PLC金属压铸机课程设计_(2)

PLC金属压铸机课程设计_(2)
PLC金属压铸机课程设计_(2)

湖南工程学院课程设计

课程名称电气控制与PLC 课题名称金属压铸机电气控制系统设计专业班级自动化0904班

姓名麻文继

学号20090102040921

指导教师赖指南、刘星平、唐勇奇、谭梅

2012年6月15日

湖南工程学院

课程设计任务书

课程名称电气控制与PLC 课题名称金属压铸机电气控制系统设计专业班级自动化0904班

姓名麻文继

学号2009010204021

指导教师赖指南、刘星平、唐勇奇、谭梅

审批黄峰、汪超、刘星平

任务书下达日期2012年6月4日

课程设计完成日期2012年6月15日

PLC是应用最广的以计算机技术为核心的自动控制装置。本设计以西门子公司的S7-200PLC为基础,设计出一个简易的搬运机械手控制系统。

设计的第1章主要是对PLC和金属压铸机作了一个简要的介绍。第2章的内容就是对三种控制方案(继电器控制、微机控制、PLC控制)做简单的介绍和的对比,进而得出最优方案。第3章主要本系统的硬件电路的设计,包括:PLC外部电路设计。第4章是金属压铸机电气控制系统的软件设计,主要是根据硬件电路和的工作原理先设计出顺序功能图,进而设计出系统的梯形图。第5章讲的是程序调试过程,主要是程序调试过程中所遇到的问题,以及解决方案。

在本设计编写过程中,得到了懒指南老师的悉心指导,以及各位同学的一些帮忙,谨在此表示衷心的感谢。

因为设计者本人水平有限,设计过程中难免会有些错漏之处,恳请读者批评指正。

第1章概述 (1)

1.1 PLC简介 (1)

1.2金属压铸机概述 (2)

第2章控制方案论证 (4)

2.1继电器控制方案 (4)

2.2微机控制方案 (4)

2.3 方案的对比及选择PLC控制方案的原因 (5)

第3章控制系统硬件电路设计 (7)

3.1 电器元件清单 (7)

3.2 PLC控制面板 (8)

3.3 PLC的I/O接线图I (9)

第4章控制系统软件设计 (1)

4.1控制系统的软件设计原理 (9)

4.2控制系统的工作循环图和顺序功能图 (11)

4.3控制系统的梯形图程序 (13)

第5章控制系统调试 (18)

5.1 控制系统的调试过程 (18)

结束语 (19)

致谢 (20)

参考文献 (21)

附录 (22)

第1章概述

1.1 PLC简介

PLC在现在制造系统中有了很大范围的应用。在工业应用中,梯形图对PLC发展最为广泛的编程语言。一般来说,plc包括了微处理器,而梯形图是在一个扫描周期中按顺序的在微处理器中执行的。基于这个解决法,在扫描周期plc的执行速度被限制于程序的长短和微处理器扫描的速度。为了克服可编程硬件的缺点,根据的他的硬件结构重构和顺序执行的优点许多研究者关注场可编程门阵列(FPGA)酯可编程序控制器(PLC)。

Miyazawa和Ikeshita在1999年研发一个非常粗糙方式的把图形的图形语言转换成高速集成电路硬件描述语言的程序描述。Chen 和Patyra设计了一个整个系统直接从最初的系统建立一个控制器的vhdl模型。

Abdel-Hamid和Kuusilinna研发了一种把有限状态转换成硬件描述语言的运算法则。Adamski有效地在成产控制中选择网络模型代替梯形图语言。那些研究表明可重构的硬件有简化程序,节省容量和本钱,而FPGA的顺序执行可以提高PLC可执行性。

在FPGA设计中顺序执行的存在不仅在组合逻辑运算中还是在组合逻辑运行中存在。第一种情况,在组合逻辑中,只有一个输出,所有的组合逻辑在电路中都影响所涉及的输出。运算可以以电气速度被运行。第二个方面,在多种组合逻辑中,所有的组合逻辑运行中,在一个平面的方式中设计的每个输出都在电路中存在。所以他们以顺序方式出现。对第一种情况来说,在VHDL中这就是很简单了。在这篇论文中顺序执行被提到特别针对第二种情况。

另外,时下的研究处在一个高低不平阶段,仅仅是通过实例转换把PLC 语言装换成VHDL语言。再者,大部分方法都是针对获得硬件描述语言或者从原系统要求中获得的门阵列中的电阻晶体管逻辑的。制造系统中大部分

PLC 程序都是用梯形图语言编写的。利用存在的梯形图语言是当前的PLC 系统运行新的PLC 设计的基础。 1.2 金属压铸机概况及控制要求

金属压铸机工作示意图如图25所示,压铸机的动作由液压油缸驱动,执行元件为电磁阀,其工艺流程如下:

SQ4SQ3SQ2SQ1

SQ5SQ6冷却水电磁阀YV4射入活塞左

射入活塞金属熔炉

关模电磁阀YV0开模电磁阀YV1

喷嘴下移电磁阀YV5喷嘴上移电磁阀YV6

洗模液电磁阀YV7

洗模液喷嘴

射入活塞右移电磁阀YV2移电磁阀YV3

图1 金属压铸机工作示意图

(1) 原位:模板在开模位置,模板左限位开关SQ1闭合;射入活塞已右移位,活塞右限位开关SQ3闭合;喷嘴已上移至原位,喷嘴上位限位开关SQ5闭合。

(2) 关模:当按下启动按钮SB1时,关模电磁阀YV0通电,模板右移。当模板右移至关模位置时, 模板右限位开关SQ2闭合,关模电磁阀YV0断电,模板停止右移。

(3) 射入:当模板关闭后,射入活塞左移电磁阀YV2通电,射入活塞向左移动,将金属液射入模内。当射入活塞左移至终点位置时,活塞左限位开关SQ4闭合,射入活塞左移电磁阀YV2断电,射入活塞停止左移。

(4) 活塞返回与冷却:当射入活塞向左移至终点位置时,射入活塞右移电磁阀YV3通电,射入活塞右移。当右移至原位时,活塞右限位开关SQ3闭合,射入活塞右移电磁阀YV3断电,射入活塞停止右移。在射入活塞开始右移的同时,冷却水电磁阀YV4通电,使冷却水流过模具的冷却水循环系统,以期迅速冷却模具中的高温液态金属,使其固化成型。当冷却水电磁阀YV4通电50s时断电,冷却水关闭。

(5) 开模:当射入活塞右移至原位且冷却水已关闭时,开模电磁阀YV1通电,模板左移,工件被自动顶出。当模板左移至原位时,模板左限位开关SQ1闭合,开模电磁阀YV1断电,模板停止左移。

