I1-Histone Deacetylase 1

I1-Histone Deacetylase 1
I1-Histone Deacetylase 1

1Histone Deacetylase 1

Dominique Meunier, PhD

and Christian Seiser, PhD

C O NTENT S

S UMMARY

H ISTONE D EACETYLASE 1:A B RIEF H ISTORY

E VOLUTIONARY C ONSERV ATION O

F HDAC1

S TRUCTURAL AND F UNCTIONAL C HARACTERISTICS

OF HDAC1

T RANSCRI P TIONAL R E P RESSION M EDIATED

BY HDAC1

HDAC1 AND THE R EGULATION OF C ELL

C YCLE P ROGRESSION ,P ROLIFERATION ,

AND D IFFERENTIATION

O THER B IOLOGICAL F UNCTIONS OF HDAC1

C ONCLUDING R EMARKS AN

D F UTUR

E D IRECTIONS

A CKNOWLEDGMENTS

R EFERENCES

SUMMARY

HDAC1 was the f i rst h i stone deacetylase i dent i f i ed i n mammals and i s cons i dered the prototype of th i s lar g e fam i ly of enzymes .Transcr i pt i onal repress i on med i ated by HDAC1 plays a cr u c i al role i n the re gu lat i on of a var i ety of b i olo gi cal processes,i ncl u d i n g cell cycle pro g ress i on,prol i ferat i on,and d i fferent i at i on . Interest i n g ly,HDAC1 can also i nfl u ence other cell u lar act i v i t i es,s u ch as DNA repl i cat i on and chro-mosome se g re g at i on,v i a mechan i sms that do not i nvolve transcr i pt i onal repress i on . In add i t i on,HDAC1 i s essent i al for embryon i c development

3

From :Can cer D r ug Dis co v er y and D e v e l o pm e nt

Hist o n e D e a ce tylas e s :T r ans cr ipti o nal Re gulati o n and O th er C e llula r F un c ti o ns

Ed i ted by :E . Verd i n ?H u mana P ress Inc .,Totowa,NJ

4Meunier and Seiser

Acronyms and Abbreviations

BRCA1Breast cancer 1 g ene

CoREST Corepressor of RE1 s i lenc i n g transcr i pt i on factor

EED Embryon i c ectoderm development prote i n

EZH2Enhancer of zeste homolo g 2 (D ro s o phila)

HAT H i stone acetyltransferase

HDA-1H i stone deacetylase 1 (Yeast)

MAD MAX d i mer i zat i on prote i n

MAX MYC-assoc i ated factor X

MBD3Methyl-CpG-b i nd i n g doma i n prote i n 3

MDM2Mo u se do u ble m i n u te 2

M i-2-alpha,Dermatomyos i t i s-spec i f i c a u toant ig en 2 alpha,also called (CHD3)chromodoma i n hel i case DNA-b i nd i n g prote i n 3

M i-2-beta,Dermatomyos i t i s-spec i f i c a u toant ig en 2 beta,also called (CHD4)chromodoma i n hel i case DNA-b i nd i n g prote i n 4

MTA1,MTA2Metastas i s-assoc i ated g ene 1,metastas i s-assoc i ated g ene 2 MYC Myelocytomatos i s onco g ene

NF-Y N u clear transcr i pt i on factor Y

P/CAF p300/CB P-assoc i ated factor

R P D3Red u ced potass iu m dependency 3

SA P18SIN3-assoc i ated polypept i de,18 KDa

SA P30SIN3-assoc i ated polypept i de,30 KDa

SIN3SWI-i ndependent 3

S P1,S P3Spec i f i c prote i n 1,spec i f i c prote i n 3

YY1Y i n g yan g 1

and appears to play a cr i t i cal role i n cell u lar defense a g a i nst v i ral i nfec-t i on.F i nally,i ncreas i n g ev i dence po i nts toward the i mportance of HDAC1 i n t u mor format i on and/or pro g ress i on,and c u m u lat i ve observa-t i ons i nd i cate that the enzyme i s a cr u c i al tar g et for HDAC i nh i b i tors i n cancer therapy.

K ey Wo rds:H i stone deacetylase 1,HDAC1,transcr i pt i onal repress i on, b i olo gi cal f u nct i on,cell cycle re gu lat i on,prol i ferat i on,d i fferent i at i on, repl i cat i on,m i tos i s,development,cancer,chromat i n.

HISTONE DEACETYLASE 1: A BRIEF HISTORY

H i stone deacetylase 1 (HDAC1) was the f i rst prote i n fo u nd to possess h i stone deacetylase act i v i ty i n mammals. Tak i n g advanta g e of the recent

Chapter 1 /HDAC15 d i scovery of trapox i n,a potent i nh i b i tor of HDAC act i v i ty (1,2),Ta u nton and collea gu es (3)i solated HDAC1 from a h u man T-cell l i ne u s i n g a trapox i n-based aff i n i ty matr i x. HDAC1 was s u bseq u ently i dent i f i ed as a g rowth factor-i nd u c i ble enzyme w i th HDAC act i v i ty i n mo u se T-cells (4). Seq u ence analyses revealed that both the h u man and mo u se HDAC1 prote i ns are h ig hly homolo g o u s to the Sa cc ha ro my ce s cere visia e R P D3 prote i n(3–5),a known transcr i pt i onal re gu lator (6). Altho ug h mo u se HDAC1 fa i led to complement the yeast r pd3Δdelet i on(4),extens i ve i nvest ig at i ons s i nce then have clearly demonstrated the cr u c i al role played by HDAC1 i n the transcr i pt i onal repress i on of a var i ety of mammal i an g enes i nvolved i n cell cycle pro g ress i on,prol i ferat i on,d i fferent i at i on, development and cancer.

EVOLUTIONARY CONSERVATION OF HDAC1 The mammal i an HDAC1 prote i n belon g s to an anc i ent fam i ly of enzymes h ig hly conserved thro ug ho u t e u karyot i c and prokaryot i c evol u t i on.

E u karyot i c HDACs have been d i v i ded i nto three classes—I,II and III—based on seq u ence s i m i lar i ty (7,8). HDAC1,to g ether w i th HDAC2,HDAC3,and HDAC8,belon g s to the R P D3-l i ke class I of HDACs. A recent phylo g enet i c analys i s has revealed that class I can be f u rther d i v i ded i nto an HDAC1/HDAC2 and an HDAC3 s u bclass (9). The HDAC1/HDAC2 s u b-class cons i sts of the vertebrate HDAC1 and HDAC2 prote i ns,the s i n g le D ro s o phila m e lan o gast er R P D3 prote i n,and a pa i r of prote i ns i n Ca e n or ha b ditis e l e gans. HDAC1-related prote i ns have also been i dent i f i ed i n several other or g an i sms,i ncl u d i n g ch i cken (10),Xe n o pus la e vis(11), Dani o rer i o(12),A r a b id o psis thaliana(9),ma i ze (13,14),and bacter i a (4).

The ex i stence of an HDAC1/HDAC2 s u bclass w i th i n class I h ig hl ig hts the h ig h de g ree of s i m i lar i ty that ex i sts between these two enzymes:i n mammals,HDAC1 and HDAC2 exh i b i t approx 82% i dent i ty,and the i r g enom i c or g an i zat i on i s almost i dent i cal (15,16). Th i s i nd i cates that HDAC1 and HDAC2 arose from a relat i vely recent g ene d u pl i cat i on and s ugg ests that they have probably u nder g one l i ttle f u nct i onal d i ver g ence e i ther from the i r common ancestor or from each other (9). Indeed,both HDAC1 and HDAC2 are w i dely expressed n u clear prote i ns,they are fo u nd i n s i m i lar prote i n complexes (s ee the sect i on ent i tled HDAC1-Assoc i ated P rote i n Complexes,below),and they have been shown to heterod i mer i ze (16–18).F u rthermore,HDAC1 appears to i nfl u ence the express i on of HDAC2,and v i ce versa (s ee the sect i on ent i tled HDAC1 and the Re gu lat i on of Cell Cycle P ro g ress i on,P rol i ferat i on,and D i fferent i at i on). However,the observat i on that HDAC1 delet i on leads to embryon i c lethal i ty i n the mo u se (19)i nd i cates that,desp i te some f u nct i onal overlap,HDAC1 and HDAC2 also have d i st i nct and nonred u ndant b i olo gi cal f u nct i ons.

6Meunier and Seiser STRUCTURAL AND FUNCTIONAL

CHARACTERISTICS OF HDAC1

St ru ct ural O rgani z a t i o n and Trans c ri pt i o nal

Re gula t i o n of t h e H DA C1 Ge n e

Seq u ence analys i s and chromosomal fl u orescent in situ hybr i d i zat i on have shown that HDAC1 maps to mo u se chromosome 4 and h u man chro-mosome 1p34.1;i n both cases,l i nka g e to the g enes encod i n g the myr i s-toylated alan i ne-r i ch prote i n C k i nase s u bstrate (MARCKS)-related prote i n (MR P) and lymphocyte-spec i f i c prote i n tyros i ne k i nase (LCK) i s conserved (5,15). In mammals,the HDAC1 g ene i s abo u t 30 kb i n len g th and compr i ses 14 exons i nterr u pted by 13 i ntrons (15). The HDAC1 open read i n g frame i s 1446 bp lon g and encodes a 482-am i no ac i d prote i n w i th a molec u lar mass of approx 55 kDa (3–5).

The HDAC1 promoter i s r i ch i n GC,lacks a TATA box consens u s seq u ence,and conta i ns two transcr i pt i on factor b i nd i n g s i tes that are cr u-c i al for i ts f u ll act i v i ty:a CCAAT box that i s reco g n i zed by the transcr i p-t i onal re gu lator NF-Y and a d i stal GC box to wh i ch members of the S P fam i ly can b i nd (20). NF-Y and S P1/S P3 have been fo u nd to re gu late the transcr i pt i onal act i vat i on or repress i on of HDAC1 syner gi st i cally by recr ui t i n g e i ther h i stone acetyltransferases (HATs) or HDACs,respec-t i vely,to the HDAC1 promoter. Th i s i nd i cates that the HDAC1 g ene i tself i s re gu lated by the balanced act i on of acetylat i n g and deacetylat i n g enzymes. In part i c u lar,HDAC1 has been fo u nd to be recr ui ted to i ts own promotor by NF-Y and S P1/S P3,thereby med i at i n g i ts own repress i on v i a a ne g at i ve feedback loop (20). HDAC1 transcr i pt i on has also been shown to be i nd u ced by a two-step mechan i sm i nvolv i n g stab i l i zat i on of h i stone H3 phosphoacetylat i on by g rowth factor-med i ated act i vat i on of the m i to g en-act i vated prote i n (MA P) k i nase pathway and removal of HDACs and/or recr ui tment of HATs at the HDAC1 promoter (21).

St ru ct ural and Fun ct i o nal O rgani z a t i o n

of t h e H DA C1 P r ote in

HDAC1 i s a metalloenzyme conta i n i n g three i mportant f u nct i onal doma i ns:(1) an N-term i nal HDAC assoc i at i on doma i n (HAD; res i d u es 1–53),wh i ch i s essent i al for HDAC1 homod i mer i zat i on,assoc i at i on w i th HDAC2 as well as other prote i ns,and catalyt i c act i v i ty (18); (2) a central z i nc-b i nd i n g catalyt i c doma i n termed HDAC consens u s mot i f (res i d u es 25–303),wh i ch conta i ns several conserved h i st i d i ne and aspartate res i d u es and forms the act i ve s i te pocket of the enzyme (18,22); and (3) a C-term i nal lys i ne-r i ch doma i n (res i d u es 438–482) conta i n i n g the core n u clear local-i zat i on s ig nal (NLS) KKAKRVKT (18)and the IACEE mot i f i nvolved i n

Chapter 1 /HDAC17 the i nteract i on w i th the pocket prote i ns pRB,p107,and p130 (23–25). Interest i n g ly,a tr u ncated HDAC1 prote i n lack i n g the NLS can st i ll translo-cate i nto the n u cle u s thro ug h assoc i at i on w i th an i ntact HDAC1 prote i n

(18),and Tapl i ck and collea gu es (18)have therefore proposed that homod-

i mer i zat i on plays a p i votal role i n the act i v i ty of the enzyme. The HDAC1 prote i n i s also a tar g et for var i o u s posttranslat i onal mod i f i cat i ons (26–28). P hosphorylat i on of ser i ne res i d u es i n the C-term i nal port i on of the prote i n appears to promote HDAC1 enzymat i c act i v i ty (27),whereas s u moylat i on of lys i ne res i d u es i n the same doma i n seems to be req ui red for transcr i p-t i onal repress i on by HDAC1 (28). Acetylat i on of the prote i n also appears to enhance i ts enzymat i c act i v i ty (J. Tapl i ck and C. Se i ser,u np u bl i shed data).

TRANSCRIPTIONAL REPRESSION MEDIATED

BY HDAC1

H DA C1 S ubs t ra te Spec i f i c i t y

HDACs are bel i eved to repress transcr i pt i on ma i nly thro ug h deacetyla-t i on of the h i stone ta i ls that protr u de from the n u cleosomes,res u lt i n g i n local mod i f i cat i on of chromat i n str u ct u re (7). HDAC1 has been shown to deacetylate all fo u r core h i stones i n v i tro and appears to preferent i ally deacetylate spec i f i c lys i ne res i d u es on h i stone H4 (29). The enzyme has also been fo u nd to deacetylate a s u bset of h i stones H3 and H4 i n v i vo (19). In add i t i on to h i stones,HDAC1 can also deacetylate nonh i stone prote i ns, s u ch as the t u mor s u ppressor p53 (30,31),the transcr i pt i on factors E2F1 (32,33)and YY1 (34),and prol i ferat i n g cell n u clear ant ig en (P CNA) (35).

H DA C1-Ass oc ia te d P r ote in Co m p l e x e s

HDAC1,to g ether w i th the closely related enzyme HDAC2,i s g enerally fo u nd i n m u lt i prote i n complexes that are recr ui ted to DNA by var i o u s transcr i pt i on factors. To date,three complexes conta i n i n g HDAC1 and HDAC2 have been character i zed i n mammals:the corepressor complex SIN3,the n u cleosome remodel i n g and deacetylase complex (N u RD),and the CoREST complex (8). The SIN3 and N u RD complexes both conta i n HDAC1,HDAC2,ret i noblastoma-assoc i ated prote i n (RbAp)46,and RbAp48,a prote i n or igi nally cop u r i f i ed w i th h u man HDAC1 (3). In add i-t i on,mS i n3A,SA P18,and SA P30 are assoc i ated w i th the SIN3 complex, whereas M i-2α/M i-2β(also called CHD3/CHD4) and MTA2 are fo u nd i n the N u RD complex. The CoREST complex also conta i ns both HDAC1 and HDAC2,as well as CoREST and LSD1,a recently i dent i f i ed lys i ne-spec i f i c h i stone demethylase (8,35a).

