真菌基因组测序

真菌基因组测序

宏基因组分析和诊断技术在急危重症感染应用的专家共识

宏基因组分析和诊断技术在急危重症感染应用的专家共识 感染是急危重症患者死亡的主要原因之一。近年来,随着新发病原微生物的出现、耐药病原微生物的增多以及免疫抑制宿主的增加,感染的发病率和死亡率仍居高不下,脓毒症(严重感染)患者病死率高达50%[1-3]。最新调查研究发现,中国脓毒症相关性标化死亡率为66.7例/10万人口,全国每年共有脓毒症相关性死亡病例近103万例[3]。重症感染起病急、进展快、病原体复杂,短时间内能否明确致病病原微生物至关重要。 传统的病原微生物检测方法主要包括形态学检测、培养分离、生化检测、免疫学和核酸检测。因操作简单、快速、技术要求不高,同时具有一定的诊断敏感性和特异性,目前仍在临床上广泛使用。但传统的检测方法在敏感性、特异性、时效性、信息量等方面存在局限,而且对于未知或者罕见的病原微生物,无法快速识别。 基于宏基因组新一代测序技术(metagenomics next-generation sequencing,mNGS)不依赖于传统的微生物培养,直接对临床样本中的核酸进行高通量测序,然后与数据库进行比对分析,根据比对到的序列信息来判断样本包含的病原微生物种类,能够快速、客观地检测临床样本中的较多病原微生物(包括病毒、细菌、真菌、寄生虫),且无需特异性扩增[4-8],尤其适用于急危重症和疑难感染的诊断。 为了规范运用mNGS进行病原微生物的诊断、正确解读检测结果和指导治疗,我们组织了急危重病、感染病学和病原微生物学相关领域的专家,制定了本共识。 1 mNGS分析和诊断技术是急危重症感染快速、精准诊疗的发展方向 新一代测序技术是一个开放的分析和诊断系统,目前已经纳入的病原体有8000多种,其中包括3000余种细菌、4000余种病毒、200余种真菌和140种寄生虫,为疑难危重症及罕见病原微生物感染的诊断提供了有效的技术手段。 自2008年成功应用于临床诊断新发病原体感染以来[9-10],目前mNGS技术已经逐步用于临床疑难感染诊断,如华山医院张文宏团队[11]用mNGS协助确诊猪疱疹病毒的跨物种传播,并给予针对性治疗使患者痊愈,深圳市第三人民医院用mNGS确诊了一例罕见阿米巴脑炎[11-12]。 mNGS对脓毒症、免疫抑制宿主并发严重感染、重症肺部感染等疾病具有较高的临床应用价值,能够快速、精准地找到病原体;另外对于抗菌药物治疗方案的制定和治疗效果的评估具有一定的指导作用[9-16]。Long等[17]研究发现血培养联合mNGS诊断细菌或真菌感染,阳性率较单用血培养显著升高。以健康人群为基线,建立每种微生物在正常人群中的分布情况模型,进而计算脓毒症指数来评估检出微生物的核酸数量,Crumaz等[18]发现在脓毒症患者血液标本中病原菌的脓毒症指数绝对值、丰度显著升高,而且其变化与临床治疗效

DNA测序常见问题及分析

DNA测序过程可能遇到的问题及分析 对于一些生物测序公司(如Invitrogen等),我们的菌液或质粒经过PCR和酶切鉴定都没问题,但几天后的测序结果却无法另人满意。 为什么呢? PCR产物直接进行测序,在PCR产物长度以后将无反应信号,机器将产生许多N值。这是由于Taq酶能够在PCR反应的末端非特异性地加上一个A碱基,我们所用的T载体克隆PCR产物就是应用该原理,通常PCR产物结束的位点,PCR产物测序一般末端的一个碱基为A(绿峰),也就是双脱氧核甘酸ddNTP终止反应的位置之前的A,A后的信号会迅速减弱。 N值情况一般是由于有未去除的染料单体造成的干扰峰。该干扰峰和正常序列峰重叠在一起,有时机器377以下的测序仪无法正确判断出为何碱基。有时,在序列的起始端的小片段容易丢失,导致起始区信号过低,机器有时也无法正确判读。在序列的3’端易产生N值。一个测序反应一般可以读出900bp以上的碱基(ABI3730可以达到1200bp),但是,只有一般600bp以前的碱基是可靠的,理想条件下,多至700bp的碱基都是可以用的。一般在650bp以后的序列,由于测序毛细管胶的分辩率问题,会有许多碱基分不开,就会产生N值。测序模板本身含杂合序列,该情况主要发生在PCR产物直接测序,由于PCR产物本身有突变或含等位基因,会造成在某些位置上有重叠峰,产生N值。这种情况很容易判断,那就是整个序列信号都非常好,只有在个别位置有明显的重叠峰,视杂合度不同N值也不同。 测序列是从引物3’末端后第一个碱基开始的,所以就看不到引物序列。有两种方法可以得到引物序列。1.对于较短的PCR产物 (<600bp),可以用另一端的引物进行测序,从另一端测序可以一直测通,可以在序列的末端得到该引物的反向互补序列。对于较长的序列,一个测序反应测不通,就只能将PCR产物片段克隆到载体中,用载体上的通用引物(T7/SP6)进行测序。载体上的通用引物与所插入序列间

