新编基础物理学上册16-17单元课后答案

新编基础物理学上册16-17单元课后答案
新编基础物理学上册16-17单元课后答案

第十六章

16-1 某物体辐射频率为Hz .141006?的黄光,这种辐射的能量子的能量是多大? 分析 本题考察的是辐射能量与辐射频率的关系.

解: 根据普朗克能量子公式有:

J 106.63hv -341914100.4100.6-?=???==ε

16-2 热核爆炸中火球的瞬时温度高达K 710,试估算辐射最强的波长和这种波长的能量子hv 的值。

分析 本题考察的是维恩位移定律及普朗克能量子公式的应用。

解: 将火球的辐射视为黑体辐射, 根据维恩位移定律, 可得火球辐射峰值的波长为:

)(1089.210

1089.21073

m T b m --?=?==λ 上述波长的能量子的能量为:

eV 104.29J 106.63hc

hv 3-34?=?=????===--16108

1087.61089.2103λε 16-3 假定太阳和地球都可以看成黑体,如太阳表面温度T S =6000K ,地球表面各处温度相同,试求地球的表面温度(已知太阳的半径R 0=6.96×105km ,太阳到地球的距离r =1.496×108

km )。 分析 本题是斯忒藩—玻尔兹曼定律的应用。

解:由40T M σ=

太阳的辐射总功率为

)

(1047.4)1096.6(460001067.54426284820420W R T R M P S S S ?=?????===-ππσπ

地球接受到的功率为

)(1000.2)10

496.121037.6(1047.4)2(4172116

26222

W d R P R d P P E S E S E ?=????====

ππ 把地球看作黑体,则24244E

E E E E R T R M P πσπ== )(290)1037.6(41067.51000.2442

6817

42K R P T E E E =?????==-ππσ 16-4 一波长nm 2001=λ的紫外光源和一波长nm 7002=λ的红外光源,两者的功率都是400W 。问:(1)哪个光源单位时间内产生的光子多?(2)单位时间内产生的光子数等于多少?

分析 本题考察光的粒子性及光源的功率与单位时间发射的光子数间的关系.

解: (1)光子的能量 λνc

h h E ==

设光源单位时间内产生的光子数为n ,则光源的功率

hc

w n nhc

nE w λλ===, 可见w 相同时,λ越大,n 越大,而12λλ>,所以红外光源产生的光子数多。

(2)紫外光源

)(个==s /1002.41031063.610200400208

349

11??????=--hc w n λ 红外光源

)(个==s /1008.1410

31063.610700*********

22??????=--hc w n λ 16-5 在天体物理中,一条重要辐射线的波长为21cm ,问这条辐射线相应的光子能量等于多少?

分析 本题考察光子能量的计算。

解: 光子能量

)(109.5)(105.910

211031063.662528

34eV J c

h h E ----?=?????====λν 即辐射线相应的光子能量为eV 6109.5-? 16-6 一光子的能量等于电子静能,计算其频率、波长和动量。在电磁波谱中,它属于哪种射线?

分析 本题考察光的粒子性的物理量的计算。

解: 电子静能

)(1020.81091011.9141631200J c m E --?=???==

则光子

)(1024.110

63.61020.8203414

0Hz h E ?=??==--ν )(1042.21024.11031220

8

m c -?=??==νλ )/(1073.210

42.21063.6221234

s m kg h p ??=??==---λ 它属于γ射线。

16-7 钾的光电效应红限波长是550nm, 求(1)钾电子的逸出功; (2)当用波长nm 300=λ的紫外光照射时,钾的截止电压U.

分析 本题考察的是爱因斯坦光电效应方程.根据红限波长,可以求出与该波长相应的光子能

量, 这个能量就是该金属 的逸出功. 然后根据光电效应方程就可以求出对应某一特定波长的光子的遏止电压.

解:由爱因斯坦光电效应方程

A m hv +=2max v 2

1 (1) 当光电子的初动能为零时, 有:

eV J hc

hv A 26.2)(10616.3105501031063.61998

3400=?=????===---λ (2) eV J A hc m eU 88.1)(10014.32119=?=-==-λ

2max v 所以遏止电压U=1.88V

16-8 波长为200nm 的紫外光照射到铝表面,铝的逸出功为4.2eV 。 试求:(1)出射的最快光电子的能量;(2)截止电压; (3)铝的截止波长;(4)如果入射光强度为2.02-?m W ,单位时间内打到单位上的平均光子数。

分析 本题考察的是爱因斯坦光电效应方程。

解: (1) 入射光子的能量为:

)(20.6)(1093.9102001031063.61998

34eV J c

h h E =?????==---==λν 由光电效应方程可得出射的最快光电子的能量为:

eV A hc m 00.220.420.621=-=-=λ

2max v (2) 截止电压为:

V e

eV e m U 00.200.2210===2max v (3) 铝的截止波长可由下式求得:

nm A hv A hc A hc v c 2.29520020.420.600=?=====

λλλλ (4) 光强I 与光子流平均密度N 的关系为I=Nhv , 所以有:

)(1002.210

93.90.2121819---??=?==

s m hv I N 16-9 当照射到某金属表面的入射光的波长从1λ减小到2λ(1λ和2λ均小于该金属的红限波长). 求(1)光电子的截止电压改变量.(2)当nm 2951=λ,nm 2652=λ时截止电压的改变量。 分析 本题考察光电效应方程的应用.

解 (1) 截止电压

A h m eU m -==

ν202

1v 对1λ,有 e

A e hc U -=101λ 对2λ,有 e A e hc U -=202λ 两式相减得

2

1211201020)()11(λλλλλλe hc e hc U U U -=-=-=? (2) 当nm 2951=λ,nm 2652=λ时,

(V)476.01026510295106.110)265295(1031063.6)(9

9199

83421210=??????-????=-=?-----λλλλe hc U

16-10 试求: (1)红光(cm 107-5?=λ); (2)X 射线(cm 102.5-9?=λ); (3)γ射线(cm 101.24-10?=λ)的光子的能量、动量和质量。

分析 本题考察的是光子的能量、动量和质量与光子的波长之间的关系。

解:根据光子能量公式hv =ε、光子动量公式λh p =和质量公式λεc h c M ==2进行计算可得:

16-11 用波长为λ的单色光照射某一金属表面时, 释放的光电子最大初动能为30eV, 用波长为2λ的单色光照射同一金属表面时, 释放的光电子最大初动能为10eV. 求能引起这种金属表面释放电子的入射光的最大波长为多少?

分析 本题考察的是爱因斯坦光电效应方程.根据不同波长的入射光产生的光电子的动能的大小,可以求出该金属的逸出功的大小,从而求出相应的入射光的波长.

