-=αα

所以22y x +的范围是:4022≤+≤y x 。 (五)构造法

构造法是这些数学方法中最难掌握的一种方法,它要求根据题目的要求,以结论作

为思考的方向,寻找新的思维形式的数学方法。构造法适用于常规思维解决不了的问题。构造法的使用,需要大量的做题技巧和发散的思维形式,而且基础知识必须扎实,对学生的综合能力要求很高。

例11、已知函数)(x f y =是自原点出发的一条折线。当1+≤≤n y n (n =1,2,…)时。该图像是斜率为n b 的线段(其中正常数1≠b ),该数列{}n x 由n x f n =)((n =1,2,…)定义。

⑴求:1x 、2x 和n x 的表达式。

⑵求)(x f 的函数表达式,并写出其定义域。

⑴解:由题意得,0)0(=f ,又由1)(1=x f ,当10≤≤y 时,函数)(x f y =的图像是斜率为10=b 的线段,故由

10

)

0()(11=--x f x f ,得,1x =1. 又由2)(2=x f ,当21≤≤y 时,

函数)(x f y =的图像是斜率为b 的线段,故由

b x x x f x f =--1

212)()(得, b x 1

12+=。

设00=x ,由函数)(x f y =的图像中第n 段线段的斜率为1-n b ,故得

111)()(---=--n n n n n b x x x f x f 。

又n x f n =)(,1)(1-=-n x f n ,所以1

11--???

??=-n n n b x x (n =1,2,…)。由此可知数列{1--n n x x }为等比数列,其首相为1,公比为

b

1

。 因1≠b ,得=n x )(...)()(01211x x x x x x n n n n -++-+----=1

)1

(1

---b b b n 。 ⑵欲求)(x f y =的表达式,由于其图像为折线,因而)(x f y =应是分段函数。要求函数定义域,需对n x 的取值范围进行分类讨论,即需考察当∞→n 时n x 的极限。 当10≤≤y 时,从(1)可知x y =,即当10≤≤x 时,)(x f =x ;当1+≤≤n y n ,即当1-≤≤n n x x x 时,由(1)可知)(x f =)(n n x x b n -+ (1-≤≤n n x x x ,n =1,2,…)

为求函数)(x f 的定义域,须对1

)1(1

--=-b b b x n n (n =1,2,…)求极限 当1>b 时,=∞→n n x lim ∞→n lim 1

)1(1

---b b b n =1-b b ;

当10<

1

)1(1

---b b b n ∞→.

综上,当1>b 时,)(x f y =的定义域为??

????

-1,0b b ;当10<

四、小结

本文主要对数学思想和方法进行了简单的分析,加深对数学思想和方法本质的深层次的理解,使在做题和处理数学问题时可以灵活运用相关的数学思想和方法,提高数学素质。

参考文献

[1]陈彤,陈淑珍,高中代数常用解题方法[M],东方出版中心,2003,8,19-21. [2]王培德,数学思想应用及探究—构建教学[M],人民教育出版社,2003, 56-78. [3]赵小云,叶立军,数学化归思维论[M],科学出版社,2005,5-9.

[4]刘晓玫,谈数学思想方法在数学教育中的作用[J],首都师范大学学报,2012第2期. [5]马学芝,对数学思想和方法几个问题的探讨[J],数学通报,1994第7期.

致谢

历时将近两个月的时间终于将这篇论文写完,在论文的写作过程中虽然遇到了无数的困难和障碍,但都在同学和老师的帮助下安然度过。为此,我要强烈感谢我的论文指导老师—安立坚老师,他对我论文题目的选定、论文写作和修改进行了无私的指导和帮助。