全基因组关联分析的原理和方法

全基因组关联分析(Genome-wide association study;GWAS)是应用基因组中 数以百万计的单核苷酸多态性(single nucleotide ploymorphism ,SNP)为分子 遗传标记,进行全基因组水平上的对照分析或相关性分析,通过比较发现影响复杂性状的基因变异的一种新策略。 随着基因组学研究以及基因芯片技术的发展,人们已通过GWAS方法发现并鉴定了大量与复杂性状相关联的遗传变异。近年来,这种方法在农业动物重要经济性状主效基因的筛查和鉴定中得到了应用。 全基因组关联方法首先在人类医学领域的研究中得到了极大的重视和应用,尤其是其在复杂疾病研究领域中的应用,使许多重要的复杂疾病的研究取得了突破性进展,因而,全基因组关联分析研究方法的设计原理得到重视。 人类的疾病分为单基因疾病和复杂性疾病。单基因疾病是指由于单个基因的突变导致的疾病,通过家系连锁分析的定位克隆方法,人们已发现了囊性纤维化、亨廷顿病等大量单基因疾病的致病基因,这些单基因的突变改变了相应的编码蛋白氨基酸序列或者产量,从而产生了符合孟德尔遗传方式的疾病表型。复杂性疾病是指由于遗传和环境因素的共同作用引起的疾病。目前已经鉴定出的与人类复杂性疾病相关联的SNP位点有439 个。全基因组关联分析技术的重大革新及其应用,极大地推动了基因组医学的发展。(2005年, Science 杂志首次报道了年龄相关性视网膜黄斑变性GWAS结果,在医学界和遗传学界引起了极大的轰动, 此后一系列GWAS陆续展开。2006 年, 波士顿大学医学院联合哈佛大学等多个研究机构报道了基于佛明翰心脏研究样本关于肥胖的GWAS结果(Herbert 等. 2006);2007 年, Saxena 等多个研究组联合报道了与2 型糖尿病( T2D ) 关联的多个位点, Samani 等则发表了冠心病GWAS结果( Samani 等. 2007); 2008 年, Barrett 等通过GWAS发现了30 个与克罗恩病( Crohns ' disrease) 相关的易感位点; 2009 年, W e is s 等通过GWAS发现了与具有高度遗传性的神经发育疾病——自闭症关联的染色体区域。我国学者则通过对12 000 多名汉族系统性红斑狼疮患者以及健康对照者的GWAS发现了5 个红斑狼疮易感基因, 并确定了4 个新的易感位点( Han 等. 2009) 。截至2009 年10 月, 已经陆续报道了关于人类身高、体重、 血压等主要性状, 以及视网膜黄斑、乳腺癌、前列腺癌、白血病、冠心病、肥胖症、糖尿病、精神分 裂症、风湿性关节炎等几十种威胁人类健康的常见疾病的GWAS结果, 累计发表了近万篇 论文, 确定了一系列疾病发病的致病基因、相关基因、易感区域和SNP变异。) 标记基因的选择: 1)Hap Map是展示人类常见遗传变异的一个图谱, 第1 阶段完成后提供了 4 个人类种族[ Yoruban ,Northern and Western European , and Asian ( Chinese and Japanese) ] 共269 个个体基因组, 超过100 万个SNP( 约1

全基因组重测序数据分析

全基因组重测序数据分析 1. 简介(Introduction) 通过高通量测序识别发现de novo的somatic和germ line 突变,结构变异-SNV,包括重排 突变(deletioin, duplication 以及copy number variation)以及SNP的座位;针对重排突变和SNP的功能性进行综合分析;我们将分析基因功能(包括miRNA),重组率(Recombination)情况,杂合性缺失(LOH)以及进化选择与mutation之间的关系;以及这些关系将怎样使 得在disease(cancer)genome中的mutation产生对应的易感机制和功能。我们将在基因组 学以及比较基因组学,群体遗传学综合层面上深入探索疾病基因组和癌症基因组。 实验设计与样本 (1)Case-Control 对照组设计; (2)家庭成员组设计:父母-子女组(4人、3人组或多人); 初级数据分析 1.数据量产出:总碱基数量、Total Mapping Reads、Uniquely Mapping Reads统计,测序深度分析。 2.一致性序列组装:与参考基因组序列(Reference genome sequence)的比对分析,利用贝叶斯统计模型检测出每个碱基位点的最大可能性基因型,并组装出该个体基因组的一致序列。3.SNP检测及在基因组中的分布:提取全基因组中所有多态性位点,结合质量值、测序深度、重复性等因素作进一步的过滤筛选,最终得到可信度高的SNP数据集。并根据参考基 因组信息对检测到的变异进行注释。 4.InDel检测及在基因组的分布: 在进行mapping的过程中,进行容gap的比对并检测可信的short InDel。在检测过程中,gap的长度为1~5个碱基。对于每个InDel的检测,至少需 要3个Paired-End序列的支持。 5.Structure Variation检测及在基因组中的分布: 能够检测到的结构变异类型主要有:插入、缺失、复制、倒位、易位等。根据测序个体序列与参考基因组序列比对分析结果,检测全基因组水平的结构变异并对检测到的变异进行注释。

细菌的基因预测以及注释

Whole-genome Annotation of an A.baumannii strain A.baumannii ACICU

摘要 随着新一代测序技术的发展,微生物全基因组测序的成本大大减少,DNA序列的生成速度已远远超过其基因的注释速度。功能基因组学的研究已经成为当今研究的主流。然而如此多的数据对现有的基因注释工具提出了巨大的挑战。本研究通过对A.baumanii ACICU染色体序列使用GeneMarks进行基因预测,预测到了3718个基因,然后使用RAST进行基因注释,共注释到了3683个功能基因,将得到的结果与原文献中所注释到的基因进行对比。最后得到结论,基因的预测与注释都需要综合不同软件的结果进行分析,才能得到较为准确的结果。本研究为原核生物全基因组的注释提方法供了参考。 关键字:基因注释全基因组鲍曼不动杆菌GeneMarksRAST

