多元统计分析课程论文

多元统计分析课程论文
多元统计分析课程论文

四川理工学院

《多元统计分析课程设计》报告

题目: 中国国有控股工业行业的经济效益评价

学生:雷鹏程何君李西京

曾学成白俊明

专业:统计学

指导教师:柏宏斌

四川理工学院理学院

二零一四年十二月

中国国有控股工业行业的经济效益评价

摘要

本文主要研究了中国国有控股工业行业的经济效益,对反映行业经济效益的总资产贡献率、资产负债率、流动资产周转次数、工业成本费用利润率和产品销售率等五个经济指标进行主成分分析,提取反映行业盈利能力和市场能力的两个综合指标。然后通过因子分析法分析反映经济效益的各指标的内部结构,表明行业经济效益主要由盈利能力和市场能力两个公因子决定。根据各行业在盈利能力上的得分和市场能力上的得分将工业行业分为五类,并对各行业经济效益进行综合评价。然后用聚类分析对综合评价结果进行验证,表明综合评价较为客观合理。最后,本文给出相应的政策建议。

关键字:主成分分析、因子分析、聚类分析。

一、引言

改革开放以来,工业始终是我国经济发展的主要支柱。作为社会主义国家,我国国有及国有控股工业行业掌控着国家工业发展命脉,对国民经济、社会协调发展具有巨大推动作用。因此,考核工业行业的经济效益,对挖掘重点行业和弱势行业,提高整个国有工业企业的经济效益等具有重大的现实意义。企业或行业的经济效益由众多因素来刻画,目前反映行业经济效益主要有总资产贡献率、资产负债率、流动资产周转次数、工业成本费用利润率和产品销售率等五个经济指标1。这些众多指标虽然能从多方面对行业的经济效益进行全面考察,但也在一定程度增加了分析问题的复杂性。在损失少量信息的前提下,设计一个或少数几个综合指标,并用较少的综合指标对工业经济效益进行分析评价,能够简化问题。此外,挖掘出反映经济效益的众多指标的内在基本结构,有助于指出各行业经济效益的主要决定因素及瓶颈,也有助于对各行业经济效益进行综合评价。

二、文献综述

大量国内文献从灰色系统理论、多元统计分析方法、层次分析法、模糊综合

评判法、数据包络分析法等理论与方法,考察了中国各行业、企业或地区经济效益的研究与综合评价。华中生、梁梁等用模糊聚类方法与数据包络分析分类法考察了合肥工业行业的经济状况,将各工业行业按经济效益的状况分为高、较高、一般、较差和差等五类[1](华中生、梁梁,1995)。王树岭等人利用TOPSIS 模型,对吉林省轻工业17个主要行业的经济效益进行了综合评价与排序,确定出相应的优势行业(王树岭等,1999)。本文以2008年国有及国有控股的主要工业行业为研究对象,通过主成分分析和因子分析法,再次对各工业行业的经济效益进行分析与评价,并结合聚类分析法来验证综合评价的结果。

三、数据来源

反映经济效益的指标较多,不同文献中选取的指标不尽相同。本文采用国家统计局最新公布的五个指标:总资产贡献率、资产负债率、流动资产周转次数、工业成本费用利润率和产品销售率,分别记为1X 至5X 。总资产贡献率(1X )反映企业全部资产的获利能力。资产负债率(2X )既反映企业经营风险的大小,也反映企业利用债权人提供的资金从事经营活动的能力。流动资产周转次数(3X )反映投入工业企业流动资金的周转速度。成本费用利润率(4X )反映企业投入的生产成本及费用的经济效益。产品销售率(5X )反映工业产品已实现销售的

1

《国家统计年鉴2009年》用这五大指标来反映工业行业的经济效益。

程度。选取39个主要工业行业的数据整理如附录表1所示。

四、模型基本理论建立

4.1主成分分析的基本理论

设对某一事物的研究涉及p 个指标,分别用1X ,2X ,…, P X 表示,这p 个指标构成的p 维随机向量为),,(21'=P X X X X 。设随机向量X 的均值为μ,协方差矩阵为∑。

对X 进行线性变换,可以形成新的综合变量,用Y 表示,也就是说,新的综合向量可以由原来的变量线性表示,即满足下式:

???

??

?

?+++=+++=+++=P pp p p P P

p P p X u X u X u Y X u X u X u Y X u X u X u Y

22112222121212211111 由于可以任意地对原始变量进行上述线性变换,由不同的线性变换得到综合

变量Y 的统计特征也不尽相同。因此为了取得较好的效果,我们总希望X

u Y i i '

=的方差尽可能大且各i Y 之间相互独立,由于 i i i i u u X u Y ∑'

='=)var()var(,面对

任意常数c ,有i i i u u c X cu ∑'

='2)var(

因此对i u 不加限制时,可以使)var(i Y 任意增大,问题将变得没有意义。我们将线性变换约束在下面的原则之下:

(1)1='

i i u u (p i ,,2,1 =)。

(2)i Y 与j Y 相互无关。(j i ≠;p j i ,,2,1, =)

(3)1Y 是1X ,2X ,…, P X 的所有线性组合中方差最大者;2Y 是与1Y 不相关的1X ,2X ,…, P X 的所有线性组合中方差最大者;…,p Y 是与1Y ,2Y ,…,

1-p Y 不相关的1X ,2X ,…, P X 的所有线性组合中方差最大者。

基于以上这三条原则决定综合变量1Y ,2Y ,…,p Y 分别称为原始变量的第一,第二……第p 个主成分。其中,各综合变量在总方差所占比重依次递减。在实际研究工作中,通常指挑选前几个方差较大的主成分,从而达到简化系统结构,抓住问题实质的目的。

4.2因子分析的基本理论

设有n 个样品,每个样品观测p 个指标,这些p 个指标之间有较强的相关性。为了方便研究,并消除由观测量纲的差异及数量级不同所造成的影响,将样本的

观测数据进行标准化处理,使标准化的变量均值为0,方差为1。为方便,把原始变量及标准后的变量向量均用X 表示,用1F ,2F ,…, m F (m

(1) ),,(21'=P X X X X 是可观测随机变量,且均值向量0)(=X E ,协方差

矩阵)(X cov =∑ ,且协方差矩阵∑与相关阵R 相等;

(2) ),,,(21'=M F F F F (m

矩阵I F =)cov(,即向量F 的各分量是相互独立的;

(3) ),,,(21'=P εεεε 与F 相互独立,且0)(=εE ,ε的协方差矩阵ε∑是对角

方阵:

εε∑=)cov(=?????

????

?

?

?2

2

222

11

pp δδδ

即ε的各分量之间也是相互独立的,则模型:

???

???