(6) 洗模:当模板停止左移时,喷嘴下移电磁阀YV5和喷液电磁阀YV7同时通电,喷嘴一边下移,一边向两侧模板喷射洗模液。当喷嘴下移终点位置时,喷嘴下限位开关SQ6闭合,喷嘴下移电磁阀YV5断电,喷嘴停止下移。

(7) 喷嘴返回并停止喷液:当喷嘴停止下移时,喷嘴上移电磁阀YV6通电,喷嘴上移。与此同时,喷液电磁阀YV7断电,喷嘴停止喷液。当喷嘴上移至原位时,喷嘴上限位开关SQ5闭合,喷嘴上移电磁阀YV6断电,喷嘴停止上移。

至此,金属压铸机压铸工件的一个工艺过程结束。

第2章控制方案论证

2.1 继电器控制方案

在逻辑控制方面,继电器是利用电器件机械触点的串、并联组合成逻辑控制。采用硬线连接,连线多而复杂,对今后的逻辑修改、增加功能很困难。在控制速度上,依靠机械触电的吸合动作来完成控制的继电器的控制系统,工作效率低,工作速度慢。在顺序控制方面,继电器控制是利用时间继电器的滞后动作来完成时间上的顺序控制,时间继电器内部的机械结构容易受环境和温度变化的影响,造成定时的精度不高。在灵活性可扩展性方面,继电器安装后,受电气设备触点数目的有限性和连线复杂等原因的影响,系统在今后的灵活性、扩展性很差。虽然继电器控制可实现逻辑功能,但不具备计数的功能,另外,继电器控制使用大量的机械触点,触点在开闭时会产生电弧,造成损伤并伴有机械磨损,使用寿命短,运行可靠性差,不易维护。继电器控制历史长久,有较为成熟和固定的设计方法,易于掌握,尤其适合逻辑控制,但如果是时序、步进性控制和过程控制则或是构成系统较复杂,或难以单独实现需要借助过程仪表等。这种系统稳定性、可靠性差,运行有较多的噪声,外部硬接线为主,不具有良好的柔性,一旦电路结构完成就要相对固定下来,需要更改时会很麻烦。继电器触点有过载、发热粘连等缺点,维护量较大。一般用于结构简单,电流量小的场合。

2.2 微机控制方案

微机控制,成本比PLC低,逻辑针对性高,所以要在对整个系统非常了解的时候才会使用,智能化比PLC高,专业应用的时候,实现的功能要比PLC多,具有安全性可靠性最高的特点,输入输出信号还可以实现一体化隔离,通讯组态模式最多。开发周期最长,一旦要有变化修改比较麻烦。一旦实现自有批量生产,如果不包括软件附加值,成本甚至比

继电器控制还要低。微机最突出的特点是具备计算机的运算能力和存储容量, 适用于复杂应用和大量数据处理.。微机系统也具有软硬件结合实现功能的特点,而且目前的微机系统有专业的工用于工业控制环境,其抗干扰能力、运行稳定性等都比最初使用商用机好得多了。而硬件上,已经有多种基于现有总线形式的功能块可以选用,如数据采集卡、运动控制卡、过程控制卡、智能通信卡等,这些功能块是专业厂家进行专门设计的,让用户可以结合各种通用编程软件如VC++、VB、Delphi以及各种数据库开发软件等即可迅速实现控制系统软件的设计。不过在造价上恐怕是最高的,而其可靠性虽然已经有很大提高能够适应许多工业现场的环境了,但仍然还不足以达到PLC的水平。另外还通过微机直接控制过元器件,他的功能可谓更加强大。但是另一方面他体型大,也太笨拙,一般微机也不适合用于工业控制场合,但是工业控制计算机可以。机最突出的特点是具备计算机的运算才干和存储容量,适用于复杂应用和大量数据处置。微电路控制,就是单片机控制,这个系统其把PLC模块化的各个部分集中在一起,其主要通过一块电路板实现,空间大大减小,但是由于所有的电路集中在一块板子上,其实现的功能、输入输出的点数受到限制,而且系统的散热性,维护性受到考验,若其中一部分损坏,其只能全部更换。单片机现在主要用在功能单一的小型系统中,如随小型设备来的控制系统。

2.3 方案的对比及选择PLC控制方案的原因

由上可知继电器控制具有:工作效率低,工作速度慢,灵活性,扩展性和可靠性都比较差,而且机械化程度比较高,智能化不强等缺点。而微机方案虽然智能化程度比较高但其开发周期长,灵活性低,修改特别麻烦而且编程特别复杂难学。

PLC智能化高,逻辑控制可靠度高,具有通讯功能,占体积小,功耗小,PLC是在继电接触器控制和计算机控制基础上开发的工业自动控制装

置。PLC最突出的特点是抗干扰能力强, 编程简单灵活, 适用于大多数工业控制场合.。.PLC系统是具有柔性的软接线系统,多数情况下通过不算复杂的编程,以软硬件结合的方式可以实现控制功能,目前应用也极为广泛,可靠性极高、抗干扰能力强,已经被广泛接受。现在的PLC可以实现从小到大各种规模的控制系统,并且除了逻辑控制外,还可以方便的通过各种功能模块、通信模块、智能模块、人机界面等实现过程控制、闭环控制、通信、位置/伺服控制、人机交互等,功能极为强大。PLC系统更改方便,改动程序可以节省大量外围硬接线的改动工作量。但是目前各种厂家的PLC在硬件软件方面不通用、“各自为政”现象尚难以改观。在用户方面各自变得程序也往往不具有通用性,尤其是采用梯形图编程时程序的“个性”风格十分突出,可移植性、可维护性不如微机控制系统做得好。PLC系统的价格也不是太高,在性价比上应该是最好的。PLC就是为了替代继电器的缺点而开发的,其就是可编程控制器,其众多的逻辑控制在PLC内部来实现,引起大大的节省了设备空间,其只需要外部的输入输出接口来与外界连接,这样的状况使整个系统耗电量、可靠性、维护性有到显著的改善,其最优越的特点就是程序更改方便,对待外部实现的功能更加人性化。

