上海八年级上一元二次方程专题复习

上海八年级上一元二次方程专题复习
上海八年级上一元二次方程专题复习

八年级秋季班期末复习讲义二

课 题: 一元二次方程

教学目标 一元二次方程 重点、难点 考点及考试要求

教学内容

第一部分:一元二次方程解法:

一、知识结构:

一元二次方程??

?

??*?韦达定理根的判别解与解法

二、考点精析 考点一、概念

(1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③

整式方程....就是一元二次方程。 (2)一般表达式:)0(02≠=++a c bx ax

⑶难点:如何理解 “未知数的最高次数是2”: ①该项系数不为“0”; ②未知数指数为“2”;

③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。 典型例题:

例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132

+=+x x B

021

12=-+x

x

C 02

=++c bx ax

D 122

2

+=+x x x

变式:当k 时,关于x 的方程322

2

+=+x x kx 是一元二次方程。 例2、方程()0132=+++mx x m m

是关于x 的一元二次方程,则m 的值为 。

针对练习:

★1、方程782

=x 的一次项系数是 ,常数项是 。 ★2、若方程()021

=--m x

m 是关于x 的一元一次方程,

⑴求m 的值;⑵写出关于x 的一元一次方程。

★★3、若方程()112=?+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。

★★★4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( ) A.m=n=2 B.m=2,n=1 C.n=2,m=1 D.m=n=1 考点二、方程的解

⑴概念:使方程两边相等的未知数的值,就是方程的解。 ⑵应用:利用根的概念求代数式的值; 典型例题:

例1、已知322-+y y 的值为2,则1242++y y 的值为 。

例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。 例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程 必有一根为 。

例4、已知b a ,是方程042

=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根, 则m 的值为 。 针对练习:

★1、已知方程0102

=-+kx x 的一根是2,则k 为 ,另一根是 。 ★2、已知关于x 的方程022

=-+kx x 的一个解与方程31

1

=-+x x 的解相同。 ⑴求k 的值; ⑵方程的另一个解。

★3、已知m 是方程012

=--x x 的一个根,则代数式=-m m 2

。 ★★4、已知a 是0132

=+-x x 的根,则=-a a 622

。 ★★5、方程()()02=-+-+-a c x c b x b a 的一个根为( )

A 1-

B 1

C c b -

D a -

★★★6、若=?=-+y

x

则y x 324,0352 。 考点三、解法

⑴方法:①直接开方法;②因式分解法;③配方法;④公式法 ⑵关键点:降次

类型一、直接开方法:()m x m m x ±=?≥=,02

※※对于()m a x =+2

,()()2

2

n bx m ax +=+等形式均适用直接开方法

典型例题:

例1、解方程:();08212

=-x ()2

16252x -=0; ()();09132

=--x

例2、若()()2

2

21619+=-x x ,则x 的值为 。

针对练习:下列方程无解的是( )

A.1232

2

-=+x x B.()022=-x C.x x -=+132 D.092

=+x

类型二、因式分解法:()()021=--x x x x 21,x x x x ==?或 ※方程特点:左边可以分解为两个一次因式的积,右边为“0”, ※方程形式:如()()2

2

n bx m ax +=+,()()()()c x a x b x a x ++=++ ,

0222=++a ax x

典型例题:

例1、()()3532-=-x x x 的根为( )

A 25=

x B 3=x C 3,2

521==x x D 52

=x 例2、若()()044342

=-+++y x y x ,则4x+y 的值为 。 变式1:()()

=+=-+-+2222

2

2

2,06b 则a b a

b a 。

变式2:若()()032=+--+y x y x ,则x+y 的值为 。

变式3:若142=++y xy x ,282

=++x xy y ,则x+y 的值为 。 例3、方程062

=-+x x 的解为( ) A.232

1=-=,x

x B.232

1-==,x

x C.332

1-==,x

x D.2221-==,x x

例4、解方程: ()

04321322=++++x x 例5、已知023222=--y xy x ,则

y

x y

x -+的值为 。 变式:已知02322

2=--y xy x ,且0,0>>y x ,则

y

x y

x -+的值为 。 针对练习:

★1、下列说法中:

①方程02

=++q px x 的二根为1x ,2x ,则))((212

x x x x q px x --=++ ② )4)(2(862--=-+-x x x x .

③)3)(2(6522--=+-a a b ab a ④ ))()((22y x y x y x y x -+

+=-

⑤方程07)13(2=-+x 可变形为0)713)(713(=-+++x x 正确的有( )

A.1个

B.2个

C.3个

D.4个 ★2、以71+与71-为根的一元二次方程是() A .0622

=--x x B .0622

=+-x x C .0622=-+y y

D .0622=++y y

★★3、⑴写出一个一元二次方程,要求二次项系数不为1,且两根互为倒数: ⑵写出一个一元二次方程,要求二次项系数不为1,且两根互为相反数: ★★4、若实数x 、y 满足()()023=++-+y x y x ,则x+y 的值为( ) A 、-1或-2 B 、-1或2 C 、1或-2 D 、1或2 5、方程:21

2

2

=+

x x 的解是 。 ★★★6、已知06622=--y xy x ,且0>x ,0>y ,求

y

x y

x --362的值。

★★★7、方程()012000199819992

=-?-x x 的较大根为r ,方程012008

20072

=+-x x 的较小根为s ,则s-r 的值为 。

类型三、配方法()002

≠=++a c bx ax 2

22

442a ac b a b x -=??? ?