A lar g e n u mber of transcr i pt i on factors have been i dent i f i ed that recr ui t HDAC1-assoc i ated complexes to spec i f i c promoters i n order to med i ate

8Meunier and Seiser transcr i pt i onal repress i on. These i ncl u de re gu lators of cell cycle pro g res-s i on,prol i ferat i on,d i fferent i at i on,and development (7,8,16,36,37). In add i t i on to transcr i pt i onal repress i on thro ug h prote i n complexes,HDAC1 can also f u lf i l i ts repress i ve f u nct i on thro ug h d i rect i nteract i on w i th DNA b i nd i n g prote i ns s u ch as S P1/S P3,YY1,P CNA,the pocket prote i ns pRB, p107,and p130,and the t u mor s u ppressors p53 and BRCA1 (7,30,38).

HDAC1 AND THE REGULATION OF CELL

CYCLE PROGRESSION, PROLIFERATION,

AND DIFFERENTIATION

HDAC1 was or igi nally i dent i f i ed i n the mo u se as a g rowth factor-i nd u c i ble prote i n (4)and i ts express i on has been fo u nd to correlate w i th prol i ferat i on i n var i o u s t i ss u es,embryon i c stem (ES) cells,and several transformed cell l i nes (4,19),thereby s ugg est i n g a l i nk between HDAC1 and re gu lat i on of cell u lar prol i ferat i on. Indeed,both overexpress i on of HDAC1 i n mo u se f i broblasts and d i sr u pt i on of the g ene i n mo u se embryos and ES cells have been shown to severely pert u rb prol i ferat i on and cell cycle pro g ress i on (4,19),i nd i cat i n g that ma i ntenance of cell type-spec i f i c deacetylase levels i s cr u c i al for u nrestr i cted prol i ferat i on. In l i ne w i th th i s i dea,HDAC2 and HDAC3 prote i n levels have been fo u nd to be u pre gu-lated i n the absence of HDAC1 (19),and loss of HDAC2 appears to ca u se overexpress i on of HDAC1 (S. Ch i occa,personal comm u n i cat i on). It i s, however,i mportant to note that the effects of HDAC1-med i ated transcr i p-t i onal repress i on on the re gu lat i on of cell cycle pro g ress i on,prol i ferat i on, and d i fferent i at i on are d i verse and seem to be dependent on HDAC1 molec u lar partners,as w i ll be d i sc u ssed i n the follow i n g sect i ons.

H DA C1 and t h e Poc k et P r ote ins

The i nvolvement of HDAC1 i n the control of cell cycle pro g ress i on i s u nderscored by i ts i nteract i on w i th the three members of the ret i noblas-toma fam i ly of transcr i pt i onal repressors,the pocket prote i ns pRB,p107, and p130,v i a the IACEE mot i f (23–25,39,40). Hypophosphorylated pocket prote i ns recr ui t HDAC1 early i n G1 and repress cell cycle pro g res-s i on by b i nd i n g to and i nh i b i t i n g members of the E2F fam i ly of transcr i p-t i on factors. Upon phosphorylat i on of pocket prote i ns by cycl i n-dependent k i nase (CDK)/cycl i n complexes,the HDAC1/pocket prote i n/E2F complex i s abro g ated,allow i n g E2F factors to act i vate a ser i es of g enes req ui red for G1/S phase trans i t i on and DNA synthes i s,i ncl u d i n g cycl i n A and cycl i n E (41). CDK4/6/cycl i n D2 complexes have been shown to be par-t i c u larly effect i ve at phosphorylat i n g pRB and conseq u ently i nh i b i t i n g the pRB-HDAC1 i nteract i on at the G1/S phase trans i t i on,th u s promot i n g cycl i n E express i on (42). Altho ug h recr ui tment of HDAC1 by pRB i s

Chapter 1 /HDAC19 clearly cr u c i al for repress i on of E2F-respons i ve g enes,a recent report has shown that HDAC1 does not cooperate w i th pRB to repress E2F1-med i ated cell death. In contrast,i n th i s part i c u lar case,HDAC1 i nh i b i ts the effects of pRB on E2F1 by a mechan i sm that does not i nvolve deacety-lase act i v i ty b u t req ui res the IACEE mot i f (43).

H DA C1 and t h e MAD/MA X Hete r o dim e r

A f u rther i nd i cat i on of the role of HDAC1 i n the control of cell g rowth and prol i ferat i on i s i ts assoc i at i on w i th the MAD/MAX heterod i mer. In prol i ferat i n g cells,MYC/MAX heterod i mer act i vates transcr i pt i on of g enes req ui red for cell u lar g rowth. Upon d i fferent i at i on,however,MYC i s replaced by MAD,and the MAD/MAX heterod i mer represses transcr i p-t i on of the g rowth-st i m u latory g enes thro ug h recr ui tment of the SIN3/HDAC1/2 corepressor complex (44–47).

P r o m ot i o n of Ce llular P r o li fe ra t i o n by H DA C1 The recr ui tment of HDAC1 by the pocket prote i ns and the MAD/MAX complex clearly demonstrates the i nvolvement of the prote i n i n repress i on of cell u lar prol i ferat i on. However,tar g eted d i sr u pt i on of HDAC1 i n the mo u se has revealed that the enzyme i s also essent i al for u nrestr i cted pro-l i ferat i on(19). HDAC1 homozy g o u s m u tant (–/–) embryos are severely g rowth retarded and exh i b i t a prol i ferat i on defect that i s assoc i ated w i th elevated levels of the CDK i nh i b i tors p21and p27 and w i th a decrease i n cycl i n-assoc i ated act i v i ty.S i m i lar phenotypes were also observed i n HDAC1–/– ES cells. Cons i stent w i th these f i nd i n g s,the p21 promoter has been fo u nd to be assoc i ated w i th hyperacetylated h i stones i n the absence of HDAC1 (19),and HDAC1 has been shown to be recr ui ted to the p21 promoter by d i rect i nteract i on w i th the transcr i pt i on factor S P1 (48). The t u mor s u ppressor p53 i s known to act i vate p21 i n response to DNA dam-a g es,thereby i nd u c i n g cell cycle arrest and apoptos i s (49). Interest i n g ly, p53 i s also recr ui ted to the p21 promoter thro ug h d i rect i nteract i on w i th S P1(48,50)and has been shown to compete w i th HDAC1 for the re gu la-t i on of p21 express i on follow i n g DNA dama g e (48). Taken to g ether,these f i nd i n g s i nd i cate that HDAC1 i s a cr u c i al ne g at i ve re gu lator of p21 tran-scr i pt i onal act i v i ty,altho ug h the poss i b i l i ty cannot be excl u ded that other HDACs may also be i nvolved i n the repress i on of p21 (51).

In add i t i on to i nh i b i t i on of p21,HDAC1 has also been shown to repress p53 f u nct i on by d i rect deacetylat i on of the prote i n (30,31). Acetylat i on of p53 stab i l i zes and act i vates the prote i n i n response to g enotox i c stress, wh i le deacetylat i on appears to prov i de a rap i d mechan i sm to i nh i b i t p53-med i ated cell cycle arrest and apoptos i s and to restore normal cell g rowth once DNA repa i r i s completed (52). Th i s probably occ u rs thro ug h recr ui tment of HDAC1 by MDM2—a key ne g at i ve re gu lator

10Meunier and Seiser of p53—thereby i nd u c i n g p53 deacetylat i on and allow i n g MDM2 to u b i q-ui t i nate the prote i n,wh i ch i s then tar g eted for de g radat i on (53). Altho ug h acetylat i on clearly act i vates p53 f u nct i on,i t appears not to be essent i al for the transact i vat i on of p21 follow i n g DNA dama g e; however,p53 acetyla-t i on stron g ly enhances i ts b i nd i n g to the p21 promoter i n v i vo (52,54).

H DA C1 and Nu c l e ar Recepto rs

N u clear receptors are a lar g e fam i ly of l ig and-i nd u ced transcr i pt i on factors that re gu late a var i ety of phys i olo gi cal processes,i ncl u d i n g devel-opment and d i fferent i at i on.F u rthermore,n u clear receptors are well-character i zed examples of HDAC-recr ui t i n g prote i ns (55). Thyro i d hormone receptors and ret i no i c ac i d receptors have been shown to repress transcr i p-t i on thro ug h recr ui tment of the SIN3/HDAC1/2 complex i n the absence of l ig and(7). HDAC1 has also been fo u nd to assoc i ate w i th a var i ety of tran-scr i pt i onal cofactors that b i nd to and block n u clear receptors i n the pres-ence of a g on i sts,s u ch as MTA1 (56),receptor-i nteract i n g prote i n 140 (RI P140;57),and the repressor of estro g en receptor act i v i ty (REA;58).

F u rthermore,a recent report has shown that HDAC1 can d i rectly i nteract w i th and s u ppress the transcr i pt i onal act i v i ty of estro g en receptor-α(ER-α) i n breast cancer cells (59).

H DA C1 and Di ffe r e n t ia t i o n P r oce ss e s

The i nvolvement of HDAC1 i n d i fferent i at i on processes i s h ig hl ig hted by i ts i nteract i on w i th the myo g en i c act i vator MyoD. In u nd i fferent i ated myoblasts,HDAC1 assoc i ates w i th MyoD,lead i n g to repress i on of g enes i nvolved i n skeletal m u scle d i fferent i at i on. Upon i nd u ct i on of myoblast d i fferent i at i on,the i nteract i on between HDAC1 and MyoD i s abro g ated,allow i n g MyoD to act i vate the myo g en i c pro g ram (60,61). It has been shown that hypophosphorylated pRB can d i splace HDAC1 from MyoD u pon d i fferent i at i on,thereby red u c i n g the repress i ve effect of HDAC1 on MyoD; s u bseq u ently,HDAC1/pRB complexes are fo u nd i n d i fferent i ated myot u bes,where they appear to ma i nta i n i rrevers i ble cell cycle arrest (61). In part i c u lar,Mal and Harter (62)have shown that HDAC1 and MyoD are present at the myo g en i n promoter i n u nd i fferen-t i ated myoblasts and that replacement of HDAC1 by the HAT P/CAF leads to MyoD-med i ated d i fferent i at i on,thereby s ugg est i n g that acetyla-t i on i s an i mportant step i n skeletal m u scle d i fferent i at i on. Recently,a role for HDAC1 and HDAC2 i n the re gu lat i on of i ntest i nal ep i thel iu m d i fferent i at i on has also been demonstrated i n v i vo:express i on of both prote i ns was fo u nd to decrease u pon d i fferent i at i on of the i ntest i nal ep i thel iu m,whereas the i r overexpress i on blocked the express i on of certa i n d i fferent i at i on markers (63).

Chapter 1 /HDAC111

OTHER BIOLOGICAL FUNCTIONS OF HDAC1 Transcr i pt i onal repress i on med i ated by HDAC1 clearly plays a cr u c i al role i n re gu lat i on of cell cycle pro g ress i on,prol i ferat i on,and d i fferent i a-t i on. However,i ncreas i n g ev i dence i nd i cates that HDAC1 can also i nfl u-ence var i o u s other b i olo gi cal processes by mechan i sms that do not necessar i ly i nvolve transcr i pt i onal repress i on,as w i ll be d i sc u ssed i n the follow i n g sect i ons.

H DA C1 and DNA Rep li c a t i o n

P CNA i s a cr u c i al component of the DNA repl i cat i on mach i nery (64).P hys i cal i nteract i on between HDAC1 and P CNA has been fo u nd to ca u se deacetylat i on of the prote i n and appears to be l i nked to d i sso-c i at i on of P CNA from the DNA and complet i on of repl i cat i on (35,38). Th i s s ugg ests that HDAC act i v i ty i s essent i al for the format i on of proper chromat i n str u ct u re follow i n g DNA synthes i s. Whether deacetylat i on i s the ca u se,or the conseq u ence,of P CNA d i ssoc i at i on from the DNA polymerase rema i ns,however,to be el u c i dated. HDAC1 has also been shown to i nteract d i rectly w i th the enzyme DNA topo i somerase II i n the context of the N u RD complex (65,66). Topo i somerase II i s i nvolved i n DNA u nw i nd i n g d u r i n g repl i cat i on and transcr i pt i on and also part i c-i pates i n g enet i c recomb i nat i on,chromosome condensat i on,and apop-tos i s(67). The assoc i at i on between the two enzymes appears to be essent i al for apoptos i s i nd u ced by the DNA topo i somerase II po i son epos i de,and i t has been proposed that chromat i n remodel i n g by the N u RD/HDAC1 complex i s necessary for topo i somerase II-med i ated DNA rearran g ements (66).

H DA C1 and t h e G2/M C h ec k po in t

A l i nk between HDAC1 and the G2/M checkpo i nt has been s ugg ested by the f i nd i n g that the enzyme forms a complex w i th H u s1 and Rad9,two Rad prote i ns that are i nvolved i n the m i tot i c checkpo i nt i nd u ced by DNA dama g e or DNA repl i cat i on block (68). It has been proposed that the Rad prote i ns/HDAC1 complex co u ld assoc i ate w i th P CNA to form a r i n g-l i ke str u ct u re aro u nd the DNA at the G2/M checkpo i nt. Th i s complex co u ld then recr ui t the n u cleosome remodel i n g N u RD complex to fac i l i tate DNA repa i r and/or restore the nat i ve chromat i n conformat i on once DNA has been repa i red (68).

Add i t i onal ev i dence for the i nvolvement of HDAC1 i n m i tot i c processes comes from the observat i on that the prote i n assoc i ates w i th h u man and mo u se metaphase centromeres,as well as w i th all other major re gi ons of per i centr i c and nonper i centr i c heterochromat i n (69). In part i c u lar, HDAC1 and MBD3,a component of the N u RD complex,have been fo u nd

12Meunier and Seiser to colocal i ze w i th A u rora A,a k i nase that i s cr u c i al for centrosome sepa-rat i on and b i polar sp i ndle assembly (70),at the centrosomes i n the early M phase (71). F u rthermore,the SIN3/HDAC1/2 complex-assoc i ated pro-te i n Sds3 has recently been shown to be essent i al for deacetylat i on of per i-centr i c heterochromat i n h i stones and proper chromosome se g re g at i on (72),s ugg est i n g that HDAC1 and/or HDAC2 play an i mportant role i n m i tot i c processes.