感谢这篇论文所涉及到的各位学者。本文引用了数位学者的研究文献,如果没有各位学者的研究成果的帮助和启发,我将很难完成本篇论文的写作。

由于本人的学术水平有限,所写论文难免有不足之处,敬请各位老师和学友批评、指正。

浅谈数学思想方法教学

浅谈数学思想方法教学 发表时间:2015-06-17T17:13:25.433Z 来源:《少年智力开发报》2014-2015学年第13期供稿作者:黄娜 [导读] 数学思想是分析、处理和解决数学问题的根本想法,是对数学规律的理性认识. 山东郯城县郯城街道办事处初级中学黄娜 一、数学思想方法教学的心理学意义 “不论我们选教什么学科,务必使学生理解该学科的基本结构.”所谓基本结构就是指“基本的、统一的观点,或者是一般的、基本的原理.”“学习结构就是学习事物是怎样相互关联的.”数学思想与方法为数学学科的一般原理的重要组成部分.下面从基本结构学说中来看数学思想、方法教学所具有的重要意义. 第一.“懂得基本原理使得学科更容易理解”.心理学认为“由于认知结构中原有的有关观念在包摄和概括水平上高于新学习的知识,因而新知识与旧知识所构成的这种类属关系又可称为下位关系,这种学习便称为下位学习.”当学生掌握了一些数学思想、方法,再去学习相关的数学知识,就属于下位学习了.下位学习所学知识“具有足够的稳定性,有利于牢固地固定新学习的意义,”即使新知识能够较顺利地纳入到学生已有的认知结构中去.学生学习了数学思想、方法就能够更好地理解和掌握数学内容. 第二.有利于记忆.除非把一件件事情放进构造得好的模型里面,否则很快就会忘记.学习基本原理的目的,就在于保证记忆的丧失不是全部丧失,而遗留下来的东西将使我们在需要的时候得以把一件件事情重新构思起来.高明的理论不仅是现在用以理解现象的工具,而且也是明天用以回忆那个现象的工具. 由此可见,数学思想、方法作为数学学科的“一般原理”,在数学学习中是至关重要的.无怪乎有人认为,对于中学生“不管他们将来从事什么业务工作,唯有深深地铭刻于头脑中的数学的精神、数学的思维方法、研究方法,却随时随地发生作用,使他们受益终生.” 第三.学习基本原理有利于“原理和态度的迁移”.这种类型的迁移应该是教育过程的核心——用基本的和一般的观念来不断扩大和加深知识.曹才翰教授也认为,“如果学生认知结构中具有较高抽象、概括水平的观念,对于新学习是有利的,”“只有概括的、巩固的和清晰的知识才能实现迁移.”美国心理学家贾德通过实验证明,“学习迁移的发生应有一个先决条件,就是学生需先掌握原理,形成类比,才能迁移到具体的类似学习中.”学生学习数学思想、方法有利于实现学习迁移,特别是原理和态度的迁移,从而可以较快地提高学习质量和数学能力. 第四.强调结构和原理的学习,“能够缩短‘高级’知识和‘初级’知识之间的间隙.”一般地讲,初等数学与高等数学的界限还是比较清楚的,特别是中学数学的许多具体内容在高等数学中不再出现了,有些术语如方程、函数等在高等数学中要赋予它们以新的涵义.而在高等数学中几乎全部保留下来的只有中学数学思想和方法以及与其关系密切的内容,如集合、对应等.因此,数学思想、方法是联结中学数学与高等数学的一条红线. 二、中学数学教学内容的层次 中学数学教学内容从总体上可以分为两个层次:一个称为表层知识,另一个称为深层知识.表层知识包括概念、性质、法则、公式、公理、定理等数学的基本知识和基本技能,深层知识主要指数学思想和数学方法. 表层知识是深层知识的基础,是教学大纲中明确规定的,教材中明确给出的,以及具有较强操作性的知识.学生只有通过对教材的学习,在掌握和理解了一定的表层知识后,才能进一步的学习和领悟相关的深层知识. 深层知识蕴含于表层知识之中,是数学的精髓,它支撑和统帅着表层知识.教师必须在讲授表层知识的过程中不断地渗透相关的深层知识,让学生在掌握表层知识的同时,领悟到深层知识,才能使学生的表层知识达到一个质的“飞跃”,从而使数学教学超脱“题海”之苦,使其更富有朝气和创造性.那种只重视讲授表层知识,而不注重渗透数学思想、方法的教学,是不完备的教学,它不利于学生对所学知识的真正理解和掌握,使学生的知识水平永远停留在一个初级阶段,难以提高;反之,如果单纯强调数学思想和方法,而忽略表层知识的教学,就会使教学流于形式,成为无源之水,无本之木,学生也难以领略到深层知识的真谛.因此,数学思想、方法的教学应与整个表层知识的讲授融为一体,使学生逐步掌握有关的深层知识,提高数学能力,形成良好的数学素质. 三、中学数学中的主要数学思想和方法 数学思想是分析、处理和解决数学问题的根本想法,是对数学规律的理性认识.由于中学生认知能力和中学数学教学内容的限制,只能将部分重要的数学思想落实到数学教学过程中,而对有些数学思想不宜要求过高.我们认为,在中学数学中应予以重视的数学思想主要有三个:集合思想、化归思想和对应思想.其理由是: (1)这三个思想几乎包摄了全部中学数学内容; (2)符合中学生的思维能力及他们的实际生活经验,易于被他们理解和掌握; (3)在中学数学教学中,运用这些思想分析、处理和解决数学问题的机会比较多; (4)掌握这些思想可以为进一步学习高等数学打下较好的基础. 此外,符号化思想、公理化思想以及极限思想等在中学数学中也不同程度地有所体现,应依据具体情况在教学中予以渗透. 数学方法是分析、处理和解决数学问题的策略,这些策略与人们的数学知识,经验以及数学思想掌握情况密切相关.从有利于中学数学教学出发,本着数量不宜过多原则,我们认为目前应予以重视的数学方法有:数学模型法、数形结合法、变换法、函数法和类分法等.一般讲,中学数学中分析、处理和解决数学问题的活动是在数学思想指导下,运用数学方法,通过一系列数学技能操作来完成的. 四、数学思想方法的教学模式 数学表层知识与深层知识具有相辅相成的关系,这就决定了他们在教学中的辩证统一性.基于上述认识,我们给出数学思想方法教学的一个教学模式: 操作——掌握——领悟 对此模式作如下说明: (1)数学思想、方法教学要求教师较好地掌握有关的深层知识,以保证在教学过程中有明确的教学目的; (2)“操作”是指表层知识教学,即基本知识与技能的教学.“操作”是数学思想、方法教学的基础; (3)“掌握”是指在表层知识教学过程中,学生对表层知识的掌握.学生掌握了一定量的数学表层知识,是学生能够接受相关深层知识