第3章控制系统硬件电路设计3.1电器元件清单

3.2PLC的控制面板

图3-2 操作面板

3.3 PLC 的I/O 接线图 通 信

端口0

通 信

端口1

1M

0.00.20.30.40.52M

1.00.60.7

1.31.41.5

3L 1.11.20.1M

L+M I V M B+1L 0.00.20.30.12L 0.40.50.60.71.01.1N L1AC SA 总线接口

DC24V

CPU 224 CN /AC/DC/Relay 模 块A+YV0YV1YV2YV3··AC220V

PE FU SQ N L1SB1SB2SB3SB4总线电缆总线接口1M 2.02.12.2

3.32M 2.42.52.62.7

··EM221CN 8×24V DC输入扩展模块·

·

SB5SB6

SB7SB8

SB9

SB10

SB11YV4YV5YV6YV7SQ1SQ2SQ3SQ4SQ5SQ6手动

单周

连续

启动按钮

预停按钮

急停按钮

关模按钮

开模按钮活塞左移活塞右移

冷却水开喷嘴下移喷嘴上移洗模液开模块开限位开关

模块关限位开关

活塞右限位开关

活塞左限位开关喷嘴上限位开关喷嘴下限位开关关模开模活塞左射入活塞右射入冷却水电磁阀洗模液电磁阀

图3-2外部接线图

第4章控制系统软件设计

4.1 控制系统软件设计原理

本控制系统是通过主程序(OB1)调用3个子程序:公用子程序(SBR0),手动子程序(SBR1)和单周-连续子程序(SBR2)。公用程序是用于处理各种工作方式都要执行的任务,以及不同的工作方式之间的相互的处理。手动程序主要是用于系统设计或维修时进行单个步骤的调试,而单周-连续程序是机械手正常工作情况下的控制程序。此外系统的预停,急停程序也是集成在单周-连续子程序中。最后,通过搬运机械手的动作步序图设计出系统的工作流程图及顺序功能图,进而设计出系统的梯形图程序。

4.2控制系统的工作循环图及顺序功能图

图4-2-1 工作循环图

图4-2-2 顺序功能图

数控车床工作台二维运动伺服进给系统设计

数控车床工作台二维运动伺服进给系统设计 1 引言 数控机床作为机电一体化的典型产品,在机械制造业中发挥着巨大的作用,很好地解决了现代机械制造中结构复杂、精密、批量小、多变零件的加工问题,且能稳定产品的加工质量,大幅度提高生产效率。 X-Y 数控工作台是许多机电一体化设备的基本部件,如数控车床的纵—横向进刀机构、数控铣床和数控钻床的X-Y 工作台、激光加工设备的工作台、电子元件表面贴装设备等。模块化的X-Y 数控工作台,通常由导轨座、移动滑块、工作、滚珠丝杠螺母副,以及伺服电动机等部件构成。其中伺服电动机做执行元件用来驱动滚珠丝杠,滚珠丝杠螺母带动滑块和工作平台在导轨上运动,完成工作台在X 、Y 方向的直线移动。导轨副、滚珠丝杠螺母副和伺服电动机等均以标准化,由专门厂家生产,设计时只需根据工作载荷选取即可。控制系统根据需要,可以选取用标准的工作控制计算机,也可以设计专用的微机控制系统。 2 设计任务 题目:数控车床工作台二维运动伺服进给系统设计 任务:设计一种供应式数控铣床使用的X-Y 数控工作台,主要参数如下: 1. 立铣刀最大直径的d=15mm ; 2. 立铣刀齿数Z=3; 3. 最大铣削宽度e a =15mm; 4. 最大背吃刀量p a =8mm; 5. 加工材料为碳素钢活有色金属。 6. X 、Y 方向的脉冲当量x y δδ==0.01mm;

7. X 、Z 方向的定位精度均为0.04mm; 8. 重复定位精度为0.02mm; 9. 工作台尺寸 250×250㎜; 10.X 坐标行程 300mm; 11.Y 坐标行程 120mm; 12.工作台空载进给最快移动速度:V xmaxf =V zmaxf =1500mm/min; 13.工作台进给最快移动速度:max max 400mm /min x f z f V V ==; 3 总体方案确定 3.1机械传动部件的选择 3.1.1导轨副的选用 要设计数控车床X-Z 工作台,需要承受的载荷不大,而且脉冲当量小,定位精度不是很高,因此选用直线滑动导轨副,它具有摩擦系数小、不易爬行、传动效率高、结构紧凑、安装预紧方便等优点。 3.1.2丝杠螺母副的选用 伺服电动机的旋转运动需要通过丝杠螺母副转换成直线运动,需要满足0.004mm 冲当量和01.0±mm 的定位精度,滑动丝杠副无能为力,只有选用滚珠丝杆副才能达到要求,滚珠丝杆副的传动精度高、动态响应快、运转平稳、寿命长、效率高、预紧后可消除反向间隙。 3.1.3伺服电动机的选用 任务书规定的脉冲当量尚未达到0.01mm ,定位精度也未达到微米级,空载最快移动速度也只有因此1500mm/min ,故本设计不必采用高档次的伺服电动机,因此可以选用混合式步进电动机。以降低成本,提高性价比。 3.1.4减速装置的选用 为了圆整脉冲当量,放大电动机的输出转矩,降低运动部件折算到电动机转轴上的转动惯量,需要设置减速装置,且应有消间隙机构。因此决定采用无间隙齿轮传动减速箱。 3.1.5检测装置的选用 选用步进电动机作为伺服电动机后,可选开环控制,也可选闭环控制。任务书所

金属压铸机的PLC控制

金属压铸机的PLC控制

一. 课程设计的性质与目的 本课程设计是自动化专业教学计划中不可缺少的一个综合性教学环节,是实现理论与实践相结合的重要手段。它的主要目的是培养学生综合运用本课程所学知识和技能去分析和解决本课程范围内的一般工程技术问题,建立正确的设计思想,掌握工程设计的一般程序和方法。通过课程设计使学生得到工程知识和工程技能的综合训练,获得应用本课程的知识和技术去解决工程实际问题的能力。 二. 课程设计的内容 1.根据控制对象的用途、基本结构、运动形式、工艺过程、工作环境和控制要求,确定控制方案。 2.绘制金属压铸机控制系统的PLC I/O接线图和梯形图,写出指令程序清单。 3.选择电器元件,列出电器元件明细表。 4.上机调试程序。 5.编写设计说明书。 三. 课程设计的要求 1.所选控制方案应合理,所设计的控制系统应能够满足控制对象的工艺要求,并且技术先进,安全可靠,操作方便。 2.所绘制的设计图纸符合国家标准局颁布的GB4728-84《电气图用图形符号》、GB6988-87《电气制图》和GB7159-87《电气技术中的文字符号制定通则》的有关规定。 3.所编写的设计说明书应语句通顺,用词准确,层次清楚,条理分明,重点突出,篇幅不少于7000字。 主要设计条件 1.PLC实验设备若干。 2.参考文献若干。