?++++=++++=++++=p m pm p p p m m m m F a F a F a X F a F a F a X F a F a F a X εεε

22112

22221212112121111 称为因子模型,模型的矩阵形式为:

ε+=AF X

其中A 称为因子载荷矩阵,而在因子模型中,公共因子的个数少于原始变量的个数,且公共因子是不可观测的隐变量,载荷矩阵A 不可逆,因而不能直接求得公共因子用原始变量表示的精确线性组合。解决该问题的一种方法是用建立回归思想求出线性组合系数的估计值,即建立如下以公共因子为因变量、原始变量为自变量的回归方程:

P jp j j j X X X F βββ+++= 2211 j=1,2,…,m

此处因为原始变量与公共因子变量均为标准化量,因此回归方程中没有常数项。在最小二乘意义下,可以得到F 估计值:

X R A F

1?-'= 式中,A 为因子载荷矩阵;R 原始变量的相关阵;X 为原始变量向量。这样,在得到一组样本值之后,就可以带入上面的关系式求出公共因子的估计得分,从

而用少数的公共因子去描述原始变量的数据结构,用公共因子得分去描述原始变量的取值,在估计出公共因子得分后,可以利用因子得分去进行进一步分析,如样本点的聚类分析,当因子数m较少时,还可以方便地把各样本点在图上表示出来,直观地描述样本分布情况,从而便于把研究工作引向深入。

五、模型的求解与检验

5.1工业行业经济效益的综合指标确定

由主成分模型的基本原理可得,利用SPSS(19.0)软件对中国国有工业行业的经

表1解释总方差表

Rotated Component Matrix a

Component

1 2 3

总资产贡献率X1(%).946 .037 -.071

资产负债率X2(%)-.847 .085 .159

流动资产周转次数X3(次/年).050 .976 -.172

成本费用利润率X4(%).892 .211 -.154

产品销售率X5(%)-.180 -.183 .965

表2旋转过后的主成分矩阵

由上表可得,我们选取的5个经济效益指标被提取出了3个主成分,提取的3个主成分集中了5个原始量信息的89.948%。能够很好的反映5个经济效益指标。

故三个公因子表示为:

???

??+--+-=-+++=-++-=543213

543212543211965.0154.0172.0159.0071.0183.0211.0976.0085.0037.018.0892.005.0847.0946.0Z

Z Z Z Z F Z Z Z Z Z F Z Z Z Z Z F 其中i Z 为原始变量的相应标准化变量。第一主成分对原始变量的贡献率为48.868%,第二主成分的贡献率为20.773% ,第三个主成分对原始变量的贡献率为20.307%,其累计贡献率为89.948%,结果表明前三个个主成分提取了原始变量的绝大部分信息。由上可知,第一主成分中1Z 、2Z 和4Z 的系数绝对值较大,第二主成分中3Z 的系数绝对值较大,第三个成分中5Z 的系数绝对值较大。因此,第一主成分主要由总资产贡献率、资产负债率和工业成本费用利润率组成,第二主成分主要由流动资产周转次数和产品销售率组成。因此,第一个公因子主要由“总资产贡献率”、“资产负债率”、“成本费用利用率”组成,该三个指标主要反映一个行业的盈利能力,所以第一个综合指标可以表示为“盈利能力”,第二个公因子可得主要反映行业的运行能力,第二个综合指标可以表示为“行业运行能力”,第三个综合指标可以表示为“市场能力”。我们把5个影响行业的经济效益的自变量最终用3个综合指标进行表示,接下来我们利用这三个综合指标对每个行业进行综合评价。

5.2基于因子分析的经济效益的综合评价

利用SPSS (19.0)软件对中国国有工业行业的经济效益指标进行因子分析得到每个行业的经济效益的最终评分,得到下表KMO 和球形Bartlett 检验结果:

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .684 Bartlett's Test of Sphericity

Approx. Chi-Square 83.527

df 10 Sig.

.000

表3KMO 和Bartlett 检验

首先巴特利特球度检验表明:巴特利特球度统计量值为83.527,显著性水平少于0.001,即拒绝相关系数矩阵是一个单位阵的原假设。KMO 统计量为0.684,表明简单相关系数平方和远大于偏相关系数平方和,比较适合做因子分析2。

2

KMO 值越接近1,则越适合做因子分析,反之亦反。Kaiser 认为0.9以上就非常适合,0.8-09很适合,0.7-0.8适合,0.6-0.7比较适合,0.5-0.6勉强,0.5以下不适合。

为了能够计算出各行业的因子得分,我们需要将公共因子表示成原始变量的线性组合。公共因子对原始变量基于最小二乘法的最优线性估计为:

Z R A F

T 1?-= (2) 其中A 为利用“最大方差法”旋转后的因子载荷矩阵,R 为样本相关系数矩阵,Z 为标准化原始指标向量。

按照(2)式,估计出三个个公因子的因子得分表达式为:

???

??+--+-=-+++=-++-=543213543212543211965.0154.0172.0159.0071.0183.0211.0976.0085.0037.018.0892.005.0847.0946.0Z

Z Z Z Z F Z Z Z Z Z F Z Z Z Z Z F (3) 各行业经济效益的综合指标得分:

Soccer=48.868/89.948*1F +20.713/89.948*2F +20.307/89.948*3F (4) 按照计算的综合指标得分公式,算出了如下的最终综合评价得分表:

表4工业行业的因子得分及综合得分

根据上述公式(2)、(3)和(4),计算出工业主要行业的因子得分及排名(由高到低进行排列)见上表4所示,其中可知石油和天然气开采业、烟草制品业和黑色金属矿采选业等行业的经济效益最高;而其他采矿业、橡胶制品业和纺织业等行业的经济效益最低。根据上表4,我们可以对39个工业行业的盈利能力、行业的运行能力及市场能力进行分类

5.3 行业的聚类分析

我们已经对各工业行业进行了综合评价,为了验证评价的客观性和可靠性,本文采用聚类分析加以验证,其主要思想和依据:如果经济效益高的行业自然会成为一类,经济效益差的行业会成为一类,如果聚类分析能够验证这个结论,则说明我们的综合评价具有一定的可靠性。本文用欧式距离来度量样本之间的距离,用瓦尔德法测度来类与类之间的距离,将39个行业分为四类:第一类:石油和天然气开采业、烟草制造业。

第二类:黑色金属矿采选业、有色金属矿采选业、非金属矿采选业、饮料制造业、皮革毛皮羽毛(绒)及其制品业。

第三类:印刷业和记录媒介的复制、文教体育用品制造业、医药制造业、仪器仪表及文化与办公用机械制造业、水的生产和供应业。

第四类为其它行业。

结合表4中行业的综合经济效益可知:聚类分析中第一类为经济效益最好的两个行业,第二类中除水的生产和供应业和文教体育用品制造业的综合排名较后,分别为26和30名,而它们在盈利能力的排名分别是13名和14名。仪器仪表及文化与办公用机械制造业排在第13名,其它行业的经济效益均排在前十名。即聚类分析中的第二类为经济效益较好的行业,第三类为经济效益较差的行业。因此,聚类分析基本验证了基于因子分析的综合评价模型,说明表4中所示的综合评价比较合理。

图1聚类树状图

六问题的思考及政策建议

6.1问题思考

一个企业或行业的经济效益由众多因素来刻画,目前反映行业经济效益主要有总资产贡献率、资产负债率、流动资产周转次数、工业成本费用利润率和产品销售率等五个经济指标。这些众多指标虽然能从多方面对行业的经济效益进行全面考察,但也在一定程度增加了分析问题的复杂性。在损失少量信息的前提下,设计一个或少数几个综合指标,并用较少的综合指标对工业经济效益进行分析评价,能够简化问题。此外,挖掘出反映经济效益的众多指标的内在基本结构,有助于指出各行业经济效益的主要决定因素及瓶颈,也有助于对各行业经济效益进行综合评价。所以如何对一个企业的经济效益的评价对当下的企业和全国的经济增长有着直接的作用,如何去发展一个企业的经济也是至关重要的,对当下企业的经济效益有一定的益处。

6.2政策建议

本文以2008年中国国有及国有控股行业进行较为深入的分析与研究,据此提出以下几点建议:

一.在我国国有及国有控股工业行业中,各行业的经济效益及其潜在的优势和劣势不尽相同。政府部门在扶持行业的发展时,应该同时考虑现阶段行业的优势和劣势,做到强者更强,弱者不弱。

二.尽管分析表明,行业经济效益的主要因子是行业的盈利能力(占比53.65%),但政府部门在决定支持行业的发展时不能只着重行业的盈利能力。比如烟草制造品业的市场盈利能力为全行业最高,但其市场能力为全行业倒数第二。要想尽快提高工业行业的经济效益,应该首先重点扶持盈利能力和市场能力均较高的行业,如石油和天然气开采业、黑色金属矿采选业、非金属矿采选业等。

三.合理引导各行业的投资,不能只将投资挤向盈利能力较高的行业,而要适度考虑到市场能力较强的行业。

七参考文献

[1] 华中生,梁梁. 地区工业行业经济状况的综合评价与分析[J].管理工程学报1995,6.