浅谈初中数学思想方法的教学

浅谈初中数学思想方法的教学 摘要:开展数学思想方法教育应作为新课改中所必须把握的教学要求,它是数学教育教学本身的需要,是以人为本的教育理念下培养学生素养为目标的需要,是提高学生解题能力的需要。初中数学教学中要注意在知识发生过程中渗透数学思想方法,在思维教学活动过程中挖掘数学思想方法,在问题解决过程中强化数学思想方法,并及时总结以逐步内化数学思想方法。 关键词:数学思想方法中学数学渗透挖掘强化内化 一、对数学思想方法的认识。 所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识。所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映。数学思想是数学的灵魂,数学方法是数学的行为。运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程序时就产生了质的飞跃,从而上升为数学思想。若把数学知识看作一幅构思巧妙的蓝图而建筑起来的一座宏伟大厦,那么数学方法相当于建筑施工的手段,而这张蓝图就相当于数学思想。 数学思想方法是从数学内容中提炼出来的数学学科的精髓,是将数学知识转化为数学能力的桥梁。初中数学思想方法教育,是培养和提高学生素质的重要内容。新的《课程标准》突出强调:“在教学中,应当引导学生在学好概念的基础上掌握数学的规律(包括法则、性质、公式、公理、定理、数学思想和方法)。”因此,开展数学思想方法教育应作为新课改中所必须把握的教学要求。 中学数学知识结构涵盖了辩证思想的理念,反映出数学基本概念和各知识点所代表的实体同抽象的数学思想方法之间的相互关系。数学实体内部各单元之间相互渗透和维系的关系,升华为具有普遍意义的一般规律,便形成相对的数学思想方法,即对数学知识整体性的理解。数学思想方法确立后,便超越了具体的数学概念和内容,只以抽象的形式而存在,控制及调整具体结论的建立、联系和组织,并以其为指引将数学知识灵活地运用到一切适合的范畴中去解决问题。数学思想方法不仅会对数学思维活动、数学审美活动起着指导作角,而且会对个体的世界观、方法论产生深刻影响,形成数学学习效果的广泛迁移,甚至包括从数学领域向非数学领域的迁移,实现思维能力和思想素质的飞跃。 可见,良好的数学知识结构不完全取决于教材内容和知识点的数量,更应注重数学知识的联系、结合和组织方式,把握结构的层次和程序展开后所表现的内在规律。数学思想方法能够优化这种组织方式,使各部分数学知识融合成有机的整体,发挥其重要的指导作用。因此,新课标明确提出开展数学思想方法的教学要求,旨在引导学生去把握数学知识结构的核心和灵魂,其重要意义显而易见。 那么,初中数学思想方法有哪些呢? 二、认识初中数学思想方法。 初中数学中蕴含多种的数学思想方法,但最基本的数学思想方法是数形结合的思想,分类讨论思想、转化的思想、函数的思想,突出这些基本思想方法,就相当于抓住了中学数学知识的精髓。 1、数形结合的思想数形结合是一种重要的数学思想方法,其应用广泛,灵活巧妙。”数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括[1]。在数学教学中,许多定律、定理及公式等常可以用图形来描述。而利用图形的直观,则可以由抽象变具体,模糊变清晰,使数学问题的难度下降,从而可以从图形中找到有创意的解题思路。如代数列方程解应用题中的行程问题,往往借助几何图形,靠图形感知来”支持”抽象的思维过程,从而寻求数量之间的相依关系。例如:小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米,如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几 依据线路图,我们可以找出其中的等量关系 S小明=S小彬+10,然后设未知数列方程即可。 2、分类讨论的思想分类讨论思想是根据数学对象的本质属性的相同点和不同点,将数学对象区分为不同种类的数学思想。对数学内容进行分类,可以降低学习难度,增强学习的针对性。因此,在教学中应启发学生按不同的情况去对同一对象进行能够分类,帮助他们掌握好分类的方法原

高中数学解题思想之等价变换思想.

等价转化思想方法 等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。历年高考,等价转化思想无处不见,我们要不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。 转化有等价转化与非等价转化。等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。非等价转化其过程是充分或必要的,要对结论进行必要的修正(如无理方程化有理方程要求验根),它能给人带来思维的闪光点,找到解决问题的突破口。我们在应用时一定要注意转化的等价性与非等价性的不同要求,实施等价转化时确保其等价性,保证逻辑上的正确。 著名的数学家,莫斯科大学教授C.A.雅洁卡娅曾在一次向数学奥林匹克参赛者发表《什么叫解题》的演讲时提出:“解题就是把要解题转化为已经解过的题”。数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。 等价转化思想方法的特点是具有灵活性和多样性。在应用等价转化的思想方法去解决数学问题时,没有一个统一的模式去进行。它可以在数与数、形与形、数与形之间进行转换;它可以在宏观上进行等价转化,如在分析和解决实际问题的过程中,普通语言向数学语言的翻译;它可以在符号系统内部实施转换,即所说的恒等变形。消去法、换元法、数形结合法、求值求范围问题等等,都体现了等价转化思想,我们更是经常在函数、方程、不等式之间进行等价转化。可以说,等价转化是将恒等变形在代数式方面的形变上升到保持命题的真假不变。由于其多样性和灵活性,我们要合理地设计好转化的途径和方法,避免死搬硬套题型。 在数学操作中实施等价转化时,我们要遵循熟悉化、简单化、直观化、标准化的原则,即把我们遇到的问题,通过转化变成我们比较熟悉的问题来处理;或者将较为繁琐、复杂的问题,变成比较简单的问题,比如从超越式到代数式、从无理式到有理式、从分式到整式…等;或者比较难以解决、比较抽象的问题,转化为比较直观的问题,以便准确把握问题的求解过程,比如数形结合法;或者从非标准型向标准型进行转化。按照这些原则进行数学操作,转化过程省时省力,有如顺水推舟,经常渗透等价转化思想,可以提高解题的水平和能力。 Ⅰ、再现性题组: 1. f(x是R上的奇函数,f(x+2=f(x,当0≤x≤1时,f(x=x,则f(7.5等 于_____。 A. 0.5 B. -0.5 C. 1.5 D. -1.5