?+? ※在解方程中,多不用配方法;但常利用配方思想求解代数式

的值或极值之类的问题。 典型例题:

例1、 试用配方法说明322

+-x x 的值恒大于0。

例2、 已知x 、y 为实数,求代数式7422

2+-++y x y x 的最小值。

例3、 已知,x、y y x y x 0136422=+-++为实数,求y

x 的值。

例4、 分解因式:31242

++x x

针对练习:

★★1、试用配方法说明47102

-+-x x 的值恒小于0。 ★★2、已知041

12

2

=---+

x x x

x ,则=+x x 1 . ★★★3、若912322-+--=x x t ,则t 的最大值为 ,最小值为 。 ★★★4、如果4122411-++-=--++b a c b a ,那么c b a 32-+的值为 。

类型四、公式法

⑴条件:()

04,02≥-≠ac b a 且

⑵公式: a

ac

b b x 242-±-=,()

04,02≥-≠ac b a 且

典型例题:

例1、选择适当方法解下列方程:

⑴().6132

=+x ⑵()().863-=++x x ⑶0142

=+-x x

⑷01432

=--x x ⑸()()()()5211313+-=+-x x x x

例2、在实数范围内分解因式:

(1)3222--x x ; (2)1842

-+-x x . ⑶22542y xy x --

说明:①对于二次三项式c bx ax ++2

的因式分解,如果在有理数范围内不能分解, 一般情况要用求根公式,这种方法首先令c bx ax ++2

=0,求出两根,再写成

c bx ax ++2=))((21x x x x a --.

②分解结果是否把二次项系数乘进括号内,取决于能否把括号内的分母化去. 类型五、 “降次思想”的应用

⑴求代数式的值; ⑵解二元二次方程组。 典型例题: 例1、 已知0232

=+-x x ,求代数式()1

1

123

-+--x x x 的值。

例2、如果012=-+x x ,那么代数式722

3-+x x 的值。

例3、已知a 是一元二次方程0132

=+-x x 的一根,求1

1

52223++--a a a a 的值。

例4、用两种不同的方法解方程组

???=+-=-)

2(.

065)1(,622

2y xy x y x

说明:解二元二次方程组的具体思维方法有两种:①先消元,再降次;②先降次,再 消元。但都体现了一种共同的数学思想——化归思想,即把新问题转化归结为我们已 知的问题.

考点四、根的判别式ac b 42

- 根的判别式的作用: ①定根的个数; ②求待定系数的值; ③应用于其它。 典型例题:

例1、若关于x 的方程0122=-+x k x 有两个不相等的实数根,则k 的取值范围是 。 例2、关于x 的方程()0212=++-m mx x m 有实数根,则m 的取值范围是( ) A.10≠≥且m m B.0≥m C.1≠m D.1>m 例3、已知关于x 的方程()0222=++-k x k x

(1)求证:无论k 取何值时,方程总有实数根;

(2)若等腰?ABC 的一边长为1,另两边长恰好是方程的两个根,求?ABC 的周长。

例4、已知二次三项式2)6(92

-++-m x m x 是一个完全平方式,试求m 的值.

例5、m 为何值时,方程组???=+=+.

3,

6222y mx y x 有两个不同的实数解?有两个相同的实数解?

针对练习:

★1、当k 时,关于x 的二次三项式92

++kx x 是完全平方式。

★2、当k 取何值时,多项式k x x 2432

+-是一个完全平方式?这个完全平方式是什么? ★3、已知方程022

=+-mx mx 有两个不相等的实数根,则m 的值是 . ★★4、k 为何值时,方程组??

?=+--+=.

0124,22

y x y kx y

(1)有两组相等的实数解,并求此解; (2)有两组不相等的实数解; (3)没有实数解.

★ ★★5、当k 取何值时,方程0423442

2

=+-++-k m m x mx x 的根与m 均为有理数?

考点五、方程类问题中的“分类讨论” 典型例题:

例1、关于x 的方程()03212=-++mx x m ⑴有两个实数根,则m 为 , ⑵只有一个根,则m 为 。

例2、 不解方程,判断关于x 的方程()322

2

-=+--k k x x 根的情况。

例3、如果关于x 的方程022

=++kx x 及方程022

=--k x x 均有实数根,问这两方程 是否有相同的根?若有,请求出这相同的根及k 的值;若没有,请说明理由。

考点六、应用解答题

⑴“碰面”问题;⑵“复利率”问题;⑶“几何”问题; ⑷“最值”型问题;⑸“图表”类问题 典型例题:

1、五羊足球队的庆祝晚宴,出席者两两碰杯一次,共碰杯990次,问晚宴共有多少人出席?

2、某小组每人送他人一张照片,全组共送了90张,那么这个小组共多少人?

3、北京申奥成功,促进了一批产业的迅速发展,某通讯公司开发了一种新型通讯产品投放市场,根据计

划,第一年投入资金600万元,第二年比第一年减少

31,第三年比第二年减少2

1

,该产品第一年收入资金约400万元,公司计划三年内不仅要将投入的总资金全部收回,还要盈利3

1

,要实现这一目标,该产品收

入的年平均增长率约为多少?(结果精确到0.1,61.313≈)

4、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克,销售单价每涨1元,月销售量就减少10千克,针对此回答: (1)当销售价定为每千克55元时,计算月销售量和月销售利润。

(2)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元, 销售单价应定为多少?

5、将一条长20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长作成一个正方形。 (1)要使这两个正方形的面积之和等于17cm 2,那么这两段铁丝的长度分别为多少? (2)两个正方形的面积之和可能等于12cm 2吗?若能,求出两段铁丝的长度;若不 能,请说明理由。

(3)两个正方形的面积之和最小为多少?

6、A 、B 两地间的路程为36千米.甲从A 地,乙从B 地同时出发相向而行,两人相遇后,甲再走2小时30分到达B 地,乙再走1小时36分到达A 地,求两人的速度.