H DA C1 and C hr o ma t in M o di f i c a t i o ns

Increas i n g ev i dence i nd i cates that HDAC1 i s an i ntr i ns i c part of the ep ig enet i c c i rc ui t re gu lat i n g chromat i n mod i f i cat i on and remodel i n g. Cons i stent w i th th i s i dea,var i o u s reports have shown that HDAC1 i nter-acts w i th several other chromat i n and DNA-mod i fy i n g enzymes. F or i nstance,i t has recently been reported that HDAC1 i s recr ui ted by the HAT p300 and i nterferes w i th the p300-dependent transcr i pt i onal act i va-t i on of p53 and MyoD,thereby s ugg est i n g that HATs and HDACs co u ld assoc i ate to control g ene express i on (73). A l i nk between h i stone methyla-t i on and deacetylat i on has been demonstrated by the f i nd i n g that HDAC1, HDAC2,and HDAC3 i nteract w i th the h i stone methyltransferase S u v39H1 (74). Assoc i at i on of HDACs and S u v39H1 co u ld play a role i n hete-rochromat i n s i lenc i n g and/or transcr i pt i onal repress i on by pRB. In add i-t i on,the P olycomb g ro u p (P cG) complex EED/EZH2 has been fo u nd to i nteract w i th HDAC1 and HDAC2 (75). The EED-EZH2 complex med i-ates transcr i pt i onal repress i on i n part v i a i ts i ntr i ns i c h i stone methyltrans-ferase act i v i ty (76),and i ts s i lenc i n g f u nct i on appears to req ui re HDAC act i v i ty (75). Recently,work by Sh i and collea gu es (76a)has also ra i sed the poss i b i l i ty that,w i th i n the CoREST complex,the HDAC act i v i ty of HDAC1 and HDAC2 may collaborate w i th the h i stone demethylase act i v i ty of LSD1 to create a repress i ve chromat i n env i ronment. Confl i ct i n g res u lts have however been reported (76b)and d i screpanc i es between the two st u d i es st i ll need to be resolved.

In add i t i on to h i stone methylat i on,DNA methylat i on has also been fo u nd to cooperate w i th h i stone deacetylat i on to mod u late chromat i n remodel i n g and transcr i pt i onal s i lenc i n g(77). Methyl-CpG b i nd i n g pro-te i ns s u ch as MeC P2 and MBD2 have been shown to i nteract w i th HDAC1 and to repress transcr i pt i on i n an HDAC-dependent manner (77).

F u rthermore,HDAC1 has been fo u nd to med i ate transcr i pt i onal repres-s i on thro ug h assoc i at i on w i th the DNA methyltransferases DNMT1 (78,79),DNMT3A (80),DNMT3B (81),and DNMT3L (82). In part i c u lar, HDAC1 has been shown to form a complex w i th DNMT1,pRB,and E2F1 to repress transcr i pt i on from promoters conta i n i n g E2F1 b i nd i n g s i tes(79).

Chapter 1 /HDAC113

D efe ns e M ec hanisms Agains t Viral I n fect i o n

In recent years,ev i dence has emer g ed that HDAC1 i s i nvolved i n cell u lar defense a g a i nst v i ral i nfect i on. For example,v i ral transcr i pt i on med i ated by open read i n g frame 50 (ORF50),an act i vator of early and late g enes i n the lyt i c cycle of the Kapos i’s sarcoma-assoc i ated her-pesv i r u s,i s repressed u pon assoc i at i on w i th HDAC1 (83,84). F u rthermore, i nh i b i t i on of HDAC act i v i ty appears to be i mportant for v i ral i nfect i on. For example,Gam1,an early g ene prod u ct essent i al for the repl i cat i on of the av i an adenov i r u s CELO,can i nteract w i th HDAC1 and i nh i b i t i ts enzy-mat i c act i v i ty (85). The bov i ne herpesv i r u s 1 i mmed i ate-early prote i n (bIC P0) has also been shown to assoc i ate w i th HDAC1 and act i vate tran-scr i pt i on by i nterfer i n g w i th MAD/MAX-dependent transcr i pt i onal repres-s i on,thereby promot i n g v i ral i nfect i on i n d i fferent i ated cells (86). V i ral transform i n g prote i ns s u ch as the h u man pap i llomav i r u s oncoprote i n E7 are also known to i nterfere w i th the b i nd i n g of HDAC1 to pRB,thereby promot i n g cell cycle pro g ress i on (23–25). Altho ug h block i n g of HDAC act i v i ty appears to be i mportant for v i ral act i v i ty,i t may also have ne g at i ve conseq u ences for the v i r u s,as HDAC i nh i b i t i on has been reported to act i-vate cell u lar mechan i sms to f ig ht a g a i nst the v i ral i nfect i on (87). In l i ne w i th th i s i dea,a recent cl i n i cal st u dy by Lerhman and collea gu es (87a) has s ugg ested that i nh i b i t i on of HDAC1 i n rest i n g CD4+ T cells co u ld contr i b u te to el i m i nat i on of h u man i mm u nodef i c i ency v i r u s (HIV) i nfect i on i n h u man pat i ents.

H DA C1 I s Ess e n t ial fo r M o us e Embry o ni c D e v e l op m e n t

Var i o u s st u d i es have demonstrated the role of the HDAC1-conta i n i n g complexes SIN3 and N u RD i n spec i f i c developmental processes (36). D i rect ev i dence for the cr u c i al role of HDAC1 i tself d u r i n g embryon i c develop-ment comes from the analys i s of an HDAC1 knocko u t mo u se model (19). Whereas the absence of one HDAC1 allele does not i mpa i r mo u se v i ab i l i ty, tar g eted d i sr u pt i on of both HDAC1 alleles severely pert u rbs embryon i c development and leads to lethal i ty before E10.5. In add i t i on to red u ced cell u lar prol i ferat i on (s ee sect i on ent i tled P romot i on of Cell u lar P rol i ferat i on by HDAC1),HDAC1–/– embryos d i splay var i o u s developmental defects s u ch as abnormal head and allanto i s format i on. Altho ug h i ncreased levels of HDAC2 and HDAC3 prote i ns have been fo u nd i n HDAC1–/– embryos and ES cells,these two class I enzymes co u ld not complement the loss of HDAC1. Accord i n g ly,the deacetylase act i v i ty of the SIN3 and N u RD com-plexes was s ig n i f i cantly red u ced i n HDAC1–/– ES cells (19). Taken to g ether, these f i nd i n g s i nd i cate that HDAC1 plays a cr u c i al and u n i q u e role d u r i n g mo u se embryon i c development and that the i nte g r i ty of HDAC1-conta i n i n g complexes i s essent i al for proper development.

14Meunier and Seiser Add i t i onal ev i dence for the cr u c i al role of HDAC1 d u r i n g development comes from the analys i s of HDAC1 m u tat i on i n other or g an i sms. M u tat i on of the HDAC1 ortholo g R P D3 i n D ro s o phila m e lan o gast er pert u rbs se g-mentat i on and res u lts i n embryon i c lethal i ty (88). In Ca e n or ha b ditis e l e gans, i nh i b i t i on of maternal and zy g ot i c HDA-1 express i on also leads to embry-on i c lethal i ty (89),whereas m u tat i on of zy g ot i c HDA-1 only ca u ses defects i n postembryon i c g onado g enes i s (90). Embryon i c lethal i ty i s also assoc i ated w i th delet i on of HDAC1 i n Dani o rer i o(91),and a deta i led analys i s of the m u tant phenotype has revealed that HDAC1 i s spec i f i cally req ui red to ma i nta i n ne u ro g enes i s i n the zebraf i sh central nervo u s system d u r i n g embryo g enes i s (12).

H DA C1 and C an ce r

Extens i ve st u d i es have shown that HDAC i nh i b i tors i nd u ce cell cycle arrest,d i fferent i at i on,and/or apoptos i s i n a var i ety of transformed cell l i nes,as well as i n t u mor-bear i n g an i mals. Conseq u ently,these i nh i b i tory compo u nds are c u rrently i n phase I and II cl i n i cal tr i als for ant i t u mor ther-apy (92,93). Several mechan i sms can be proposed to expla i n the ant i t u mor effects of HDAC i nh i b i tors. The g eneral v i ew i s that acc u m u lat i on of acetylated h i stones and nonh i stone prote i ns leads to act i vat i on or repres-s i on of a spec i f i c s u bset of g enes and molec u lar pathways cr u c i al for repress i on of t u mor cell g rowth. Th i s mechan i sm i s cons i stent w i th the f i nd i n g that the express i on of only a l i m i ted n u mber of g enes i s affected by HDAC i nh i b i tors (94). W i th i ncreas i n g ev i dence for HDACs i nvolve-ment i n molec u lar and cell u lar processes other than transcr i pt i onal re gu la-t i on,i t i s also reasonable to hypothes i ze that HDAC i nh i b i tors exert the i r effects by d i rectly i nterfer i n g w i th DNA repl i cat i on or m i tot i c d i v i s i on.

F i nally,based on the observat i on that t u mor cells (wh i ch by def i n i t i on exh i b i t alterat i ons i n var i o u s molec u lar pathways i nvolved i n cell g rowth and d i fferent i at i on) are m u ch more sens i t i ve to the effects of HDAC i nh i b i tors than normal cells (92),we propose that act i vat i on or repress i on of spec i f i c g enes and pathways by HDAC i nh i b i tors may g enerate con-fl i ct i n g s ig nals i n t u mor cells,lead i n g to cell death or apoptos i s.

The ant i t u mor effects of HDAC i nh i b i tors clearly s ugg est that HDACs play a major role i n cancer development. However,as most HDAC i nh i b i tors affect the act i v i ty of several enzymes,i t i s d i ff i c u lt to i dent i fy the part i c u lar HDACs i nvolved i n t u mor format i on. One way to eval u ate the i mportance of spec i f i c HDACs i n cancer i s thro ug h analys i s of the i r express i on levels i n t u mors. Recent reports have i nd i cated that HDAC1 i s u pre gu lated i n g astr i c and prostate cancers (95–98),and i n both cases,i ts overexpress i on has been shown to correlate w i th downre gu lat i on of g elsol i n (97,98),a known tar g et of HDAC i nh i b i tors (94). F u rthermore,HDAC1 knockdown i n h u man cerv i cal carc i noma cells has been fo u nd to i nd u ce chan g es i n cell u lar morpholo g y and to i nh i b i t prol i ferat i on,thereby

Chapter 1 /HDAC115 s ugg est i n g that HDAC1 i s essent i al for t u mor cell s u rv i val (99). Interest i n g ly,downre gu lat i on of HDAC1 express i on has been shown to be assoc i ated w i th cell u lar d i fferent i at i on i n a var i ety of h u man breast t u mor cell l i nes (100).

One mechan i sm by wh i ch HDAC i nh i b i tors appear to repress t u mor cell g rowth i s thro ug h the act i vat i on of the t u mor s u ppressor p21,wh i ch i s req ui red for i nh i b i t i on of cell cycle pro g ress i on (92). As noted above (s ee sect i on ent i tled P romot i on of Cell u lar P rol i ferat i on by HDAC1),HDAC1 i s a cr u c i al ne g at i ve re gu lator of p21. A recent report has shown that tran-scr i pt i onal act i vat i on of p21 by the HDAC i nh i b i tor s u beroylan i l i de hydroxam i c ac i d (SAHA) i s accompan i ed by a marked red u ct i on i n HDAC1 bo u nd at the p21 promoter (51). F u rthermore,d i splacement of HDAC1 from the p21 promoter by the pRB b i nd i n g prote i n Che-1 (101,102)has been shown to act i vate p21 and conseq u ently i nh i b i t prol i f-erat i on i n h u man colon carc i noma cell l i nes (103). Taken to g ether,these f i nd i n g s stron g ly s ugg est that HDAC1 co u ld promote t u mor format i on thro ug h select i ve repress i on of p21. Another mechan i sm by wh i ch HDAC1 co u ld promote t u mor ig enes i s i s v i a s u ppress i on of ER-α(s ee the sect i on ent i tled HDAC1 and N u clear Receptors),whose loss i s known to be cr i t i cal for breast cancer pro g ress i on (59).F i nally,i t has been reported that HDAC1 express i on can be i nd u ced by hypox i a i n a l u n g carc i noma cell l i ne,lead i n g to downre gu lat i on of the t u mor s u ppressors p53 and von H i ppel-L i nda u factor and st i m u lat i on of hypox i a-i nd u ced an gi o g enes i s (104). These f i nd i n g s s ugg est that HDAC1 co u ld i nfl u ence t u mor pro g res-s i on by promot i n g an gi o g enes i s.

CONCLUDING REMARKS AND FUTURE DIRECTIONS The cr u c i al role of HDAC1 i n the re gu lat i on of cell cycle pro g ress i on, prol i ferat i on,and d i fferent i at i on v i a transcr i pt i onal repress i on of spe-c i f i c tar g et g enes has clearly been demonstrated s i nce the i dent i f i cat i on of the prote i n i n 1996. In add i t i on,ev i dence has recently emer g ed show-i n g that HDAC1 can i nfl u ence var i o u s cell u lar processes,s u ch as DNA repl i cat i on and chromosome se g re g at i on,i ndependently of transcr i p-t i onal repress i on. Moreover,HDAC1-med i ated transcr i pt i onal act i vat i on of i nterferon-st i m u lated g enes (ISGs) has recently been reported (105,106)and HDAC1 w i th i ts assoc i ated enzymat i c act i v i ty has been fo u nd to be necessary for the proper i nd u ct i on of the ISGs i nterferon re gu latory factor 1 (IRF1) and gu anylate b i nd i n g prote i n 2 (GB P2) (G. Z u pkov i tz and C. Se i ser,u np u bl i shed data). Importantly,c u m u lat i ve observat i ons i nd i cate that HDAC1 i s i nvolved i n t u mor format i on and/or pro g ress i on and i s a cr u c i al tar g et for HDAC i nh i b i tors i n cancer therapy. The development of select i ve i nh i b i tors i s cr i t i cal to better u nderstand the exact role played by HDAC1 i n normal and neoplast i c cells. In th i s

16Meunier and Seiser

respect,i t i s i nterest i n g to note that the HDAC i nh i b i tors MS-27-275 and SB-429201 have recently been shown to preferent i ally i nh i b i t HDAC1 (107)and so may prove extremely u sef u l for f u t u re analyses of the b i olo gi cal f u nct i ons of HDAC1.