高中数学知识点以及解题方法大全

前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案…………………………………… 前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去 法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、 归纳和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化 归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化( 第一章高中数学解题基本方法 一、配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b) 2 =a 2 +2ab+b 2 ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 +b 2 =(a+b) 2 -2ab=(a-b) 2 +2ab; a 2 +ab+b 2 =(a+b) 2 -ab=(a-b) 2 +3ab=(a+ b 2) 2 +( 3 2b) 2 ; a 2 +b 2 +c 2 +ab+bc+ca= 1 2[(a+b) 2 +(b+c) 2 +(c+a) 2 ] a 2 +b 2 +c 2 =(a+b+c) 2 -2(ab+bc+ca)=(a+b-c) 2 -2(ab-bc-ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα) 2 ; x 2 + 1 2 x=(x+ 1 x) 2 -2=(x- 1 x) 2 +2 ;……等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a n}中,a1?a5+2a3?a5+a3?a7=25,则 a3+a5=_______。 2. 方程x 2 +y 2 -4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k= 1 4或k=1 3. 已知sin 4 α+cos 4 α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log1 2 (-2x 2 +5x+3)的单调递增区间是_____。 A. (-∞, 5 4] B. [ 5 4,+∞) C. (- 1 2, 5 4] D. [ 5 4,3) 5. 已知方程x 2 +(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x 2 +y 2 =4上,则实数a=_____。 【简解】 1小题:利用等比数列性质a m p -a m p +=a m 2 ,将已知等式左边后配方(a3+a5) 2 易求。答案是:5。 2小题:配方成圆的标准方程形式(x-a) 2 +(y-b) 2 =r 2 ,解r 2 >0即可,选B。 3小题:已知等式经配方成(sin 2 α+cos 2 α) 2 -2sin 2 αcos 2 α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。 4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。 5小题:答案3-11。 Ⅱ、示范性题组: 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。 A. 23 B. 14 C. 5 D. 6 【分析】先转换为数学表达式:设长方体长宽高分别为x,y,z,则211 424 () () xy yz xz x y z ++= ++= ? ? ? ,而欲求对角线长x y z 222 ++,将其配凑成两已知式的组合形式可得。