考点七、根与系数的关系

⑴前提:对于02

=++c bx ax 而言,当满足①0≠a 、②0≥?时,

才能用韦达定理。 ⑵主要内容:a

c x x a b x x =-

=+2121, ⑶应用:整体代入求值。

典型例题:

例1、已知一个直角三角形的两直角边长恰是方程07822

=+-x x 的两根,则这个直角三 角形的斜边是( )

A.3

B.3

C.6

D.6

例2、已知关于x 的方程()01122

2

=+-+x k x k 有两个不相等的实数根21,x x , (1)求k 的取值范围;

(2)是否存在实数k ,使方程的两实数根互为相反数?若存在,求出k 的值;若不 存在,请说明理由。

例3、小明和小红一起做作业,在解一道一元二次方程(二次项系数为1)时,小明因看错 常数项,而得到解为8和2,小红因看错了一次项系数,而得到解为-9和-1。你知道 原来的方程是什么吗?其正确解应该是多少?

例4、已知b a ≠,0122=--a a ,0122

=--b b ,求=+b a

变式:若0122=--a a ,0122

=--b b ,则

a

b

b a +的值为 。 例5、已知βα,是方程012

=--x x 的两个根,那么=+βα34 . 针对练习:

1、解方程组???=+=+)

2(5)

1(,32

2y x y x 2.已知472

-=-a a ,472

-=-b b )(b a ≠,求

b

a

a b +

的值。 3、已知21,x x 是方程092

=--x x 的两实数根,求663722

23

1-++x x x 的值。

第二部分:一元二次方程应用题经典题型汇总

一、增长率问题

例1 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.

解 设这两个月的平均增长率是x .,则根据题意,得200(1-20%)(1+x )2=193.6, 即(1+x )2=1.21,解这个方程,得x 1=0.1,x 2=-2.1(舍去). 答 这两个月的平均增长率是10%.

说明 这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m (1+x )2=n 求解,其中m <n .对于负的增长率问题,若经过两次相等下降后,则有公式m (1-x )2=n 即可求解,其中m >n .

二、商品定价

例2 益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a 元,则可卖出(350-10a )件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?

解 根据题意,得(a -21)(350-10a )=400,整理,得a 2-56a +775=0, 解这个方程,得a 1=25,a 2=31.

因为21×(1+20%)=25.2,所以a 2=31不合题意,舍去.

所以350-10a=350-10×25=100(件).

答需要进货100件,每件商品应定价25元.

说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点.

三、储蓄问题

例3王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)解设第一次存款时的年利率为x.

则根据题意,得[1000(1+x)-500](1+0.9x)=530.整理,得90x2+145x-3=0.

解这个方程,得x1≈0.0204=2.04%,x2≈-1.63.由于存款利率不能为负数,所以将x2≈-1.63舍去.

答第一次存款的年利率约是2.04%.

说明这里是按教育储蓄求解的,应注意不计利息税.

四、趣味问题

例4一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?

解设渠道的深度为xm,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.

则根据题意,得1

2

(x+0.1+x+1.4+0.1)·x=1.8,整理,得x2+0.8x-1.8=0.

解这个方程,得x1=-1.8(舍去),x2=1.

所以x+1.4+0.1=1+1.4+0.1=2.5.

答渠道的上口宽2.5m,渠深1m.

说明求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解.

五、古诗问题

例5读诗词解题:(通过列方程式,算出周瑜去世时的年龄).

大江东去浪淘尽,千古风流数人物;

而立之年督东吴,早逝英年两位数;

十位恰小个位三,个位平方与寿符;

哪位学子算得快,多少年华属周瑜?

解设周瑜逝世时的年龄的个位数字为x,则十位数字为x-3.

则根据题意,得x2=10(x-3)+x,即x2-11x+30=0,解这个方程,得x=5或x=6.

当x=5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;

当x=6时,周瑜年龄为36岁,完全符合题意.

答周瑜去世的年龄为36岁.

说明本题虽然是一道古诗问题,但它涉及到数字和年龄问题,通过求解同学们应从中认真口味.

六、象棋比赛

例6象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979,1980,1984,1985.经核实,有一位同学统计无误.试计算这次比赛共有多少个选手参加.

解设共有n个选手参加比赛,每个选手都要与(n-1)个选手比赛一局,共计n(n-1)局,但两个选手

的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为1

2

n(n-1)局.由于每局共计2分,所

以全部选手得分总共为n(n-1)分.显然(n-1)与n为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0,2,6,故总分不可能是1979,1984,1985,因此总分只能是1980,于是由n(n-1)=1980,得n2-n-1980=0,解得n1=45,n2=-44(舍去).

答参加比赛的选手共有45人.

说明类似于本题中的象棋比赛的其它体育比赛或互赠贺年片等问题,都可以仿照些方法求解.

七、情景对话

例7春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准.

某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?

解设该单位这次共有x名员工去天水湾风景区旅游.因为1000×25=25000<27000,所以员工人数一定超过25人.

则根据题意,得[1000-20(x-25)]x=27000.

整理,得x2-75x+1350=0,解这个方程,得x1=45,x2=30.

当x=45时,1000-20(x-25)=600<700,故舍去x1;

当x2=30时,1000-20(x-25)=900>700,符合题意.

答:该单位这次共有30名员工去天水湾风景区旅游.

说明求解本题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论.

八、等积变形

例8 将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为原来荒地面积的三分之二.(精确到0.1m )

(1)设计方案1(如图2)花园中修两条互相垂直且宽度相等的小路. (2)设计方案2(如图3)花园中每个角的扇形都相同.

以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由.

解 都能.(1)设小路宽为x ,则18x +16x -x 2=

2

3

×18×15,即x 2-34x +180=0, 解这个方程,得x =

34436

2

,即x ≈6.6. (2)设扇形半径为r ,则3.14r 2=

23

×18×15,即r 2≈57.32,所以r ≈7.6. 说明 等积变形一般都是涉及的是常见图形的体积,面积公式;其原则是形变积不变;或形变积也变,但重量不变,等等.

九、动态几何问题

例9 如图4所示,在△ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 从点A 出发沿边AC 向点C 以1cm /s 的速度移动,点Q 从C 点出发沿CB 边向点B 以2cm /s 的速度移动.

(1)如果P 、Q 同时出发,几秒钟后,可使△PCQ 的面积为8平方厘米?