[2] 王树岭等.吉林省轻工业行业经济效益综合评价[J].吉林工业大学学报自然科学版,1999,1.

[3] 何晓群.多元统计分析[M].北京:中国人民大学出版社,2004

[4] 林秀梅.多元统计方法[M].长春:吉林人民出版社,1996

[5]张文彤,董伟.SPSS统计分析高级教程(第二版)[M].北京:高等教育出版社,2013.3

附录

表2主成分分析和因子分析中对各变量的方差提取量

图1碎石图

图2聚类的冰柱图

图3因子载荷图

多元课程论文_农村居民收入与支出多元统计分析

多元统计分析课程论文 -----我国农村居民收入与支出多元统计分析 班级:统计1203 姓名:李犁 学号:1304120724 2015年7月

目录 1.引言 (3) 1.1研究问题的背景 (3) 1.2研究问题的目的 (3) 2.分析方法的简单介绍 (4) 2.1主成分分析 (4) 2.1.1主成分分析的思想 (4) 2.1.2主成分分析的几何意义 (4) 2.2聚类分析 (5) 2.2.1聚类分析的思想 (5) 2.2.2聚类分析的过程 (5) 3.农村居民收入的多元统计分析 (5) 3.1主成分分析 (5) 3.2聚类分析 (7) 4. 农村居民支出的多元统计分析 (9) 4.1 主成份分析 (9) 4.2聚类分析 (11) 5. 结论 (13)

【摘要】本文主要研究农村居民收入与支出的相关问题,利用spss软件,首先对农村居民收入进行了数据的收集和整理,数据取自中国统计年鉴网络实时数据,利用多元统计分析中的主成分分析,分析影响农村居民收入的几个重要因素。再对其进行聚类分析,按照农村居民不同的收入对30个省、自治区、直辖市进行聚类,分出几个不同的收入等级。然后对农村居民支出情况的数据进行主成分分析,分析影响收入的因素,再对其进行聚类分析,分析不同的支出等级,最后将收入与支出综合分析,大致得出结论,我国实际的居民收入与消费结构还存在一定的不合理。 【关键词】农村居民收入农村居民支出主成分分析聚类分析 1.引言 1.1研究问题的背景 我国是发展中的农业人口大国,农业的基础地位和作用比任何国家都重要,小康目标能否全面实现,重点、难点在提高人民收入,要实现农村稳定,农民小康和农业现代化,前提条件就是要保持农民收入的持续稳定的快速发展。2000年,在国家连续三年扩大内需的宏观政策作用下,我国居民消费保持了稳中有旺的运行态势。但是从城乡消费结构来看,农村消费明显不如城市消费活跃。农村消费之所以增长缓慢,主要是因为农村居民收入停滞不前以及受到农村传统消费观念的主导 1.2研究问题的目的 劳动者报酬收入和家庭主营收入已成为农民收入的主要来源,但是由于我国经济发展的不平衡,各地区的农民收入有着很大不同,另一方面,经济改革使得地区之间、农民内部之间的富裕家庭和贫穷家庭之间的收入差距越来越大。“二元思维”造就了经济发展层面上的“两个中国”-----“城市中国”和“农村中国”,“三农”问题日益突出,“三农”问题的核心是农民问题,即农民利益和平等待遇问题,“三农”是我国的根本问题,建设现代化农业、发展农村经济、增加农民收入,始终是中国政府面临的重大问题如何客观准确的分析这些差异,具有重要的理论和实际意义,因此,本文试图用多元统计分析对我国各地区农民收入来源及消费支出问题进行全面深入的分析。

应用多元统计分析论文

应用多元统计分析论 文 Revised on November 25, 2020

山东省十一城市综合实力统计分析摘要:本文根据中国城市经济发展研究中心提出的城市综合经济实力和区域的概念,并利用2009年各城市社会经济发展状况的截面数据,就山东省11市的经济数据进行分析。首先建立了评价的指标体系,其次,分别采用主成分分析法和聚类分析法对山东省根据行政区域划分的11个市的综合经济实力进行了全面的评价和比较,并在此基础上提出了促进山东各市经济协调发展、共同进步的相关措施。 关键词:城市经济主成分分析聚类分析 一、引言 在区域经济发展中,城市处于核心和龙头的地位,提高城镇化水平、加快城市化进程是解决当前和未来一系列问题的关键。山东经济发展显示出不平衡的态势,鲁东的少数几个城市GDP几乎占据全省三分之二[1]。很显然,山东省各市的城市化水平也存在显着差异, 青岛、济南等的城市化水平始终走在全省乃至全国前列,泰安和滨州则相对落后。随着黄河三角洲经济一体化进程的加快,山东作为沿海省份必须清楚的看到发展差异并找出差异形成的原因,通过核心城市的优先发展带动区域经济和社会的快速发展,是现实提出的急需解决的问题。 为此,本文在参阅相关文献的基础上,根据中国城市经济发展研究中心提出的城市综合经济实力以及区域的概念,根据区域的行政划分,从山东省11个市出发,利用2009年各城市社会经济发展状况的截面数据,首先建立了评价指标体系,其次,分别采用主成分分析法和聚类分析法对山东省11个市的综合经济实力进行了综合的评价和排位,并在此基础上提出了促进山东省各市经济协调发展、共同进步的相关措施。

多元统计分析期末试题

一、填空题(20分) 1、若),2,1(),,(~)(n N X p 且相互独立,则样本均值向量X 服从的分布 为 2、变量的类型按尺度划分有_间隔尺度_、_有序尺度_、名义尺度_。 3、判别分析是判别样品 所属类型 的一种统计方法,常用的判别方法有__距离判别法_、Fisher 判别法、Bayes 判别法、逐步判别法。 4、Q 型聚类是指对_样品_进行聚类,R 型聚类是指对_指标(变量)_进行聚类。 5、设样品),2,1(,),,(' 21n i X X X X ip i i i ,总体),(~ p N X ,对样品进行分类常用的距离 2 ()ij d M )()(1j i j i x x x x ,兰氏距离()ij d L 6、因子分析中因子载荷系数ij a 的统计意义是_第i 个变量与第j 个公因子的相关系数。 7、一元回归的数学模型是: x y 10,多元回归的数学模型是: p p x x x y 22110。 8、对应分析是将 R 型因子分析和Q 型因子分析结合起来进行的统计分析方法。 9、典型相关分析是研究两组变量之间相关关系的一种多元统计方法。 二、计算题(60分) 1、设三维随机向量),(~3 N X ,其中 200031014,问1X 与2X 是否独立?),(21 X X 和3X 是否独立?为什么? 解: 因为1),cov(21 X X ,所以1X 与2X 不独立。 把协差矩阵写成分块矩阵 22211211,),(21 X X 的协差矩阵为11 因为12321),),cov(( X X X ,而012 ,所以),(21 X X 和3X 是不相关的,而正态分布不相关与相互