ACKNOWLEDGMENTS

We thank B. Sch u etten g r u ber and S. W i nter for cr i t i cal comments on the man u scr i pt and S. Ch i occa for shar i n g u np u bl i shed data. We apolo-gi ze to all a u thors whose work co u ld not be referenced ow i n g to space l i m i tat i ons. Th i s work was s u pported by the A u str i an Sc i ence F u nd (FWF g rant P14909-B12) and the GEN-AU pro g ram of the A u str i an Government.

REFERENCES

1.K i j i ma M,Yosh i da M,S ugi ta K,Hor i no u ch i S,Bepp u T. Trapox i n,an ant i t u mor

cycl i c tetrapept i de,i s an i rrevers i ble i nh i b i tor of mammal i an h i stone deacety-lase. J B i ol Chem 1993;268:22,429–22,435.

2.Yosh i da M,Hor i no u ch i S,Bepp u T. Tr i chostat i n A and trapox i n:novel chem i cal

probes for the role of h i stone acetylat i on i n chromat i n str u ct u re and f u nct i on.

B i oessays 1995;17:423–430.

3.Ta u nton J,Hass ig CA,Schre i ber SL. A mammal i an h i stone deacetylase related

to the yeast transcr i pt i onal re gu lator Rpd3p. Sc i ence 1996;272:408–411.

4.Bartl S,Tapl i ck J,La gg er G,Kh i er H,K u chler K,Se i ser C. Ident i f i cat i on of

mo u se h i stone deacetylase 1 as a g rowth factor-i nd u c i ble g ene. Mol Cell B i ol 1997;17:5033–5043.

5.F u r u kawa Y,Kawakam i T,S u do K,et al. Isolat i on and mapp i n g of a h u man

g ene (R P D3L1) that i s homolo g o u s to R P D3, a transcr i pt i on factor i n

Sa cc ha ro my ce s cere visia e. Cyto g enet Cell Genet 1996;73:130–133.

6.V i dal M,Gaber RF. R P D3 encodes a second factor req ui red to ach i eve max i-

m u m pos i t i ve and ne g at i ve transcr i pt i onal states i n Sa cc ha ro my ce s cere visia e.

Mol Cell B i ol 1991;11:6317–6327.

7.Cress WD,Seto E. H i stone deacetylases,transcr i pt i onal control,and cancer.

J Cell P hys i ol 2000;184:1–16.

8.Groz i n g er CM,Schre i ber SL. Deacetylase enzymes:b i olo gi cal f u nct i ons and

the u se of small-molec u le i nh i b i tors. Chem B i ol 2002;9:3–16.

9.Gre g orett i IV,Lee YM,Goodson HV. Molec u lar evol u t i on of the h i stone

deacetylase fam i ly:f u nct i onal i mpl i cat i ons of phylo g enet i c analys i s. J Mol B i ol 2004;338:17–31.

10.S u n JM,Chen HY,Mon i wa M,Sam u el S,Dav i e JR.Pu r i f i cat i on and character-

i zat i on of ch i cken erythrocyte h i stone deacetylase 1. B i ochem i stry 1999;38:

5939–5947.

https://www.360docs.net/doc/f03961292.html,domery M,Lyons S,Sommerv i lle J.Xe n o pus HDm,a maternally expressed

h i stone deacetylase,belon g s to an anc i ent fam i ly of acetyl-metabol i z i n g

enzymes. Gene 1997;198:275–280.

12.C u nl i ffe VT. H i stone deacetylase 1 i s req ui red to repress Notch tar g et g ene expres-

s i on d u r i n g zebraf i sh ne u ro g enes i s and to ma i nta i n the prod u ct i on of motone u-rones i n response to hed g eho g s ig nall i n g. Development 2004;131:2983–2995.

Chapter 1 /HDAC117 13.Ross i V,Hart i n g s M,Motto M. Ident i f i cat i on and character i zat i on of an R P D3

homolo gu e from ma i ze (Ze a mays L.) that i s able to complement an rpd3 n u ll m u tant of Sa cc ha ro my ce s cere visia e. Mol Gen Genet 1998;258:288–296.

14.Lechner T,L u sser A,Pi pal A,et al. R P D3-type h i stone deacetylases i n ma i ze

embryos. B i ochem i stry 2000;39:1683–1692.

15.Kh i er H,Bartl S,Sch u etten g r u ber B,Se i ser C. Molec u lar clon i n g and character-

i zat i on of the mo u se h i stone deacetylase 1 g ene:i nte g rat i on of a retrov i r u s i n

129SV m i ce. B i och i m B i ophys Acta 1999;1489:365–373.

16.de R ui jter AJM,van Genn i p AH,Caron HN,Kemp S,van K ui lenb u r g AB P.

H i stone deacetylases (HDACs):character i zat i on of the class i cal HDAC fam i ly.

B i ochem J 2003;370:737–749.

17.Hass ig CA,Ton g JK,Fle i scher TC,et al. A role for h i stone deacetylase act i v i ty

i n HDAC1-med i ated transcr i pt i onal repress i on.P roc Natl Acad Sc i U S A

1998;95:3519–3524.

18.Tapl i ck J,K u rtev V,Kroboth K,P osch M,Lechner T,Se i ser C. Homo-ol ig omer i-

sat i on and n u clear local i sat i on of mo u se h i stone deacetylase 1. J Mol B i ol 2001;308:27–38.

https://www.360docs.net/doc/f03961292.html, gg er G,O’Carroll D,Rembold M,et al. Essent i al f u nct i on of h i stone deacety-

lase 1 i n prol i ferat i on control and CDK i nh i b i tor repress i on. EMBO J 2002;21: 2672–2681.

20.Sch u etten g r u ber B,S i mboeck E,Kh i er H,Se i ser C. A u tore gu lat i on of mo u se

h i stone deacetylase 1 express i on. Mol Cell B i ol 2003;23:6993–7004.

21.Ha u ser C,Sch u etten g r u ber B,Bartl S,La gg er G,Se i ser C. Act i vat i on of the

HDAC1 g ene by cooperat i ve h i stone phosphorylat i on and acetylat i on. Mol Cell

B i ol 2002;22:7820–7830.

22.Marmorste i n R. Str u ct u re of h i stone deacetylases:i ns ig hts i nto s u bstrate reco g-

n i t i on and catalys i s. Str u ct u re (Camb) 2001;9:1127–1133.

23.Brehm A,M i ska EA,McCance DJ,Re i d JL,Bann i ster AJ,Ko u zar i des T.

Ret i noblastoma prote i n recr ui ts h i stone deacetylase to repress transcr i pt i on.

Nat u re 1998;391:597–601.

24.Ferre i ra R,Ma g na g h i-Ja u l i n L,Rob i n P,Harel-Bellan A,Tro u che D. The three

members of the pocket prote i ns fam i ly share the ab i l i ty to repress E2F act i v i ty thro ug h recr ui tment of a h i stone deacetylase.P roc Natl Acad Sc i U S A 1998;95: 10,493–10,498.

25.Ma g na g h i-Ja u l i n L,Gro i sman R,Na gui bneva I,et al. Ret i noblastoma prote i n

represses transcr i pt i on by recr ui t i n g a h i stone deacetylase. Nat u re 1998;391: 601–605.

26.Ca i R,Kwon P,Yan-Neale Y,Samb u ccett i L,F i scher D,Cohen D. Mammal i an

h i stone deacetylase 1 prote i n i s posttranslat i onally mod i f i ed by phosphoryla-

t i on. B i ochem B i ophys Res Comm u n 2001;283:445–453.

27.P fl u m MK,Ton g JK,Lane WS,Schre i ber SL. H i stone deacetylase 1 phosphory-

lat i on promotes enzymat i c act i v i ty and complex format i on. J B i ol Chem 2001;276:47,733–47,741.

28.Dav i d G,Nept u ne MA,De Pi nho RA. SUMO-1 mod i f i cat i on of h i stone deacety-

lase 1 (HDAC1) mod u lates i ts b i olo gi cal act i v i t i es. J B i ol Chem 2002;277: 23,658–23,663.

29.Johnson CA,T u rner BM. H i stone deacetylases:complex transd u cers of n u clear

s ig nals. Sem i n Cell Dev B i ol 1999;10:179–188.

30.J u an LJ,Sh i a WJ,Chen MH,et al. H i stone deacetylases spec i f i cally down-

re gu late p53-dependent g ene act i vat i on. J B i ol Chem 2000;275:20,436–20,443.

18Meunier and Seiser 31.L u o J,S u F,Chen D,Sh i loh A,G u W. Deacetylat i on of p53 mod u lates i ts effect

on cell g rowth and apoptos i s. Nat u re 2000;408:377–381.

32.Mart i nez-Balbas MA,Ba u er UM,N i elsen SJ,Brehm A,Ko u zar i des T.

Re gu lat i on of E2F1 act i v i ty by acetylat i on. EMBO J 2000;19:662–671.

33.Marz i o G,Wa g ener C,G u t i errez MI,Cartwr ig ht P,Hel i n K,G i acca M. E2F

fam i ly members are d i fferent i ally re gu lated by revers i ble acetylat i on. J B i ol Chem 2000;275:10,887–10,892.

34.Yao YL,Yan g WM,Seto E. Re gu lat i on of transcr i pt i on factor YY1 by acetyla-

t i on and deacetylat i on. Mol Cell B i ol 2001;21:5979–5991.

35.Naryzhny SN,Lee H. The post-translat i onal mod i f i cat i ons of prol i ferat i n g cell

n u clear ant ig en:acetylat i on,not phosphorylat i on,plays an i mportant role i n the re gu lat i on of i ts f u nct i on. J B i ol Chem 2004;279:20,194–20,199.

35a.Sh i Y,Lan F,Matson C,et al. H i stone demethylat i on med i ated by the n u clear am i ne ox i dase homolo g LSD1. Cell 2004;119:941–953.

36.Ahr i n g er J. N u RD and SIN3 h i stone deacetylase complexes i n development.

Trends Genet 2000;16:351–356.

37.N g HH,B i rd A. H i stone deacetylases:s i lencers for h i re. Trends B i ochem Sc i

2000;25:121–126.

38.M i l u t i nov i c S,Zh u an g Q,Szyf M.P rol i ferat i n g cell n u clear ant ig en assoc i ates

w i th h i stone deacetylase act i v i ty,i nte g rat i n g DNA repl i cat i on and chromat i n mod i f i cat i on. J B i ol Chem 2002;277:20,974–20,978.

39.L u o RX,P ost ig o AA,Dean DC. Rb i nteracts w i th h i stone deacetylases to repress

transcr i pt i on. Cell 1998;92:463–473.

40.St i e g ler P,De L u ca A,Ba g ella L,G i ordano A. The COOH-term i nal re gi on of

pRb2/p130 b i nds to h i stone deacetylase 1 (HDAC1),enhanc i n g transcr i pt i onal repress i on of the E2F-dependent cycl i n A promoter. Cancer Res 1998;58: 5049–5052.

41.Wade P A. Transcr i pt i onal control at re gu latory checkpo i nts by h i stone deacety-

lases:molec u lar connect i ons between cancer and chromat i n. H u m Mol Genet 2001;10:693–698.

42.Takak i T,F u kasawa K,S u z u k i-Takahash i I,H i ra i H. Cdk-med i ated phosphory-

lat i on of pRB re gu lates HDAC b i nd i n g i n v i tro. B i ochem B i ophys Res Comm u n 2004;316:252–255.

43.P ennaneach V,Barb i er V,Re g azzon i K,Fotedar R,Fotedar A. Rb i nh i b i ts E2F-

1-i nd u ced cell death i n a LXCXE-dependent manner by act i ve repress i on. J B i ol Chem 2004;279:23,376–23,383.

44.Hass ig CA,Fle i scher TC,B i ll i n AN,Schre i ber SL,Ayer DE. H i stone deacety-

lase act i v i ty i s req ui red for f u ll transcr i pt i onal repress i on by mS i n3A. Cell 1997;89:341–347.

https://www.360docs.net/doc/f03961292.html,herty CD,Yan g WM,S u n JM,Dav i e JR,Seto E,E i senman RN. H i stone

deacetylases assoc i ated w i th the mS i n3 corepressor med i ate mad transcr i pt i onal repress i on. Cell 1997;89:349–356.

46.Sommer A,H i lfenha u s S,Menkel A,et al. Cell g rowth i nh i b i t i on by the

Mad/Max complex thro ug h recr ui tment of h i stone deacetylase act i v i ty. C u rr

B i ol 1997;7:357–365.

47.L i J,L i n Q,Wan g W,Wade P,Won g J. Spec i f i c tar g et i n g and const i t u t i ve asso-

c i at i on of h i stone deacetylase complexes

d u r i n g transcr i pt i onal repress i on.

Genes Dev 2002;16:687–692.

https://www.360docs.net/doc/f03961292.html, gg er G,Doetzlhofer A,Sch u etten g r u ber B,et al. The t u mor s u ppressor p53

and h i stone deacetylase 1 are anta g on i st i c re gu lators of the cycl i n-dependent k i nase i nh i b i tor p21/WAF1/CI P1 g ene. Mol Cell B i ol 2003;23:2669–2679.

Chapter 1 /HDAC119 49.Lev i ne AJ. p53,the cell u lar g atekeeper for g rowth and d i v i s i on. Cell

1997;88:323–331.

50.Ko u tsodont i s G,Tentes I,P apakosta P,Mo u stakas A,Kardass i s D. Sp1 plays a

cr i t i cal role i n the transcr i pt i onal act i vat i on of the h u man cycl i n-dependent k i nase i nh i b i tor p21(WAF1/C i p1) g ene by the p53 t u mor s u ppressor prote i n.

J B i ol Chem 2001;276:29,116–29,125.