设计说明书装订顺序 1.课程设计说明书封面。 2.课程设计任务书。 3.说明书目录。 4.正文(按设计内容逐项书写)。 5.参考文献。 6.附录。 7.课程设计评分表。 设计进度安排 第1周: 1.星期一上午:课题内容介绍。 2.星期一下午:仔细阅读设计任务书,明确设计任务与要求,收集设计资料,准备设计工具。 3.星期二~星期五:确定控制方案。绘制金属压铸机电气控制系统的PLC I/O接线图和梯形图,写出指令程序清单。设计控制系统的工艺图纸。选择电器元件,列出电器元件明细表。 第2周: 4.星期一:上机调试程序。 5.星期二~星期五:编写设计说明书,答辩。

数控机床的伺服进给系统课程设计

前言........................................................................................................................ 3 1 机床进给传动控制方向的选择 .. (4) 1.1 开环控制系统 ...................................................................................... 4 1.2 闭环控制系统 ...................................................................................... 4 1.3 半闭环控制系统 .................................................................................. 4 2 传动系统的设计 .. (5) 2.1 直联传动系统 ...................................................................................... 5 2.2 带传动系统 .......................................................................................... 5 2.3 传动系统图 .......................................................................................... 5 3 数控车床伺服进给系统X 轴设计 . (6) 3.1 确定滚珠丝杠副的导程()mm P h ......................................................... 6 3.2 确定当量转速与当量载荷 .................................................................. 6 3.3 预期额定动载荷()N C am ..................................................................... 7 3.4 确定允许的最小螺纹底径 .................................................................. 8 3.5 确定滚珠丝杠副的规格代号 .............................................................. 9 3.6 确定滚珠丝杠副预紧力()N F p ......................................................... 10 3.7 对预拉伸的滚珠丝杠副 .................................................................... 10 3.8 确定滚珠丝杠副支承用的轴承代号、规格 .................................... 10 3.9 滚珠丝杠副工作图设计 .................................................................... 11 3.10 伺服电动机的选择 .......................................................................... 11 3.11 传动系统刚度 .................................................................................. 12 4 验算 .. (14) 4.1 传动系统刚度验算及滚珠丝杠副的精度选择 ................................ 14 4.2 验算滚珠丝杠副临界压缩载荷()N F c .............................................. 15 4.3 验算滚珠丝杠副的临界转速()min n n c ........................................... 15 4.4 验算n D ............................................................................................... 15 4.5 基本轴向额定静载荷oa C 验算: (16)

PLC金属压铸机课程设计 (2)

湖南工程学院课程设计 课程名称电气控制与PLC 课题名称金属压铸机电气控制系统设计专业班级自动化0904班 姓名麻文继 学号20090102040921 指导教师赖指南、刘星平、唐勇奇、谭梅 2012年6月15日

湖南工程学院 课程设计任务书 课程名称电气控制与PLC 课题名称金属压铸机电气控制系统设计专业班级自动化0904班 姓名麻文继 学号2009010204021 指导教师赖指南、刘星平、唐勇奇、谭梅 审批黄峰、汪超、刘星平 任务书下达日期2012年6月4日 课程设计完成日期2012年6月15日

PLC是应用最广的以计算机技术为核心的自动控制装置。本设计以西门子公司的S7-200PLC为基础,设计出一个简易的搬运机械手控制系统。 设计的第1章主要是对PLC和金属压铸机作了一个简要的介绍。第2章的内容就是对三种控制方案(继电器控制、微机控制、PLC控制)做简单的介绍和的对比,进而得出最优方案。第3章主要本系统的硬件电路的设计,包括:PLC外部电路设计。第4章是金属压铸机电气控制系统的软件设计,主要是根据硬件电路和的工作原理先设计出顺序功能图,进而设计出系统的梯形图。第5章讲的是程序调试过程,主要是程序调试过程中所遇到的问题,以及解决方案。 在本设计编写过程中,得到了懒指南老师的悉心指导,以及各位同学的一些帮忙,谨在此表示衷心的感谢。 因为设计者本人水平有限,设计过程中难免会有些错漏之处,恳请读者批评指正。

第1章概述 (1) 1.1 PLC简介 (1) 1.2金属压铸机概述 (2) 第2章控制方案论证 (4) 2.1继电器控制方案 (4) 2.2微机控制方案 (4) 2.3 方案的对比及选择PLC控制方案的原因 (5) 第3章控制系统硬件电路设计 (7) 3.1 电器元件清单 (7) 3.2 PLC控制面板 (8) 3.3 PLC的I/O接线图I (9) 第4章控制系统软件设计 (1) 4.1控制系统的软件设计原理 (9) 4.2控制系统的工作循环图和顺序功能图 (11) 4.3控制系统的梯形图程序 (13) 第5章控制系统调试 (18) 5.1 控制系统的调试过程 (18) 结束语 (19) 致谢 (20) 参考文献 (21) 附录 (22)

数控加工课程设计--经济型数控车床进给系统机械部件及数控加工编程设计

摘要 数控机床及其制造系统的柔性化、集成化和网络化水平进一步得到提高,可按照市场需求,实现生产能力快速重组,以适应用户多品种变批量生产的需求,更要在精度上满足客户的需求。 一台机床的精度主要分散在进给系统上,所以若能在进给系统有更高精度的突破,高精度、反向误差小、高负载能力、高可靠性、运行平稳。若满足这些机床的性能指标,从而提高数控机床加工质量和刀具的使用寿命。经济型数控车床适宜加工各种形状复杂的轴、套、盘类零件, 如车削内、外圆柱面、圆锥面、圆弧面、端面、切槽、倒角、车螺纹等,工艺适应性强,加工效率高,精度高,加工质量稳定,可降低对工人技术熟练程度的要求。数控加工编程容易,操作简单,可广泛适用于汽摩配件、家电、液压气动、轴承、仪器仪表、五金阀门等制造业中、小型零件的批量加工,是理想的中小型机械加工设备。 通过技术调研,我们认为经济型数控机床的开发具有可行性。该项目的实施过程,是根据国内市场的需求分析及调研的结果,确定产品的性能,进行总体设计,部件研制,安装,以及整机的调试等一系列过程,需要设计,制造,供应,机加工,装配等一系列的密切配合。 关键词:数控;经济型;设计