解: 设A 为该金属的逸出功, 则有:

?????????=+=+=A hc E A hc E A hc k k 0

212λλ

λ 因此可以得到:

λλ4,100===A

hc eV A 即能引起该金属表面释放电子的最大波长为λ4.

16-12 波长0.100nm 0=λ的X 射线在碳块上受到康普顿散射, 求在900

方向上所散射的X 射线波长以及反冲电子的动能。

分析 本题考察康普顿散射公式。 根据散射角的大小可以求出散射波长, 然后根据散射前后的总的能量守恒可以求出反冲电子的动能。

解: 由康普顿散射公式

))(cos 1(024.0)cos 1(000A c m h θθλλλ-=-=-=? 由此可知散射波长为:

)(024.100.1)01(024.0A 0

0=+-=+?=λλλ

由能量守恒可知, 电子的动能应等于散射前后光子的能量之差, 即: )(291)(1066.4)11

(1700eV J hc hv hv E =?=-=-=-λλ

16-13 在康普顿散射中,入射光子的波长为0.003nm, 反冲电子的速度为0.6c , c 为真空中的光速. 求散射光子的波长及散射角.

分析 本题散射前后能量守恒, 由反冲电子和入射光子的能量差就可以求出散射光子的波长, 然后根据康普顿散射公式求出散射角.

解: 反冲电子的能量为:

202022

020225.06.01c m c m c c c m c m mc =-??? ??-=-=ε

根据能量守恒, 该能量同时也等于入射光子能量的减少, 所以有:

20025.0c m hc hc

==-ελλ

由此可以解出散射光子的波长为:

02020043.025.0A c

m h h =-=λλ

根据康普顿散射公式可得:

2

sin 2200θλλc m h =- 所以可求出散射角为:

'02462=θ

16-14 设康普顿散射实验的反射光波长为0.0711nm, 求: (1)这些光子的能量多大?(2) 在θ=1800处, 散射光子的波长和能量多大?(3)在θ=1800处, 电子的反冲能量多大?

分析 本题考察康普顿散射公式. 解: (1) )(108.21011.71031063.615118

340J c

h ---?????===λε (2) 34

12318022 6.6310 4.8610m 9.1110310

h m c λ---???===???? m 11010596.7-?=+?=λλλ

相应的散射光子的能量为:

)(1062.210596.71031063.615118

34J c

h ---?????===λε (3) J E e 160108.1-?=-=εε

16-15 一光子与自由电子碰撞,电子可能获得的最大能量为6 keV ,求入射光子的波长和能量(用J 或eV 表示)。

分析 本题考察康普顿散射的规律。

解 光子反向弹回时(πθ=),电子将获得最大的能量

)(0048.0)cos 1(10

31011.91063.6)cos 1(83134

0nm c m h =-?????=-?--πθλ= 电子获得的能量

)

()11(

0000λλλλλλλνν?+?=?+-='-=hc hc h h E k 整理后得 002

0=?-?+k

E hc λλλλ 解得入射光波长

nm 00786.0222

0==k

E hc λλλλ?+??? ???+?- 入射光子能量

keV 158J 1053.2140=-?==λhc

E

16-16 氢与其同位素氘(质量数为2)混在同一放电管中, 摄下两种原子的光谱线, 试问其巴耳末线系的第一条(αH )光谱线之间的波长差λ?有多大? 已知氢的里德堡常量17H m 100967758.1R -?=, 氘的里德堡常量17H m 100970742.1R -?=.

分析 本题考察的是氢光谱的波数公式.

解: 由氢光谱的波数公式和巴尔末线系的第一条光谱线的条件, 可得:

R R 365312

11

22=??? ??-=λ 将上式两边同时取微分, 可得: 22

2536536365365R

dR dR R dR d =??? ??==-λλ 因而有: ())(1079.1536102m R R R H

H D D H -?=-=

-λλ 16-17 计算氢原子的电离电势和第一激发电势.

分析 本题考察的是氢原子的能级公式.

解: 由氢原子能级光子公式

eV n

E n 26.13-= 因此电离能:

)(6.13)6.13(01eV E E E =--=-=∞

所以电离电势:

V e E U 6.13/==

从基态到第一激发态所需要能量为:

()()

)(2.101/6.132/6.132212eV E E E =---=-=?

所以第一激发电势为10.2V.

16-18 试求(1)氢原子光谱巴尔末线系辐射的、能量最小的光子的波长;(2)巴尔末线系的线系极限波长.

分析 本题考察的是氢光谱的波数公式.

解: (1) 巴尔末线系为氢原子的高激发态向n =2的能级跃迁产生的谱线系, 因此能量最小的谱线对应于由n =3的能级向n =2的能级的跃迁。因此该能量为:

()()

)(8912/6.133/6.132223eV .E E E =---=-=?

相应的波长为: )(66.01060.189.11031063.619

8

34m E hc μλ=?????=?--= (2)该线系的极限波长为n =∞能级向n =2能级的跃迁产生,因此类似于上面的计算有: ()

)(37.01060.126131031063.61928

34m .E hc μλ=?????=?--∞= 16-19 氢原子放出489nm 光子之后跃迁到激发能为10.19eV 的状态, 确定初始态的结合能. 分析 激发能是指将原子从基态激发到某一个激发态所需要的能量,因此根据题目给出的激发能可求出氢原子放出光子后的能量。然后根据发出光子的波长求出光子的能量,再加上氢原子所处氢原子所处的末态的能量,我们可以求出氢原子初态的能量,从而求出初态的结合能。

解:依题意,激发能为10.19eV 的激发态的能量为:

eV eV eV E n 41.319.106.13-=+-=

489nm 的光子的能量为:

)(54.2'eV hc

E ==λ

因此氢原子的初态能量为:

)(87.0'eV E E E n -=+=

所以该氢原子初态的结合能为0.87eV 。

16-20 用12.2eV 能量的电子激发气体放电管中的基态氢原子, 求氢原子所能放出的辐射光的波长?

分析 依题意,氢原子吸收12.2eV 能量后将被激发到某一个激发态上,根据氢原子能级的能量与主量子数之间的关系,我们可以得出该激发态的主量子数。因此此时的氢原子所能发出的辐射即为从该激发态向其下的各种能量状态以及各种能量状态之间跃迁所发出的辐射。 解:吸收12.2eV 能量后,该氢原子的能量为:

eV E 4.12.126.13-=+-=

由于能级的能量与主量子数之间的关系为2/6.13n E n -=,因此有:

12.34

.16.13=--=n 由于n 必须是整数,能打到的最高态对应于n =3。从而该氢原子跃迁到基态有三种方式,即3→2、2→1和3→1,这对应了三种可能的辐射,相应的波长分别为656.3nm 、121.6nm 和102.6nm 。

第十七章

17-1 计算电子经过V U 1001=和V U 100002=的电压加速后,它的德布罗意波长1λ和2λ分别是多少?