统计学(数据分析方向)专业培养方案

统计学(数据分析方向)专业培养方案 Statistics(Data Analysis Specialty) (门类:理学;二级类:统计学;专业代码:071201) 一、专业培养目标 本专业培养德、智、体、美全面发展,在具备一定的数学、统计学和计算机科学等方面知识的基础上,较全面掌握大数据处理和分析的基本理论、基本方法和基本技术,能够运用所学知识解决实际问题,具备较高的综合业务素质、创新与实践能力,能从事大数据分析、大数据应用开发、大数据系统开发、大数据可视化以及大数据决策等工作,具有较强的专业技能和良好外语运用能力的应用型创新人才,或继续攻读本学科及其相关学科的硕士学位研究生。 二、毕业要求 本专业是一门涉及数学、统计学、计算机科学等多领域的交叉学科。学生主要学习数学、统计学、计算机科学的基本理论和基本知识,打好坚实的数学基础,受到系统而扎实的计算机编程训练,具备较强的数据分析和信息处理能力,能在大数据科学与工程技术领域从事数据分析管理、系统设计开发、大数据处理应用、科学研究等方面的工作,具备综合运用所学知识分析和解决实际问题的能力。 本专业学生培养分为两个主要阶段,第一阶段着重于数据科学理论体系的培养,即发展和完善数据科学理论体系,为数据科学人才培养提供必要的理论和知识基础;第二阶段重视实践能力的培养,即在夯实数据科学理论的基础上,重视培养学生利用大数据的方法解决具体行业应用问题的能力。 本专业毕业生在知识、能力和素质方面的具体要求: 1.具有正确的世界观、人生观和价值观;具有良好的道德品质、高度的社会责任感与职业道德;具有良好的人文社会科学素养。 2.具有良好的人际交往能力和团队协作精神;有较强的自学能力和适应能力。 3.具有良好的数学、统计学和计算机科学基础,掌握数据科学与大数据技术、统计学和计算机科学的基本知识、方法和技能。 4.具备熟练应用计算机( 包括常用语言、工具及专用软件) 的基本技能, 具有较强

多元统计分析 课程论文.doc

HUNAN UNIVERSITY 课程论文 论文题目:有关我国居民消费因素的分析指导老师: 学生名字: 学生学号: 专业班级:经济统计 学院名称: xxx学院

目录 概述 (1) 一、引言 (2) 二、数据概述系 (2) 三、分析方法 (3) 四、数据分析 (3) (一)相关分析 (3) (二)因子分析 (10) (三)聚类分析 (15) 五、分析与建议 (18) 六、心得体会 (19) 参考文献 (20)

有关我国居民消费因素的分析 概述 生活离不开消费,随着社会发展,生活水平提高,消费也在逐渐变化,并且随着经济发展,各个地区的发展水平的差异,消费也产生了不同的变化,此篇论文主要目的是利用多元统计的方法,借助spss软件,对我国31个地区的居民消费情况进行分析。了解我国31个地区的居民消费情况与统计指标食品烟酒、衣着、居住等8个指标之间的一些联系。并且通过因子得分,计算并排列出消费因素的综合得分,最后通过聚类分析,对我国31个地区的居民消费情况做一个大致分类,进而对各个地区分类后的情况做一个分析和总结并结合文献以及资料提出一些意见和看法。

一.引言 消费在宏观经济学中,指某时期一人或一国用于消费品的总支出。与经济活动有着密不可分的关系,消费作为社会再生产的最终阶段,是生产者生产产品的目的和导向。如果没有了消费,生产的存在也会变得毫无意义,消费促进了生产,给生产带来了源动力。消费者的消费需求,也推动了生产的发展。并且消费促进了货币流通,提供了就业岗位,降低失业率,拉动了经济增长,最终有助于提高人民的生活水平。消费是国民经济保持增长的动力,只有拉动消费需求的增长,才能促进投资,促进产业结构的调整、宏观经济的增长,满足人民的物质生活的需求,实现生活水平的提高。 故消费和生活水平有着密切的关系,从而,通过对我国居民消费水平的分析,不但可以直观了解到我国总的消费趋向,各地区不同的消费主导因素,还能客观反映我国总的生活水平也就是经济发展的大致情况。统计年鉴中的八项指标:食品烟酒、衣着、居住、生活用及服务、交通通信、教育文化娱乐、医疗保健、其他用品及服务。囊括了居民消费的全部项目,居民日常消费可以清楚地从数据中了解到。再通过分析和整合,最终可以大致分析我国总体的消费倾向以及各个地区的异同点。再结合文献资料了解分析产生异同的原因,进而对我国的总体消费水平做一个最终概括。 二.数据概述 数据来源:2015年《中国统计年鉴》 指标:

多元统计分析期末试题及答案

22121212121 ~(,),(,),(,),, 1X N X x x x x x x ρμμμμσρ ?? ∑==∑= ??? +-1、设其中则Cov(,)=____. 10 31 2~(,),1,,10,()()_________i i i i X N i W X X μμμ=' ∑=--∑L 、设则=服从。 ()1 2 34 433,4 92, 3216___________________ X x x x R -?? ?'==-- ? ?-? ? =∑、设随机向量且协方差矩阵则它的相关矩阵 4、 __________, __________, ________________。 215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--L 、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。 12332313116421(,,)~(,),(1,0,2),441, 2142X x x x N x x x x x μμ-?? ?'=∑=-∑=-- ? ?-?? -?? + ??? 、设其中试判断与是否独立? (), 1 2 3设X=x x x 的相关系数矩阵通过因子分析分解为 211X h = 的共性方差111X σ= 的方差21X g = 1公因子f 对的贡献1213 30.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.10320 13 R ? ? - ????? ? -?? ? ? ?=-=-+ ? ? ? ??? ? ? ????? ? ???