51.G ui CY,N g o L,X u WS,R i chon VM,Marks P A. H i stone deacetylase (HDAC)

i nh i b i tor act i vat i on of p21WAF1 i nvolves chan g es i n promoter-assoc i ated pro-

te i ns,i ncl u d i n g HDAC1.P roc Natl Acad Sc i U S A 2004;101:1241–1246. 52.Brooks CL,G u W. Ub i q ui t i nat i on,phosphorylat i on and acetylat i on:the molec-

u lar bas i s for p53 re gu lat i on. C u rr Op i n Cell B i ol 2003;15:164–171.

53.Ito A,Kawa gu ch i Y,La i CH,et al. MDM2-HDAC1-med i ated deacetylat i on of

p53 i s req ui red for i ts de g radat i on. EMBO J 2002;21:6236–6245.

54.L u o J,L i M,Tan g Y,Laszkowska M,Roeder RG,G u W. Acetylat i on of p53

a ug ments i ts s i te-spec i f i c DNA

b i nd i n g both i n v i tro and i n v i vo.P ro

c Natl Acad

Sc i U S A 2004;101:2259–2264.

55.P r i valsky ML. The role of corepressors i n transcr i pt i onal re gu lat i on by n u clear

hormone receptors. Ann u Rev P hys i ol 2004;66:315–360.

56.Maz u mdar A,Wan g RA,M i shra SK,et al. Transcr i pt i onal repress i on of oestro-

g en receptor by metastas i s-assoc i ated prote i n 1 corepressor. Nat Cell B i ol

2001;3:30–37.

57.We i LN,H u X,Chandra D,Seto E,Farooq ui M. Receptor-i nteract i n g prote i n

140 d i rectly recr ui ts h i stone deacetylases for g ene s i lenc i n g. J B i ol Chem 2000;275:40,782–40,787.

58.K u rtev V,Mar gu eron R,Kroboth K,O g r i s E,Cava i lles V,Se i ser C.

Transcr i pt i onal re gu lat i on by the repressor of estro g en receptor act i v i ty v i a recr ui tment of h i stone deacetylases. J B i ol Chem 2004;279:24,834–24,843. 59.Kawa i H,L i H,Avraham S,J i an g S,Avraham HK. Overexpress i on of h i stone

deacetylase HDAC1 mod u lates breast cancer pro g ress i on by ne g at i ve re gu lat i on of estro g en receptor alpha. Int J Cancer 2003;107:353–358.

60.Mal A,St u rn i olo M,Sch i ltz RL,Ghosh MK,Harter ML. A role for h i stone

deacetylase HDAC1 i n mod u lat i n g the transcr i pt i onal act i v i ty of MyoD:i nh i b i-t i on of the myo g en i c pro g ram. EMBO J 2001;20:1739–1753.

61.Pu r i P L,Iezz i S,St i e g ler P,et al. Class I h i stone deacetylases seq u ent i ally

i nteract w i th MyoD and pRb d u r i n g skeletal myo g enes i s. Mol Cell 2001;8:

885–897.

62.Mal A,Harter ML. MyoD i s f u nct i onally l i nked to the s i lenc i n g of a m u scle-

spec i f i c re gu latory g ene pr i or to skeletal myo g enes i s.P roc Natl Acad Sc i U S A 2003;100:1735–1739.

63.To u L,L iu Q,Sh i vdasan i RA. Re gu lat i on of mammal i an ep i thel i al d i fferent i a-

t i on and i ntest i ne development by class I h i stone deacetylases. Mol Cell B i ol 2004;24:3132–3139.

64.Ma g a G,H u bscher U.P rol i ferat i n g cell n u clear ant ig en (P CNA):a dancer w i th

many partners. J Cell Sc i 2003;116:3051–3060.

65.Tsa i SC,Valkov N,Yan g WM,G u mp J,S u ll i van D,Seto E. H i stone deacetylase

i nteracts d i rectly w i th DNA topo i somerase II. Nat Genet 2000;26:349–353.

66.Johnson CA,P ad g et K,A u st i n CA,T u rner BM. Deacetylase act i v i ty assoc i ates

w i th topo i somerase II and i s necessary for etopos i de-i nd u ced apoptos i s. J B i ol Chem 2001;276:4539–4542.

67.A u st i n CA,Marsh KL.E u karyot i c DNA topo i somerase II beta.B i oessays

1998;20:215–226.

20Meunier and Seiser 68.Ca i RL,Yan-Neale Y,C u eto MA,X u H,Cohen D. HDAC1,a h i stone deacety-

lase,forms a complex w i th H u s1 and Rad9,two G2/M checkpo i nt Rad prote i ns.

J B i ol Chem 2000;275:27,909–27,916.

69.Cra ig JM,Earle E,Canham P,Won g LH,Anderson M,Choo KH. Analys i s of

mammal i an prote i ns i nvolved i n chromat i n mod i f i cat i on reveals new metaphase centromer i c prote i ns and d i st i nct chromosomal d i str i b u t i on patterns. H u m Mol Genet 2003;12:3109–3121.

70.D u tertre S,Descamps S,P r ig ent C. On the role of a u rora-A i n centrosome f u nc-

t i on. Onco g ene 2002;21:6175–6183.

71.Saka i H,Urano T,Ookata K,et al. MBD3 and HDAC1,two components of

the N u RD complex,are local i zed at A u rora-A-pos i t i ve centrosomes i n M phase. J B i ol Chem 2002;277:48,714–48,723.

72.Dav i d G,T u rner GM,Yao Y,P rotopopov A,De Pi nho RA. mS i n3-assoc i ated

prote i n,mSds3,i s essent i al for per i centr i c heterochromat i n format i on and chro-mosome se g re g at i on i n mammal i an cells. Genes Dev 2003;17:2396–2405. 73.S i mone C,St i e g ler P,Forcales SV,et al. Deacetylase recr ui tment by the C/H3

doma i n of the acetyltransferase p300. Onco g ene 2004;23:2177–2187.

74.Va u te O,N i colas E,Vandel L,Tro u che D. F u nct i onal and phys i cal i nteract i on

between the h i stone methyl transferase S u v39H1 and h i stone deacetylases.

N u cle i c Ac i ds Res 2002;30:475–481.

75.Otte A P,Kwaks TH. Gene repress i on by P olycomb g ro u p prote i n complexes:a

d i st i nct complex for every occas i on? C u rr Op i n Genet Dev 2003;13:448–454.

76.Cao R,Zhan g Y. The f u nct i ons of E(Z)/EZH2-med i ated methylat i on of lys i ne

27 i n h i stone H3. C u rr Op i n Genet Dev 2004;14:155–164.

76a.Sh i YJ,Matson C,Lan F,Iwase S,Baba T,Sh i Y. Re gu lat i on of LSD1 h i stone demethylase act i v i ty by i ts assoc i ated factors. Mol Cell 2005;19:857–864.

76b.Lee MG,Wynder C,Cooch N,Sh i ekhattar R. An essent i al role for CoREST i n n u cleosomal h i stone 3 lys i ne 4 demethylat i on. Nat u re 2005;437:432–435.

77.Dobosy JR,Selker EU. Emer gi n g connect i ons between DNA methylat i on and

h i stone acetylat i on. Cell Mol L i fe Sc i 2001;58:721–727.

78.F u ks F,B u r g ers W A,Brehm A,H ug hes-Dav i es L,Ko u zar i des T. DNA methyltrans-

ferase Dnmt1 assoc i ates w i th h i stone deacetylase act i v i ty. Nat Genet 2000;24:88–91.

79.Robertson KD,A i t-S i-Al i S,Yokoch i T,Wade P A,Jones P L,Wolffe A P. DNMT1

forms a complex w i th Rb,E2F1 and HDAC1 and represses transcr i pt i on from E2F-respons i ve promoters. Nat Genet 2000;25:338–342.

80.F u ks F,B u r g ers W A,God i n N,Kasa i M,Ko u zar i des T. Dnmt3a b i nds deacety-

lases and i s recr ui ted by a seq u ence-spec i f i c repressor to s i lence transcr i pt i on.

EMBO J 2001;20:2536–2544.

81.Ge i man TM,Sankpal UT,Robertson AK,Zhao Y,Zhao Y,Robertson KD.

DNMT3B i nteracts w i th hSNF2H chromat i n remodel i n g enzyme,HDACs 1 and 2,and components of the h i stone methylat i on system. B i ochem B i ophys Res Comm u n 2004;318:544–555.

82.Depl u s R,Brenner C,B u r g ers W A,et al. Dnmt3L i s a transcr i pt i onal repressor

that recr ui ts h i stone deacetylase. N u cle i c Ac i ds Res 2002;30:3831–3838.

83.Gwack Y,By u n H,Hwan g S,L i m C,Choe J. CREB-b i nd i n g prote i n and h i stone

deacetylase re gu late the transcr i pt i onal act i v i ty of Kapos i’s sarcoma-assoc i ated herpesv i r u s open read i n g frame 50. J V i rol 2001;75:1909–1917.

84.L u F,Zho u J,W i edmer A,Madden K,Y u an Y,L i eberman P M. Chromat i n remod-

el i n g of the Kapos i’s sarcoma-assoc i ated herpesv i r u s ORF50 promoter corre-lates w i th react i vat i on from latency. J V i rol 2003;77:11,425–11,435.

Chapter 1 /HDAC121 85.Ch i occa S,K u rtev V,Colombo R,et al. H i stone deacetylase 1 i nact i vat i on by an

adenov i r u s early g ene prod u ct. C u rr B i ol 2002;12:594–598.

86.Zhan g Y,Jones C. The bov i ne herpesv i r u s 1 i mmed i ate-early prote i n (bIC P0)

assoc i ates w i th h i stone deacetylase 1 to act i vate transcr i pt i on. J V i rol 2001;75: 9571–9578.

87.Shestakova E,Band u MT,Doly J,Bonnefoy E. Inh i b i t i on of h i stone deacetyla-

t i on i nd u ces const i t u t i ve derepress i on of the beta i nterferon promoter and con-fers ant i v i ral act i v i ty. J V i rol 2001;75:3444–3452.

87a.Lehrman G,Ho gu e IB,P almer S,et al. Deplet i on of latent HIV-1 i nfect i on i n v i vo:a proof-of-concept st u dy. Lancet 2005;366:549–555.

88.Mannerv i k M,Lev i ne M. The Rpd3 h i stone deacetylase i s req ui red for se g men-

tat i on of the D ro s o phila embryo.P roc Natl Acad Sc i U S A 1999;96:6797–6801.

89.Sh i Y,Mello C. A CB P/p300 homolo g spec i f i es m u lt i ple d i fferent i at i on path-

ways i n Ca e n or ha b ditis e l e gans. Genes Dev 1998;12:943–955.

90.D u fo u rcq P,V i ctor M,Gay F,Calvo D,Hod g k i n J,Sh i Y. F u nct i onal req ui re-

ment for h i stone deacetylase 1 i n Ca e n or ha b ditis e l e gans g onado g enes i s. Mol Cell B i ol 2002;22:3024–3034.

91.Goll i n g G,Amsterdam A,S u n Z,et al. Insert i onal m u ta g enes i s i n zebraf i sh rap-

i dly i dent i f i es g enes essent i al for early vertebrate development. Nat Genet 2002;

31:135–140.

92.Marks P,R i fk i nd RA,R i chon VM,Breslow R,M i ller T,Kelly WK. H i stone

deacetylases and cancer:ca u ses and therap i es. Nat Rev Cancer 2001;1: 194–202.

93.Kelly WK,O’Connor OA,Marks P A. H i stone deacetylase i nh i b i tors:from tar-

g et to cl i n i cal tr i als. Expert Op i n Invest ig Dr ug s 2002;11:1696–1713.

94.Marks P A,M i ller T,R i chon VM. H i stone deacetylases. C u rr Op i n P harmacol

2003;3:344–351.

95.Cho i JH,Kwon HJ,Yoon BI,et al. Express i on prof i le of h i stone deacetylase 1 i n

g astr i c cancer t i ss u es. Jpn J Cancer Res 2001;92:1300–1304.

96.P atra SK,P atra A,Dah i ya R. H i stone deacetylase and DNA methyltransferase

i n h u man prostate cancer.B i ochem B i ophys Res Comm u n 2001;287:

705–713.

97.Halk i do u K,Ga ug han L,Cook S,Le u n g HY,Neal DE,Robson CN. Upre gu lat i on

and n u clear recr ui tment of HDAC1 i n hormone refractory prostate cancer.

P rostate 2004;59:177–189.

98.K i m JH,Cho i YK,Kwon HJ,Yan g HK,Cho i JH,K i m DY. Downre gu lat i on of

g elsol i n and ret i no i c ac i d receptor beta express i on i n g astr i c cancer t i ss u es

thro ug h h i stone deacetylase 1. J Gastroenterol Hepatol 2004;19:218–224.

99.Glaser KB,L i J,Staver MJ,We i RQ,Albert DH,Dav i dsen SK. Role of class I

and class II h i stone deacetylases i n carc i noma cells u s i n g s i RNA. B i ochem

B i ophys Res Comm u n 2003;310:529–536.

100.Zho u Q,Melko u m i an ZK,L u ckton g A,Mon i wa M,Dav i e JR,Strobl JS. Rap i d

i nd u ct i on of h i stone hyperacetylat i on and cell u lar d i fferent i at i on i n h u man breast

t u mor cell l i nes follow i n g de g radat i on of h i stone deacetylase-1. J B i ol Chem 2000;275:35,256–35,263.

101.Fanc iu ll i M,Br u no T,D i P adova M,et al. Ident i f i cat i on of a novel partner of RNA polymerase II s u b u n i t 11,Che-1,wh i ch i nteracts w i th and affects the

g rowth s u ppress i on f u nct i on of Rb. FASEB J 2000;14:904–912.

102.Br u no T,De An g el i s R,De N i cola F,et al. Che-1 affects cell g rowth by i nterfer-

i n g w i th the recr ui tment of HDAC1 by Rb. Cancer Cell 2002;2:387–399.

22Meunier and Seiser 103.D i P adova M,Br u no T,De N i cola F,et al. Che-1 arrests h u man colon carc i noma cell prol i ferat i on by d i splac i n g HDAC1 from the p21WAF1/CI P1 promoter.

J B i ol Chem 2003;278:36,496–36,504.

104.K i m MS,Kwon HJ,Lee YM,et al. H i stone deacetylases i nd u ce an gi o g enes i s by ne g at i ve re gu lat i on of t u mor s u ppressor g enes. Nat Med 2001;7:437–443. 105.N u s i nzon I,Horvath CM. Interferon-st i m u lated transcr i pt i on and i nnate ant i v i ral

i mm u n i ty req ui re deacetylase act i v i ty and h i stone deacetylase 1.P roc Natl Acad

Sc i U S A 2003;100:14,742–14,747.