(2)点P 、Q 在移动过程中,是否存在某一时刻,使得△PCQ 的面积等于△ABC 的面积的一半.若存在,求出运动的时间;若不存在,说明理由.

图1

如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于700元.

如果人数不超过25人,人均旅游费用为1000元.

图2

Q

https://www.360docs.net/doc/f05111522.html,

P

C B

A 图4 https://www.360docs.net/doc/f05111522.html,

图3

解 因为∠C =90°,所以AB =

22AC BC +=2268+=10(cm ).

(1)设xs 后,可使△PCQ 的面积为8cm 2,所以 AP =xcm ,PC =(6-x )cm ,CQ =2xcm . 则根据题意,得

1

2

·(6-x )·2x =8.整理,得x 2-6x +8=0,解这个方程,得x 1=2,x 2=4. 所以P 、Q 同时出发,2s 或4s 后可使△PCQ 的面积为8cm 2. (2)设点P 出发x 秒后,△PCQ 的面积等于△ABC 面积的一半. 则根据题意,得

12(6-x )·2x =12×12

×6×8.整理,得x 2-6x +12=0. 由于此方程没有实数根,所以不存在使△PCQ 的面积等于ABC 面积一半的时刻.

说明 本题虽然是一道动态型应用题,但它又要运用到行程的知识,求解时必须依据路程=速度×时间.

十、梯子问题

例10 一个长为10m 的梯子斜靠在墙上,梯子的底端距墙角6m . (1)若梯子的顶端下滑1m ,求梯子的底端水平滑动多少米? (2)若梯子的底端水平向外滑动1m ,梯子的顶端滑动多少米?

(3)如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米? 解 依题意,梯子的顶端距墙角22106-=8(m ).

(1)若梯子顶端下滑1m ,则顶端距地面7m .设梯子底端滑动xm . 则根据勾股定理,列方程72+(6+x )2=102,整理,得x 2+12x -15=0, 解这个方程,得x 1≈1.14,x 2≈-13.14(舍去), 所以梯子顶端下滑1m ,底端水平滑动约1.14m .

(2)当梯子底端水平向外滑动1m 时,设梯子顶端向下滑动xm . 则根据勾股定理,列方程(8-x )2+(6+1)2=100.整理,得x 2-16x +13=0. 解这个方程,得x 1≈0.86,x 2≈15.14(舍去).

所以若梯子底端水平向外滑动1m ,则顶端下滑约0.86m . (3)设梯子顶端向下滑动xm 时,底端向外也滑动xm .

则根据勾股定理,列方程 (8-x )2+(6+x )2=102,整理,得2x 2-4x =0, 解这个方程,得x 1=0(舍去),x 2=2.

所以梯子顶端向下滑动2m 时,底端向外也滑动2m .

说明 求解时应注意无论梯子沿墙如何上下滑动,梯子始终与墙上、地面构成直角三角形. 十一、航海问题

例11 如图5所示,我海军基地位于A 处,在其正南方向200海里处有一重要目标B ,在B 的正东方向200海里处有一重要目标C ,小岛D 恰好位于AC 的中点,岛上有一补给码头;小岛F 位于BC 上且恰好处于小岛D 的正南方向,一艘军舰从A 出发,经B 到C 匀速巡航.一艘补给船同时从D 出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.

(1)小岛D 和小岛F 相距多少海里?

(2)已知军舰的速度是补给船的2倍,军舰在由B 到C 的途中与补给船相遇于E 处,那么相遇时补给船航行了多少海里?(精确到0.1海里)

解(1)F 位于D 的正南方向,则DF ⊥BC .因为AB ⊥BC ,D 为AC 的中点,所以DF =1

2

AB =100海里,所以,小岛D 与小岛F 相距100海里.

(2)设相遇时补给船航行了x 海里,那么DE =x 海里,AB +BE =2x 海里,EF =AB +BC -(AB +BE )-CF =(300-2x )海里.

在Rt △DEF 中,根据勾股定理可得方程x 2=1002+(300-2x )2,整理,得3x 2-1200x +100000=0. 解这个方程,得x 1=200-

10063≈118.4,x 2=200+1006

3

(不合题意,舍去). 所以,相遇时补给船大约航行了118.4海里.

说明 求解本题时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程.

十二、图表信息

例12 如图6所示,正方形ABCD 的边长为12,划分成12×12个小正方形格,将边长为n (n 为整数,且2≤n ≤11)的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一张n ×n 的纸片正好盖住正方形ABCD 左上角的n ×n 个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n -1)×(n -1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD 的右下角为止.

请你认真观察思考后回答下列问题:

(1)由于正方形纸片边长n 的取值不同,?完成摆放时所使用正方形纸片的张数也不同,请填写下表:

纸片的边长n

2 3 4 5 6

使用的纸片张数

(2)设正方形ABCD 被纸片盖住的面积(重合部分只计一次)为S 1,未被盖住的面积为S 2. ①当n =2时,求S 1∶S 2的值;

②是否存在使得S 1=S 2的n 值?若存在,请求出来;若不存在,请说明理由.

https://www.360docs.net/doc/f05111522.html,

F E

D

C B A

图5

解(1)依题意可依次填表为:11、10、9、8、7. (2)S 1=n 2+(12-n )[n 2-(n -1)2]=-n 2+25n -12.

①当n =2时,S 1=-22+25×2-12=34,S 2=12×12-34=110. 所以S 1∶S 2=34∶110=17∶55. ②若S 1=S 2,则有-n 2+25n -12=

1

2

×122,即n 2-25n +84=0, 解这个方程,得n 1=4,n 2=21(舍去). 所以当n =4时,S 1=S 2.所以这样的n 值是存在的.

说明 求解本题时要通过阅读题设条件及提供的图表,及时挖掘其中的隐含条件,对于求解第(3)小题,可以先假定问题的存在,进而构造一元二次方程,看得到的一元二次方程是否有实数根来加以判断.