浅谈小学数学教学中渗透数学思想方法

浅谈小学数学教学中渗透数学思想方法 发表时间:2017-08-04T10:46:43.663Z 来源:《高等教育》2016年10月作者:王雪平 [导读] 从实际发展角度分析,在小学数学教学中渗透数学思想具有十分重要的意义。 湖北省十堰市郧阳区鲍峡中心小学王雪平 摘要:在数学知识的传授中数学思想方法占据了重要的地位,从本质上分析,数学思想是人们对数学知识的整合,是一种具有稳定性的思想内容,对人们学习数学知识具有重要的推动作用。在小学数学教学中积极掌握数学思想,不仅可以增强学生的学习能力,并且也在一定程度上提高学生的理解能力,因此,从实际发展角度分析,在小学数学教学中渗透数学思想具有十分重要的意义。 关键词:小学数学;数学思想; 数学思想方法在小学数学教学中起着不可或缺的重要作用。数学的学习不仅仅在于内容知识,更重要的是在于它的思想方法的学习。在数学教学中,小学数学教师应将各类数学思想方法渗透到小学数学教学中,提高学生的数学能力。 一、在教学中渗透数学思想方法 1.通过提炼和形成概念渗透数学思想方法 数学概念是引导小学数学学习的一个重要参考依据,概念是对知识的综合概括,对于小学生而言,他们对抽象的数学知识的学习,理解起来难度比较大,教师要对学生进行具体的数学思想的教学,可以通过对概念的提炼,对学生渗透数学思想方法。数学概念是在对数学知识的整合得到的基本概念,简单而涵盖了整体想要表达的内容,通过这种概念的提炼和整合,也能够体现出数学教学中的一种思想方法,那就是归纳法。归纳既可以是对知识内容的归纳,还可以是对具体的知识概念的归纳总结,教师在教学中,可以引导学生通过对具体的知识特点的总结,加强对学生的知识归纳能力培养,在这个过程中,学生不仅能够深入认识到数学归纳的思想,同时也能够对数学概念有更全面的理解。 2.通过引导学生探索规律渗透数学思想方法 规律的探索也是对学生数学思想的一种培养,教师只有在教学中,培养学生探索知识中存在的规律,通过对规律的研究,提升学生对知识的理解能力。比如我们在讲到比较数的大小的课程时,就可以充分运用教师的引导的方法,在课程开始之前,教师可以先给同学们列举一些案例,在这个过程中也认识到数学的思想方法。 3.通过数学活动的操作实践渗透数学思想方法 数学知识有很多都是比较抽象的,一些抽象的数字知识可以用图形表现出来,同时,也可以在教学中加入一些具体的实践的内容,通过实践做好对数学知识的解释,并且在实践中给学生渗透进一些数学思想。例如,小学数学中讲到规律的认识,就可以运用具体的实践活动来引导学生认识规律。“规律”这个词对于小学生来说是抽象的,难懂的,教师可以把生活中的具体问题引入到规律的解答中来。“国庆节就要到了,学校里买了很多花摆放到国旗杆下,有黄色的,有红色的,小朋友们可以看一看,这些花的摆放有没有什么特点呢?”通过提出这个问题,引导小学生观察花盆的摆放次序是红色和黄色的花交错摆放的。这就是一种摆放的规律,小朋友们认识到什么是具体的规律以后,也可以自己按照规律做一些事情,进行一些具体的实践,来充分认识规律的效应。 4.通过引导学生解决问题渗透数学思想方法 数学学习应该是一个主动的学习过程,对于数学知识的讲解,大多数是需要通过一个一个的典型例题来实现的,因此,数学知识的学习,就是一个发现问题解决问题的过程。教师要充分认识到数学知识教学的特点,不仅仅要带领同学们认识问题,解决问题,还要给学生机会,引导学生自己主动解决问题。通过解决问题这种形式,也能够实现对学生的数学思想的渗透。从解决问题的角度做好对数学思想的灌输渗透,以类比思想方法的使用为例,在小学数学教材中,类比思想解题方法运用多的是在一些公式,定理的推导过程中,例如,通过长方形的面积公式推导出三角形的面积公式,这就是一种类比思想的运用,而这种类比思想的渗透,和例题是分不开的。教师在讲授三角形面积的计算公式时,让学生做相应的例题,先解答出长方形的面积,再对三角形的面积和长方形的面积进行对比,通过这种类比和推敲,能够引导学生认识到三角形面积的计算。这就是要在例题的解答中发现规律,解决问题,实现了数学思想的渗透。 二、数学思想方法渗透于学生的课后生活中 1、将数学思想方法渗透在课后作业中 小学数学教师在布置课后作业时应将知识与教学思想方法的巩固放到首要位置。可以布置一些简单的应用题,巩固所学知识以及数学思想方法。例如,有6位小朋友要去动物园游玩,每人门票3元,那么小朋友总共需要带多少钱呢?这是学生平时练习的基本习题,学生解答后,教师可以引导学生利用发散思维自主提问,将这些想象空间留到学生的课后作业中,不仅有助于学生巩固与理解所学的知识,而且可以培养学生的发散思维. 2、使学生在生活体验中理解数学思想方法 小学数学中绝大部分知识是源于生活的,将数学思维运用于具体的生活中,可以提升学生解决实际问题的能力。因此,教师应注重培养学生的数学实践能力,让学生在生活中运用数学知识的同时理解数学思想方法。 作为小学数学教师,我们必须进一步更新观念,充分认识数学思想方法在数学教育中的价值和在培养学生数学素养方面的作用,把渗透数学思想方法真正纳人教与学的目标。同时,努力提高自身的数学素养,深入钻研教材,充分挖掘显性内容中隐含的数学思想方法,抓准数学思想方法与显性知识的结合点,精心设计教学情境,优化教学过程,采用教者有意学者无心的方式,不直接点明所蕴涵的数学思想方法,有机地,自然而然地渗透,着意引导学生在数学活动中,在学习数学理解数学的过程中逐步地感悟数学思想方法,使他们经过几年、十几年潜移默化的逐步积累,对数学思想方法的理解由浅人深由表及里以逐步达到一定的高度,促进科学思维品质的形成,实现数学素养的提升。

浅谈初中数学思想方法在教学中的渗透

浅谈初中数学思想方法在教学中的渗透 数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。通过数学思想的培养,数学的能力才会有一个大幅度的提高。掌握数学思想,就是掌握数学的精髓。 摘要:随着新一轮课程改革的开展与推进,人们越来越重视数学思想方法的渗透. 结合自己的教学经验,阐述了思想方法如何渗透入初中数学教学中的一些想法。 关键词:初中数学渗透数学思想 数学思想方法是初中数学教学的重要组成部分,是比数学知识传授更为重要的教学内容,因为知识的作用是有限的,而方法的作用往往能够涉及整个数学领域。正是因为其有着广泛的普遍适用性,有着超越知识层面,并且能够让人们在数学探究的征途上从未知到已知的可能性,因此在新课程改革中被赋予了相当的重要性。 事实上,2011年新颁布的《义务教育数学课程标准》,再一次将基本思想写入其中。当然令人瞩目的是初中数学还进一步提出了“基本数学活动经验”――其与数学思想方法也有着密切的关系。这样就将传统上的“双基”扩展为了“四基”,使得初中数学教学的内涵与外延都得到了进一步的丰富。