目录 摘要 (1) 目录 (2) 1. 总体方案设计 (3) 1.1 设计任务 (3) 1.2 总体方案确定 (3) 2.经济型数控车床进给运动机械部件设计 (3) 2.1 系统脉冲当量 (4) 2.2 切削力计算 (4) 2.2.1 纵车外圆 (4) 2.2.2 横切端面 (5) 2.3 滚动螺旋副选型计算与验算 (5) 2.3.1 纵向进给丝杠 (5) 2.3.2 横向进给丝杠 (7) 2.3.3 滚珠丝杠副几何参数 (9) 2.4 齿轮传动比计算 (9) 2.4.1 纵向进给齿轮传动比计算 (9) 2.4.2 横向进给齿轮传动比计算 (10) 2.5 步进电机的计算与选型 (10) 2.5.1 等效转动惯量计算 (10) 2.5.2 电机力矩计算 (11) 2.5.3 步进电机性能验算 (12) 2.5.4 步进电机型号确定及主要参数列表: (13) 3. 电气控制原理图设计 (14) 3.1 CPU的选择 (14) 3.2 芯片的介绍 (15) 4. 数控加工编程设计 (18) 4.1 加工零件图 (18) 4.2 加工工艺卡的编写 (19) 4.2 加工程序的编写 (20) 总结 (25) 参考文献 (26)

机械手的PLC控制(完整)

江苏信息职业技术学院毕业设计报告 毕业设计报告课题:机械手的PLC控制 系部:机电系 专业:电气自动化 班级:电气1332 姓名:王琪 学号:2013321026 指导老师:贾君贤 2016-6

摘要 机械手是工业自动化系统中传统的任务执行机构,是机器人的关键部件之 一。机械手的机械结构采用滚珠丝杆、滑杆、等机械器件组成;电气方面有交流 电机、传感器、等电子器件组成。该装置涵盖了可编程控制技术,位置控制技术、检测技术等,是机电一体化的典型代表仪器之一。本文介绍的机械手是由PLC 输出三路脉冲,控制机械手横轴和竖轴的精确定位,微动开关将位置信号传给 PLC主机;位置信号由接近开关反馈给PLC主机,通过交流电机的正反转来控制 机械手手爪的张合,从而实现机械手精确运动的功能。本课题拟开发的物料搬运机械手可在空间抓放物体,动作灵活多样,可代替人工在高温和危险的作业区进 行作业,并可根据工件的变化及运动流程的要求随时更改相关参数。 关键词:机械手 PLC 交流电机

目录 摘要 (1) 引言 (3) 第一章机械手机械结构 (4) 1.1传动机构 (4) 1.2机械手夹持器和机座的结构 (6) 第二章机械手PLC及电机的应用 (8) 2.1 PLC简介 (8) 2.2 PLC内部原理 (10) 2.3 机械手PLC选择及参数 (12) 2.4 机械手电机的选用 (13) 第三章机械手PLC控制系统设计 (14) 3.1 机械手的工艺过程 (14) 3.2PLC控制系统 (16) 致答谢词 (21) 参考文献 (21)

引言 在现代工业中,随着工业现代化的进一步发展,自动化已经成为现代企业中的重要支柱,无人车间、无人生产流水线等等,已经随处可见。同时,现代 生产中,存在着各种各样的生产环境,如高温、放射性、有毒气体、有害气 体场合以及水下作业等,这些恶劣的生产环境不利于人工进行操作。 工业机械手是近代自动控制领域中出现的一项新的技术,是现代控制理 论与工业生产自动化实践相结合的产物,并以成为现代机械制造生产系统中 的一个重要组成部分。工业机械手是提高生产过程自动化、改善劳动条件、 提高产品质量和生产效率的有效手段之一。尤其在高温、高压、粉尘、噪声 以及带有放射性和污染的场合,应用得更为广泛。在我国,近几年来也有较 快的发展,并取得一定的效果,受到机械工业和铁路工业部门的重视。 本课题拟开发物料搬运机械手,采用日本三菱公司的FX2N系列PLC,对机械手的上下、左右以及抓取运动进行控制。该装置机械部分有滚珠丝杠、 滑轨、机械抓手等;电气方面由交流电机、操作台等部件组成。我们利用可 编程技术,结合相应的硬件装置,控制机械手完成各种动作。 由于时间仓促和个人水平限制,我的设计存在着许多还没来得及解决的 问题,希望广大老师、同学能够给予批评指正并予以解决。

机床夹紧、进给液压传动系统设计

液压传动课程设计 中国矿业大学机电学院 选修课

设计参数: 不计惯性负载 题目:在某专用机床上有一夹紧进给液压系统,完成工件的先夹紧后、后进给任务,工作原理如下: 夹紧油缸: 快进→慢进→达到夹紧力后启动进给油缸工作 进给油缸: 快进→慢进→达到进给终点→快速退回 夹紧油缸快速退回。 夹紧缸快进速度:0.05m/s 夹紧缸慢进速度:8mm/s 最大夹紧力:40KN 进给油缸快进速度:0.18m/s 进给油缸慢进速度:0.018m/s 最大切削力:120KN 夹紧缸行程:用行程开关调节(最大250mm) 进给缸行程:用行程开关调节(最大1000mm) 一、工况分析: 1.负载分析

已知最大夹紧力为40KN,则夹紧油缸工作最大负载 140 F KN = 已知最大切削力为120KN,则进给油缸工作最大负载 2120 F KN = 根据已知负载可画出负载循环图1(a) 根据已知快进、快退速度及工进时的速度范围可画出速度循环图1(b) 图1(a) 图1(b)

2.确定液压缸主要参数 根据系统工作原理可知系统最大负载约为120KN 参照负载选择执行元件工作压力和主机类型选择执行元件工作压力最大负载宜选取18p MPa =。动力滑台要求快进、快退速度相等,选用单杆液压缸。此时液压缸无缸腔面积1A 与有缸腔面积2A 之比为2,即用活塞杆直径d 与活塞直径D 有d=的关系。为防止液压缸冲击,回油路应有背压2P ,暂时取MPa P 6.02=。 从负载循环图上可知,工进时有最大负载,按此负载求液压缸尺寸。根据液压缸活塞力平衡关系可知: M e F A p A p η+= 2211 212A A = 其中,M η为液压缸效率,取95.0=M η 2 46 2 111046.8910)3.04(95.031448)2 (m p p F A M e -?=?-= - = η m A D 1067.014 .31046.894441 =??== -π m D d 075.0707.0== 将D 和d 按GB2348-30圆整就近取标准值,即