分析 本题考察的是德布罗意物质波的波长与该运动粒子的运动速度之间的关系。 解:电子经电压U 加速后,其动能为eU E k =,因此电子的速度为:

m

2e v U = 根据德布罗意物质波关系式,电子波的波长为: )(23.12nm U emU h m h ==v =λ

若V U 1001=,则12301.=λnm ;若V U 100002=,则012302.=λnm 。

17-2 子弹质量m =40 g, 速率m/s 100=v ,试问:

(1) 与子弹相联系的物质波波长等于多少?

(2) 为什么子弹的物质波性不能通过衍射效应显示出来?

分析 本题考察德布罗意波长的计算。

解:(1)子弹的动量

)s /m kg (410010403?=??==-v m p

与子弹相联系的德布罗意波长

)m (1066.14

1063.63434

--?=?==p h λ (2) 由于子弹的物质波波长的数量级为m 1034-, 比原子核的大小(约m 1014-)还小得多,因

此不能通过衍射效应显示出来.

17-3 电子和光子各具有波长0.2nm ,它们的动量和总能量各是多少?

分析 本题考察的是德布罗意物质波的波长公式。

解:由于电子和光子具有相同的波长,所以它们的动量相同,即为:

)/(1032.3102.01063.6249

34

s m kg h

p ??=??==---λ 电子的总能量为: )(1030.81420J hc

c m E e -?=+=λ

而光子的总能量为:

)(1095.916J hc

E -?==λ

17-4 试求下列两种情况下,电子速度的不确定量:(1)电视显像管中电子的加速电压为9kV ,电子枪枪口直径取0.10mm ;(2)原子中的电子,原子的线度为1010-m 。

分析 本题考察的是海森堡不确定关系。

解:(1)由不确定关系可得:

2

≥???x p x 依题意此时的mm x 10.01=?,因此有:

)/(6.021

s m x m m p x =?≥?=? x v 电子经过9kV 电压加速后,速度约为s m /1067?。由于x v v ?>>,说明电视显像管内电子的波动性是可以忽略的。

(2)同理,此时的m x 10210-=?,因此有:

)/(102.1262

s m x m m p x ?=?≥?=? x v 此时v 和x v ?有相同的数量级,说明原子内电子的波动性是十分显著的。

17-5 有一宽度为a 的一维无限深方势阱,试用不确定关系估算其中质量为m 的粒子的零点能量。并由此计算在直径1410-m 的核内质子的最小动能。

分析 本题考察的是海森堡不确定关系。根据位置坐标的变化范围来确定速度变化的范围,从而得到动能的最小值。 解:由不确定关系2

???x p x ,可得: x m m p x ?≥?=?2 x v

所以一维方势阱内粒子的零点能量为:

2

22208821ma x m m E =?≥?=2x v 由上述公式,可得核内质子的最小动能为:

)(103.381422

J ma

E k -?== 17-6 如果一个电子处于原子某状态的时间为810-s ,试问该能态能量的最小不确定量为多少?设电子从上述能态跃迁到基态,对应的能量为3.39eV ,试确定所辐射光子的波长及该波长的最小不确定量。

分析 本题考察的是海森堡能量和时间的不确定关系。 解:根据能量和时间的不确定关系2

≥???t E ,有: )(103.5227J t

E -?=?≥? 辐射光子的波长为:

)(367nm E

hc ==λ 由上式可得波长的最小不确定量为: )(1059.362nm E E hc -?=?=

?λ 17-7 氦氖激光器发出波长为632.8nm 的光,谱线宽度nm 910-=λ?,求这种光子沿x 方向传播时,它的x 坐标的不确定量。

分析 本题考察的是海森堡不确定关系。 解:根据德布罗意关系λh p x =,等式两边同时取微分并只取其绝对值,此时有: λλ?=?2h

p x

根据不确定关系,可得:

)(1044252

2m p x x ?=?≈?=?≈?λ

λλπλ 17-8 一个细胞的线宽为310-m ,其中一粒子质量为1410-g ,按一维无限深方势阱计算,这个粒子当1001=n 和1101n =时的能级和它们的差各是多大?

分析 本题的考察是一维无限深方势阱中的能级分布问题。根据该势阱中的能级分布公式可求出不同能级之间的能量差。

解:对于一维无限深方势阱中的粒子而言,其能量为:

),3,2,1(,222

22 ==n ma

n E n π 因此对于n =100能级,其能量为:

)(104.51002372222100J ma

E -?=?=π 类似的对于n =101能级,其能量为:

)(105.5101237222

2101J ma

E -?=?=π 两个能级之间的差为:

)(101.037100101J E E E -?=-=?

17-9 一粒子被禁闭在长度为a 的一维箱中运动,其定态为驻波. 试根据德布罗意关系式和驻波条件证明: 该粒子定态动能是量子化的, 求出量子化能级和最小动能公式(不考虑相对论效应).

分析 本题考察德布罗意波长和定态的概念.

解 粒子在长度为a 的一维箱中运动,形成驻波条件为

2λn a = 即n

a 2=λ 由德布罗意关系式

a

nh h

p 2==λ 在非相对论条件下, 粒子动能和动量关系为

m

p E k 22

= 2

2

228)2(21ma h n a nh m E k == ,3,2,1=n 可见粒子的动能是量子化的, 1=n 时动能最小,

2

2218)2(21ma h a nh m E k == 顺便指出,这些公式与严格求解量子力学方程所得结果完全相同.

17-10 若一个电子的动能等于它的静能,试求该电子的德布罗意波长.

分析 本题考察相对论能量和动量的关系及德布罗意关系.

解: 由题意知,电子

020E c m E k ==, 0202E c m E E k =+=

由相对论能量和动量关系可知

20

222E c p E += )s /m kg (1073.43220202??==-=

-c m c E E p nm 0014.0==p

h λ

17-11 设在一维无限深势阱中,运动粒子的状态用

a

x a x a x ππψ2

cos sin 16)(= 描述,求粒子能量的可能值及相应的几率。

分析 本题考察的是波函数的态叠加原理。

解:一维无限深势阱的本证波函数为:

)0(),sin(2)(a x a

x n a x n <<=πψ 相应的能量本征值为:

),3,2,1(,222

22 ==n ma

n E n π 将状态波函数用本征波函数展开得:

[]

)()(21

3sin sin 1cos sin 16)(312x x a x a x a a x a x a x ψψππππψ+=??????+=

= 因此,根据态叠加原理,状态处于n =1,3本征态上的几率均为1/2,测得的能量可能值分别为2

2

22ma π ,22229ma π 。 17-12 粒子在一维无限深势阱中运动,其波函数为

)0(),sin(2)(a x a

x n a x n <<=πψ 若粒子处于n =1的状态,在4~

0a 区间发现粒子的概率是多少? 分析 本题考察的是粒子的概率密度的计算问题。对于给定的波函数,其模的平方即为该粒子在空间出现的概率密度。

解:对于n =1的状态的粒子,其波函数为:

)sin(2)(1a

x a x πψ= 因此该粒子在4~

0a 区间发现粒子的概率为: 091.02412cos 11sin 21)(404022401=??? ??-=????????? ??-=??