目录 1.引言(Introduction) (2) 1.1.背景介绍 (2) 1.2.全基因组注释软件 (3) 1.3. A.baumannii ACICU相关 (4) 2.材料与方法(Methods and Materials) (5) 2.1.使用GeneMarks进行ORF预测 (5) 2.2.使用RAST进行功能基因注释 (6) 3.结果与讨论(Results and Discussion) (8) 3.1.使用GeneMarks预测ORF的结果以及分析 (8) 3.2.使用RAST进行功能基因注释结果以及分析 (9) 3.3.综合分析 (10) 参考文献 (10) 1.引言(Introduction) 1.1.背景介绍

宏基因组学概述

宏基因组学概述

————————————————————————————————作者: ————————————————————————————————日期: ?

宏基因组学概述 王莹,马伊鸣 (北京交通大学土木建筑工程学院环境1402班) 摘要:随着分子生物学技术的快速发展及其在微生物生态学和环境微生物学研究中的广泛应用,促进了以环境中未培养微生物为研究对象的新兴学科——微生物环境基因组学(又叫宏基因组学、元基因组学,英文名Metagenomics)的产生和快速发展。宏基因组学通过直接从环境样品中提取全部微生物的DNA,构建宏基因组文库,利用基因组学的研究策略研究环境样品所包含的全部微生物的遗传组成及其群落功能.在短短几年内,宏基因组学研究已渗透到各个领域,包括海洋、土壤、热液口、热泉、人体口腔及胃肠道等,并在医药、替代能源、环境修复、生物技术,农业、生物防御及伦理学等各方面显示了重要的价值。本文对宏基因组学的主要研究方法、热点内容及发展趋势进行了综述 关键词:宏基因组宏基因组学环境基因组学基因文库的构建 Macro summary of Metagenomics WangYing,Ma Yi-Ming (BeijingJiaotongUniversity, Institute of civil engineering,)Key words:Metagenome; Metagenomics;The environmental genomics 宏基因组学(Metagenomics)又叫微生物环境基因组学、元基因组学。它通过直接从环境样品中提取全部微生物的DNA,构建宏基因组文库,利用基因组学的研究策略研究环境样品所包含的全部微生物的遗传组成及其群落功能。它是在微生物基因组学的基础上发展起来的一种研究微生物多样性、开发新的生理活性物质(或获得新基因)的新理念和新方法。其主要含义是:对特定环境中全部微生物的总DNA(也称宏基因组,metagenomic)进行克隆,并通过构建宏基因组文库和筛选等手段获得新的生理活性物质;或者根据rDNA数据库设计引物,通过系统学分析获得该环境中微生物的遗传多样性和分子生态学信息。 1.起源 宏基因组学这一概念最早是在1998年由威斯康辛大学植物病理学部门的Jo Handelsman等提出的,是源于将来自环境中基因集可以在某种程度上当成一个单个基因组研究分析的想法,而宏的英文是"meta-",具有更高层组织结构和动态变化的含义。后来伯克利分校的研究人员Kevin Chen和LiorPachter将宏基因组定义为"应用现代基因组学的技术直接研究自然状态下的微生物的有机群落,而不需要在实验室中分离单一的菌株"的科学。 2 研究对象 宏基因组学(Metagenomics)是将环境中全部微生物的遗传信息看作一个整体自上而下地研究微生物与自然环境或生物体之间的关系。宏基因组学不仅克服了微生物难以培养的困难, 而且还可以结合生物信息学的方法, 揭示微生物之间、微生物与环境之间相互作用的规律, 大大拓展了微生物学的研究思路与方法, 为从群落结构水平上全面认识微生物的生态特征和功能开辟了新的途径。目前, 微生物宏基因组学已经成为微生物研究的热点和前沿, 广泛应用于气候变化、水处理工程系统、极端环境、人体肠道、石油污染、生物冶金等领域, 取得了一系列引人瞩目的重要成果。 3 研究方法

Ion torrent微生物(细菌)全基因组重测序文库构建实验方案

微生物(细菌)全基因组重测序文库构建实验方案 一、重测序原理 全基因组重测序是对已知基因组序列的物种进行不同个体的基因组测序,并在此基础上对个体或群体进行差异性分析。 二、技术路线 ↓基因组DNA提取 细菌DNA(纯化) ↓超声波打断 DNA片段化 ↓ 文库构建 ↓Ion OneTouch 乳液PCR、ES ↓Ion PGM、Ion Proton 上机测序 ↓ 生物信息学分析 三、实验方案 1.细菌总DNA的提取 液氮速冻、干冰保存的细菌菌液:若本实验室可以提供该细菌生长的条件,则对菌液进行活化,培养至对数期时,对该细菌进行DNA提取;若本实验室不能提供该细菌的生长条件,则应要求客户提供尽可能多的样本,以保证需要的DNA量。 细菌DNA采用试剂盒提取法(如TianGen细菌基因组提取试剂盒)。 取对数生长期的菌液,按照细菌DNA提取试剂盒操作步骤进行操作。提取完成后,对基因组DNA进行纯度和浓度的检测。通过测定OD260/280,范围在1.8-2.0之间则DNA较纯,使用Qubit对提取的DNA进行定量,确定提取的DNA 浓度达到文库构建的量。