数控机床进给系统设计

数控机床进给系统设计

第一章、数控机床进给系统概述 数控机床伺服系统的一般结构如图图1-1所示: 图1-1数控机床进给系统伺服 由于各种数控机床所完成的加工任务不同,它们对进给伺服系统的要求也不尽相同,但通常可概括为以下几方面:可逆运行;速度范围宽;具有足够的传动刚度和高的速度稳定性;快速响应并无超调;高精度;低速大转矩。 1.1、伺服系统对伺服电机的要求 (1)从最低速到最高速电机都能平稳运转,转矩波动要小,尤其在低速如0.1r /min 或更低速时,仍有平稳的速度而无爬行现象。 (2)电机应具有大的较长时间的过载能力,以满足低速大转矩的要求。一般直流伺服电机要求在数分钟内过载4-6倍而不损坏。 (3)为了满足快速响应的要求,电机应有较小的转动惯量和大的堵转转矩,并具有尽可能小的时间常数和启动电压。电机应具有耐受4000rad/s2以上的角加速度的能力,才能保证电机可在0.2s以内从静止启动到额定转速。 (4)电机应能随频繁启动、制动和反转。 随着微电子技术、计算机技术和伺服控制技术的发展,数控机床的伺服系统已开始采用高速、高精度的全数字伺服系统。使伺服控制技术从模拟方式、混合方式走向全数字方式。由位置、速度和电流构成的三环反馈全部数字化、软件处理数字PID,使用灵活,柔性好。数字伺服系统采用了许多新的控制技术和改进伺服性能的措施,使控制精度和品质大大提高。 数控车床的进给传动系统一般均采用进给伺服系统。这也是数控车床区别于普通车床的一个特殊部分。 1.2、伺服系统的分类 数控车床的伺服系统一般由驱动控制单元、驱动元件、机械传动部件、执行件和检测反

馈环节等组成。驱动控制单元和驱动元件组成伺服驱动系统。机械传动部件和执行元件组成机械传动系统。检测元件与反馈电路组成检测系统。 进给伺服系统按其控制方式不同可分为开环系统和闭环系统。闭环控制方式通常是具有位置反馈的伺服系统。根据位置检测装置所在位置的不同,闭环系统又分为半闭环系统和全闭环系统。半闭环系统具有将位置检测装置装在丝杠端头和装在电机轴端两种类型。前者把丝杠包括在位置环内,后者则完全置机械传动部件于位置环之外。全闭环系统的位置检测装置安装在工作台上,机械传动部件整个被包括在位置环之内。 开环系统的定位精度比闭环系统低,但它结构简单、工作可靠、造价低廉。由于影响定位精度的机械传动装置的磨损、惯性及间隙的存在,故开环系统的精度和快速性较差。 全闭环系统控制精度高、快速性能好,但由于机械传动部件在控制环内,所以系统的动态性能不仅取决于驱动装置的结构和参数,而且还与机械传动部件的刚度、阻尼特性、惯性、间隙和磨损等因素有很大关系,故必须对机电部件的结构参数进行综合考虑才能满足系统的要求。因此全闭环系统对机床的要求比较高,且造价也较昂贵。闭环系统中采用的位置检测装置有:脉冲编码器、旋转变压器、感应同步器、磁尺、光栅尺和激光干涉仪等。 数控车床的进给伺服系统中常用的驱动装置是伺服电机。伺服电机有直流伺服电机和交流伺服电机之分。交流伺服电机由于具有可靠性高、基本上不需要维护和造价低等特点而被广泛采用。 直流伺服电动机引入了机械换向装置。其成本高,故障多,维护困难,经常因碳刷产生的火花而影响生产,并对其他设备产生电磁干扰。同时机械换向器的换向能力,限制了电动机的容量和速度。电动机的电枢在转子上,使得电动机效率低,散热差。为了改善换向能力,减小电枢的漏感,转子变得短粗,影响了系统的动态性能。 交流伺服已占据了机床进给伺服的主导地位,并随着新技术的发展而不断完善,具体体现在三个方面。一是系统功率驱动装置中的电力电子器件不断向高频化方向发展,智能化功率模块得到普及与应用;二是基于微处理器嵌入式平台技术的成熟,将促进先进控制算法的应用;三是网络化制造模式的推广及现场总线技术的成熟,将使基于网络的伺服控制成为可能。 1.3、主要设计任务参数 车床控制精度:0.01mm(即为脉冲当量);最大进给速度:V max=5m/min。最大加工直径为D =400mm,工作台及刀架重:110㎏;最大轴,向力=160㎏;导轨静摩擦系数=0.2; max 行程=1280mm;步进电机:110BF003;步距角:0.75°;电机转动惯量:J=1.8×10-2㎏.m2。

金属压铸机电气控制系统设计

PLC是应用最广的以计算机技术为核心的自动控制装置。本设计以西门子公司的S7-200PLC为基础,设计出一个简易的搬运机械手控制系统。 设计的第1章主要是对PLC和金属压铸机作了一个简要的介绍。第2章的内容就是对三种控制方案(继电器控制、微机控制、PLC控制)做简单的介绍和的对比,进而得出最优方案。第3章主要本系统的硬件电路的设计,包括:PLC外部电路设计。第4章是金属压铸机电气控制系统的软件设计,主要是根据硬件电路和的工作原理先设计出顺序功能图,进而设计出系统的梯形图。第5章讲的是程序调试过程,主要是程序调试过程中所遇到的问题,以及解决方案。 在本设计编写过程中,得到了懒指南老师的悉心指导,以及各位同学的一些帮忙,谨在此表示衷心的感谢。 因为设计者本人水平有限,设计过程中难免会有些错漏之处,恳请读者批评指正。

第1章概述 (1) 1.1 PLC简介 (1) 1.2金属压铸机概述 (2) 第2章控制方案论证 (4) 2.1继电器控制方案 (4) 2.2微机控制方案 (4) 2.3 方案的对比及选择PLC控制方案的原因 (5) 第3章控制系统硬件电路设计 (7) 3.1 电器元件清单 (7) 3.2 PLC控制面板 (8) 3.3 PLC的I/O接线图I (9) 第4章控制系统软件设计 (1) 4.1控制系统的软件设计原理 (9) 4.2控制系统的工作循环图和顺序功能图 (11) 4.3控制系统的梯形图程序 (13) 第5章控制系统调试 (18) 5.1 控制系统的调试过程 (18) 结束语 (19) 致谢 (20) 参考文献 (21) 附录 (22)