十三、探索在在问题

例13 将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形. (1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少? (2)两个正方形的面积之和可能等于12cm 2吗? 若能,求出两段铁丝的长度;若不能,请说明理由. 解(1)设剪成两段后其中一段为xcm ,则另一段为(20-x )cm .

则根据题意,得24x ?? ???+2

204x -??

???

=17,解得x 1=16,x 2=4,

当x =16时,20-x =4,当x =4时,20-x =16, 答 这段铁丝剪成两段后的长度分别是4cm 和16cm .

(2)不能.理由是:不妨设剪成两段后其中一段为ycm ,则另一段为(20-y )cm .则由题意得

24y ?? ???+2

204y -?? ???

=12,整理,得y 2-20y +104=0,移项并配方,得(y -10)2

=-4<0,所以此方程无解,即不能剪成两段使得面积和为12cm 2.

说明 本题的第(2)小问也可以运用求根公式中的b 2-4ac 来判定.若b 2-4ac ≥0,方程有两个实数根,若b 2-4ac <0,方程没有实数根,本题中的b 2-4ac =-16<0即无解.

十四、平分几何图形的周长与面积问题

例14 如图7,在等腰梯形ABCD 中,AB =DC =5,AD =4,BC =10.点E ?在下底边BC 上,点F 在腰AB 上.

(1)若EF 平分等腰梯形ABCD 的周长,设BE 长为x ,试用含x 的代数式表示△BEF 的面积; (2)是否存在线段EF 将等腰梯形ABCD 的周长和面积同时平分?若存在,求出此时BE 的长;若不存在,请说明理由;

图6

(3)是否存在线段EF 将等腰梯形ABCD 的周长和面积同时分成1∶2的两部分?若存在,求此时BE 的长;若不存在,请说明理由.

解(1)由已知条件得,梯形周长为12,高4,面积为28. 过点F 作FG ⊥BC 于G ,过点A 作AK ⊥BC 于K . 则可得,FG =

125

x

×4, 所以S △BEF =

12BE ·FG =-25x 2+245

x (7≤x ≤10). (2)存在.由(1)得-

25x 2+24

5

x =14,解这个方程,得x 1=7,x 2=5(不合题意,舍去), 所以存在线段EF 将等腰梯形ABCD 的周长与面积同时平分,此时BE =7. (3)不存在.假设存在,显然有S △BEF ∶S 多边形AFECD =1∶2, 即(BE +BF )∶(AF +AD +DC )=1∶2.则有-

25x 2+165x =28

3

, 整理,得3x 2-24x +70=0,此时的求根公式中的b 2-4ac =576-840<0,

所以不存在这样的实数x .即不存在线段EF 将等腰梯形ABCD 的周长和面积同时分成1∶2的两部分. 说明 求解本题时应注意:一是要能正确确定x 的取值范围;二是在求得x 2=5时,并不属于7≤x ≤10,应及时地舍去;三是处理第(3)个问题时的实质是利用一元二次方程来探索问题的存在性.

十五、利用图形探索规律

例15 在如图8中,每个正方形有边长为1 的小正方形组成:

(1)观察图形,请填写下列表格:

正方形边长 1 3 5 7 … n (奇数) 黑色小正方形个数

正方形边长

2 4 6 8 … n (偶数)

https://www.360docs.net/doc/f05111522.html,

F

E D

C B A 图7

K G 图8

黑色小正方形个数…

(2)在边长为n(n≥1)的正方形中,设黑色小正方形的个数为P1,白色小正方形的个数为P2,问是

否存在偶数

..n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.

解(1)观察分析图案可知正方形的边长为1、3、5、7、…、n时,黑色正方形的个数为1、5、9、13、2n-1(奇数);正方形的边长为2、4、6、8、…、n时,黑色正方形的个数为4、8、12、16、2n(偶数).

(2)由(1)可知n为偶数时P1=2n,所以P2=n2-2n.根据题意,得n2-2n=5×2n,即n2-12n=0,解得n1=12,n2=0(不合题意,舍去).所以存在偶数n=12,使得P2=5P1.

说明本题的第(2)小问是属于存在性问题,求解时,可以先假设结论存在,进而从中找到数量关系,使问题获解.

综上所言,列一元二次方程解应用题是列一元一次方程、二元一次方程组解应用题的延续和发展,列方程解应用题就是先把实际问题抽象为方程模型,然后通过解方程获得对实际问题的解决.列一元二次方程解应用题的关键是:找出未知量与已知量之间的联系,从而将实际问题转化为方程模型,要善于将普通语言转化为代数式,在审题时,要特别注意关键词语,如“多少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等等。

一元二次方程专题复习

一元二次方程专题复习(一) 直接开平方法→配方法 要点一、一元二次方程的解法---配方法 1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种 解一元二次方程的方法叫配方法. (2)配方法解一元二次方程的理论依据是公式:. (3)用配方法解一元二次方程的一般步骤: ①把原方程化为 的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方; ④再把方程左边配成一个完全平方式,右边化为一个常数; ⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释: (1)配方法解一元二次方程的口诀:一除二移三配四开方; (2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式. 类型一、用配方法解一元二次方程 1.用配方法解方程x 2-7x-1=0. 【答案与解析】 将方程变形为x 2-7x =1,两边加一次项的系数的一半的平方 ,得 x 2 -7x+ =1+,所以有=1+. 直接开平方,得x-=或x-=-. 所以原方程的根为x =+或x =-. 【总结升华】一般地,用先配方,再开平方的方法解一元二次方程,应按以下步骤进行: (1)把形如ax 2+bx+c =0(a ≠0)的方程中二次项的系数化为1; (2)把常数项移到方程的右边; 2 2 2 2()a ab b a b ±+=±