2.DNA片段化 采用Covaris System超声波打断仪(Covaris M220),将待测DNA打断 步骤: 1)对待打断的DNA进行定量,将含量控制在100ng或者1μg 2)打开Covaris M220安全盖,将Covaris AFA-grade Water充入水浴容器内,至液面到最高刻度线(约15mL),软件界面显示为绿色 3)将待打断DNA装入Ep LoBind管中,其中DNA为100ng或1μg,加入Low TE 至总体积为50mL 4)将稀释的DNA转移至旋钮盖的Covaris管中(200bp规格),转移过程中不能将气泡带入,完成后旋紧盖子 5)选择Ion_Torrent_200bp_50μL_ScrewCap_microTube,将对应的小管放入卡口,关上安全盖,点击软件界面“RUN” 6)打断结束后,将混合液转移至一支新的1.5mL离心管中 3.末端修复及接头连接 3.1 末端修复 使用Ion Plus Fragment Kit进行,以100ng DNA量为例,各组分使用前瞬时离心2s 步骤: 1)加入核酸酶free水至装有DNA片段的1.5mL离心管中,至总体积为79μL 2)向体系中加入20μL 5×末端修复buffer,1μL末端修复酶,总体积为100μL 3)室温放置20min 3.2 片段纯化 片段纯化使用Agencourt AMpure XP Kit进行 步骤: 1)加入180μL Agencourt AMpure XP Reagent beads于经过末端修复的1.5mL离心管中,充分混匀,室温放置5min

全基因组从头测序(de novo测序)

全基因组从头测序(de novo测序) https://www.360docs.net/doc/f02557977.html,/view/351686f19e3143323968936a.html 从头测序即de novo 测序,不需要任何参考序列资料即可对某个物种进行测序,用生物信息学分析方法进行拼接、组装,从而获得该物种的基因组序列图谱。利用全基因组从头测序技术,可以获得动物、植物、细菌、真菌的全基因组序列,从而推进该物种的研究。一个物种基因组序列图谱的完成,意味着这个物种学科和产业的新开端!这也将带动这个物种下游一系列研究的开展。全基因组序列图谱完成后,可以构建该物种的基因组数据库,为该物种的后基因组学研究搭建一个高效的平台;为后续的基因挖掘、功能验证提供DNA序列信息。华大科技利用新一代高通量测序技术,可以高效、低成本地完成所有物种的基因组序列图谱。包括研究内容、案例、技术流程、技术参数等,摘自深圳华大科技网站 https://www.360docs.net/doc/f02557977.html,/service-solutions/ngs/genomics/de-novo-sequencing/ 技术优势: 高通量测序:效率高,成本低;高深度测序:准确率高;全球领先的基因组组装软件:采用华大基因研究院自主研发的SOAPdenovo软件;经验丰富:华大科技已经成功完成上百个物种的全基因组从头测序。 研究内容: 基因组组装■K-mer分析以及基因组大小估计;■基因组杂合模拟(出现杂合时使用); ■初步组装;■GC-Depth分布分析;■测序深 度分析。基因组注释■Repeat注释; ■基因预测;■基因功能注释;■ ncRNA 注释。动植物进化分析■基因家族鉴定(动物TreeFam;植物OrthoMCL);■物种系统发育树构建; ■物种分歧时间估算(需要标定时间信息);■基因组共线性分析; ■全基因组复制分析(动物WGAC;植物WGD)。微生物高级分析 ■基因组圈图;■共线性分析;■基因家族分析; ■CRISPR预测;■基因岛预测(毒力岛); ■前噬菌体预测;■分泌蛋白预测。 熊猫基因组图谱Nature. 2010.463:311-317. 案例描述 大熊猫有21对染色体,基因组大小2.4 Gb,重复序列含量36%,基因2万多个。熊猫基因组图谱是世界上第一个完全采用新一代测序技术完成的基因组图谱,样品取自北京奥运会吉祥物大熊猫“晶晶”。部分研究成果测序分析结果表明,大熊猫不喜欢吃肉主要是因为T1R1基因失活,无法感觉到肉的鲜味。大熊猫基因组仍然具备很高的杂合率,从而推断具有较高的遗传多态性,不会濒于灭绝。研究人员全面掌握了大熊猫的基因资源,对其在分子水平上的保护具有重要意义。 黄瓜基因组图谱黄三文, 李瑞强, 王俊等. Nature Genetics. 2009. 案例描述国际黄瓜基因组计划是由中国农业科学院蔬菜花卉研究所于2007年初发起并组织,并由深圳华大基因研究院承担基因组测序和组装等技术工作。部分研究成果黄瓜基因组是世界上第一个蔬菜作物的基因组图谱。该项目首次将传