? ??==???πππψa a a dx a x a dx a x a dx x W a a a

17-13 原子内电子的量子态由s l m m l n ,,,四个量子数来表征,当l m l n ,,一定时,不同的量子态数目是多少?l n ,一定时,不同的量子态数目是多少?当n 一定时,不同的量子态数目是多少?

分析 本题考察的是各个量子数之间的对应关系。

解:由于量子态由四个量子数表征,因此量子态的数目由这四个量子数的取值范围所决定。 当l m l n ,,一定时,自旋磁量子数2

1±=s m ,因此量子态数目为2; l n ,一定时,磁量子数l m 可取(12+l )个值,而自旋磁量子数21±

=s m ,因此此时的量子态数目为2(12+l );

当n 一定时,轨道量子数可取n 个值,磁量子数l m 可取(12+l )个值,而自旋磁量子数21±

=s m ,因此此时的量子态数目为: 2102)12(2n

l n l =+∑-=

17-14 试写出n =4, l =3壳层所属各态的量子数。

分析 本题考察的是各个量子数之间的对应关系。

解: 当n =4, l =3时,磁量子数l m 可能值为3,2,1,0±±±,共7个值. 自旋量子数s m 的可能值为2

1±. 17-15 写出以下各电子态的角动量的大小:(1)1s 态,(2)2p 态,(3)3d 态,(4)4f 态。 分析 本题考察的是角动量的大小与轨道量子数之间的关系。

解:角动量的大小为:

)1(+=l l L

因此,将1s 、2p 、3d 、4f 等电子态的轨道量子数代入上式即可求出该量子态下的角动量的大小来。

(1)1s 态,0=l ,所以01=L ;

(2)2p 态,1=l ,所以 22=L ;

(3)3d 态,2=l ,所以 62=L ;

(4)4f 态,3=l ,所以 122=L 。

17-16 写出铁(Fe), 铜(Cu)的基态电子组态。

分析 本题考察的是如何根据四个量子数来确定原子的电子组态。

解: Fe: 26626224333221s d p s p s s Cu: 110626224333221s d p s p s s

大学基础物理学答案(习岗)第4章

第四章 静电场 本章提要 1. 库仑定律 两个静止的点电荷之间的作用力满足库仑定律,库仑定律的数学表达式为 1212 002204q q q q k r r πε==F r r 其中 922910(N m /C )k =?? 122-1 -2 018.8510(C N m ) 4k επ -= =?? ? 2. 电场强度 ? 电场强度表示单位正电荷在静电场中所受的电场力。其定义式为 q = F E 其中,0q 为静止电荷。 ? 在点电荷q 的电场中,电场强度为 02 04q r πε= E r 3. 电场强度的计算 ? 点电荷系的电场 N 2101 4i i i i q r πε== ∑r 0E ? 电荷连续分布的带电体系的电场 2 01d 4q q r πε=?r E 0 其中的积分遍及q 电荷分布的空间。 4. 高斯定理

? 电通量 电场强度通量简称电通量。在电场强度为E 的某点附近取一个面元,规定S ?=?S n ,θ为E 与n 之间的夹角,通过S ?的电通量定义为 e cos E S θ?ψ=?=?E S 通过电场中某闭合曲面S 的电通量为 d e s ψ=??E S ? 高斯定理 在真空中,通过电场中任意封闭曲面的电通量等于该封闭曲面内的所有电荷电量的代数和除以0ε。即 i 0 1 d s q = ∑?? E S 内 ε 使用高斯定理可以方便地计算具有对称性的电场分布。 5. 电势 ? 电势能 电荷q 0在电场中某点a 所具有的电势能等于将q 0从该点移到无穷远处时电场力所作的功。即 0 d a a a W A q ∞ ∞==?E l ? 电势 电势是描述电场能的属性的物理量。电场中某点a 的电势定义为 0 d a a a U W q ∞ ==?E l ? 电势的计算 (1) 已知电场强度的分布,可通过电势的定义做场强的积分来计算电 势。 (2)若不知道电场强度的分布,可通过下述的求和或积分来计算电势: 点电荷系产生的电场中的电势为 N 104i a i i q U r πε==∑ 电荷连续分布的带电体系电场中的电势为 0d 4a q q U r πε=? 6. 静电场的环路定理 静电场的电场强度沿任意闭合路径的线积分为零,即 d l E l ?=?0 7. 静电场对导体的作用

大学物理上册答案详解

大学物理上册答案详解 习题解答 习题一 1—1 |r ?|与r ? 有无不同? t d d r 和t d d r 有无不同? t d d v 和t d d v 有无不同?其不同在哪里?试举例说明. 解:(1)r ?是位移的模,?r 是位矢的模的增量,即 r ?12r r -=,12r r r -=?; (2) t d d r 是速度的模,即t d d r ==v t s d d . t r d d 只是速度在径向上的分量。 ∵有r r ?r =(式中r ?叫做单位矢),则 t ?r ?t r t d d d d d d r r r += 式中 t r d d 就是速度径向上的分量, ∴ t r t d d d d 与r 不同如题1—1图所示. 题1—1图 (3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分 量. ∵有ττ (v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d ττ +=

式中 dt dv 就是加速度的切向分量. (t t r d ?d d ?d τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度 和加速度时,有人先求出r =2 2 y x +,然后根据v =t r d d ,及a =22d d t r 而 求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v =2 2 d d d d ?? ? ??+??? ??t y t x 及a = 2 22222d d d d ??? ? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确。因为速度与加速度都是矢量,在平面直角坐标 系中,有j y i x r +=, j t y i t x t r a j t y i t x t r v 22 2222d d d d d d d d d d d d +==+==∴ 故它们的模即为 2 22 222 2 22 2 22d d d d d d d d ? ?? ? ??+???? ??=+=? ? ? ??+??? ??=+=t y t x a a a t y t x v v v y x y x 而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作 22d d d d t r a t r v ==