第1章概述 1.1 PLC简介 PLC在现在制造系统中有了很大范围的应用。在工业应用中,梯形图对PLC发展最为广泛的编程语言。一般来说,plc包括了微处理器,而梯形图是在一个扫描周期中按顺序的在微处理器中执行的。基于这个解决法,在扫描周期plc的执行速度被限制于程序的长短和微处理器扫描的速度。为了克服可编程硬件的缺点,根据的他的硬件结构重构和顺序执行的优点许多研究者关注场可编程门阵列(FPGA)酯可编程序控制器(PLC)。 Miyazawa和Ikeshita在1999年研发一个非常粗糙方式的把图形的图形语言转换成高速集成电路硬件描述语言的程序描述。Chen 和Patyra设计了一个整个系统直接从最初的系统建立一个控制器的vhdl模型。 Abdel-Hamid和Kuusilinna研发了一种把有限状态转换成硬件描述语言的运算法则。Adamski有效地在成产控制中选择网络模型代替梯形图语言。那些研究表明可重构的硬件有简化程序,节省容量和本钱,而FPGA的顺序执行可以提高PLC可执行性。 在FPGA设计中顺序执行的存在不仅在组合逻辑运算中还是在组合逻辑运行中存在。第一种情况,在组合逻辑中,只有一个输出,所有的组合逻辑在电路中都影响所涉及的输出。运算可以以电气速度被运行。第二个方面,在多种组合逻辑中,所有的组合逻辑运行中,在一个平面的方式中设计的每个输出都在电路中存在。所以他们以顺序方式出现。对第一种情况来说,在VHDL中这就是很简单了。在这篇论文中顺序执行被提到特别针对第二种情况。 另外,时下的研究处在一个高低不平阶段,仅仅是通过实例转换把PLC 语言装换成VHDL语言。再者,大部分方法都是针对获得硬件描述语言或者从原系统要求中获得的门阵列中的电阻晶体管逻辑的。制造系统中大部分

毕业论文CNC数控车床纵向进给系统设计说明

1前言 我国数控车床从20世纪70年代初进入市场,至今通过各大机床厂家的不懈努力,通过采取与国外著名机床厂家的合作、合资、技术引进、样机消化吸收等措施,使得我国的机床制造水平有了很大的提高,其产量在金属切削机床中占有较大的比例.但我国在五轴加工技术、高速加工技术、精密加工技术等方面与国外方面还有很大的差距。主要问题有:1缺乏系统深入的科研工作, 难以对各种技术资料进行积累, 设计方法旧。2、缺乏实事的科学精神, 忽视了数控机床本身的技术特点、发展规律, 没有实事地制定数控机床发展的规划, 盲目性大。3、没有合理地运用资源。各个研究所孤军奋战,不通力合作,并且床行业人员素质低, 缺乏各方面人才。4、我国制造业大环境的制约。我国依靠引进和合作生产来发展各类主机, 至今我国许多高性能、新结构的数控机床大都为合作产品, 基本处于仿制阶段。 国产数控机床及其功能部件无论在技术参数上,还是在各种动态指标上,与工业发达国家的同类产品均存在一定差距。目前,国机床集团在引进技术的基础上成功开发出BW60HS/I型系列高速卧式加工中心,并已批量进入市场。该机采用电主轴,主轴最高转速16 000 r/min,由零至最高转速的时间为l s,快速移动速度60 m/min。宁江集团开发的高速加工中心主轴转速高达40 000 r/min。 当前,在数控机床精密化方面,美国的水平最高,不仅生产中小型精密机床,而且由于国防和尖端技术的需要,研究开发了大型精密机床。其代表产品有LLL 实验室研制成功的DTM一3型精密车床和LODTM大型光学金刚石车床,它们是世界公认水平最高的、达到当前技术最前沿的大型精密机床。其它国家也相应研制成功各种类似的装备,如英国的Cran·field、日本的东芝机械等。近年来我国对超精密机床的研制也一直在进行。机床研究所研制成功了JCS一027型超精密车床、JCS一03型超精密铣床、JCS一035型数控超精密车床等。

基于压铸机的PLC控制系统

目录 摘要 (Ⅲ) 关键词 (Ⅲ) 1概述 (2) 1.1压铸的发展简史 (2) 1.2压铸机的定义 (3) 1.3压铸机的分类及特点 (3) 1.4压铸机的应用 (4) 1.5PLC的基本结构 (4) 1.6PLC的应用领域 (5) 2PLC与其他控制的比较 (6) 2.1继电器控制方案 (6) 2.2集散控制方案 (7) 2.3PLC控制方案 (7) 2.4方案比较 (7) 2.4.1采用继电器控制系统 (7) 3金属压铸机的工艺流程 (8) 4PLC系统硬件设计 (11) 4.1PLC的功能简介 (11) 4.1.1主机系统 (11) 4.1.2输入/输出扩展环节 (11) 4.2.1I/O点数的估算 (11) 4.2.2存储器的容量估算 (11) 4.2.3I/O模块的选择 (12) 4.3分配输入/输出点 (13) 4.4安全回路设计 (14) 5PLC系统软件设计 (15) 5.1PLC软件设计内容 (15)

6系统的调试 (17) 6.1硬件调试 (17) 6.2软件调试 (17) 6.3系统联调 (17) 7压铸机的安全操作规程 (18) 总结 (19) 参考文献 (20) 致谢.................................................... 错误!未定义书签。

摘要 根据工业现场的需要和可编程控制器(PLC)自身特点,本设计为基于压铸机的PLC 控制系统。在这个设计中,本设计采用西门子公司PLC S7-300系列可编程控制器为例。结合了书籍和资料,说明了PLC的工作原理、软件使用方法、PLC的硬件系统设计及PLC 软件系统设计。实现了对压铸机的液压系统的控制。 在该设计中,PLC作为主机,压铸机作为从机,构成基于压铸机的PLC的控制,完成对压铸机的整个工艺流程的控制,可反映压铸机在整个工作过程的工作状况。 关键词:可编程控制器;压铸机;液压传动

数控车床横向进给系统设计

1、数控机床进给系统概述 1.1 伺服进给系统概述 数控机床的伺服进给系统由伺服驱动电路、伺服驱动装置、机械传动机构和执行部件组成。它的作用是接收数控系统发出的进给速度和位移指 令信号,由伺服驱动电路作转换和放大后,经伺服驱动装置(直流、交流 伺服电动机,功率步进电机,电业脉冲马达等)和机械传动机构,驱动机 床的工作台、主轴刀架等执行部件实现工作进给和快速移动。数控机床的 伺服进给系统与一般机床的进给系统有本质的差别,他能根据指令信号精 确地控制执行部件的运动速度与位置,以及几个执行部件按一定运动规律 所合成的运动轨迹。 1.2 伺服进给系统分类 数控私服进给系统按有无位置检测和反馈进行分类,有以下三种: (1)开环伺服系统 (2)半闭环伺服系统 (3)闭环伺服系统 1.3 伺服进给系统的基本要求 (1)精度要求 (2)响应速度 (3)调速范围 (4)低速、大转矩 1.4 主要设计任务 已知参数:最大加工直径D m a x=400m m,工作台及刀架重:30㎏; 最大轴向力:130㎏;导轨静摩擦系数:0.2;行程:360m m;步进电机: 110B F003;步距角:0.75°;电机转动惯量:J=1.8×10-2㎏.c m.s-2; 设计要求:车床控制精度:0.005m m(即为脉冲当量);加速时间:25m s; 最大进给速度:V m a x=2.5m/m i n。