多元统计分析课程毕业论文

四川理工学院 《多元统计分析课程设计》报告 题目: 中国国有控股工业行业的经济效益评价 学生:雷鹏程何君李西京 曾学成白俊明 专业:统计学 指导教师:柏宏斌 四川理工学院理学院 二零一四年十二月 中国国有控股工业行业的经济效益评价 摘要 本文主要研究了中国国有控股工业行业的经济效益,对反映行业经济效益的总资产贡献率、资产负债率、流动资产周转次数、工业成本费用利润率和产品销售率等五个经济指标进行主成分分析,提取反映行业盈利能力和市场能力的两个综合指标。然后通过因子分析法分析反映经济效益的各指标的内部结构,表明行业经济效益主要由盈利能力和市场能力两个公因子决定。根据各行业在盈利能力上的得分和市场能力上的得分将工业行业分为五类,并对各行业经济效益进行综合评价。然后用聚类分析对综合评价结果进行验证,表明综合评价较为客观合理。最后,本文给出相应的政策建议。 关键字:主成分分析、因子分析、聚类分析。 一、引言 改革开放以来,工业始终是我国经济发展的主要支柱。作为社会主义国家,我国国有及国有控股工业行业掌控着国家工业发展命脉,对国民经济、社会协调发展具有巨大推动作用。因此,考核工业行业的经济效益,对挖掘重点行业和弱势行业,提高整个国有工业企业的经济效益等具有重大的现实意义。企业或行业的经济效益由众多因素来刻

画,目前反映行业经济效益主要有总资产贡献率、资产负债率、流动资产周转次数、工业成本费用利润率和产品销售率等五个经济指标1。这些众多指标虽然能从多方面对行业的经济效益进行全面考察,但也在一定程度增加了分析问题的复杂性。在损失少量信息的前提下,设计一个或少数几个综合指标,并用较少的综合指标对工业经济效益进行分析评价,能够简化问题。此外,挖掘出反映经济效益的众多指标的内在基本结构,有助于指出各行业经济效益的主要决定因素及瓶颈,也有助于对各行业经济效益进行综合评价。 二、文献综述 大量国内文献从灰色系统理论、多元统计分析方法、层次分析法、模糊综合评判法、 数据包络分析法等理论与方法,考察了中国各行业、企业或地区经济效益的研究与综合评价。华中生、梁梁等用模糊聚类方法与数据包络分析分类法考察了合肥工业行业的经济状况,将各工业行业按经济效益的状况分为高、较高、一般、较差和差等五类[1](华中生、梁梁,1995)。王树岭等人利用TOPSIS 模型,对吉林省轻工业17个主要行业的经济效益进行了综合评价与排序,确定出相应的优势行业(王树岭等,1999)。本文以2008年国有及国有控股的主要工业行业为研究对象,通过主成分分析和因子分析法,再次对各工业行业的经济效益进行分析与评价,并结合聚类分析法来验证综合评价的结果。 三、数据来源 反映经济效益的指标较多,不同文献中选取的指标不尽相同。本文采用国家统计局最新公布的五个指标:总资产贡献率、资产负债率、流动资产周转次数、工业成本费用利润率和产品销售率,分别记为1X 至5X 。总资产贡献率(1X )反映企业全部资产的获利能力。资产负债率(2X )既反映企业经营风险的大小,也反映企业利用债权人提供的资金从事经营活动的能力。流动资产周转次数(3X )反映投入工业企业流动资金的周转速度。成本费用利润率(4X )反映企业投入的生产成本及费用的经济效益。产品销售率(5X )反映工业产品已实现销售的程度。选取39个主要工业行业的数据整理如附录表1所示。 四、模型基本理论建立 主成分分析的基本理论 设对某一事物的研究涉及p 个指标,分别用1X ,2X ,…, P X 表示,这p 个指标构成的p 维随机向量为),,(21'=P X X X X Λ。设随机向量X 的均值为μ,协方差矩阵为∑。 对X 进行线性变换,可以形成新的综合变量,用Y 表示,也就是说,新的综合向量 1 《国家统计年鉴2009年》用这五大指标来反映工业行业的经济效益。

多元统计分析实验报告

实验一 一、实验目的及要求 对应分析是你也降维的思想以达到减化数据结构的目的,凤的研究广泛用于定义属性变量构成的列联表利用对应分析方法分析问卷中教育程度与网上购物支付方式之间的相互关系。 二、实验环境 SPSS 19.0 window 7系统 三、实验内容及实验步骤(实践内容、设计思想与实现步骤) 实验题目: 通过分析问卷数据,绘制如下的教育程度与网上购物支付方式的交叉表,运用对应分析方法研究教育程度与网上购物所选择的支付方式之间的相关性,及揭示不同人群网上购物的特征等问题。 设计思想:原假设:H1:χ2>χα2[(n?1)(p?1)] 实现步骤: 1.在变量视窗中录入3个变量,用edu表示【教育程度】,用fangshi表示【在网上购物时采用什么样的支付方式】,用pinshu表示【频数】;如图所示:

2.先对数据进行预处理。执行【数据】→【加权个案】命令,弹出【加权个案】对话框。选中【加权个案】按钮,把【频数】放入【频率变量】框中,点击【确定】按钮完成。 3.打开主窗口,选择菜单栏中的【分析】→【降维】→【对应分析】命令,弹出【对应分析】对话框。 4.将【教育程度】导入【行】,将【在网上购物时采用什么样的支付方式】导入【列】。 5. 单击【定义范围(D)】,打开【对应分析:定义行范围】对话框; 定义行变量分类全距最小值为1,最大值为4,单击【更新】;点击【继续】,返回【对应分析】对话框;同方法打开【对应分析:定义列范围】对话框; 定义列变量全距最小值为1,最大值为5,单击【更新】; 6. 单击【统计量】打开【对应分析:统计量】对话框;选择【行轮廓表】,【列轮廓表】;单击【继续】,返回【对应分析】对话框, 7.选择【绘制】→【对应分析:图】对话框,选择【散点图】中的【行点】、【列点】选择【线图】中的【已转换的行类别】、【已转换的列类别】,单击【继续】,返回【对应分析】对话框。 8.单击【确定】按钮,完成设置并执行列联表分析。 四、调试过程及实验结果(详细记录实验在调试过程中出现的问题及解决方法。记录实验的结果) SPSS实验结果及分析: 上表显示了在32155名被调查者中,大多数消费者在网上购物时选择第三方支付和网上银行支付,在网上购物的消费人群以大学本科生相对最多。

多元统计分析论文

基于主成分分析的我国地区经济指标研究 09统计班徐晓旺 【摘要】 地区经济的发展对我国现代化进程形成巨大的推动作用,而经济指标是评判地区发展水平的重要标志。根据搜集的相应数据建立数据库,基于主成分分析、同时运用聚类分析以及判别分析的多元统计方法,对全国各地区的经济状况进行综合指标分析。研究各省经济发展在全国的分布特征、筛选出具备可对比性的指标,进而探究造成差异的原因,同时具有针对性地提出相关建议。 【关键词】 主成分分析;聚类分析;判别分析;地区经济指标 一、引言 随着社会的不断进步,经济发展的车轮将会继续滚动。在整体水平提升的同时不难发现:我国各地区间发展势必存留着一定的差距,了解其具体的分布特征注定会是一个非常值得深入挖掘的信息。结合对进出口总额、居民消费水平等9个经济指标的研究,致力于分析各地区硬件发展水平、人民生活状况的异同与经济发展的相关性。 本文将对中国31个省份地区的经济指标进行分析。首先,应用主成分分析的方法对众多指标做降维处理并赋予各主成分以实际意义以获取综合性指标;进而,基于主成分分析结果通过聚类分析法把我国的31个地区分类;最后,根据聚类的结果建立判别函数同时运用判别分析将新疆、广东两个省份归类。 二、主成分分析 搜集到的经济指标为:进出口总额、地区生产总值、固定资产投资、邮电业务量、客运量、货运量、公交车运营数、居民平均工资和居民消费水平这九项指标。 在运用SPSS软件对以上数据开始分析前首先进行标准化处理,接着通过SPSS的操作,得到了如下的总方差分解结果(见表一): 表一