大学物理课后练习习题答案详解.docx

第一章质点运动学 1、( 习题: 一质点在 xOy 平面内运动,运动函数为 x = 2t, y = 4 t 2 8 。( 1)求质点的轨道方程; ( 2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。 解:( 1)由 x=2t 得, y=4t 2 -8 ( 2)质点的位置 : r r 由 v d r / dt 则速度: r r 由 a d v / d t 则加速度: 则当 t=1s 时,有 r r 可得: y=x 2-8 r 即轨道曲线 r r (4t 2 r 2ti 8) j r r r v 2i 8tj r r a 8 j r r r r r r r 2i 4 j , v 2i 8 j , a 8 j 当 t=2s 时,有 r r r r r r r r r 4i 8 j , v 2i 16j , a 8 j 2、(习题): 质点沿 x 在轴正向运动,加速度 a kv , k 为常数.设从原点出发时速度为 v 0 ,求运动方程 x x(t) . 解: dv kv v 1 t kdt v v 0 e kt dt dv v 0 v dx v 0e k t x dx t kt dt x v 0 (1 e kt ) dt v 0 e k 3、一质点沿 x 轴运动,其加速度为 a 4 t (SI) ,已知 t 0 时,质点位于 x 10 m 处,初速度 v 0 .试求其位置和时间的关系式. 解: a d v /d t 4 t d v 4 t d t v t 4t d t v 2 t 2 dv d x 2 x t 2 3 2 x t d t x 2 t v /d t t /3+10 (SI) x 0 4、一质量为 m 的小球在高度 h 处以初速度 v 0 水平抛出,求: ( 1)小球的运动方程; ( 2)小球在落地之前的轨迹方程; v v ( 3)落地前瞬时小球的 dr , dv , dv . dt dt dt 解:( 1) x v 0 t 式( 1) y 1 gt 2 式( 2) v v 1 2 v h r (t ) v 0t i (h - gt ) j 2 2 ( 2)联立式( 1)、式( 2)得 y h 2 gx 2 2v 0 v v v v v v ( 3) dr 2h dr v 0i - gt j 而落地所用时间t 所以 v 0i - 2gh j dt g dt v v dv g 2 t g 2gh dv v 2 2 2 ( gt ) 2 dt g j v x v y v 0 dt 2 2 1 2 ( gt ) ] 2 2gh) [v 0 ( v 0 1 2

2017年秋季西南大学《大学物理基础》答案

单项选择题 1、 波长λ=5000?的单色光垂直照射到宽度a=0.25mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹。今测的屏幕上中央条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离为d=12mm,则凸透镜的焦距f为 1.2m 2. 1m 3.0.5m 4.0.2m 2、 根据惠更斯—菲涅耳原理,若已知光在某时刻的阵面为S,则S的前方某点P的光强度决定于波阵面S上所有面积元发出的子波各自传到P点的 1.振动振幅之和 2.光强之和 3.振动振幅之和的平方 4.振动的相干叠加 3、

在玻璃(折射率n3 =1.60)表面镀一层MgF2 (折射率n2=1.38)薄膜作为增透膜,为了使波长为5000?的光从空气(n1=1.00)正入射时尽可能少反射,MgF2薄膜的最少厚度应是() 1.1250? 2.1810? 3.2500? 4.906? 4、 在双缝干涉实验中,入涉光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5λ,则屏上原来的明纹处() 1.仍为明条纹 2.变为暗条纹 3.既非明纹也非暗纹 4.无法确定是明纹,还是暗纹 5、 以下不是几何光学的基本实验定律的是() 1.光在均匀介质中的直线传播定律 2.光通过两种介质分界面的反射定律和折射定律 3.发射的光的强弱满足基尔霍夫定律

4.光的独立传播定律 6、 对于温度,有以下几种说法 ①温度的高低反映了物质内部分子运动剧烈程度的不同 ②气体的温度是分子平均平动动能的量度 ③气体的温度是大量气体分子热运动的集体表现,具有统计意义 ④从微观上看,气体的温度表示每个气体分子的冷热程度 上述说法正确的是 1.①、②、④ 2.①、②、③ 3.②、③、④ 4.①、③、④ 7、 有两个容器,一个盛氢气,另一个盛氧气。如果这两种气体分子的方 均根速率相等,则表明()Array 1.氧气的温度比氢气高 2.氢气的温度比氧气高 3.两种气体的温度相同 4.两种气体的压强相同 8、

大学基础物理学课后习题答案_含思考题(1)

大学基础物理课后答案 主编:习岗高等教育出版社

第一章 思考题: <1-4> 解:在上液面下取A 点,设该点压强为A p ,在下液面内取B 点,设该点压强为B p 。对上液面应用拉普拉斯公式,得 A A R p p γ20= - 对下液面使用拉普拉斯公式,得 B B 02R p p γ= - 又因为 gh p p ρ+=A B 将三式联立求解可得 ??? ? ??-= B A 112R R g h ργ <1-5> 答:根据对毛细现象的物理分析可知,由于水的表面张力系数与温度有关,毛细水上升的高度会随着温度的变化而变化,温度越低,毛细水上升的高度越高。在白天,由于日照的原因,土壤表面的温度较高,土壤表面的水分一方面蒸发加快,另一方面土壤颗粒之间的毛细水会因温度升高而下降,这两方面的原因使土壤表层变得干燥。相反,在夜间,土壤表面的温度较低,而土壤深层的温度变化不大,使得土壤颗粒间的毛细水上升;另一方面,空气中的水汽也会因为温度下降而凝结,从而使得清晨时土壤表层变得较为湿润。 <1-6> 答:连续性原理是根据质量守恒原理推出的,连续性原理要求流体的流动是定常流动,并且不可压缩。伯努利方程是根据功能原理推出的,它的使用条件是不考虑流体的黏滞性和可压缩性,同时,还要求流动是定常流动。如果流体具有黏滞性,伯努利方程不能使用,需要加以修正。 <1-8> 答:泊肃叶公式适用于圆形管道中的定常流动,并且流体具有黏滞性。斯托克斯公式适用于球形物体在黏滞流体中运动速度不太大的情况。 练习题: <1-6> 解:设以水坝底部作为高度起点,水坝任一点至底部的距离为h 。在h 基础上取微元d h ,与之对应的水坝侧面面积元d S (图中阴影面积)应为坡长d m 与坝长l 的乘积。 练习题1-6用图 d h d F

大学物理上册课后习题答案

大学物理上册课后习题答案

习题解答 习题一 1-1 |r ?|与r ? 有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v 有无不同?其不同在哪里?试举例说明. 解: (1)r ?是位移的模,?r 是位矢的模的增量, 即r ?1 2r r -=,1 2 r r r ? ?-=?; (2)t d d r 是速度的模,即t d d r = =v t s d d . t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则t ?r ?t r t d d d d d d r r r += 式中t r d d 就是速度径向上的分量, ∴ t r t d d d d 与r 不同如题1-1图所示. 题 1-1图 (3) t d d v 表示加速度的模,即 t v a d d ? ?= ,t v d d 是加速度a 在切向上的分量.