宏基因组测序技术检测方法

宏基因组测序技术检测标准 简介: 宏基因组测序介绍 宏基因组学是以环境样品中的微生物群体基因组为研究对象,通过现代基因组技术手段包括功能基因的筛选和测序分析,对环境中微生物多样性、种群结构、进化关系、功能活性、相互协作关系以及环境之间的关系进行研究的新的微生物研究方法。随着高通量测序技术的发展,为宏基因组学研究提供了新的理想研究方法。高通量测序的方法无需分离环境中各种微生物,也无需构建克隆文库就可以直接对环境中所有微生物进行测序。可以真实客观的反映环境中微生物的多样性、种群结构、进化关系等。目前又可以分为针对16s DNA/18sDNA/ITS测序和针对宏基因组全序列的测序研究。下面就是对这两者的具体介绍。 一、16s DNA/18s DNA/ITS测序 16sDNA是最常用的微生物物种分子鉴定的标签,,通过对样品中16sDNA测序可以鉴定其中微生物物种的丰度和分布情况。目前,普遍使用Roche 454平台来对环境样品进行16s DNA测序。因为16s DNA序列比较相似,读长短的话,难以进行有效的比对,而454平台的平均读长在400bp左右,可以很好的避免此类问题。 二、宏基因组全测序 在这种测序方式中,我们可以假定一个环境中的所有微生物就是一个整体,然后对其中所有的微生物进行测序。这样我们就可以研究样品中的功能基因以及其在环境中所起的作用而不用关心其来自哪个微生物。可以发现新的基因,可以进行基因的预测,甚至有可能得到某个细菌基因组的全序列。此外,该项测序不单可以针对DNA水平,也可以针对全RNA进行基因表达水平的研究。 样品处理:

宏基因组样品收集主要有口腔,下呼吸道痰液,下呼吸道灌洗液,皮肤和粪便。样品采集遵照样品采集规范(人)所规定的操作来进行。尽量留足备份样品。核酸提取: 宏基因组核酸提取主要有两种方法:膜过滤法和直接裂解提取。对于液体样品如痰液,灌洗液两种方法都适用,对于固体样品如粪便宜采用直接裂解的方法。核酸提取后用NanoDrop ND-1000测定,260/280 = , 260/230 = ,电泳检测DNA 应是完整的一条带。 测序Sequencing 1)16S/18S测序: Sanger测序: 用于低通量的16S/18S DNA测序,提取宏基因组后,首先通过PCR将16S/18S 序列扩增出来,再将其连接到克隆载体上,导入感受态细胞,涂平板做蓝白斑筛选,选出阳性克隆提质粒,对质粒进行测序反应,测序反应后纯化后用ABI 3130或ABI 3730进行毛细管电泳测序。 由于其测序准确率比较高,而通量非常低,现通常用做二代测序结果的验证。454 Platform: 454平台主要包括两种测序系统:454 GS FLX+ System和454 GS Junior System。454 GS FLX+ System测序读长可以达到600-1000bp,通量450-700M,GS Junior System测序读长在400bp左右,通量在35M。

宏基因组测序技术检测方法模板

宏基因组测序技术 检测方法

宏基因组测序技术检测标准 简介: 宏基因组测序介绍 宏基因组学是以环境样品中的微生物群体基因组为研究对象,经过现代基因组技术手段包括功能基因的筛选和测序分析,对环境中微生物多样性、种群结构、进化关系、功能活性、相互协作关系以及环境之间的关系进行研究的新的微生物研究方法。随着高通量测序技术的发展,为宏基因组学研究提供了新的理想研究方法。高通量测序的方法无需分离环境中各种微生物,也无需构建克隆文库就能够直接对环境中所有微生物进行测序。能够真实客观的反映环境中微生物的多样性、种群结构、进化关系等。当前又能够分为针对16s DNA/18sDNA/ITS测序和针对宏基因组全序列的测序研究。下面就是对这两者的具体介绍。 一、16s DNA/18s DNA/ITS测序 16sDNA是最常见的微生物物种分子鉴定的标签,,经过对样品中16sDNA测序能够鉴定其中微生物物种的丰度和分布情况。当前,普遍使用Roche 454平台来对环境样品进行16s DNA测序。因为16s DNA序列比较相似,读长短的话,难以进行有效的比对,而454平台的平均读长在400bp左右,能够很好的避免此类问题。 二、宏基因组全测序

在这种测序方式中,我们能够假定一个环境中的所有微生物就是一个整体,然后对其中所有的微生物进行测序。这样我们就能够研究样品中的功能基因以及其在环境中所起的作用而不用关心其来自哪个微生物。能够发现新的基因,能够进行基因的预测,甚至有可能得到某个细菌基因组的全序列。另外,该项测序不单能够针对DNA水平,也能够针对全RNA进行基因表示水平的研究。 样品处理: 宏基因组样品收集主要有口腔,下呼吸道痰液,下呼吸道灌洗液,皮肤和粪便。样品采集遵照样品采集规范(人)所规定的操作来进行。尽量留足备份样品。 核酸提取: 宏基因组核酸提取主要有两种方法:膜过滤法和直接裂解提取。对于液体样品如痰液,灌洗液两种方法都适用,对于固体样品如粪便宜采用直接裂解的方法。核酸提取后用NanoDrop ND-1000测定,260/280 = 1.8-2.0, 260/230 = 1.8-2.0,电泳检测DNA应是完整的一条带。 测序Sequencing 1)16S/18S测序: Sanger测序: 用于低通量的16S/18S DNA测序,提取宏基因组后,首先经过PCR将16S/18S序列扩增出来,再将其连接到克隆载体上,导

高通量测序生物信息学分析(内部极品资料,初学者必看)

基因组测序基础知识 ㈠De Novo测序也叫从头测序,是首次对一个物种的基因组进行测序,用生物信息学的分析方法对测序所得序列进行组装,从而获得该物种的基因组序列图谱。 目前国际上通用的基因组De Novo测序方法有三种: 1. 用Illumina Solexa GA IIx 测序仪直接测序; 2. 用Roche GS FLX Titanium直接完成全基因组测序; 3. 用ABI 3730 或Roche GS FLX Titanium测序,搭建骨架,再用Illumina Solexa GA IIx 进行深度测序,完成基因组拼接。 采用De Novo测序有助于研究者了解未知物种的个体全基因组序列、鉴定新基因组中全部的结构和功能元件,并且将这些信息在基因组水平上进行集成和展示、可以预测新的功能基因及进行比较基因组学研究,为后续的相关研究奠定基础。 实验流程: 公司服务内容 1.基本服务:DNA样品检测;测序文库构建;高通量测序;数据基本分析(Base calling,去接头, 去污染);序列组装达到精细图标准 2.定制服务:基因组注释及功能注释;比较基因组及分子进化分析,数据库搭建;基因组信息展 示平台搭建 1.基因组De Novo测序对DNA样品有什么要求?