由表一中结果可以看到保留2个主成分为宜,这2个主成分集中了原始9个变量信息的88.392%,可见效果比较好,这样原来的9个指标就可以通过这2个综合指标来反映。此时,这2个主成分就起到了降维的作用。通过SPSS进一步的操作还可以得到如下的主成分系数矩阵(见表二): 表二 由表二可以得出前2个主成分的线性组合为: Y1 = 0.852 X1 + 0.979 X2 + 0.821 X3 + 0.957 X4 + 0.885 X5 + 0.742 X6 + 0.967 X7 + 0.226 X8 + 0.513 X9 Y2 = 0.393 X1 - 0.113 X2 - 0.419 X3 - 0.032 X4 - 0.233 X5 - 0.483 X6 + 0.109 X7 + 0.915 X8 + 0.786 X9 通过对上述线性组合的观察,我们可以得出:在主成分1中进出口总额、地区生产总值、固定资产投资、邮电业务量、客运量、货运量和公交车运营数这几项指标的系数明显比主成分2的系数大,可以将Y1归类为地区经济发展中的硬件基础指标;在主成分2中平均工资和消费水平指标的系数最大,可以将Y2归类为地区经济发展中的居民生活指标。 这样就将繁冗的9个指标归结为上述2个,这两项指标相互作用,共同反映地区经济发展情况。 主成分得分如下(见表三): 表三

2014年经济统计学专业本科培养方案-云南财经大学

统计与数学学院经济统计学专业本科培养方案 一、培养目标 本专业方向培养具有良好的数学与经济学素养,系统掌握统计学的基本理论和现代统计方法以及现代市场经济理论,能熟练地运用计算机进行数据分析与开发,能在政府机关、调查机构、金融、保险等部门独立从事统计实践、管理策划、数据挖掘和经济金融数量分析的高素质应用型人才。 二、培养要求 本专业方向学生主要学习社会经济统计的基本理论和方法,具有较好的数学基础及较好的经济学素养,系统接受理论研究、应用技能及计算机能力的基本训练,具有数据处理和经济计量分析的基本能力。 毕业生应获得以下方面的知识和能力: 1.扎实的数学基础,严格的科学思维方式; 2.设计调查问卷、采集数据、处理数据的基本能力; 3.具有应用统计学理论分析、解决实际问题的初步能力; 4.了解统计学理论与方法的发展动态及其应用前景; 5.熟悉国家经济发展的方针、政策和统计法律、法规,具有利用信息资料进行综合分析和管理的能力; 6.掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法;具有一定的科学研究和实际工作能力。 三、主干学科:数学、统计学、经济学、管理学 四、学分要求 课程类别课程 性质 最低 毕业 学分数 各学期最低学分 合计 1 2 3 4 5 6 7 8 通识教育模块 通识教育基础课1必修65 22 14 14 10 1 1 1 65 通识教育主干课2必选8 √√√8 学科基础课必修29 5 7 10 7 29 专业课 专业主干课必修15 3 3 9 15 专业方向课必修14 3 6 3 2 14 专业任选课3任选8 8 专业拓展课 (全校性选修课)4 任选8 √√√√√√√8 实践体验与创新课5必修20 1 1 2 4 9 20 累计167 22 20 22 26 17 15 7 9 167 注:1.通识教育基础课中的形势与政策学分没有统计到各学期最低学分中; 2.通识教育主干课开课学期为2—4学期,由学生自由选课,学分没有统计到各学期最低学分中; 3.专业任选课学分没有统计到各学期最低学分中; 4.专业拓展课由学生自由选课,学分没有统计到各学期最低学分中; 5.实践体验与创新课中的军训(1学分)和创业与实践(2学分)学分没有统计到各学期最低学分中。

多元统计分析实验报告

1. 正态性检验 Kolmogorov-Smirnov a Shapir o-Wilk 统计量df Sig. 统计量df Sig. 净资产收益率.113 35 .200*.978 35 .677 总资产报酬率.121 35 .200*.964 35 .298 资产负债率.086 35 .200*.962 35 .265 总资产周转率.180 35 .006 .864 35 .000 流动资产周转率.164 35 .018 .885 35 .002 已获利息倍数.281 35 .000 .551 35 .000 销售增长率.103 35 .200*.949 35 .104 资本积累率.251 35 .000 .655 35 .000 *. 这是真实显著水平的下限。 a. Lilliefors 显著水平修正 此表给出了对每一个变量进行正态性检验的结果,因为该例中样本中n=35<2000,所以此处选用Shapiro-Wilk统计量。由Sig.值可以看到,总资产周转率、流动资产周转率、已获利息倍数及资本积累率均明显不遵从正态分布,因此,在下面的分析中,我们只对净资产收益率、总资产报酬率、资产负债率及销售增长率这四个指标进行比较,并认为这四个变量组成的向量遵从正态分布(尽管事实上并非如此)。这四个指标涉及公司的获利能力、资本结构及成长能力,我们认为这四个指标可以对公司运营能力做出近似的度量。 2. 主体间因子 N 行业电力、煤气及水的生产和供应 业 11 房地行业15 信息技术业9 多变量检验a 效应值 F 假设 df 误差 df Sig. 截距Pillai 的跟踪.967 209.405b 4.000 29.000 .000 Wilks 的 Lambda .033 209.405b 4.000 29.000 .000 Hotelling 的跟踪28.883 209.405b 4.000 29.000 .000 Roy 的最大根28.883 209.405b 4.000 29.000 .000 行业Pillai 的跟踪.481 2.373 8.000 60.000 .027 Wilks 的 Lambda .563 2.411b8.000 58.000 .025 Hotelling 的跟踪.698 2.443 8.000 56.000 .024 Roy 的最大根.559 4.193c 4.000 30.000 .008 a. 设计 : 截距 + 行业

应用多元统计分析毕业论文已过查重-优秀毕业论文

应用多元统计分析毕业论文已过查重-优秀毕业论文

内蒙古财经大学 应用多元统计分析 期末论文 作者李慧斌 系别统计与数学学院 专业信息与计算科学 年级2012级 学号122093118 指导教师刘勇 导师职称讲师

目录 我国地区经济发展浅析 (2) 摘要 (2) 一、引言 (2) 二、聚类分析 (2) 1.参与聚类的样本总量表 (3) 2.样品聚为3类时的样品归类表 (3) 3.所有样品的聚类树形图 (5) 三、主成分分析 (6) 1.单变量描述统计量表 (6) 2.各变量相关矩阵图 (7) 3.总方差分解图 (8) 4.旋转前的因子载荷矩阵图 (9) 5.利用因子载荷矩阵图计算出的特征向量表 (9) 三、因子分析 (10) 1.旋转后的因子载荷矩阵 (10) 2.因子得分系数矩阵 (11) 3.各样品因子得分 (11) 四、结论 (13) 附表一 (14)

我国地区经济发展浅析 摘要:以聚类分析法、主成分分析法、因子分析法三种多元统计分析方法为主,对2011年我国31个省、市、自治区的地区经济发展状况以及影响地区经济发展的主要因素(指标)相结合进行剖析。根据不同分类方法得出不同的分析结果,从不同角度分析我国各地区经济发展存在的主要差异以及导致这些差异出现的原因,并最终就三种统计分析方法的结果对我国目前地区经济发展状况进行客观的综合概述。 关键字:地区发展水平聚类分析法主成分分析法因子分析法 一、引言 在日常生活过程中,我们常常遇到一些计算量大,分析工作复杂度高的数 据分析工作,为了能够更加简便地进行数据分析,在此给大家介绍几种多元统 计分析的方法。本文主要运用了聚类分析法,主成分分析法和因子分析法对2011 年我国31个省市自治区地区经济发展水平以及影响地区经济发展的几项重要指 标进行了统计分析。 二、聚类分析 聚类分析是应用最广泛的一种分类技术,它把性质相近的个体归为一类,使得同一类中的个体具有高度的同质性,不同类之间的个体具有高度的异质性。聚类分析的职能是建立一种分类方法,它是将一批样品或变量,按照它们在性质上的相似程度进行分类。通常我们用距离来度量样品之间的相似程度,用相似系数来度量变量之间的相似程度。