2、运动设计 2.1传动方案拟定 数控机床按控制方式分为开环、闭环、半闭环,由于采用直流式交流伺服电机的闭环控制方案,结构复杂,技术难度大,调试和维修困难,造价也高。闭环控制可以达到很好的机床精度,能补偿机械传动系统中各种误差,消除间隙、干扰等对加工精度的影响,一般应用于要求高的数控设备中,由于数控车床加工精度不十分高,采用闭环系统的必要性不大。若采用直流或交流伺服电机的半闭环控制,精度较闭环控制的查,但是稳定性好,成本较低,调试维修较容易;但是对于经济型数控机床来说必要性不大。故在本次设计中,采用开环控制步进电机驱动。 确定设计任务后,初步拟定三种传动方案即1电机直接与丝杠相连;2电机通过同步带的传动带动丝杠转动;3电机通过齿轮传动带动丝杠转动。 步进电机具有如下优点 : (1)电动机的输出转角与输入的脉冲个数严格成正比,故控制输入步进电动 机的脉冲个数就能控制位移量; (2)电动机的转速与输入的脉冲频率成正比,与要控制脉冲频率就能调节步 进电动机的转速; (3)停止送入脉冲时,只要维持绕组内电流不变,电动机轴可以保持在某个 固定位置上,不需要机械制动装置; (4)变通电相序即可以改变电动机的转向; (5)进电动机存在齿间相邻误差,但是不会产生累积误差; (6)进电动机转动惯量小,启动、停止迅速。滚珠丝杠副具有摩擦数小传 动效率高,所需的传动转矩小;灵敏度高,传动平稳,不易产生爬行;随着精度和定位精度高,磨损小,寿命长,精度保持性好,可通过预紧间隙消除措施提高轴承刚度和反向精度,运动具有可性。 故在本次设计中采用步进电机带动X向工作台移动。传动方案1的结构简单,但是消除由步进电动机引起的振动等现象能力较差,故在本次设计中不采用方案1;传动方案2采用同步带传动保持恒定传动比,传动精度高工作平稳,结构紧凑,无噪声,有良好减振性能,但制造工艺比较复杂,传递功率较小,寿命较低,故在本次设计中不易采用。所以本次设计中采用方案3的齿轮传动,其主要特点是效率高,结构紧凑,工作可靠,寿命长,传动比稳定,传动过程中采用消隙齿轮,消除正反转齿轮间隙提高传动精度,性价比高。 2.2降速比计算

金属压铸机的PLC控制

前言 可编程控制器(PLC)是综合了计算机技术、自动控制技术和通信技术的一种新型的、通用的自动控制装置。它具有功能强、可靠性高、使用灵活方便、易于编程以及适于在工业环境下应用等一系列优点,在工业自动化、机电一体化、传统产业技术改造等方面的应用越来越广泛,已成为现代工业控制的三大支柱之一。 可编程控制器是 20 世纪 70 年代诞生的通用自动控制装置,自第一台PLC问世以来,经过 30 多年的发展和完善,它已由原来仅仅代替继电器逻辑控制而变成一个集顺序逻辑控制、回路调节、图形监视、网络通信于一体的综合自动化系统发展成为被广泛应用到机械制造、冶金、矿业、轻工等各个领域,成为现代工业自动化的三大支柱( PLC、机器人、CAD/CAM )之一。PLC的编程概念和控制思想已为广大的自动化行业人员所熟悉,这是一个目前任何其他工业控制器都无法与之相提并论的巨大知识资源;其次,PLC系统硬件技术成熟,性能价格比较高,运行稳定可靠,开发过程也简单方便,运行维护成本很低。所有这些特点造就了PLC的旺盛生命力。 可编程序控制器,发展至今,除传统的硬PLC外,还有融入控制组态软件之中的软PLC(Softplc)。它们正在扩展着PLC在工控、工业自动化领域中所占有的市场份额。由于习惯与技术积累 PLC的传统用户,不可能一时放弃原有的投资,在技术改造过程中,在原有的投资基础上,增加性能更好的设备,以提高生产效率和扩大再生产。 近年来,随着可编程控制器( PLC )应用技术的发展的,其在工业生产中的应用也越来越广泛;根据工业现场的需要和 PLC 自身的特点,可编程控制器的在工业生产中也被广泛采用,使工业控制变得更为方便、灵活,也使得生产效率大大提高生产效益获得更大的经济。

车床主轴传动系统课程设计公比1.41转速12级

目录 一、机床总体设计---------------------------------------------------------------------2 1、机床布局--------------------------------------------------------------------------------------------2 2、绘制转速图-----------------------------------------------------------------------------------------4 3、防止各种碰撞和干涉-----------------------------------------------------------------------------5 4、确定带轮直径--------------------------------------------------------------------------------------5 5、验算主轴转速误差--------------------------------------------------------------------------------5 6、绘制传动系统图-----------------------------------------------------------------------------------6 二、估算传动件参数确定其结构尺寸-------------------------------------------7 1、确定传动见件计算转速--------------------------------------------------------------------------7 2、确定主轴支承轴颈尺寸--------------------------------------------------------------------------7 3、估算传动轴直径-----------------------------------------------------------------------------------7 4、估算传动齿轮模数--------------------------------------------------------------------------------8 5、普通V带的选择和计算-------------------------------------------------------------------------8 三、机构设计--------------------------------------------------------------------------10 1、带轮设计-------------------------------------------------------------------------------------------10 2、齿轮块设计----------------------------------------------------------------------------------------10 3、轴承的选择----------------------------------------------------------------------------------------10 4、主轴主件-------------------------------------------------------------------------------------------10 5、操纵机构-------------------------------------------------------------------------------------------10 6、滑系统设计----------------------------------------------------------------------------------------10 7、封装置设计----------------------------------------------------------------------------------------10 8、主轴箱体设计-------------------------------------------------------------------------------------11 9、主轴换向与制动结构设计----------------------------------------------------------------------11 四、传动件验算-----------------------------------------------------------------------11 1、齿轮的验算----------------------------------------------------------------------------------------11 2、传动轴的验算-------------------------------------------------------------------------------------13 五、设计感想--------------------------------------------------------------------------17 六、参考文献--------------------------------------------------------------------------17

相关文档
最新文档