(1) 对于细菌真菌,样品来源一定要单一菌落无污染,否则会严重影响测序结果的质量。基因组完整无降解(23 kb以上), OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;每次样品制备需要10 μg样品,如果需要多次制备样品,则需要样品总量=制备样品次数*10 μg。 (2) 对于植物,样品来源要求是黑暗无菌条件下培养的黄化苗或组培样品,最好为纯合或单倍体。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (3) 对于动物,样品来源应选用肌肉,血等脂肪含量少的部位,同一个体取样,最好为纯合。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (4) 基因组De Novo组装完毕后需要构建BAC或Fosmid文库进行测序验证,用于BAC 或Fosmid文库构建的样品需要保证跟De Novo测序样本同一来源。 2. De Novo有几种测序方式 目前3种测序技术 Roche 454,Solexa和ABI SOLID均有单端测序和双端测序两种方式。在基因组De Novo测序过程中,Roche 454的单端测序读长可以达到400 bp,经常用于基因组骨架的组装,而Solexa和ABI SOLID双端测序可以用于组装scaffolds和填补gap。下面以solexa 为例,对单端测序(Single-read)和双端测序(Paired-end和Mate-pair)进行介绍。Single-read、Paired-end和Mate-pair主要区别在测序文库的构建方法上。 单端测序(Single-read)首先将DNA样本进行片段化处理形成200-500bp的片段,引物序列连接到DNA片段的一端,然后末端加上接头,将片段固定在flow cell上生成DNA簇,上机测序单端读取序列(图1)。 Paired-end方法是指在构建待测DNA文库时在两端的接头上都加上测序引物结合位点,在第一轮测序完成后,去除第一轮测序的模板链,用对读测序模块(Paired-End Module)引导互补链在原位置再生和扩增,以达到第二轮测序所用的模板量,进行第二轮互补链的合成测序(图2)。 图1 Single-read文库构建方法图2 Paired-end文库构建方法

重测序-产品类-GBS遗传图谱

方案设计诺禾致源最新发表GBS遗传图谱文章 123 微生物基因组测序16S/18S/ITS等扩增子测序细菌基因组 de novo 测序真菌基因组 de novo 测序微生物重测序宏基因组测序动植物基因组测序全基因组survey 全基因组 de novo 测序泛基因组测序变异检测BSA性状定位遗传图谱全基因组关联分析群体进化Hi-C测序人类基因组测序全基因组测序外显子测序目标区域测序单细胞基因组测序建库测序建库测序诺禾致源微信文章精彩阅读 >> 版权所有:北京诺禾致源科技股份有限公司 转录调控测序 真核有参转录组测序 医学转录组测序 真核无参转录组测序 比较转录组与泛转录组测序 原核转录组测序 宏转录组测序 单细胞转录组测序 LncRNA测序 circRNA测序 small RNA测序 ChiP-seq RIP-seq 全基因组甲基化测序图1 亲本间多态性SNP在全基因组及外显子区域的分布 图4 遗传图谱与物理图谱共线性分析 图2 玉米 bin map (横轴表示染色体编号,纵轴表示样本数; 红色表示与亲本Qi319基因型相同,蓝色表示与亲本Ye478相同; 黄色:杂合基因型) 图3 三个环境下的PH性状相关QTL在染色体上的分布GBS遗传图谱代表文献 中国农业科学院作物研究所研究人员携手诺禾致源重测序团队, 采用GBS技术,利用Illumina HiSeq 2500测序平台,对314株高 世代群体(RILs)进行双末端PE125低深度测序(平均测序深度 0.07×),检测群体SNP,并进行遗传标记开发,亲本间多态性 SNP标记分布如右图所示(图1)。 基于该图谱,对玉米3个株型相关的性状进行了定位,并且在3个 环境中定位出了主效QTL。通过这些定位出的QTL,预测到2个候 选基因,为后续进行基因的准确鉴定奠定了基础(图3)。案例1 基于GBS技术的玉米高密度遗传图谱构建和株型相关性状定位 案例西北农林科技大学研究人员与诺禾致源重测序团队合作,采用GBS技术,对枣树F 1群体的145个个体利用Illumina HiSeq PE150平台测序,检测群体SNP,并进行遗传标记开发,构建遗传图谱。本研究共得到12个连锁群,上图标记数为2540个,遗传距离总长为1456.53cM,标记间平均距离为0.88cM。 2 基于GBS技术构建枣树F 1代高密度遗传图谱 本研究通过亲本及子代SNP基因分型,开发bin 标记,基于4183个 bin 标记构建玉米高密度遗传图谱,遗传距离总长为1545.65cM, 标记间平均距离为0.37cM, 平均物理距离为0.51Mb(图2)。 类 别作物类林木类作物类作物类林木类作物类作物类发表时间2016201620152015201420132013发表刊物BMC Genomics Tree Genetics & Genomes Molecular Breeding BMC Genomics G3:Gene Genomes Genetics BMC Genomics Plos Genetics IF 3.8672.1322.1083.8672.913.8676.661策 略GBS GBS GBS GBS GBS GBS GBS link link link link link link link 物 种 玉米[1] 枣树[2] 狼尾草[3] 木薯[4] 苹果[5] 覆盆子[6] 柳枝稷[7]