多元统计分析实验报告,计算协方差矩阵,相关矩阵,SAS

院系:数学与统计学学院 专业:__统计学 年级:2009 级 课程名称:统计分析 ____ 学号:____________ 姓名:_________________ 指导教师:____________ 2012年4月28日 (一)实验名称 1. 编程计算样本协方差矩阵和相关系数矩阵;

2. 多元方差分析MANOVA。 (二)实验目的 1. 学习编制sas程序计算样本协方差矩阵和相关系数矩阵; 2. 对数据进行多元方差分析。 (三)实验数据 第一题: 第二题:

(四)实验内容 1. 打开SAS软件并导入数据; 2. 编制程序计算样本协方差矩阵和相关系数矩阵; 3. 编制sas程序对数据进行多元方差分析; 4. 根据实验结果解决问题,并撰写实验报告; (五)实验体会(结论、评价与建议等) 第一题: 程序如下: proc corr data=sasuser.sha n cov; proc corr data=sasuser.sha n no simple cov; with x3 x4; partial x1 x2; run; 结果如下: (1)协方差矩阵 $AS亲坯 曲;15 Friday, Apr: I SB,沙DO COUR过程 x4 目由度=30 Xi x2x3x4x5X? -10.I9B4944-0.45E2GJ5I.3347097-G.1193E48-£0.e75?GS

-ID. 188494669,36&Q3?9-7.22IO&OS1J5692043I5.49ee^91S.Oa97SM -8.45S2645■7,221050829.S78&S46-6.372E47I-15.3084183-21.7352376-11.5674785 1.3841097 1.G5S2M7t.3726171IJ24?17B 4.e093011 4.4C12473 2.B747CM -G. I1S3S49 1.GS92043-is.soul aa 4.B09B01I68.7978495劣』S670971S.57ai1B3 -IH.05l6l?a15.43S6569-J1.73S2376孔耶124TB27.0387097105.103225&S7.3505S7E: -2D K5752??319-11337204-1L55M7S52r9747?3i19,573118337.3S0&87E33.3SQ6452 (2) 相关系数矩阵 Pearson相关系数” N =引 当HO: Rho=0 时.Prob > |r| Xi Xi xl 1.QQ000 x2 -C.23954 0.2061 x3 -0,30459 0.0957 x4 0.18975 Q.3092 x5 '0.14157 0.4475 x6 -0.83787 0.0630 -0.49292 0.0150 x2-0.23354 1.00000-0.162750.143510.022700.181520.24438 x20.20C10.31:1?0.441?0.90350.32640.1761 x3-0.30459-0.16275 1.00000-0.06219-0.34641-0.^797-0.23674 x30.095?0.381?<.00010.0563o.oses0 JS97 x40.1S8760.14351-0.86219L000000.400540,313650.22610 x40.30920.4412<.0001 D.02EG Q.085S0.2213 x5-0J 41570.02270-0.946410.40054 1.000000.317370.26750 x50.4J750.90350.0G68Q.025&0.08130 + 1620 x6-0.33?e?0.1S162-0.397970.813650.31787LOOOOO0.82976 x60.0S300.32840.02660.08580.0813C0001辺-0.432920.24938-0.288740.22810 D.267600.92976 1.00000 x70,01500J7610.19970.22130JG20<.0001 第二题: 程序如下: proc anova data=sasuser.hua ng; class kind; model x1-x4=k ind; manova h=k ind; run; 结果如下: (1)分组水平信息 The ANNA Procedure Cla^s Level Informat ion Class Level?Values kind 3 123 Number of observatIons CO (2) x1、x2、x3、x4的方差分析

多元统计分析论文-spss多元统计分析论文

因子分析和聚类分析在全国省会城市经济 实力分析中的应用 摘要:本文利用SPSS中的因子分析和聚类分析功能对全国26个省会城市经济实力进行分析。先用因子分析,再对因子分析的结果进行聚类分析。本文选取2012年上半年26个省会城市的9个经济指标,通过因子分析提取两个因子计算出26个省会城市的综合得分函数,再根据因子分析得出的得分函数对这些城市进行聚类分析,分类结果为: 然后再对分类后的城市进行分析说明,最后针对分类的结果进而得出经济综合实力的结论。 关键词:因子分析聚类分析 SPSS 经济实力

一、引言 城市的发展是经济发展和社会进步的重要标志。目前,我国正处于加快推进现代化的历史阶段。现代城市既要有发达的经济,也要有发达的文明。文明城市是指在全面建设小康社会、推进社会主义现代化建设新的发展阶段,物质文明、政治文明与精神文明协调发展,经济和社会事业全面进步,精神文明建设取得显著成就,市民整体素质和城市文明程度较高的城市。文明城市,是反映一个地区现代文明程度、城市综合竞争实力的重要标志。创建文明城市对经济社会发展所产生的现实意义和深远影响,已经远远超出了原来一般意义上的群众性精神文明建设活动。我们要从战略高度来看待创建文明城市的重要意义,提高对创建文明城市重要性的认识。 随着改革开放的脚步,全国各地经济都有着飞速的发展,人们越来越关注各个省会城市经济实力。经济是衡量一个地区综合实力的重要指标,而依照经济实力对城市进行分类可以看出一个地区综合实力以及发展潜力,利用经济分类,我们也可以得出该地区的发展状况,以及在哪些方面做得不够,哪些方面可以得到改进。基于以上原因,本文运用SPSS 对全国26个省会城市,合肥, 武汉, 长沙, 郑州, 南昌, 太原, 西安, 福州, 石家庄, 沈阳, 哈尔滨, 长春, 南京, 杭州, 济南, 南宁, 成都, 贵阳, 昆明, 兰州, 西宁, 银川, 海口, 广州, 乌鲁木齐, 呼和浩特2012年上半年的9类经济指标进行因子分析,聚类分析。根据这两种分析的结果,对该26个省会城市进行2012上半年的经济分类。这样能让广大人们群众更清楚的认识此26个省会城市的经济状况,上级部门也可以通过这些分类对这26个地区下达给类发展命令,让这26个城市在经济上能更进一步。 选取的这九个经济指标是地区生产总值(X1),社会消费品零售总额(X2),规模以上工业增加值(x3),出口总额(x4),固定资产投资(x5),人民币储蓄存款余额(x6),地方财政收入(x7),农民人均现金收入(x8),城镇居民人均收入(x9)。 二、模型假设 1、假设经济指标数据真实、准确; 2、假设选取的经济指标能基本上全面反映城市的经济信息; 3、假设各个经济指标信息之间存在重叠; 4、假设特殊因子),0(~2σεN 。