(3)方程的两边都加“一次项系数一半的平方”,配方得形如(x+m)2=n(n ≥0)的方程; (4)用直接开平方的方法解此题. 举一反三: 【变式】用配方法解方程. (1)x 2-4x-2=0; (2)x 2+6x+8=0. 要点二、配方法的应用 1.用于比较大小: 在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小. 2.用于求待定字母的值: 配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值. 3.用于求最值: “配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明: “配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用. 要点诠释: “配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,一定要学好. 类型二、配方法在代数中的应用 2.若代数式,,则的值( ) A .一定是负数 B .一定是正数 C .一定不是负数 D .一定不是正数 【答案】B ; 【解析】(作差法) .故选B. 【总结升华】本例是“配方法”在比较大小中的应用,通过作差法最后拆项、配成完全平方, 使此差大于零而比较出大小. 221078M a b a =+-+2251N a b a =+++M N -2222 1078(51)M N a b a a b a -=+-+-+++2222107851a b a a b a =+-+----29127a a =-+291243a a =-++2(32)30a =-+>

一元二次方程的应用(专题训练)上课讲义

一元二次方程的应用(专题训练)

一元二次方程的实际应用 (1)与数字有关的问题 例1 一个两位数,十位数字与个位数字之和是5,把这个数的个位数字与十位数字对调后,所得的新两位数与原来的两位数的乘积为736,求原来的两位数 解: 练习题一 1.一个两位数,个位数字比十位数字大3,个位数字的平方恰好等于这个两位数,则这个两位数是多少? 2、某两位数的十位数字是082=-x x 的解,则其十位数字是多少;某两位数的个位数字是方程082=-x x 的解,则其个位数是多少? 3、一个两位数,个位上数字比十位数字小4,且个位数字与十位数字的平方和比这两位数小4,设个位数字为x ,求这个两位数? 4、一个两位数,个位上的数字是十位数字的平方还多1,若把个位上的数字与十位上的数字对调,所得的两位数比原数大27,求原两位数? 5、一个三位数,百位上数字为2,十位上数字比个位上数字小3,这个三位数个位、十位、百位上的数字之积的6倍比这个三位数小20,求这个三位数?

例2 三个连续奇数,它们的平方和为251,求这三个数? 解: 练习题二 1、两个数的和为16,积为48,则这两个正整数各是多少? 2、若两个连续正整数的平方和为313,则这两个正整数的和是多少? 3、三个连续正整数中,前两个数的平方和等于第三个数的平方,则这三个数从小到大依次是多少? 4、三个连续偶数,使第三个数的平方等于前两个数的平方和,求这三个数? 5、有四个连续整数,已知它们的和等于其中最大的与最小的两个整数的积,求这四个数?

(2)与几何图形面积有关的问题 例3 一个直角三角形三边的长是三个连续整数,求这三条边的长和它的面积 解: 练习题三 1.直角三角形两直角边的比是8:15,而斜边的长等于6.8cm ,那么这个直角三角形的面积等于多少? 2、直角三角形的面积为6,两直角边的和为7,则斜边长为多少? 3、用一条长12厘米的铁丝折成一个斜边长是5厘米的直角三角形,则两直角边的长是多少? 4、一个三角形的两边长为2和4,第三边长是方程0121022=+-x x 的解,则三角形的周长为多少 6、若三角形的三边长均满足方程0862=+-x x ,则此三角形的周长为多少?

初中数学一元二次方程复习专题

一元二次方程专题复习 韦达定理:如一元二次方程20(0)ax bx c a ++=≠的两根为12,x x ,则 12b x x a +=-,12c x x a ?= 适用题型:(1)已知一根求另一根及未知系数; (2)求与方程的根有关的代数式的值; (3)已知两根求作方程; (4)已知两数的和与积,求这两个数; (5)确定根的符号:(12,x x 是方程两根); (6)题目给出两根之间的关系,如两根互为相反数、互为倒数、两根 的平方和或平方差是多少、两根是Rt ?的两直角边求斜边等情况. 注意:(1)2 22 12 1212()2x x x x x x +=+-? (2)22121212()()4x x x x x x -=+-?; 12x x -= (3)①方程有两正根,则1212 00x x x x ?≥?? +>???>?; ②方程有两负根,则1212 000x x x x ?≥?? +? ; ③方程有一正一负两根,则120 x x ?>?? ??? --

一元二次方程专题能力培优含答案

第2章 一元二次方程 2.1 一元二次方程 专题一 利用一元二次方程的定义确定字母的取值 1.已知2 (3)1m x -+=是关于x 的一元二次方程,则m 的取值范围是( ) A.m ≠3 B.m ≥3 C.m ≥-2 D. m ≥-2且m ≠3 2. 已知关于x 的方程2 1 (1)(2)10m m x m x +++--=,问: (1)m 取何值时,它是一元二次方程并写出这个方程; (2)m 取何值时,它是一元一次方程? 专题二 利用一元二次方程的项的概念求字母的取值 3.关于x 的一元二次方程(m-1)x 2+5x+m 2 -1=0的常数项为0,求m 的值. 4.若一元二次方程2 (24)(36)80a x a x a -+++-=没有一次项,则a 的值为 . 专题三 利用一元二次方程的解的概念求字母、代数式 5.已知关于x 的方程x 2 +bx+a=0的一个根是-a (a≠0),则a-b 值为( ) A.-1 B.0 C.1 D.2 6.若一元二次方程ax 2 +bx+c=0中,a -b+c=0,则此方程必有一个根为 . 7.已知实数a 是一元二次方程x 2 -2013x+1=0的解,求代数式22 1 20122013 a a a +--的值. 知识要点: 1.只含有一个未知数(一元),并且未知数的最高次数是2(二次),等号两边都是整式的方程,叫做一元二次方程. 2.一元二次方程的一般形式是ax 2+bx+c=0(a ≠0),其中ax 2 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项. 3.使一元二次方程的两边相等的未知数的值,叫做一元二次方程的解,又叫一元二次方程的根. 温馨提示: 1.一元二次方程概念中一定要注意二次项系数不为0的条件. 2.一元二次方程的根是两个而不再是一个. 方法技巧: 1.ax k +bx+c=0是一元一次方程的情况有两种,需要分类讨论. 2.利用一元二次方程的解求字母或者代数式的值时常常用到整体思想,需要同学们认真领