DNA测序结果分析比对(实例)

DNA测序结果分析比对(实例) 关键词:dna测序结果2013-08-22 11:59来源:互联网点击次数:14423 从测序公司得到的一份DNA测序结果通常包含.seq格式的测序结果序列文本和.ab1格式的测序图两个文件,下面是一份测序结果的实例: CYP3A4-E1-1-1(E1B).ab1 CYP3A4-E1-1-1(E1B).seq .seq文件可以用系统自带的记事本程序打开,.ab1文件需要用专门的软件打开。软件名称:Chromas 软件Chromas下载 .seq文件打开后如下图: .ab1文件打开后如下图: 通常一份测序结果图由红、黑、绿和蓝色测序峰组成,代表不同的碱基序列。测序图的两端(下图原图的后半段被剪切掉了)大约50个碱

基的测序图部分通常杂质的干扰较大,无法判读,这是正常现象。这也提醒我们在做引物设计时,要避免将所研究的位点离PCR序列的两端太近(通常要大于50个碱基距离),以免测序后难以分析比对。 我的课题是研究基因多态性的,因此下面要介绍的内容也主要以判读测序图中的等位基因突变位点为主。 实际上,要在一份测序图中找到真正确实的等位基因多态位点并不是一件容易的事情。一般认为等位基因位点假如在测序图上出现像套叠的两个峰,就是杂合子位点。实际比对后才知道,情况并非那么简单,下面测序图中标出的两个套峰均不是杂合子位点,如图并说明如下:

说明: 第一组套峰,两峰的轴线并不在同一位置,左侧的T峰是干扰峰;第二组套峰,虽两峰轴线位置相同,但两峰的位置太靠近了,不是杂合子峰,蓝色的C峰是干扰峰通常的杂合子峰由一高一略低的两个轴线相同的峰组成,此处的序列被机器误判为“C”,实际的序列应为“A”,通常一个高大碱基峰的前面 1~2个位点很容易产生一个相同碱基的干扰峰,峰的高度大约是高大碱基峰的1/2,离得越近受干扰越大。 一个摸索出来的规律是:主峰通常在干扰峰的右侧,干扰峰并不一定比主峰低。最关键的一点是一定要拿疑似为杂合子峰的测序图位点与测序结果的文本序列和基因库中的比对结果相比较;一个位点的多个样本相比较;你得出的该位点的突变率与权威文献或数据库中的突变率相比较。 通常,对于一个疑似突变位点来说,即使是国际上权威组织大样本的测序结果中都没有报道的话,那么单纯通过测序结果就判定它是突变点,是并不严谨的,因一份 PCR产物中各个碱基的实际含量并不相同,很难避免不产生误差的。对于一个未知突变位点的发现,通常还需要用到更精确的酶切技术。 (责任编辑:大汉昆仑王)

宏基因组测序技术检测方法

宏基因组测序技术检测方法

宏基因组测序技术检测标准 简介: 宏基因组测序介绍 宏基因组学是以环境样品中的微生物群体基因组为研究对象,通过现代基因组技术手段包括功能基因的筛选和测序分析,对环境中微生物多样性、种群结构、进化关系、功能活性、相互协作关系以及环境之间的关系进行研究的新的微生物研究方法。随着高通量测序技术的发展,为宏基因组学研究提供了新的理想研究方法。高通量测序的方法无需分离环境中各种微生物,也无需构建克隆文库就可以直接对环境中所有微生物进行测序。可以真实客观的反映环境中微生物的多样性、种群结构、进化关系等。目前又可以分为针对16s DNA/18sDNA/ITS测序和针对宏基因组全序列的测序研究。下面就是对这两者的具体介绍。 一、16s DNA/18s DNA/ITS测序 16sDNA是最常用的微生物物种分子鉴定的标签,,通过对样品中16sDNA 测序可以鉴定其中微生物物种的丰度和分布情况。目前,普遍使用Roche 454平台来对环境样品进行16s DNA测序。因为16s DNA序列比较相似,读长短的话,难以进行有效的比对,而454平台的平均读长在400bp左右,可以很好的避免此类问题。 二、宏基因组全测序 在这种测序方式中,我们可以假定一个环境中的所有微生物就是一个整体,然后对其中所有的微生物进行测序。这样我们就可以研究样品中的功能基因以及其在环境中所起的作用而不用关心其来自哪个微生物。可以发现新的基因,可以进行基因的预测,甚至有可能得到某个细菌基因组的全序列。此外,该项测序不单可以针对DNA水平,也可以针对全RNA进行基因表达水平的研究。 样品处理: 宏基因组样品收集主要有口腔,下呼吸道痰液,下呼吸道灌洗液,皮肤和粪便。样品采集遵照样品采集规范(人)所规定的操作来进行。尽量留足备份样品。