∵有ττ??(v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d τ τ???+= 式中dt dv 就是加速度的切向分量. ( t t r d ?d d ?d τ??Θ与的运算较复杂,超出教材规定,故不予 讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r = 2 2 y x +,然后根据v =t r d d ,及a = 2 2d d t r 而求得结果; 又有人先计算速度和加速度的分量,再合成求得结果,即 v =2 2 d d d d ?? ? ??+??? ??t y t x 及a = 2 22222d d d d ??? ? ??+???? ??t y t x 你认为两种 方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有 j y i x r ? ??+=, j t y i t x t r a j t y i t x t r v ??? ???? ?222222d d d d d d d d d d d d +==+==∴ 故它们的模即为 2 222 22222 2 2 2d d d d d d d d ? ?? ? ??+???? ??=+=? ? ? ??+??? ??=+=t y t x a a a t y t x v v v y x y x

大学物理习题及综合练习答案详解

库仑定律 7-1 把总电荷电量为Q 的同一种电荷分成两部分,一部分均匀分布在地球上,另一部分均匀分布在月球上, 使它们之间的库仑力正好抵消万有引力,已知地球的质量M =l024kg ,月球的质量m =l022 kg 。(1)求 Q 的最小值;(2)如果电荷分配与质量成正比,求Q 的值。 解:(1)设Q 分成q 1、q 2两部分,根据题意有 2 221r Mm G r q q k =,其中041πε=k 即 2221q k q GMm q q Q += +=。求极值,令0'=Q ,得 0122=-k q GMm C 1069.5132?== ∴k GMm q ,C 1069.51321?==k q GMm q ,C 1014.11421?=+=q q Q (2)21q m q M =Θ ,k GMm q q =21 k GMm m q mq Mq ==∴2122 解得C 1032.6122 2?==k Gm q , C 1015.51421?==m Mq q ,C 1021.51421?=+=∴q q Q 7-2 三个电量为 –q 的点电荷各放在边长为 l 的等边三角形的三个顶点上,电荷Q (Q >0)放在三角形 的重心上。为使每个负电荷受力为零,Q 值应为多大 解:Q 到顶点的距离为 l r 33= ,Q 与-q 的相互吸引力为 20141r qQ F πε=, 两个-q 间的相互排斥力为 2 2 0241l q F πε= 据题意有 10 230cos 2F F =,即 2 022041300cos 41 2r qQ l q πεπε=?,解得:q Q 33= 电场强度 7-3 如图7-3所示,有一长l 的带电细杆。(1)电荷均匀分布,线密度为+,则杆上距原点x 处的线元 d x 对P 点的点电荷q 0 的电场力为何q 0受的总电场力为何(2)若电荷线密度=kx ,k 为正常数,求P 点的电场强度。 解:(1)线元d x 所带电量为x q d d λ=,它对q 0的电场力为 200200)(d 41 )(d 41 d x a l x q x a l q q F -+=-+= λπεπε q 0受的总电场力 )(4)(d 400020 0a l a l q x a l x q F l +=-+= ?πελπελ 00>q 时,其方向水平向右;00

大学物理课后习题答案详解

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2g h d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

新编基础物理学课后答案

习题一 1-1.质点运动学方程为:cos()sin(),r a t i a t j btk ωω=++ 其中a ,b ,ω均为正常数,求 质点速度和加速度与时间的关系式。 分析:由速度、加速度的定义,将运动方程()r t 对时间t 求一阶导数和二阶导数,可得到速度和加速度的表达式。 解:/sin()cos()==-++ v dr dt a t i a t j bk ωωωω 2/cos()sin()a dv dt a t i t j ωωω??==-+?? 1-2. 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即2/d d v v K t -=, 式中K 为常量.试证明电艇在关闭发动机后又行驶x 距离时的速度为 0Kx v v e -= 。 其中0v 是发动机关闭时的速度。 分析:要求()v v x =可通过积分变量替换dx dv v dt dv a ==,积分即可求得。 证: 2d d d d d d d d v x v v t x x v t v K -==?= d Kdx v =-v ??-=x x K 0 d d 10v v v v , Kx -=0 ln v v 0Kx v v e -= 1-3.一质点在xOy 平面内运动,运动函数为22,48x t y t ==-。(1)求质点的轨道方程并画出轨道曲线;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 分析:将运动方程x 和y 的两个分量式消去参数t ,便可得到质点的轨道方程。写出质点的 运动学方程)(t r 表达式。对运动学方程求一阶导、二阶导得()v t 和()a t ,把时间代入可得 某时刻质点的位置、速度、加速度。 解:(1)由2,x t =得:,2 x t =代入2 48y t =- 可得:28y x =-,即轨道曲线。 画图略 (2)质点的位置可表示为:2 2(48)r ti t j =+- 由/v dr dt = 则速度:28v i tj =+ 由/a dv dt = 则加速度:8a j = 则:当t=1s 时,有24,28,8r i j v i j a j =-=+= 当t=2s 时,有48,216,8r i j v i j a j =+=+= 1-4.一质点的运动学方程为2 2 (1)x t y t ==-,,x 和y 均以m 为单位,t 以s 为单位。(1)求质点的轨迹方程;(2)在2t s =时质点的速度和加速度。 分析同1-3. 解:(1)由题意可知:x ≥0,y ≥0,由2 x t =,,可得t x = ,代入2(1)y t =- 整理得: 1y x =-,即轨迹方程 (2)质点的运动方程可表示为:22 (1)r t i t j =+-

大学物理教程(上)课后习题答案解析

物理部分课后习题答案(标有红色记号的为老师让看的题) 27页 1-2 1-4 1-12 1-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位, 求: (1) 质点的运动轨迹; (2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。 解:(1)由运动方程消去时间t 可得轨迹方程,将t = 21)y = 或 1= (2)将1t s =和2t s =代入,有 11r i =u r r , 241r i j =+u r r r 213r r r i j =-=-r u r u r r r V 位移的大小 r ==r V (3) 2x dx v t dt = = 2(1)y dy v t dt ==- 22(1)v ti t j =+-r r r 2x x dv a dt ==, 2y y dv a dt == 22a i j =+r r r 当2t s =时,速度和加速度分别为 42/v i j m s =+r r r 22a i j =+r r r m/s 2

1-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+r r r ,式中的R 、ω均为 常量。求(1)质点的速度;(2)速率的变化率。 解 (1)质点的速度为 sin cos d r v R ti R t j dt ωωωω==-+r r r r (2)质点的速率为 v R ω== 速率的变化率为 0dv dt = 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。求质点在 t 时刻的法向加速度n a 的大小和角加速度β的大小。 解 由于 4d t dt θ ω= = 质点在t 时刻的法向加速度n a 的大小为 2216n a R Rt ω== 角加速度β的大小为 24/d rad s dt ω β== 77 页2-15, 2-30, 2-34, 2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用 下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。 解 由冲量的定义,有 2.0 2.0 2.020 (63)(33) 18I Fdt t dt t t N s ==+=+=? ?g 2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的阻力 (空气阻力和摩擦力)f kv =-(k 为常数)作用。设撤除牵引力时为0t =,初速度为0v ,