106.Klampfer L,H u an g J,Swaby LA,A ug enl i cht L. Req ui rement of h i stone deacty-lase act i v i ty for s ig nal i n g by STAT1. J B i ol Chem 2004;279:30,358–30,368. 107.H u E,D u l E,S u n g CM,et al. Ident i f i cat i on of novel i soform-select i ve i nh i b i tors w i th i n class I h i stone deacetylases. J P harmacol Exp Ther 2003;307:720–728.

校园网络规划设计方案

校园网络设计方案

第一章建网原则 实际上,我国中小学所耗费的信息技术投入远不止上述经费。国人在进行投入的过程中总是追求时髦、讲面子。不考虑学校的实际情况,严重脱离中国的国情和经济发展现状,要知道我们一直是世界上人均收入排名在一百多位的发展中国家。 接着全国兴起了装备计算机的热潮,重点中学和好一点的乡镇中小学开始全面装备286、386计算机,当时的计算机每台近两万元左右,使用不到两年,软件升级,WINDOS全面取代DOS系统,286、386计算机全面淘汰(由此全国又损失数百亿元).这时候486计算机全面登场,并立即淘汰,586以及档次与配置更高的计算机面世。我们的学校在这场计算机的变革中,就不停的跟在后面赶,不停的被淘汰,由于有些学校领导片面追求时髦、面子,而给学校和国家造成了无法估计的损失。 现在教育部提出:一定的时间内在国内普及信息技术教育,实行"校校通"工程;可是由于一些大的计算机厂家在不停的炒作,进行误导,使得我们有些学校校长、少数教育领导干部头脑发热起来了,认为:校校通就是校园网,校园网就是计算机网;学校为了完成上面下达的任务,不顾本校的实际情况,不顾当地的实际情况,大规模的建

设计算机网,造成学校大量负债,而这个所谓的校园网自从建立起 来后就面临着淘汰,为什么呢?目前,我国大部份的学校连基本的广播网、有线电视网都没有,有的学校的教师连计算机的最简单的常识也没有,更谈不上如何使用它们。在上述情况下,我们在进行校园网建设的过程中应该保持清醒的头脑,花最少的钱、获得最大的效果。 校园网络作用主体不清 建立一个好的校园网络系统包括广播系统、教学管理系统、计算机网络系统等等。计算机网络系统是校园网络系统中的一个组成部份。他们之间是相互补充、相互完善,而不是相互取代的。建设校园网的目的是用于老师传授知识和学生获得知识。传授知识有三种方式:图像,声音,文字。现在一般的人重视的是文字方面知识传授,而忽略 了用图像和声音进行大众的知识传授。文字是声音和图像的补充和记载。从传播知识的作用范围来讲,广播系统传播的范围最广。从设备的增值性来看:最实用的是计算机,其次是教育系统应用软件和广播系统。因此,我们在建校园网时,应先从简易经济和适用的系统做起,再建计算。 第二章校园网的规划设计 2.1校园网建设核心 随着网络规模的扩大和用户数量迅速增加,并且由于院校合并形成了分布于多个校区的校园网,网络结构日趋复杂,网络结点数剧

校园网络方案设计

校园网络方案设计 校园网的设计目标简而言之是将各种不同应用的信息资源通过高性能的网络设备相互连接起来,形成校园区内部的Intranet系统,对外通过路由设备接入广域网。下面是本人收集整理的校园网络方案设计,希望对您有所帮助! 校园网络方案设计一、学校需求分析 随着计算机、通信和多媒体技术的发展,使得网络上的应用更加丰富。同时在多媒体教育和管理等方面的需求,对校园网络也提出进一步的要求。因此需要一个高速的、具有先进性的、可扩展的校园计算机网络以适应当前网络技术发展的趋势并满足学校各方面应用的需要。信息技术的普及教育已经越来越受到人们关注。学校领导、广大师生们已经充分认识到这一点,学校未来的教育方法和手段,将是构筑在教育信息化发展战略之上,通过加大信息网络教育的投入,开展网络化教学,开展教育信息服务和远程教育服务等将成为未来建设的具体内容。 调研情况 学校有几栋建筑需纳入局域网,其中原有计算机教室将并入整个校园网络。根据校方要求,总的信息点将达到 3000个左右。信息节点的分布比较分散。将涉及到图书馆、实验楼、教学楼、宿舍楼、食堂等。主控室可设在教学楼的一层,图书馆、实验楼和教学楼为信息点密集区。

需求功能 校园网最终必须是一个集计算机网络技术、多项信息管理、办公自动化和信息发布等功能于一体的综合信息平台,并能够有效促进现有的管理体制和管理方法,提高学校办公质量和效率,以促进学校整体教学水平的提高。 二、设计特点 根据校园网络项目,我们应该充分考虑学校的实际情况,注重设备选型的性能价格比,采用成熟可靠的技术,为学校设计成一个技术先进、灵活可用、性能优秀、可升级扩展的校园网络。考虑到学校的中长期发展规划,在网络结构、网络应用、网络管理、系统性能以及远程教学等各个方面能够适应未来的发展,最大程度地保护学校的投资。学校借助校园网的建设,可充分利用丰富的网上应用系统及教学资源,发挥网络资源共享、信息快捷、无地理限制等优势,真正把现代化管理、教育技术融入学校的日常教育与办公管理当中。学校校园网具体功能和特点如下: 技术先进 采用千兆以太网技术,具有高带宽1000Mbps 速率的主干,100Mbps 到桌面,运行目前的各种应用系统绰绰有余,还可轻松应付将来一段时间内的应用要求,且易于升级和扩展,最大限度的保护用户投资; 网络设备选型为国际知名产品,性能稳定可靠、技术先

【好】校园网络设计方案(全)

校园网络设计方案 第五组 组长:李娟娟 组员:陈燕、余丹、李玉 罗燕、刘娟娟、常平

网络总体设计 网络架构分析 现代网络结构化布线工程中多采用星型结构,主要用于同一楼层,由各个房间的计算机间用集线器或者交换机连接产生的,它具有施工简单,扩展性高,成本低和可管理性好等优点;而校园网在分层布线主要采用树型结构;每个房间的计算机连接到本层的集线器或交换机,然后每层的集线器或交换机在连接到本楼出口的交换机或路由器,各个楼的交换机或路由器再连接到校园网的通信网中,由此构成了校园网的拓补结构 校园网采用星形的网络拓扑结构,骨干网为1000M速率具有良好的可运行性、可管理性,能够满足未来发展和新技术的应用,另外作为整个网络的交换中心,在保证高性能、无阻塞交换的同时,还必须保证稳定可靠的运行。 因此在网络中心的设备选型和结构设计上必须考虑整体网络的高性能和高可靠性,我们选择热路由备份可以有效地提高核心交换的可靠性。 传输介质也要适合建网需要。在楼宇之间采用1000M光纤,保证了骨干网络的稳定可靠,不受外界电磁环境的干扰,覆盖距离大,能够覆盖全部校园。在楼宇内部采用超5类双绞线,其连接状态100m的传递距离能够满足室内布线的长度要求。 设计思路 进行校园网总体设计,首先要进行对象研究和需求调查,明确学校的性质、任务和改革发展的特点及系统建设的需求和条件,对学校的信息化环境进行准确的描述;其次,在应用需求分析的基础上,确定学校Intranet服务类型,进而确定系统建设的具体目标,包括网络设施、站点设置、开发应用和管理等方面的目标;第三是确定网络拓扑结构和功能,根据应用需求建设目标和学校主要建筑分布特点,进行系统分析和设计;第四,确定技术设计的原则要求,如在技术选型、布线设计、设备选择、软件配置等方面的标准和要求;第五,规划校园网建设的实施步骤。 校园网总体设计方案的科学性,应该体现在能否满足以下基本要求方面: (1)整体规划安排; (2)先进性、开放性和标准化相结合; (3)结构合理,便于维护; (4)高效实用; (5)支持宽带多媒体业务; (6)能够实现快速信息交流、协同工作和形象展示。 校园网的设计原则 (1)先进性原则 以先进、成熟的网络通信技术进行组网,支持数据、语音和视频图像等多媒体应用,采用基于交换的技术代替传统的基于路由的技术,并且能确保网络技术和网络产品在几年内基本满足需求。 (2)开放性原则 校园网的建设应遵循国际标准,采用大多数厂家支持的标准协议及标准接口,从而为异种机、异种操作系统的互连提供便利和可能。 (3)可管理性原则 网络建设的一项重要内容是网络管理,网络的建设必须保证网络运行的可管理性。在优秀的

校园网络工程方案

校园网络工程方案 前言 目前,全球已掀起一股信息高速公路规划和建设的高潮,作为其雏形,国际互联网(Internet)上相连的计算机已近达数千万台,全球有数亿人在Internet上进行信息交换和各种业务处理。Internet上积累了大量信息资源,这些资源涉及人类面对和从事的各个领域、行业及社会公用服务信息。成为信息时代全球可共享的最大信息基地。由于计算机网络技术和通信技术的飞速发展,人们对信息的要求越来越强烈,“网络就是计算机”的说法被全世界普遍接受。各国纷纷宣布建设本国的信息高速公路,全球信息一体化局面已指日可待。 我国自1993年与Internet连通以来,已建成了四大主干信息网:中国公众信息网ChinaNET,中国金桥网ChinaGBN,中国教育科研网CERNET和中科院网CASNET。全国各大中城市的网络节点相继开通。广东省已经建立了面向本地服务的公共信息网。Internet显示出诱人的商业前景,被国人称为"第二国道的建设。 随着信息技术的飞速发展,中小学校园网的建设已经逐渐提到议事日程上来。当前由于网络、数据库及与之相关的应用技术不断发展,尤其国际互联网(Internet)和内部网(Intranet)技术的广泛应用,世界正在迈入网络中心计算(NetworkCentricComputing)时代。人们传统的交互和工作模式正在改变。处在不同地理位置的人们可以共享数据,使用群件技术(GroupWare)进而能够协同工作;多媒体数据的存储、传输、应用技术的不断成熟;以上这些计算机技术的发展对学校传统的计算机业务系统产生影响,使用户能更方便、更直观的使用系统,也使系统的性能更完善、功能更强大。 目录 前言 0 第一章学校校园网需求分析 (1) 1.1用户需求分析 (1) 1.2功能需求 (2) 第二章系统方案设计的总体思路 (4) 2.1校园网络系统的构成 (4)

网络设计方案范本

网络设计方案

校园网络设计方案 设计者:王帆 11月

目录 1 校园网需求分析................................................................ 错误!未定义书签。 1.1 网络基本情况 .......................................................... 错误!未定义书签。 1.2网络需求分析 .......................................................... 错误!未定义书签。 2 网络总体设计.................................................................... 错误!未定义书签。 2.1网络架构分析 .......................................................... 错误!未定义书签。 2.2 设计思路 .................................................................. 错误!未定义书签。 2.3 校园网的设计原则 .................................................. 错误!未定义书签。 2.4 网络三层结构设计 .................................................. 错误!未定义书签。 2.4.1 主干网核心层设计 ......................................... 错误!未定义书签。 2.4.2 园区内汇聚层设计 ......................................... 错误!未定义书签。 2.5 IP规划与VLAN ........................................................ 错误!未定义书签。 2.5.1 IP地址的分配原则 ........................................ 错误!未定义书签。 3.5.2 公网地址分配................................................. 错误!未定义书签。 2.5.3专用网的IP地址规划 .................................... 错误!未定义书签。 2.5.4专用网中vlan划分 ........................................ 错误!未定义书签。 2.6 设备选型 .................................................................. 错误!未定义书签。 2.6.1 核心交换机设备选型 ..................................... 错误!未定义书签。 2.6.2汇聚层设备选型............................................. 错误!未定义书签。 2.6.3 接入层设备选型 ............................................. 错误!未定义书签。

学校园网络规划设计方案

学校园网络规划设计方案 设计方案 第一章前言 某高校背景某高校是一所极具现代意识、以现代化教学为特色的公办高校。为了推进教育学信息化和现代化,学校计划在校内建立校园内部网并通过千兆位链路连接与国际互联网相连。 根据学校的要求,我们按照“统一规划、讲究实效、安全可靠”的原则,进行某高校园网综合系统设计,以满足校园内计算机网络系统的需要。对于某高校来说,由于将有越来越多的资料信息和管理平台放到校园网上,越来越多的用户使用校园网,校园网的可扩展性和可靠性成为选择合作伙伴的重要标准。我公司与公司一起,通过专场技术交流会、认证培训、项目设计和方案论证等形式,为某高校提供了良好的服务。校园网发挥的作用为全校教师、科研人员、管理人员、学生提供一个先进的计算机网络环境,并将计算机引入教学、科研、管理和学习等各个领域;改善学校教学科研、管理和学习环境,提高其水平;熟悉现代化的工作环境和掌握先进的教学、科研、管理和学习手段,有利于培养面向世界、面向未来的高层次人才。某高校着重进行了校园网的接入,并与电化教室相结合,配合多媒体设备,使该校的信息化建设跨上了一个新台阶。 某校园网络规划设计方案 第二章用户需求分析 信息化建设目标的建设不但应考虑现有的硬件、软件,同时还应考虑学校教师的信息化教育能力;不但网络要建起来,软件也要贴近应用,同时还应加强教师培训,才能逐步实现教育由应试教育转向素质教育转化。 项目总体目标是:建立物理上覆盖学校教学楼与办公楼的千兆主干校园网,百兆交换到桌面,使学校所有部门的网络和计算机都能够方便地连接到网络;配置必要的计算机网络设备、布线设备和辅料,为学校的教学、管理和研究提供服务。本项目的需求可概括为如下几部分: 结构化布线系统 结构化布线划成个部分:工作区子系统、水平子系统、垂直子系统、设备间子系统、建筑群子系统 ⑴ 工作区子系统

校园网组建方案设计

WORD格式校园网络设计方案 学院: 姓名: 学号: 班级: 指导老师: 2013年4月

1前言 (3) 2.需求分析 (3) 2.1网络需求分析 (3) 2.2校园网建设原则 (4) 2.3技术需求 (4) 2.3网络拓扑图 (5) 3.网络总体设计方案 (6) 3.1网络主干设计 (6) 3.2应用系统及软件 (6) 3.3网络传输介质 (6) 4综合布线 (7) 4.1规范和标准........................错误!未定义书签。 4.2设计范围及要求....................错误!未定义书签。 4.3干线子系统的设计 (7) 5.总结 (7)