中考数学一轮复习知识点+题型专题讲义12 一元二次方程(教师版)

专题12 一元二次方程 考点总结 【思维导图】

【知识要点】 知识点一一元二次方程定义及一般形式 概念:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数式2(二次)的方程,叫做一元二次方程。 一般形式: 20(0) ax bx c a ++=≠。其中a为二次项系数,b为一次项系数,c为常数项。 【注意】 1)只含有一个未知数; 2)所含未知数的最高次数是2; 3)整式方程。 1.(2019·四川中考模拟)下列方程,是一元二次方程的是() ①3x2+x=20,②2x2-3xy+4=0,③x2-1 x =4,④x2=0,⑤x2- 3 x +3=0 A.①②B.①④⑤C.①③④D.①②④⑤ 【答案】B 【详解】 ①符合一元二次方程的定义,是一元二次方程;②含有两个未知数x、y,不符合一元二次方程的定义,不是一元二次方程;③方程中含有分式,不符合一元二次方程的定义,不是一元二次方程;④符合一元二次方程的定义,是一元二次方程;⑤符合一元二次方程的定义,是一元二次方程;综上,是一元二次方程的是①④⑤,故选B. 2.(2019·广西柳州二十五中中考模拟)根据下列表格的对应值,判断方程ax2+bx+c=0(a≠0,a、b、c为常

数)一个解的范围是( ) A .3<x <3.23 B .3.23<x <3.24 C .3.24<x <3.25 D .3.25<x <3.26 【答案】C 【详解】 观察表格可知ax 2+bx+c 的值与0比较接近的是-0.02和0.03,相对应的x 的值分别为3.24秘3.25,因此方程ax 2+bx+c=0(a≠0,a 、b 、c 为常数)一个解的范围是3.24<x <3.25; 故选C. 3.(2019·广东中考模拟)方程2x 2﹣3x ﹣5=0的二次项系数、一次项系数、常数项分别为( ) A .3、2、5 B .2、3、5 C .2、﹣3、﹣5 D .﹣2、3、5 【答案】C 【详解】2x 2﹣3x ﹣5=0的二次项系数、一次项系数、常数项分别为2、﹣3、﹣5. 故选C. 4.(2018·湖南中考模拟)下列方程中是关于x 的一元二次方程的是( ) A .2 2 1 0x x + = B .20ax bx c ++= C .()()121x x -+= D .223250x xy y --= 【答案】C 【详解】 A. 是分式方程,故此选项错误; B. 当a≠0时,是一元二次方程,故此选项错误; C. 是一元二次方程,故此选项正确; D. 是二元二次方程,故此选项错误; 故选:C. 5.(2018·湖北中考模拟)下列关于x 的方程中,属于一元二次方程的是( ) A .x ﹣1=0 B .x 2+3x ﹣5=0 C .x 3+x=3 D .ax 2+bx+c=0 【答案】B 【详解】

数学 一元二次方程的专项 培优练习题含答案

一、一元二次方程 真题与模拟题分类汇编(难题易错题) 1.已知关于x 的一元二次方程()22 2130x k x k --+-=有两个实数根. ()1求k 的取值范围; ()2设方程两实数根分别为1x ,2x ,且满足221223x x +=,求k 的值. 【答案】(1)134k ≤ ;(2)2k =-. 【解析】 【分析】 ()1根据方程有实数根得出()()22[2k 1]41k 38k 50=---??-=-+≥,解之可得. ()2利用根与系数的关系可用k 表示出12x x +和12x x 的值,根据条件可得到关于k 的方程,可求得k 的值,注意利用根的判别式进行取舍. 【详解】 解:()1关于x 的一元二次方程()22 2130x k x k --+-=有两个实数根, 0∴≥,即()()22[21]4134130k k k ---??-=-+≥, 解得134 k ≤. ()2由根与系数的关系可得1221x x k +=-,2123x x k =-, () 222222121212()2(21)23247x x x x x x k k k k ∴+=+-=---=-+, 221223x x +=, 224723k k ∴-+=,解得4k =,或2k =-, 134 k ≤, 4k ∴=舍去, 2k ∴=-. 【点睛】 本题考查了一元二次方程2 ax bx c 0(a 0,++=≠a ,b ,c 为常数)根的判别式.当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.以及根与系数的关系. 2.已知:关于的方程 有两个不相等实数根. (1) 用含的式子表示方程的两实数根; (2)设方程的两实数根分别是,(其中),且,求的值.

一元二次方程讲义-绝对经典实用教案.doc

一元二次方程 ●夯实基础 例1 已知关于x 的方程22(2)1a x ax x --=-是一元二次方程,求a 的取值范围_________. 例2 若一元二次方程222(2)3(15)40m x m x m -+++-=的常数项为零,则m 的值为_________. ●能力提升 1、已知方程2240a b x x x --+=是关于x 的一元二次方程,求a =______、b =______. 2、若方程(m-1)x 2+ x=1是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠1 B .m≥0 C .m≥0且m≠1 D .m 为任何实数 ●培优训练 例3 m 为何值时,关于x 的方程2 ((3)4m m x m x m --+=是一元二次方程. 例4已知方程20a b a b x x ab +---=是关于x 的一元二次方程,求a 、b 的值. ●练习 1、m 为何值时,关于x 的方程2 ((3)4m m x m x m -+=是一元二次方程. 2、已知关于x 的方程22(2)1a x ax x --=-是一元二次方程,求a 的取值范围. 3、已知关于x 的方程22()(2)x a ax -=-是一元二次方程,求a 的取值范围. 4、若 2310a b a b x x +--+=是关于x 的一元二次方程,求a 、b 的值. 5、若一元二次方程222(2)3(15)40m x m x m -+++-=的常数项为零,则m 的值为________ ●夯实基础 (1)2269(52)x x x -+=- 21)x -= (3) 211 063 x x +-= (4) 231y += 板块一 一元二次方程的定义 板块二 一元二次方程的解与解法