随着新一轮课程改革的开展与推进,人们越来越重视数学思想方法的渗透。那么,在初中数学教学中有哪些思想方法需要我们去重视呢? 其一是数学方法。顾名思义,这一类的思想方法与数学内容有着密切的关系,也可以认为是离开了数学知识就谈不上这些方法的运用。比如解方程中常常用到的配方法,其是通过将一元二次方程配成完全平方式,以得到一元二次方程的根的方法,其经典运用是一元二次方程求根公式的得出;再如换元法、消元法,前者是指把方程中的某个因式看成一个整体,然后用另一个变量去代替它,从而使问题得到解决。后者是指通过加减、代入等方法,使得方程中的未知数变少的方法。在复杂方程中运用这些方法可以化难为易。再如几何中的辅助线方法也是解决许多几何难题的灵丹妙药。 其二是普遍适用性的科学方法。例如我们数学中常用的归纳法,就有完全归纳法和不完全归纳法两种,数学上的很多规律其实最初都来自于不完全归纳法,因此在探究类的知识发生过程中,都可以用不完全归纳法来进行一些规律的猜想。再如类比、反证等方法,也是初中数学常用的方法,运用这些方法的最大好处是,可以让学生领略到在初中数学中进行逻辑推理的力量与美感。根据笔者的不完全调查,学生在进行推理后如果能够成功地解决一个数学难题,其心情是十分喜悦的,而最大的感受就是通过一环套一环的推理,能够顺利地由已知抵达未知。 其三就是我们常说的数学思想。我国当代数学教育专家郑毓信、

初中思想方法初中数学教学

《初中思想方法与初中数学教学》的作业: 1试述思想方法在初中数学中的作用,在教学中你是如何渗透转化、分类讨论思想和数形结合思想的,请各举一教学片段说明。 在初中数学教学中,渗透转化思想,可以提高学生分析解决问题的能力; 所谓“转化思想”是指把待解决或未解决的问题,通过转化,归结到已经解决或比较容易解决的问题中去,最终使问题得到解决的一种思想方法。转化思想是初中数学中常见的一种数学思想,它的应用十分广泛,我们在数学学习过程中,常常把复杂的问题转化为简单的问题,把生疏的问题转化为熟悉的问题。数学问题的解决过程就是一系列转化的过程,转化是化繁为简,化难为易,化未知为已知的有力手段,是解决问题的一种最基本的思想,对提高学生分析解决问题的能力有积极的促进作用。 我们对转化思想并不陌生,中学数学中常用的化高次为低次、化多元为一元,都是转化思想的体现。在具体内容上,有加减法的转化、乘除法的转化、乘方与开方的转化、数形转化等等。例如:初中数学“有理数的减法”和“有理数的除法”这两节教学内容中,教材是通过“议一议”的形式,使学生在自主探究和合作交流的过程中,经历把有理数的减法转化为加法、把有理数的除法转化为乘法的过程,“减去一个数等于加上这个数的相反数”,“除以一个数等于乘以这个数的倒数”,这个地方虽然很简单,但却充分体现了把“没有学过的知识”转化为“已经学过的知识”来加以解决,学生一旦掌握了这种解决问题的策略,今后无论遇到多么难、多么复杂的问题,都会自然而然地想到把“不会的”转化为“会的”、“已经掌握的”知识来加以解决,这符合学生原有认知规律,作为教师,我们不能因为简单而忽视它的教学,实践告诉我们,往往是越简单、越浅显的例

初中数学思想方法大全

一、宏观型思想方法 数学思想是数学基础知识、基本技能的本质体现,是形成数学能力、数学意识的桥梁,是灵活应用数学知识、技能的灵魂。 (一)、转化(化归)思想 解决数学问题就是一个不断转化的过程,把问题进行变换,使之化繁为简、化难为易、化生疏为熟悉,变未知为已知,从而使问题得以解决。 不是对原来的问题直接解答,而是想方设法对它进行变形,直到把它转化成某个(某几个)已经解决了的问题为止。通过转化可使原条件中隐含的因素显露出来,从而缩短已知条件和结论之间的距离,找出它们之间内在的联系,以便应用有关方法将问题解决。 “转化”的思想是一种最基本的数学思想。数学解题过程的实质就是转化过程,具体的说,就是把“新知识”转化为“旧知识”,把“未知”转化为“已知”,把“抽象”转化为“具体”,把“复杂问题”转化为“简单问题”,把“高次”转化为“低次”,在不断的相互转化中使问题得到解决。 可运用联想类比实现转化、利用“换元”、“添线”、消元法,配方法,进行构造变形实现转化、数形结合,实现转化。一般转化为特殊,有些代数问题,通过构造图形,化抽象为具体,借助直观启发思维,转化为易解的几何问题。有些不易解决的几何题通过辅助线转化为代数三角的知识来证明,有些结构比较复杂的问题,可以简化题中某一条件,甚至暂时撇开不顾,先考虑一个简化的问题,这种简化题对于证明原题常常能起到引路的作用。把实际问题转化为数学问题。结合解题进行化归思想方法的训练的做法:a、化繁为简;b、化高维为低维;c、化抽象为具体;d、化非规范性问题为规范性问题;e、化数为形;f、化实际问题为数学问题; g、化综合为单一;h、化一般为特殊。 有加减法的转化,乘除法的转化,乘方与开方的转化,添辅助线,设辅助元等等都是实现转化的具体手段。因此,首先要认识到常用的很多数学方法实质就是转化的方法 应用:A将未知向已知转化;B将陌生向熟知转化;C方程之间的转化;D平面图形间的转化;E空间图形与平面图形的转化;F统计图之间的相互转化。 例子:减法转化成加法(减去一个数等于加上这个数的相反数);除法转化成乘法(除以一个不等于零的数等于乘以这个数的倒数);多项式的先化简再代入求值;单项式乘单项式可化归为有理数乘法和同底数幂的乘法运算;单项式乘多项式和多项式乘多项式都可以化归为单项式乘单项式的运算;将求负数的立方根转化为求正数的立方根的相反数;实数近似运算中据问题需要取近似值,从而转化为有理数计算;将异分母分式的加减转化为同分母分式的加减;将分式的除法转化成分式的乘法;将分式方程转化为整式方程求解;将分子的次数不低于分母次数的分式用带余除法转化为整式部分和分式部分的和;将方程的复杂形式化为最简形式;通过立方程把实际问题转化为数学问题;通过解方程把未知转化为已知;把一元二次方程转化为一元一次方程求解;把二元二次方程组转化为二元一次方程组,再转化为一元一次方程从而求解;通过转化为解方程实现实数范围内二次三项式的分解、方程中字母系数的确定;角度关系的证明和计算;平行线的性质和判定;把几何问题向平行线等简单的熟悉的基本图形转化;特殊化(特殊值法、特殊位置、设项、几何中添辅助线等);图形的变换(轴对称、平移、旋转、相似变换);解斜三角形(多边形)时将其转化为解直角三角形; (二)、数形结合思想 数学的研究对象是现实世界中的数量关系(“数”)和空间形式(“形”),而“数”和“形”是相互联系、相互渗透的,一定条件下也是可以互相转化的,因此,在解决问题时,常需把同一问题的数量关系与空间形式结合起来考查,利用数的抽象严谨和形的直观表意,把抽象思维和形象思维结合起来,把数量关系问题通过图形性质进行研究,或者把图形性质问题通过数量关