1前言 校园网是当今信息社会发展的必然趋势。它是以现代网络技术、多媒体技术及 Internet技术等为基础建立起来的计算机网络,一方面连接学校内部子网和分散于校园各 处的计算机,另一方面作为沟通校园内外部网络的桥梁。校园网为学校的教学、管理、办公、信息交流和通信等提供综合的网络应用环境。要特别强调的是,不能把校园网简单的理解为一个物理意义上的由一大堆设备组成的计算机硬件网络,而应该把校园网理解为学校信息化、现代化的基础设施和教育生产力的劳动工具,是为学校的教学、管理、办公、信息交流和通信等服务的。要实现这一点,校园网必须有大量先进实用的应用软件来支撑,软硬件的充分结合是校园网发挥作用的前提。 4.需求分析 2.4网络需求分析 经分析,本校园网的应用需求如下: 建立以计算中心为核心,连接校园各楼宇的校园主干网络。要求主干网带宽达到 1000Mpbs。 按校园用户的需求,划分相应的子网,以方便网络管理、提高网络性能。各子网的带宽至少达到100Mpbs。 在整个校园网内实现资源共享,为教学、科研、管理提供服务。 建立基于网络的教育管理及办公自动化系统,实现行政、教学、教务、科研、后勤、财务等日常事务的网络化管理。 建立网络教学系统,提供教师电子备课、课件制作、网络考试、自动教学评估等功能。 建立安全、高速的Internet应用,实现内外互通。 提供常用的Internet应用,包括学校网站、邮件系统、文件传输等。 为校园网提高一定的安全保障,防止黑客入侵和破坏,保证校园网安全。 为校园网提供简单有效的网络管理措施,实现对整个校园网的管理和控制。 为校园网提供相应的容错功能,防止在校园网出现故障时导致整个网络瘫痪。 校内的基本应用有:WWWSERVER、SQLSERVER、MAILSERVER、VODSERVER、FTPSERVER、 教务系统、精品课程、视频会议实况转播、杀毒服务器、学生管理系统、教务管理系统、网络课程、等。

校园网网络安全设计方案

[摘要] 计算机网络安全建设是涉及我国经济发展、社会发展和国家安全的重大问题。本文结合网络安全建设的全面信息,在对网络系统详细的需求分析基础上,依照计算机网络安全设计目标和计算机网络安全系统的总体规划,设计了一个完整的、立体的、多层次的网络安全防御体系。 [关键词] 网络安全方案设计实现 一、计算机网络安全方案设计与实现概述 影响网络安全的因素很多,保护网络安全的技术、手段也很多。一般来说,保护网络安全的主要技术有防火墙技术、入侵检测技术、安全评估技术、防病毒技术、加密技术、身份认证技术,等等。为了保护网络系统的安全,必须结合网络的具体需求,将多种安全措施进行整合,建立一个完整的、立体的、多层次的网络安全防御体系,这样一个全面的网络安全解决方案,可以防止安全风险的各个方面的问题。 二、计算机网络安全方案设计并实现 1.桌面安全系统 用户的重要信息都是以文件的形式存储在磁盘上,使用户可以方便地存取、修改、分发。这样可以提高办公的效率,但同时也造成用户的信息易受到攻击,造成泄密。特别是对于移动办公的情况更是如此。因此,需要对移动用户的文件及文件夹进行本地安全管理,防止文件泄密等安全隐患。 本设计方案采用清华紫光公司出品的紫光S锁产品,“紫光S锁”是清华紫光“桌面计算机信息安全保护系统”的商品名称。紫光S锁的内部集成了包括中央处理器(CPU)、加密运算协处理器(CAU)、只读存储器(ROM),随机存储器(RAM)、电可擦除可编程只读存储器(E2PROM)等,以及固化在ROM内部的芯片操作系统COS(Chip Operating Sys tem)、硬件ID号、各种密钥和加密算法等。紫光S锁采用了通过中国人民银行认证的Sm artCOS,其安全模块可防止非法数据的侵入和数据的篡改,防止非法软件对S锁进行操作。 2.病毒防护系统 基于单位目前网络的现状,在网络中添加一台服务器,用于安装IMSS。

学校网络工程方案设计

学校网络工程方案设计 网络工程是指按计划进行的以工程化的思想、方式、方法,设计、研发和解决网络系统问题的工程。下面是小编带来的学校网络工程方案,希望对大家有帮助! 1、满足计算机教学科研、行政办公需要,提供各种教学、办公工具和支撑平台,并提供丰富的计算机软硬件系统资源。 2、具有完善的办公事务处理能力,包括电子公文传递、电子公文管理、电子邮件、邮件收发等无纸办公自动化功能。 3、满足信息情报交流的需要,方便学校各级领导和教学科研人员对各种信息资料、科技情报的检索和查阅。包括Web查询、电子公告、电子新闻等。 4、具有远程通信能力,借助电话网等通信手段,以最低的通信成本,方便地实现远程互联,跨越地域限制,满足学校要求,加强各单位之间的业务联系和信息资源共享。 5、具有收集、处理、查询、统计各类信息资源的能力,充分利用原有数据资源,为学校领导提供准确、快捷的数字信息,实现数据化管理和智能化决策。 6、学校网络系统要确保整个计算机网络系统的可靠性、安全性,具有一定的冗余。容错能力强,确保信息处理安全保密。 7、学校信息网络系统要保证实用和技术先进,便于非

计算机专业人员使用,并能不断满足学校未来业务发展的需要,具有很强的扩展能力。 网络应用的发展 3 建设XX中学校园网的必要性 4 XX中学网络现状 6 用户需求分析 6 功能需求7 校园网络系统的构成9 系统方案设计的总体思路9 网络的分层设计原则:12 核心层 Core Layer 12 分布层 Distribution Layer 12 接入层 Access Layer 13 综合布线系统设计13 综合布线系统组成简介14 设计综合布线系统依据的标准16 LUCENT 布线系统简介17 设计XX中学综合布线系统的考虑19 网络系统方案设计22 校园网的设计目标22 网络建设原则要求23 系统需求分析24

校园宿舍楼网络规划设计方案

校园网络规划设计方案 项目概述: 本次生产实习的目标是学会组建一个能覆盖整个学校校园宿舍楼的计算机网络。将学校校园宿舍楼内的各种计算机、服务器及终端设备连接起来,并通过相关的技术将校园宿舍楼网络划分成几个不同的区域,让校园宿舍楼内部及各个区域能够进行信息沟通的体系,为校园宿舍楼的学生以及老师提供充分的网络信息,在网络环境中实现ftp服务,ⅡS服务,DNS服务等工作。 校园宿舍楼要求: 1.校园宿舍楼需要安装ftp服务器,ⅡS服务器,DNS服务器。 2.网络客户之间能够实现资源共享。 3.全网可以互通。 4.网络要求一定的灵活性和可扩展性。 5.校园宿舍楼学生,老师之间可以使用电子邮件进行信息沟通。 6.计算机中应有各种学习,办公软件等。 实现的目的: 1.ⅡS服务:进行校园网站的查询,登录; 2.文件服务:利用FTP服务,校园宿舍楼用户可获取学习中相关的资料、文件等信息; 3.提供正版系统以及各种所应用的学习与办公软件等。 总体设计: 1.实地勘测了解宿舍楼的分布布局:

了解到宿舍楼共有六层,每层有32个宿舍,每个宿舍有8个用户 2.划分宿舍楼网络: 将每四个宿舍划分为一个VLAN,每一层划分为八个VLAN,每一个VLAN接入一个二层交换机,再将每一层接入一个三层交换机,再将每三层接入一个三层交换机,最后将其接入核心交换机上。 3.服务器的搭建: 了解到了需求FTP服务器,ⅡS服务器,DNS服务器;将这些服务器连接到一个二层交换机,在连接到核心设备上。 拓扑结构: 详细设计: 1、基本配置: 设备的命名规则:

SSL----宿舍楼CORE----核心交换机-SANSWITCH----三层交换机-num----设备编号numFLOOR----宿舍楼第几层 ACCESS----接入层 核心设备: SW1:SSL-CORE-1 三层交换机:SW2:SSL-SANSWITCH-1 SW3:SSL-SANSWITCH-2 二层交换机:SW4: SSL-1FLOOR-ACCESS-1 SW5: SSL-2FLOOR-ACCESS-1 SW6: SSL-3FLOOR-ACCESS-1 SW7: SSL-4FLOOR-ACCESS-1 SW8: SSL-5FLOOR-ACCESS-1 SW9: SSL-6FLOOR-ACCESS-1 接口描述: SW4: Interface E0/4/0 Description connect_to_[SSL-SANSWITCH-1]- E0/4/1 其中E0/4/0为SW4上接口,SSL-SANSWITCH-1为E0/4/0所连接的上一层设备名称,E0/4/1为连接在上一层设备SSL-SANSWITCH-1上的端口号 其余接口描述与上述相似。 接口连接标准:下联在前上联在后 2、IP地址规划—vlan规划

校园网设计方案.doc

方案1: 一个完整的校园网建设主要包括两个内容:技术方案设计;应用信息系统资源建设。 技术方案设计主要包括:结构化布线与设备选择、网络技术选型等;应用信息系统资源建设主要包括:内部信息资源建设、外部信息资源建设等。这里我们介绍网络技术选型。 一、网络技术选型设计 校园网络系统基本可分为校园网络中心、教学子网、办公子网、图书馆子网、宿舍子网及后勤子网等。 1.校园网络中心的设计 网络中心设计主要包括主干网络的设计、校园网与Internet的互连、远程访问服务等。 (a)主干网络的设计 主干网络采用联想新推出的LS-5608G智能型8联机箱式千兆以太网交换机作为校园网的中心交换机,它提供8个插槽,可选插8联的10/100Base-TX、2联的100Base-FX或1联的千兆以太网模块。适用于大型主干网络和高速率、高端口密度、多端口类型的复杂网络。同时可以选择MS-5103千兆位以太网模块(SX/MM/850nm,0-350m)或MS-5104 千兆以太网模块(LX/SM/1310nm,0-6km)与下面的各个子网通过千兆位的链路相连。 (b)校园网与Internet的互连: 推荐采用局域网专线接入方式,此方式需要配备路由器等设备,租用专线DDN或帧中继(Frame Relay),也可申请ISDN专线并向CERNET管理部门申请IP地址及注册域名,以专线方式连入Internet,并提供防火墙、计费管理等功能。 本方案选用联想的LR-2501路由器,具有1个局域网(LAN),2个广域网(WAN)和1个控制台。支持帧中继(Frame-Relay)、X.25、PPP、HDLC协议。 (c)远程访问服务 采用联想LA-220和LA-240访问服务器,安装在本地局域网中,通过1至4个调制解调器(或ISD TA)和1至4根电话线,即可为远程访问人员提供拨号上网服务,远程用户只需拥有1个调制解调器和1根电话线,通过拨接LA-220或LA-240上所连接的电话号码,就可以登录访问。 2.教学子网的设计 校园网建网的目的之一,是利用网络实现多媒体教学,如:交互式多媒体课堂、电子阅览室、教师培训等。多媒体教学的难点在于实现视频信号的传送(如VOD视频点播)。目前在局域

校园网设计方案(完美版)

校园网设计方案(此文档为word格式,可任意修改编辑!)方案1:

一个完整的校园网建设主要包括两个内容:技术方案设计;应用信息系统资源建设。 技术方案设计主要包括:结构化布线与设备选择、网络技术选型等;应用信息系统资源建设主要包括:内部信息资源建设、外部信息资源建设等。这里我们介绍网络技术选型。 一、网络技术选型设计 校园网络系统基本可分为校园网络中心、教学子网、办公子网、图书馆子网、宿舍子网及后勤子网等。 1.校园网络中心的设计 网络中心设计主要包括主干网络的设计、校园网与Internet的互连、远程访问服务等。 (a)主干网络的设计 主干网络采用联想新推出的LS-5608G智能型8联机箱式千兆以太网交换机作为校园网的中心交换机,它提供8个插槽,可选插8联的10/100Base-TX、2联的100Base-FX或1联的千兆以太网模块。适用于大型主干网络和高速率、高端口密度、多端口类型的复杂网络。

同时可以选择MS-5103千兆位以太网模块(SX/MM/850nm,0-350m)或MS-5104千兆以太网模块(LX/SM/1310nm,0-6km)与下面的各个子网通过千兆位的链路相连。 (b)校园网与Internet的互连: 推荐采用局域网专线接入方式,此方式需要配备路由器等设备,租用专线DDN或帧中继(Frame Relay),也可申请ISDN专线并向CERNET 管理部门申请IP地址及注册域名,以专线方式连入Internet,并提供防火墙、计费管理等功能。 本方案选用联想的LR-2501路由器,具有1个局域网(LAN),2个广域网(WAN)和1个控制台。支持帧中继(Frame-Relay)、X.25、PPP、HDLC协议。 (c)远程访问服务 采用联想LA-220和LA-240访问服务器,安装在本地局域网中,通过1至4个调制解调器(或ISD TA)和1至4根电话线,即可为远程访问人员提供拨号上网服务,远程用户只需拥有1个调制解调器和1根电话线,通过拨接LA-220或LA-240上所连接的电话号码,就可以登录访问。

某校园网总体设计方案

校园网总体设计方案 【摘要】 当今社会,以信息通信技术为代表的科技革命,正在以前所未有的方式和速度改变着我们的生活与学习。其中以计算机网络的发展更为突出,已深入我们生活的方方面面,人类社会即将快速步入信息社会。校园计算机网络作为计算机整个网络系统的重要组成部分,成为我们学习与接触得最多的网络之一,校园网络的建设已成为计算机网络基础建设的重要内容。校园网络建设所使用的技术是以局域网技术为主的计算机网络应用技术,校园网是学校进行教育科研教学、各项管理工作和各类信息交流沟通的应用平台,是集相关软件和硬件设备于一体的具有综合功能的宽带计算机局域网,为学校提供了一个日常教学、科研、管理和通讯的综合性应用环境。建设校园网的目的是建设一个以计算机辅助教学、办公与管理自动化、现代计算机校园文化核心,以现代网络技术为依托,技术先进、扩展性强,能覆盖全校主要楼宇的玄远主干网络,将学校的各种服务器、工作站、终端和外部设备通过局域网络连接起来,并进一步与广域网相连,向世界宣传自己和从Internet上获取教学资源,形成结构合理、内外沟通的校园计算机网络系统,在此基础上建立能满足教学、管理和研究工作所需要的软硬件环境,开发各类信息库和应用系统,为学校各类人员提供充分的网络信息服务。校园网络的越来越重要,这样,它的设计也实现也就显得越来越重要,无论在速度方面还是安全方面,都应该全面的考虑设计。本毕业设计主要是以建设校园网络的建设与使用为主要内容,对其中所须用到的技术做一个分析和介绍。论文的主要内容有:校园网的技术思想、技术方案,网络设备的选型以及校园网络的运行状况等,能使读者对校园网络的建设有一个比较全面的了解!