大学物理课后习题答案详解

第一章质点运动学 1、(习题 1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时 速度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -??=000 )1(0t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速 度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2gh d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

赵近芳版《大学物理学上册》课后答案

1 习题解答 习题一 1-1 |r ?|与r ? 有无不同? t d d r 和 t d d r 有无不同? t d d v 和 t d d v 有无不同?其不同在哪里?试举例说明. 解:(1) r ?是位移的模,? r 是位矢的模的增量,即r ?1 2r r -=,1 2r r r -=?; (2) t d d r 是速度的模,即 t d d r = =v t s d d .t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则t ?r ?t r t d d d d d d r r r += 式中t r d d 就是速度径向上的分量, ∴ t r t d d d d 与 r 不同如题1-1图所示 . 题1-1图 (3) t d d v 表示加速度的模,即t v a d d = , t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢) ,所以 t v t v t v d d d d d d ττ += 式中dt dv 就是加速度的切向分量. (t t r d ?d d ?d τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y = y (t ),在计算质点的速度和加速度时,有人先求出r =2 2y x +,然后根据v = t r d d ,及a = 2 2d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 2 2d d d d ?? ? ??+??? ??t y t x 及a = 2 22222d d d d ??? ? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r +=, j t y i t x t r a j t y i t x t r v 222222d d d d d d d d d d d d +==+==∴ 故它们的模即为

基础物理学答案

第三篇 波动和波动光学 第九章 振动和波动基础 思考题 9-1 符合什么规律的运动是简谐振动、简谐振动的特征量由什么决定? 答:某一物理量在某一量值值附近随时间作周期性往复变化的运动是简谐运动, 或者是描述 系统的物理量ψ遵从微分方程ψωψ 22 2-=dt d , 则该系统的运动就是简谐运动. 其特征量为振幅(由初始状态决定),频率(由做简谐振动系统的物理性质决定),初相位(由振动的初始状态决定). 9-2 说明下列运动是不是谐振动: (1)完全弹性球在硬地面上的跳动; (2)活塞的往复运动; (3)如本问题图所示,一小球沿半径很大的光滑凹球面滚动(设小球所经过的弧线很短); (4)竖直悬挂的弹簧上挂一重物,把重物从静止位置拉下一段距离(在弹性限度内),然后放手任其运动; (5)一质点做匀速圆周运动,它在直径上的投影点的运动。 (6)小磁针在地磁的南北方向附近摆动。 答:简谐振动的运动学特征是:振动物体的位移(角位移)随时间按余弦或正弦函数规律变化;动力学特征是:振动物体所受的合力(合力矩)与物体偏离平衡位置的位移(角位移) 成正比而反向。 从能量角度看,物体在系统势能最小值附近小范围的运动是简谐振动。所以: (1)不是简谐运动,小球始终受重力,不满足上述线性回复力特征。 (2)不是简谐振动。活塞所受的力与位移成非线性关系,不满足上述动力学特征。 (3)是简谐振动。小球只有在“小幅度”摆动时才满足上述特征。 (4)是简谐振动。 (5)是简谐振动。因为投影点的方程符合物体的位移(角位移)随时间按余弦或正弦函数规律变化 (6)是简谐振动。小磁针只有在“小幅度”摆动时才满足上述特征。 9-3 一弹簧振子由最左位置开始摆向右方,在最左端相位是多少?过中点、达右端、再回中点、返回左端等各处的相位是多少?初相位呢?若过中点向左运动的时刻开始计时,再回答以上各问。 答:在最左端相位是π 思考题 9-2 图

大学物理学(课后答案解析)第1章

第1章 质点运动学 习 题 一 选择题 1-1 对质点的运动,有以下几种表述,正确的是[ ] (A)在直线运动中,质点的加速度和速度的方向相同 (B)在某一过程中平均加速度不为零,则平均速度也不可能为零 (C)若某质点加速度的大小和方向不变,其速度的大小和方向可不断变化 (D)在直线运动中,加速度不断减小,则速度也不断减小 解析:速度是描述质点运动的方向和快慢的物理量,加速度是描述质点运动速度变化的物理量,两者没有确定的对应关系,故答案选C 。 1-2 某质点的运动方程为)(12323m t t x +-=,则该质点作[ ] (A)匀加速直线运动,加速度沿ox 轴正向 (B)匀加速直线运动,加速度沿ox 轴负向 (C)变加速直线运动,加速度沿ox 轴正向 (D)变加速直线运动,加速度沿ox 轴负向 解析:229dx v t dt = =-,18dv a t dt ==-,故答案选D 。 1-3 一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一段时间内的平均速率为v ,平均速度为v ,他们之间的关系必定有[ ] (A)v =v ,v =v (B)v ≠v ,v =v (C)v ≠v ,v ≠v (D)v =v ,v ≠v

解析:瞬时速度的大小即瞬时速率,故v =v ;平均速率s v t ?=?,而平均速度t ??r v = ,故v ≠v 。答案选D 。 1-4 质点作圆周运动时,下列表述中正确的是[ ] (A)速度方向一定指向切向,所以法向加速度也一定为零 (B)法向分速度为零,所以法向加速度也一定为零 (C)必有加速度,但法向加速度可以为零 (D)法向加速度一定不为零 解析:质点作圆周运动时,2 n t v dv a a dt ρ =+=+ n t n t a e e e e ,所以法向加速度一定不为零,答案选D 。 1-5 某物体的运动规律为 2dv kv t dt =-,式中,k 为大于零的常量。当0t =时,初速为0v ,则速率v 与时间t 的函数关系为[ ] (A)2012v kt v =+ (B)2011 2kt v v =+ (C)2012v kt v =-+ (D)2011 2kt v v =-+ 解析:由于2dv kv t dt =-,所以 02 0()v t v dv kv t dt =-? ? ,得到20 11 2kt v v =+,故答案选B 。 二 填空题 1-6 已知质点位置矢量随时间变化的函数关系为2=4t +( 2t+3)r i j ,则从