多元统计分析期末复习试题

第一章: 多元统计分析研究的内容(5点) 1、简化数据结构(主成分分析) 2、分类与判别(聚类分析、判别分析) 3、变量间的相互关系(典型相关分析、多元回归分析) 4、多维数据的统计推断 5、多元统计分析的理论基础 第二三章: 二、多维随机变量的数字特征 1、随机向量的数字特征 随机向量X 均值向量: 随机向量X 与Y 的协方差矩阵: 当X=Y 时Cov (X ,Y )=D (X );当Cov (X ,Y )=0 ,称X ,Y 不相关。 随机向量X 与Y 的相关系数矩阵: )',...,,(),,,(2121P p EX EX EX EX μμμ='=Λ)')((),cov(EY Y EX X E Y X --=q p ij r Y X ?=)(),(ρ

2、均值向量协方差矩阵的性质 (1).设X ,Y 为随机向量,A ,B 为常数矩阵 E (AX )=AE (X ); E (AXB )=AE (X )B; D(AX)=AD(X)A ’; Cov(AX,BY)=ACov(X,Y)B ’; (2).若X ,Y 独立,则Cov(X,Y)=0,反之不成立. (3).X 的协方差阵D(X)是对称非负定矩阵。例2.见黑板 三、多元正态分布的参数估计 2、多元正态分布的性质 (1).若 ,则E(X)= ,D(X)= . 特别地,当 为对角阵时, 相互独立。 (2).若 ,A为sxp 阶常数矩阵,d 为s 阶向量, AX+d ~ . 即正态分布的线性函数仍是正态分布. (3).多元正态分布的边缘分布是正态分布,反之不成立. (4).多元正态分布的不相关与独立等价. 例3.见黑板. 三、多元正态分布的参数估计 (1)“ 为来自p 元总体X 的(简单)样本”的理解---独立同截面. (2)多元分布样本的数字特征---常见多元统计量 样本均值向量 = 样本离差阵S= 样本协方差阵V= S ;样本相关阵R (3) ,V分别是 和 的最大似然估计; (4)估计的性质 是 的无偏估计; ,V分别是 和 的有效和一致估计; ; S~ , 与S相互独立; 第五章 聚类分析: 一、什么是聚类分析 :聚类分析是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。用于对事物类别不清楚,甚至事物总共可能有几类都不能确定的情况下进行事物分类的场合。聚类方法:系统聚类法(直观易懂)、动态聚类法(快)、有序聚类法(保序)...... Q-型聚类分析(样品)R-型聚类分析(变量) 变量按照测量它们的尺度不同,可以分为三类:间隔尺度、有序尺度、名义尺度。 二、常用数据的变换方法:中心化变换、标准化变换、极差正规化变换、对数变换(优缺点) 1、中心化变换(平移变换):中心化变换是一种坐标轴平移处理方法,它是先求出每个变量的样本平均值,再从原始数据中减去该变量的均值,就得到中心化变换后的数据。不改变样本间的相互位置,也不改变变量间的相关性。 2、标准化变换:首先对每个变量进行中心化变换,然后用该变量的标准差进行标准化。 经过标准化变换处理后,每个变量即数据矩阵中每列数据的平均值为0,方差为1,且也不再具有量纲,同样也便于不同变量之间的比较。 3、极差正规化变换(规格化变换):规格化变换是从数据矩阵的每一个变量中找出其最大值和最小值,这两者之差称为极差,然后从每个变量的每个原始数据中减去该变量中的最小值,再除以极差。经过规格化变换后,数据矩阵中每列即每个变量的最大数值为1,最小数值为0,其余数据取值均在0-1之间;且变换后的数据都不再具有量纲,便于不同的),(~∑μP N X μ∑μp X X X ,,,21Λ),(~∑μP N X ) ,('A A d A N s ∑+μ)()1(,, n X X ΛX )',,,(21p X X X Λ)')(()()(1X X X X i i n i --∑=n 1X μ∑μX )1,(~∑n N X P μ),1(∑-n W p X X

多元统计分析实验报告

多元统计分析实验报告 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

1. 正态性检验 Kolmogorov-Smirnov a Shapir o-Wilk 统计量df Sig.统计量df Sig. 净资产收益 .11335.200*.97835.677 率 总资产报酬 .12135.200*.96435.298 率 资产负债率.08635.200*.96235.265 总资产周转 .18035.006.86435.000 率 流动资产周 .16435.018.88535.002 转率 已获利息倍 .28135.000.55135.000 数 销售增长率.10335.200*.94935.104 资本积累率.25135.000.65535.000 *. 这是真实显着水平的下限。 a. Lilliefors 显着水平修正 此表给出了对每一个变量进行正态性检验的结果,因为该例中样本中 n=35<2000,所以此处选用Shapiro-Wilk统计量。由Sig.值可以看到,总资产周转率、流动资产周转率、已获利息倍数及资本积累率均明显不遵从正态分布,因此,在下面的分析中,我们只对净资产收益率、总资产报酬率、资产负债率及销售增长率这四个指标进行比较,并认为这四个变量组成的向量遵从正态分布(尽管事实上并非如此)。这四个指标涉及公司的获利能力、资本结构及成长能力,我们认为这四个指标可以对公司运营能力做出近似的度量。 2. 主体间因子 N

行业电力、煤气及水的 生产和供应业 11 房地行业15 信息技术业9 多变量检验a 效应值F假设 df 误差 df Sig. 截距Pillai 的跟 踪 .967.000 Wilks 的 Lambda .033.000 Hotelling 的跟踪 .000 Roy 的最大 根 .000 行业Pillai 的跟 踪 .481.027 Wilks 的 Lambda .563.025 Hotelling 的跟踪 .698.024 Roy 的最大 根 .559.008 a. 设计 : 截距 + 行业 b. 精确统计量 c. 该统计量是 F 的上限,它产生了一个关于显着性级别的下 限。 上面第一张表是样本数据分别来自三个行业的个数。第二张表是多变量检验表,该表给出了几个统计量,由Sig.值可以看到,无论从哪个统计量来看,三个行业的运营能力(从净资产收益率、总资产报酬率、资产负债率及销售增长率这四个指标的整体来看)都是有显着差别的。 3. 主体间效应的检验

多元统计分析论文

多元统计分析论文标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

关于各地区固定资产投资价格指数的分析 摘要:本文主要通过主成分分析、聚类分析和判别分析对全国30多个省的固定资产投资指数、建筑安装工程指数、设备工器具购置指数、其他费用指数进行分析。 关键词:主成分分析、欧氏距离、系统聚类分析、判别分析 Summary:This article mainly through the principal components analysis, the cluster analysis and the distinction analysis to the national more than 30 province investment in the fixed assets indices, construction and installation the project index, the equipment labor appliance purchase index, other expense index carries on the analysis. Keywords:Principal Components Analysis、Euclidean distance、Discriminant analysis 一、导言: 注意微量信息引起的巨变,蝴蝶效应就是微量信息在一定条件下发生作用的过程。在我们的经济活动中,每天的信息是大量的,这就要求我们从中发现那些对经济能产生最大影响的信息,有些是微量信息,有些是次级别的信息,本文的各地区固定资产投资价格指数就是一个非常值得深入发觉的信息。该指数可以准确地反映固定资产投资中涉及的各类投资品和取费项目价格变动趋势和变动幅度,消除按现价计算的固定资产投资指标中的价格变动因素,真实地反映固定资产投资的规模、速度、结构和效益,为国家科学地制定、检查固定资产投资计划并提高宏观调控水平,为完善国民经济核算体系提供科学的、可靠的依据。

相关文档
最新文档