xx大学校园网设计方案(课程设计经典方案)全解

湖南机电职业技术学院 毕业设计 校园网的规划与设计 设计方案 作者姓名欧阳贝伦 所属系部信息工程学院 指导教师吴勇 专业班级计算机网络技术网络1301班

目录 1.1网络设计原则 3 1.2网络需求分析 3 2网络设计解决方案 4 2.1网络系统结构规划 4 2.1.1接入层 4 2.1.2汇聚层 5 2.1.3核心层 5 2.1.4远程接入区域 5 2.2网络拓扑设计 5 2.3网络IP地址规划 6 2. 3.1IP地址合理规划的意义 6 2.4网络设计技术方案特点7 3网络设计技术分析7 3.1校园网络技术分类7 3.2校园网交换技术8 3.3路由技术9 3.4广域网接入技术9 4 设备的选型10 5 投资预算11 6综合布线工程规划12 4.1工程概况12 4.2施工原则12 7总结体会13

1网络设计原则与需求分析 1.1 网络设计原则 ?实用性与先进性 根据学校实际情况和特点,在设计中特别强调实用性与先进性的结合,应采用成熟的网络技术,保证校园网实用;跟踪国际网络技术的新发展,设计技术先进的网络。在保证校园网可靠、实用、先进的基础上,可以提供研究先进网络技术的科研环境,方便学校的科研与开发。 ?开放性与标准化 整个校园网的设计采用开放性的网络体系,以方便网络的升级、扩展和互联。同时,在选择服务器、网络产品时,强调产品支持的网络协议的国际标准化。 ?可靠性与安全性 在校园网的设计中,主要考虑两个层次:一是整个网络的可靠性与安全性,采用高可靠性高安全性的网络体系结构;二是网络设备的安全性和可靠性,主要是采用可带电插拔的模块、配置双电源、端口冗余、设置网络设备的用户表及口令限制等手段。 ?经济性与可扩充性 在满足学校需求的前提下,选用性能价格比高的网络设备和服务器。采用的网络架构和设备,应充分考虑到易升级换代,并且在升级时可以最大限度地保护原有的硬件设备和软件投资。 1.2 网络需求分析 湖南机电职业技术学院作为一所高等院校,必须建成一个集学校行政、办公、教学以及师生宿舍上网于一体的校园网络系统。具体需求如下: 管理层需求 (1)办公需求:办公自动化,文档电子化,电子公告牌 (2)E-mail 服务 (3)远程访问 (4)管理需求:会议管理,个人信息管理,公共信息管理, 公文管理,教务综合管理,以及图书馆自动化管理。 教师需求 (1)教学要求:电子备课,资料查阅,文档打印,文档、课件上传/下载,在线答疑(2)教学活动:VOD(或将来需要),学生成绩登入、公布 (3)自学需求:电子图书馆,资料查询 (4)远程访问 (5)E-mail 服务

某 学校校园网络规划及方案设计

某学校校园网络规划及方案设计 网络工程课程设计报告题目:XX学校校园网络规划及方案设计 团队: 组员: 指导老师: 2011年5月10日 目录 第一章校园网概述及分析 4 1.1概述4 1.2 建设校园网的必要性 4 1.3 应用特点: 4 第二章校园网应用分析 5 2.1项目概述 5 2.2 用户需求分析 5 2.3 系统设计指导思想 6 第三章设备选购和应用说明 7 3.1 cisco 2811系列路由器7 3.2 cisco Catalyst 3560-24PS系列交换机8 3.3 CISCO Catalyst 2950-24系列交换机9

第四章网络基本拓扑图9 4.1 说明9 4.2 A校区基本拓扑图10 4.3 B 校区基本拓扑图10 4.4 C 校区基本拓扑图11 第五章规划互联接口 13 5.1 A校区核心层交换机与各三层设备互联的接口与接口地址规划13 5.2 A 校区2811路由器与防火墙和因特网互联的接口与接口地址规划 13 5.3 A 校区防火墙与DMZ区服务器接入交换机(3560)之间的接口与接口地址规划 14 5.4 B校区各汇聚层交换机与B校区核心层交换机互联接口及接口地址规划14 5.5 C校区2811接口与接口地址规划14 5.6 C校区核心交换机与2811和防火墙的接口及接口地址规划 14 5.7 校园网网段地址规划 15 第六章公网地址使用规划15 6.1 A校区ChianNet公网地址使用规范16 6.2 A校区Cernet公网地址使用规范16 6.2-1由于模拟器限制不能执行地址池所以在模拟器上有接口转

换 16 6.2-2 用地址池实现双出口NAT策略的配置如下所示: 17 6.3 C校区Chinanet公网地址使用规范18 6.4 C校区地址转换配置如下所示: 19 第七章校园网设备基本配置示例19 7.1 A区交换机及路由器配置示例19 1 A区核心层交换机配置命令: 19 2 A区汇聚层交换机配置命令示例(学生宿舍5) 22 3 A区边界路由器配置如下: 23 4 A区防火墙配置如下: 24 5A区服务器接入交换机配置如下: 25 第八章防火墙的配置 26 8.1 综合楼汇聚层IP包过滤 ACL配置26 8.2 教学楼汇聚层ACL配置 27 8.3 配置校园网防火墙28 8-3.1 定义和应用WAN口的ACL规则29 8-3.2 定义和应用LAN口的ACL规则30 8-3.3 定义和应用DMZ 口的ACL配置30 第九章校园网各设备配置和使用注意事项 31 9.1 校园网各设备基本参数和安全性设置: 31 1、设置设备名称: 31 2、设置设备的加密使能口令: 31

校园网络建设方案

摘要 随着网络的发展,网络管理越来越重要。各大院校的校园网都已经初具规模,良好的网络管理成为校园网能否正常、有效运行的关键。该文基于铜陵学院校园网络管理系统的设计探讨,详细讨论了校园网建设目标、设计原则以及网络拓扑结构、主干网构建,既有理论研究意义,也具有实践参考价值。 关键词 校园网络;校园拓扑结构;网络管理;网络维护 引言 科学技术的发展日新月异,九十年代,在计算机技术和通信技术结合下,网络技术得到了飞速的发展。如今,不仅计算机已经和网络紧密结合,整个社会都不可能脱离网络而存在。网络技术已经成为现代信息技术的主流,人们对网络的认识也随着网络应用的逐渐普及而迅速改变。在不久的将来,网络必将成为和电话一样通用的工具,成为人们生活、工作、学习中必不可少的一部分。 Internet,即国际互联网,是现在网络应用的主流,从它最初在美国诞生至今已经经历了三十多年。这个以TCP/IP协议为主体的国际互联网络已经成为覆盖全世界一百五十多个国家和地区的大型数据通信网络。最初的Internet是由科研网络形成的,主要是由一些大学和研究所等科研教育单位连接而成,逐渐发展到今天的规模。而进入九十年代后,由于各种商业信息进入了Internet,使得Internet 得到了极大地发展,其拥有的主机数,连接的网络数以及覆盖面一直呈指数形式上升。现在在Internet上可以提供或者获得各种各样的服务,比如通过电子邮件进行合同的起草和签订,或利用Internet直接挑选商品和购物。 Internet是一个资源的网络,其中拥有的信息资源几乎覆盖所有的领域。Internet 面向人类的社会,世界上数以亿计的人们利用它进行通信和信息共享,通过发送和接收电子邮件,或和其他人的计算机建立连接、参加各种讨论组并免费使用各种信息资源实现信息共享。 Internet也是一个服务的网络。在Internet上,许多单位、公司和组织提供了各种各样的服务。比如WWW(World Wide Web全球信息网)服务、信息查询服务等,向网络上的其他用户展示自己各方面的情况,并帮助这些用户找到需要的信息。 将来的网络在Internet基础上进一步发展,其功能、速度、适用范围等必将全面超过现有的Internet。 我国对计算机网络的建设投入了大量的人力和物力,在短短的几年中,已经从最初仅仅局限在教育科研单位的网络,迅速发展到今天遍及全国的包括教育、科研、商业、民用各个方面的数个大型网络,如Chinanet(中国邮电网)、Cernet(中国教育网)、Gbnet(金桥网络)等等。目前在网络上提供有价值、有吸引力的信息,对一个单位或学校树立自己的形象,提高自己的知名度,以及开拓和国际上其他学校、组织的联系和往来能够起到很显著的作用。 铜陵学院以培养高层次人才为己任。当今世界随着计算机、网络通信等现代科学技术的发展,人类正迈入信息时代,在某学院建立覆盖全校,并可以与国内外著名网络互联的校园网已成为必然。 我学院校园网将实现与校内各部门进行通信。我学院校园网将为学校的科研、教学、管理提供必要的技术手段,为研究开发和培养人才建立平台,借此加快学校的发展,以此加快学校的发展,成为一个具有示范性的学校。

网络工程设计方案

网络工程设计方案 工程说明 一、系统概述 网络平台在整公司网络系统中占有举足轻重的地位,它是整个网络的基础。在网络平台上,数据传输、信息发布、资源共享、公司以后的BBS、办公自动化系统、VOD系统、远程登陆系统、INTERNET接口、以及与其他公司的数据交换都将运行在这个网络上。因此,主干网的好坏直接影响到以后网络系统的运行效率,速度快慢,网络性能等参数。因此,建立一条高速的、多能的、可靠的、易扩展的主干网络,解决目前存在的带宽问题,和适应未来发展的需要是企业网建设中一个重要的课题。 1.建设目标 企业网建设的总体目标是利用各种先进、成熟的网络技术和通信技术,采用统一的网络协议(TCP/IP),建设一个可实现各种综合网络应用的高速计算机网络系统,公司内各部门通过网络连接起来。在局域网上,为各信息点提供可靠的、高速的和可管理的网络环境,为用户提供广泛的数据资源共享、丰富便捷的网络应用(如:实时多媒体视频/音频、校园综合信息管理、查询、网络远程教学、网络会议等),提供各种网络服务(电子邮件、文件共享、WWW信息查询等),为各用户提供多种形式的访问,实现网络的扩展,扩大联网的范围和规模。 网络不仅要实现网络上的一般功能:如E-MAIL、FTP、网络论坛、网络图书馆、搜索引擎、网上聊天、管理数据的传输、处理与查询,还需要实现包括视频点播(VOD)、电话会议、网络电话(IP电话)等功能,是一个高速多媒体互联网络,并最终实现整个企业系统的资源共享。 然而网络化地观念在推进的过程中,首先面临来自网络带宽瓶颈的挑战。单一的传输模式无法适应网络化的应用,所以如何提供令人满意的网络应用服务质量,这是目前解决网络化瓶颈中最为关键的一环。当今网络化发展已不能够简单地以限制人们上网的方式以避免带宽稀缺导致的网络拥塞。为了尽可能地利用好对满足多种网络应用需求最为关键的稀缺带宽资源,避免可能出现地网络性能问题,我们在网络化的建设过程中的每一个细节都作了努力把网络的性能优化到极限,使qos等策略不再神秘莫测充分应用到解决相识问题当中。如此一来凡对网络流量实施策略管理地方就再也没有那些无法容忍的迟延现象出现。这不仅减少了大量管理成本,还为客户节省了大量时间,同时提高了用户满意度。 通过网络系统资源的整合,传统的模式将改变,实现多层次、交互式,从而提高质量,扩大规模. 2.建设原则 2.1 为企业内各部门的行政管理、计算机辅助教学和领导决策服务。 2.2 统筹规划,统一标准,联合建设,滚动发展,边建设,边应用,边见效益,充分利用中国政府网的优势,逐步建立一个覆盖全市、县普通政府系统的高效的信息网络系统。

大学校园网网络设计方案

长江师范学院校园网设计方案 1.1 、学校的背景: 长江师范学院是一所极具现代意识、以现代化教学为特色的学校。为了更好地使用电脑这一现代化的高科技产物,使其在教学、管理、办公等方面发挥应有的作用。 学校计划在校内建立校园网并与国际互连网( Internet )相连。根据学校的要求,进行校园网综合系统设计,以满足校园内计算机系统的需要。 1.2 、学校校园网建成后,将发挥以下作用:为全校教师、科研人员、管理人员、学生提供一个先进的计算机网络环境,并将计算机引入教学、科研、管理和学习等各个领域。改善学校教学科研、管理和学习环境,提高其水平。 熟悉现代化的工作环境和掌握先进的教学、科研、管理和学习手段,有利于培养面向世界、面向未来的高层次人才。 1.3 、要求长江师范学院校园网是一个以学校图书馆为网络中心,并以行政楼、实验楼、南北苑学生宿舍、教师宿舍、校医院、教学楼为二级学院的分中心,其间以千兆以太协议及光缆传输介质成中心向四周辐射的星形状互连,依次将学校各部门、学生宿舍等连入校园网。由于网络主干采用千兆以太网,故可以充分满足学校各部门对网络带宽的一般需要和特殊需要,由于采用第三层交换技术,所以可对不同的应用需求划分各自的虚拟子网,子网间既相互联系又彼此隔离,充分满足安全及带宽管理的要求。 中心与各建筑物之间的距离如下: 图书馆到行政楼距离:300 米图书馆到北苑宿舍距离:800 米图书馆到逸夫楼距离:600 米图书馆到教师宿舍距离:1300 米图书馆到南苑宿舍距离:1000 米图书馆到实验楼距离:700 米 图书馆到教学楼距离: 一教学楼:150 二教学楼:150 三教学楼:300 图书馆(李渡校区)到江东校区距离:38 千米 1.4 、完成功能: (1)连接校内所有行政楼、教学楼、实验室、办公楼、图书馆、学生和教师宿舍中的

相关文档
最新文档