高中数学常见思想方法总结

高中常见数学思想方法 方法一 函数与方程的思想方法 函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,一直是高考的热点、重点内容.函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数特征,重在对问题的变量的动态研究,从变量的运动变化、联系和发展角度拓宽解题思路.方程的思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解. 函数与方程的思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的. 【例1】 设等差数列{}n a 的前n 项的和为n S ,已知3121312,0,0a S S =><. (1)求公差d 的取值范围; (2)指出1S 、2S 、…、12S 中哪一个值最大,并说明理由. 【分析】 (1)利用公式n a 与n S 建立不等式,容易求解d 的范围;(2)利用n S 是n 的二次函数,将n S 中哪一个值最大,变成求二次函数中n 为何值时n S 取最大值的函数最值问题. 【解】(1) 由3a =12a d +=12,得到1a =12-2d , 所以12S =121a +66d =12(12-2d )+66d =144+42d >0, 13S =131a +78d =13(12-2d )+78d =156+52d <0. 解得:2437 d -<<-. (2)解法一:(函数的思想) n S =21115(1)(12)222 na n n d dn d n ++=+- =22 124124552222d d n d d ????????---- ? ????????????? 因为0d <,故212452n d ????-- ???????最小时,n S 最大.

浅谈小学数学教学中数学思想方法的渗透

浅谈小学数学教学中数学思想方法的渗透 小学数学教学内容贯穿着两条主线,数学基础知识和数学思想方法。数学基础知识是一条明线,直接用文字的形式写在教材里,反映着知识间的纵向联系。数学思想方法则是一条暗线,反映着知识间的横向联系,隐藏在基础知识的背后,需要教师加以分析、提炼才能使之显露出来。数学知识是对生活的提炼,数学思想方法是对数学知识的提炼。 美国教育心理学家布鲁纳指出:掌握基本的数学思想和方法,能使数学更易于理解和更利于记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”。在一个人的一生中,最有用的不仅是数学知识,更重要的是数学的思想和数学的意识。因此在小学数学的教学中要不失时机地对学生进行数学思想方法的渗透,掌握数学思想方法是数学学习的最高境界。 一、通过学习数学史了解数学思想方法。 小学数学思想方法主要有:化归思想、优化思想、符号化思想、集合思想、函数思想、极限思想、分类思想、概率统计思想等;归纳与演绎,分析与综合,抽象与概括,联想与猜想等方法。 数学史本身就蕴涵一些重要的数学思想和方法。例如:向学生介绍十进制计数法的由来,介绍祖冲之关于圆周率的探索史等让学生了解数学知识产生的背景和发展的过程,知道来龙去脉,也就把握了知识本源和数学思想方法。 二、通过挖掘教材体验数学思想方法。