大学基础物理学答案(习岗)第6章

第六章 稳恒磁场 本章提要 1. 磁感应强度 描述磁场力的属性的物理量是磁感应强度,常用B 来表示。其定义式为 qv F B max = 在SI 制中,B 的单位为特斯拉(T )。B 另一个单位为高斯(G),两者的换算关系为 1T=104G 2. 毕奥—萨伐尔定律 (1) 毕奥—萨伐尔定律 ? 毕奥—萨伐尔定律的微分形式 电流元I d l 在真空中任一点P 所产生的磁感应强度d B 的大小与电流元的大小成正比,与电流元I d l 和r 的夹角的正弦成正比,与电流元到P 点的距离的平方 成反比。d B 的方向垂直于I d l 和r 所组成的平面,指向与矢积I d l ×0r 的方向相同,即 00 2d d 4I r l r B m p ′= 其中, 7-20410N A m p -=醋,称真空磁导率。 ? 毕奥—萨伐尔定律的积分形式 00 2 d d 4l l I r μπ?==?? l r B B (2)几种典型的磁场分布 ? 无限长直电流的磁场分布 02I B r m p = ? 载流长直螺线管内的磁场分布 0B nI m = ? 运动电荷的磁场分布 00 2 4q r v r B m p ′= 3. 磁高斯定理

? 磁通量 穿过磁场中某一面积S 的磁通量定义为 d B S m s Φ= 蝌 ? 磁高斯定理 通过空间中任意封闭曲面的磁通量必为零,即 d 0S B S =蝌 g ò 4. 安培环路定理 在真空中的稳恒磁场内,磁感应强度B 的环流等于穿过积分回路的所有传导电流强度代数和的0μ倍,即 0in d L I B r m ??ò ? 5. 安培力与洛仑兹力 (1)安培力 载流导线在磁场中受到的宏观力称安培力。安培力服从安培定律。 ? 安培定律的微分形式 放在磁场中任一点处的电流元d I l 所受到的磁场作用力d F 的大小与电流元d I l 的大小和该点的磁感应强度B 的大小成正比,还与电流元d I l 的方向和B 的方向之间的夹角θ的正弦成正比,d F 的方向为d I ?l B 所确定的方向。即 d d I =?F l B ? 安培定律的积分形式 对于任意载流导线,若将其视为由无数个电流元组成的,则其在磁场中所受的作用力为 d F l B l I =?? (2)洛仑兹力 一个定向运动的电荷在磁场中所受的力即洛仑兹力,其满足的基本规律为 q =?f υB 洛仑兹力的几个重要应用: ? 质谱仪 ? 霍耳效应 6. 磁介质 (1) 磁介质及分类 能在磁场作用下发生变化,并且能够反过来影响磁场的介质称磁介质。一般用磁介质中的磁感应强度B 的大小与真空中的磁感应强度0B 的大小之比来描述磁介质被磁化后对原来外磁场的影响,即

赵近芳版《大学物理学上册》课后答案之欧阳文创编

习题解答 习题一 1-1|r ?|与r ?有无不同?t d d r 和t d d r 有无不同?t d d v 和 t d d v 有无不 同?其不同在哪里?试举例说明. 解:(1)r ?是位移的模,?r 是位矢的模的增量,即 r ?1 2r r -=,12r r r -=?; (2)t d d r 是速度的模,即 t d d r ==v t s d d .t r d d 只是速度在径向上的 分量. ∵有r r ?r =(式中r ?叫做单位矢),则t ?r ?t r t d d d d d d r r r += 式中t r d d 就是 速度径向上的分量, ∴t r t d d d d 与r 不同如题1-1图所示. 题1-1 图 (3) t d d v 表示加速度的模,即 t v a d d = ,t v d d 是加速度a 在切向上 的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d ττ +=式中dt dv 就是加速度的切向分量.

(t t r d ?d d ?d τ 与 的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =2 2y x +,然后根据v =t r d d ,及a =2 2d d t r 而求得结果;又有人先计算速度和加速度的 分量,再合成求得结果,即 v = 2 2 d d d d ?? ? ??+??? ??t y t x 及a = 2 222 22d d d d ??? ? ??+???? ??t y t x 你认为两种方法哪一种 正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面 直角坐标系中,有j y i x r +=, j t y i t x t r a j t y i t x t r v 222222d d d d d d d d d d d d +==+==∴故它们 的模即为 2 222 22222 222d d d d d d d d ? ?? ? ??+???? ??=+=? ? ? ??+??? ??=+=t y t x a a a t y t x v v v y x y x 而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作 其二,可能是将2 2d d d d t r t r 与误作速度与加速度的模。在1-1题中 已说明t r d d 不是速度的模,而只是速度在径向上的分量,同 样,2 2d d t r 也不是加速度的模,它只是加速度在径向分量中的

大学基础物理学课后答案 主编习岗 高等教育出版社

第一章 思考题: <1-4> 解:在上液面下取A 点,设该点压强为A p ,在下液面内取B 点,设该点压强为B p 。对上液面应用拉普拉斯公式,得 A A R p p γ20= - 对下液面使用拉普拉斯公式,得 B B 02R p p γ= - 又因为 gh p p ρ+=A B 将三式联立求解可得 ??? ? ??-= B A 112R R g h ργ <1-5> 答:根据对毛细现象的物理分析可知,由于水的表面张力系数与温度有关,毛细水上升的高度会随着温度的变化而变化,温度越低,毛细水上升的高度越高。在白天,由于日照的原因,土壤表面的温度较高,土壤表面的水分一方面蒸发加快,另一方面土壤颗粒之间的毛细水会因温度升高而下降,这两方面的原因使土壤表层变得干燥。相反,在夜间,土壤表面的温度较低,而土壤深层的温度变化不大,使得土壤颗粒间的毛细水上升;另一方面,空气中的水汽也会因为温度下降而凝结,从而使得清晨时土壤表层变得较为湿润。 <1-6> 答:连续性原理是根据质量守恒原理推出的,连续性原理要求流体的流动是定常流动,并且不可压缩。伯努利方程是根据功能原理推出的,它的使用条件是不考虑流体的黏滞性和可压缩性,同时,还要求流动是定常流动。如果流体具有黏滞性,伯努利方程不能使用,需要加以修正。 <1-8> 答:泊肃叶公式适用于圆形管道中的定常流动,并且流体具有黏滞性。斯托克斯公式适用于球形物体在黏滞流体中运动速度不太大的情况。 练习题: <1-6> 解:设以水坝底部作为高度起点,水坝任一点至底部的距离为h 。在h 基础上取微元d h ,与之对应的水坝侧面面积元d S (图中阴影面积)应为坡长d m 与坝长l 的乘积。 练习题1-6用图 d h d F

大学物理试题库及答案详解【考试必备-分章节题库】

第一章 质点运动学 1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ| r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr (B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( ) (A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P ′点,各 量关系如图所示, 其中路程Δs =PP ′, 位移大小|Δr |=PP ′,而Δr =| r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大 小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四 种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)2 2d d d d ??? ??+??? ??t y t x . 下述判断正确的是( )

相关文档
最新文档