动物基因组学重测序的应用研究进展

畜牧兽医学报 2016,47(10):1947-1953 A c t aV e t e r i n a r i a e tZ o o t e c h n i c aS i n i c a d o i :10.11843/j .i s s n .0366-6964.2016.10.001动物基因组学重测序的应用研究进展 汪文强1,2,赵生国2,马利青3,郭继军4,马月辉1*,赵倩君1* (1.中国农业科学院北京畜牧兽医研究所,北京100193;2.甘肃农业大学动物科学技术学院,兰州730070; 3.青海省畜牧兽医科学院,西宁810016; 4.青海省畜牧总站,西宁810001 )摘 要:随着第二代测序技术的研发和应用,基因组学的研究不断出新,为其带来了更新的科研方法和解决方案。基因组测序可以更深地了解一个物种的分子进化、基因组成和基因调控等特点,特别基因组重测序技术的发展和应用,将基因组学的研究推向了多领域、多样化、多功能的新阶段。现已从变异检测、性状定位、遗传图谱构建、群体进化分析等方面取得丰硕成果。文章阐述了动物基因组重测序学领域中全基因组测序技术和简化基因组测序技术的应用现状和发展趋势。关键词:重测序; 群体进化;变异检测;性状定位;遗传图谱中图分类号:S 813.3 文献标志码:A 文章编号:0366-6964(2016)10-1947-07收稿日期:2015-12-30 基金项目:中国农业科学院科技创新工程(A S T I P -I A S 01);国家自然科学基金项目(31201765);国家绒毛用羊产业技术体系(C A R S -40-01 )作者简介:汪文强(1991-),男,甘肃天水人,硕士生,主要从事动物遗传育种与繁殖研究,E -m a i l :187931128479@163.c o m *通信作者:赵倩君,副研究员,E -m a i l :z h a o q i a n j u n @c a a s .c n ;马月辉,研究员,E -m a i l :y u e h u i .m a @263.n e t T h eR e s e a r c hP r o g r e s s a n dA p p l i c a t i o no fR e s e q u e n c i n g B a s e d o nA n i m a lG e n o m i c s W A N G W e n -q i a n g 1,2,Z H A OS h e n g -g u o 2,M AL i -q i n g 3,G U OJ i -j u n 4,M A Y u e -h u i 1*,Z H A O Q i a n -j u n 1*(1.I n s t i t u t e o f A n i m a l S c i e n c e ,C h i n e s e A c a d e m y o f A g r i c u l t u r a l S c i e n c e s ,B e i j i n g 1 00193,C h i n a ;2.C o l l e g e o f A n i m a l S c i e n c e a n dT e c h n o l o g y ,G a n s uA g r i c u l t u r a lU n i v e r s i t y ,L a n z h o u 730070,C h i n a ;3.Q i n g h a i A c a d e m y o f A n i m a l S c i e n c e a n dV e t e r i n a r y M e d i c i n e ,X i n i n g 8 10016,C h i n a ;4.A n i m a lH u s b a n d r y S t a t i o n o f Q i n g h a i ,X i n i n g 8 10001,C h i n a )A b s t r a c t :W i t h t h e a p p l i c a t i o na n dd e v e l o p m e n t o f t h en e x t g e n e r a t i o ns e q u e n c i n g t e c h n i q u e ,t h e r e s e a r c h e so f g e n o m i c s a r e c o n s t a n t l y u p d a t i n g ,w h i c h f i n d s o u t n e ws o l u t i o n s a n d t e c h n o l o g i e s t o g e n o m i c s .T h e g e n o m e s e q u e n c i n g i s c o m p e t e n t t o l e a r nt h e p o p u l a t i o ne v o l u t i o n ,g e n ec o m p o s i -t i o na n d g e n e r e g u l a t i o nd e e p l y ,e s p e c i a l l y t h e a p p l i c a t i o na n dd e v e l o p m e n t o f g e n o m e r e s e q u e n c -i n g t e c h n o l o g y ,w h i c hm a k e s t h e g e n o m e r e s e a r c h c o m e i n t o b e i n g a n e we r a i nm u l t i r e g i o n ,d i v e r -s i f i c a t i o na n dm u l t i f u n c t i o n .N o w a d a y s t h e n e x t g e n e r a t i o n s e q u e n c i n g t e c h n i q u e h a sm a d e a l a r g e p r o g r e s s i nm u t a t i o nd e t e c t i o n , f i n em a p p i n g o f i m p o r t a n t g e n e s ,g e n e t i cm a p c o n s t r u c t i o n ,a n a l y -s i s o f p o p u l a t i o n e v o l u t i o n ,a n d s oo n .T h e r e v i e ws t a t e s a p p l i c a t i o n s t a t u s a n dd e v e l o p m e n t t e n d -e n c y o fw h o l e g e n o m e s e q u e n c i n g t e c h n o l o g y a n d r e d u c e d -r e p r e s e n t a t i o n g e n o m e s e q u e n c i n g t e c h -n o l o g y i na n i m a l g e n o m e r e s e q u e n c i n g .K e y w o r d s :r e s e q u e n c i n g ;p o p u l a t i o ne v o l u t i o n ;m u t a t i o n d e t e c t i o n ;f i n e m a p p i n g o fi m p o r t a n t g e n e s ;g e n e t i cm a p 随着S a n g e r 测序技术的限制性,第二代测序技术(N e x t g e n e r a t i o ns e q u e n c i n g ,N G S )的优势逐渐凸显,对重测序技术的发展起到了重要的作用。N G S 的核心思想是边合成边测序,即通过捕捉新合成的末端的标记来确定D N A 的序列,测序技术成本低、高通量、快速、高效等特点能有效地鉴别单核

相关文档
最新文档