小学教材中数学思想方法呈现隐蔽形式,教师要认真分析和研究教材,理清教材的体系和脉络,统揽教材全局,高屋建瓴,建立各类概念、知识点之间的联系,归纳和揭示其蕴含在数学知识中的数学思想方法。 极限思想在教材中有许多地方渗透,如在“自然数”、“奇数”、“偶数”这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个,初步体会“极限”思想。在循环小数这一部分内容,在教学l÷3=0.333……是一循环小数,它的小数点后面的数字是写不完的,是无限的。在直线、射线、平行线的教学时,可让学生体会线的两端是可以无限延长的。再如,在“圆的面积”这节中圆面积的求法:先把圆分成相等的两部分,再把两个半圆分成若干等分,然后把它剪开,再拼成近似于长方形的图形。如果把圆等分的份数越多,拼成的图形越接近于长方形。这时长方形的面积就越接近圆的面积了。这部分内容应让学生体会到这是一种用“无限逼近”的方法来求得圆面积的,也就是验极限思想的运用。 三、通过教学过程渗透数学思想方法。 如果在学生获得知识和解决问题的过程中能有效地引导学生经历 知识形成的过程,让学生在观察、实验、分析、抽象、概括的过程中看到知识负载的方法、蕴涵的思想,那么,学生所掌握的知识就是鲜活的,可迁移的,学生的数学素质才能得到质的飞跃。 如,在“面积与面积单位”一课教学中,当学生无法直接比较两个图形面积的大小时,引进“小方块”,并把它一个一个地铺在被比较的两个图形上,这样,不仅比较出了两个图形的大小,而且,使两个图形的面积都得到了“量化”。使形的问题转化为数的问题。在这一过程中,学生亲身体验到“小方块”所起的作用。接着又通过“小方块大小必须统一”的教学过程,使学生深刻地认识到:任何量的量化都必须有一个标准,而且标准要统一。很自然地渗透了“单位”思想。

浅谈初中数学思想方法教学

浅谈初中数学思想方法教学 初中数学教学大纲中明确指出:初中数学的基础知识主要是初中代数、几何中的概念、法则、性质、公式、公理、定理及其内容所反映出来的数学思想和方法。数学思想和方法在初中数学教学中具有不容忽视的重要地位。数学思想和方法纳入基础知识范畴,足见我国数学教育工作者已对数学思想方法的教学的重要性达成了共识。这不仅是加强数学素养培养的一项举措,也是数学基础教育现代化进程的必然与要求。这是因为数学的现代化教学,是要把数学基础教育建立在现代数学的思想基础上,并使用现代数学的方法和语言。因此,探讨数学思想方法教学的一系列问题,已成为数学现代教育研究中的一项重要课题。 一、初中数学思想方法教学的必要性 数学思想是具有总结性的奠基性的数学思维成果,初中数学教程蕴含着丰富的数学思想,例如数形结合、化归、函数、方程、分类讨论、符号与变元等等。数学方法是人们采用一定的途径、手段、行为方式表现数学思想的可操作性模式,例如初中数学中的一般性方法有消元法、代入法、图象法、归纳法;特殊性方法有配方法、拆项补项法、平行移动法等等。如果说数学思想是对数学逻辑严密性的高度概括,那么数学方法则是简洁而精确的形式化语言,讲究可操

作性。初中数学将数学思想与数学方法的结合统称为数学思想方法。长期以来,初中数学课堂的数学知识传授多于数学思想方法,数学知识是对数学内容的精华提炼,但如果没有相应的加工改造只是机械似的囫囵吞枣,数学知识便不能被顺利地转化为学生的数学能力。数学思想方法的功能在于涵盖了数学知识结构的辩证理念,是将抽象事物上升为具体的思维过程,不仅是数学知识转化为数学能力的桥梁,还能促成学生思想素质的飞跃,推动数学认知向非数学领域迁移。 二、数学思想方法在初中数学中的应用 1.从初中数学大纲中入手 教师数学知识的传递是从教学大纲中着手的,从这个角度出发,数学思想方法在初中数学教学中的应用就要从这个方面进行。首先,教师需要对教材有个充分的研究和分析,理清教材的体系和脉络;其次,建立好各知识点、知识单元和各类概念中的关系,并对其关系中存在的一般规律和内在规律进行归纳。例如在初中数学因式分解这一问题上,提公因式法、分组分解法等都是重要的教学方法。因此,从掌握这些方法出发,按照知识――方法――思想的顺序,从中提炼出数学思想方法,学生就可以从这个过程中运用这一方法来解决更多的多项式因式方面的问题,并从中形成一套完整的教学范例和模型。 2.以初中数学知识为载体

中考数学思想方法专题之整体思想

初中数学思想之整体思想 整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用. 一.数与式中的整体思想 【例1】 已知代数式3x 2-4x+6的值为9,则2463x x -+的值为 ( ) A .18 B .12 C .9 D .7 【例2】.已知114a b -=,则2227a ab b a b ab ---+的值等于( ) A.6 B.6- C. 125 D.27- 【例3】已知2002007a x =+,2002008b x =+,2002009c x =+,求多项式222a b c ab bc ac ++---的值. 二.方程(组)与不等式(组)中的整体思想 【例4】已知24122x y k x y k +=+?? +=+? ,且03x y <+<,则k 的取值范围是 【例5】已知关于x ,y 的二元一次方程组3511x ay x by -=??+=?的解为56 x y =??=?,那么关于x , y 的二元一次方程组3()()5()11x y a x y x y b x y +--=??++-=? 的解为为 【例6】.解方程 22523423x x x x +-=+ 三.函数与图象中的整体思想 【例7】已知y m +和x n -成正比例(其中m 、n 是常数)(1)求证:y 是x 的一次函数;(2)如果y =-15时,x =-1;x =7时,y =1,求这个函数的解析式 四.几何与图形中的整体思想

最新高中数学思想方法(附经典例题及详解)

最新高中数学思想 方法 经典例题

经典解析

目录 前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案……………………………………

前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳 和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思 想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。 在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

相关文档
最新文档