2020届中考数学专题复习《一元二次方程》专题训练

一元二次方程 A级基础题 1.一元二次方程x2-3x=0的根是( ) A.x1=0,x2=-3 B.x1=1,x2=3 C.x1=1,x2=-3 D.x1=0,x2=3 2.(2017浙江舟山)用配方法解方程x2+2x-1=0时,配方结果正确的是( ) A.(x+2)2=2 B.(x+1)2=2 C.(x+2)2=3 D.(x+1)2=3 3.(2017年江苏南京改编)解方程(x-5)2=19,用以下哪种方法最恰当( ) A.配方法 B.直接开平方法 C.因式分解法 D.公式法 4.(2018年湖南娄底)关于x的一元二次方程x2-(k+3)x+k=0的根的情况是( ) A.有两不相等实数根 B.有两相等实数根 C.无实数根 D.不能确定 5.(2018年湖南湘潭)若一元二次方程x2-2x+m=0有两个不相同的实数根,则实数m的取值范围是( ) A.m≥1 B.m≤1 C.m>1 D.m<1 6.如图2-1-4,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2 m,另一边减少了3 m,剩余一块面积为20 m2的矩形空地,则原正方形空地的边长是( ) 图2-1-4 A.7 m B.8 m C.9 m D.10 m 7.(2018年吉林)若关于x的一元二次方程x2+2x-m=0有两个相等的实数根,则m的值为________. 8.一元二次方程x2-2x=0的解是____________. 9.已知关于x的一元二次方程x2+mx-8=0的一个实数根为2,则另一实数根及m的值分别为____________. 10.已知关于x的方程x2+2x+a-2=0. (1)若该方程有两个不相等的实数根,求实数a的取值范围; (2)当该方程的一个根为1时,求a的值及方程的另一根.

5一元二次方程的应用尖子班讲义

一元二次方程根与系数关系及应用题(讲义) 一、知识点睛 1.从求根公式中我们发现12x x +=_______,12x x ?=_________, 这两个式子称为_____________,数学史上称为___________. 注:使用___________________的前提是_________________. 2.一元二次方程应用题的常见类型有: ①______________;②______________;③______________. 增长率型 例如:原价某元,经过两次连续降价(涨价); 1人患了流感,经过两轮传染. 经济型 例如:“每涨价××元,则销量减少××件”. 3.应用题的处理流程: ① 理解题意,辨析类型; ② 梳理信息,建立数学模型; ③ 求解,结果验证. 二、精讲精练 1. 若x 1,x 2是一元二次方程2274x x -=的两根,则x 1+x 2与12x x ?的值分别是 ( ) A .7错误!未找到引用源。,4 B .7 2-,2 C .7 2,2 D .72 , -2 2. 若x 1 =2是一元二次方程210x ax ++=的一个根,则 该方程的另一个根x 2=_________,a =________. 3. 若关于x 的方程2210x x a ++-=有两个负根,则a 的取值范围是 ____________________. 4. 若关于x 的方程2220x x m +-=的两根之差的绝对值是则m =________. 5. 某商品原售价289元,经过连续两次降价后售价256元.设平均每次降价的 百分率为x ,则下面所列方程正确的是( ) A .2289(1)256x -= B .2256(1)289x -= C .289(12)256x -= D .256(12)289x -= 6. 据调查,某市2013年的房价为6 000元/米2,预计2015年将达到8 840元/ 米2,求该市这两年房价的年平均增长率.设年平均增长率为x ,根据题意,所列方程为_______________. 7. 有一人患了流感,经过两轮传染后共有121人患了流感,则每轮传染中平均 一个人传染了________________个人.

一元二次方程专题复习

一元二次方程专题复习 一、选择题 1、设方程x2-4x-1=0的两个根为x1与x2,则x1x2的值是( ). A.-4 B.-1 C. 1 D. 0 2、设方程x2-4x-1=0的两个根为x1与x2,则x1x2的值是( ). A.-4 B.-1 C. 1 D. 0 3、方程组的解是() A.B. … C.D. 4、若关于的一元二次方程的两根中有且仅有一根在0和1之间(不含0和l),则a 的取值范围是() A. B. C. D. 5、若关于x的一元二次方程的常数项为0,则m的值等于() A.1 B.2 C.1或2 D.0 6、方程的根是( ) A.B.C. D. 7、已知代数式的值为9,则的值为()

A.18 B.12 C.9 D.7 8、关于x的一元二次方程的根的情况是() A.有两个不相等的实数根B.有两个相等的实数根 C.没有实数根D.无法确定 9、若关于x的一元二次方程的常数项为0,则m的值等于 A.1 B.2 C.1或2 D.0 10、已知是关于的一元二次方程的两实数根,则式子的值是() A. B. C.D. ' 11、一元二次方程x一2x=0的解是( ) A.0 B.2 C.0,一2 D.0,2 12、设一元二次方程的两个实数根为和,则下列结论正确的是() A.B. C.D. 13、三角形的两边长分别为3和6,第三边的长是方程的一个根,则这个三角形的周长是() 或13 14、关于的一元二次方程的解为( ).

A.=1,=-1 B.==1 C. ==-1 D.无解 15、将方程x2+4x+1=0配方后,原方程变形为 ( ) A.(x+2)2=3 B.(x+4)2=3 C.(x+2)2=-3 D. (x+2)2=-5 16、若关于x的一元二次方程的两个实数根分别是,且满足.则k的值为 ( ) A.-1或 B.-1 C. D.不存在 17、关于的一元二次方程的两个实数根分别是,且,则的值是() A.1 B.12 C.13 D.25 & 二、填空题 18、设一元二次方程的两个实数根分别为和,则 , . 19、已知x1、x2是方程x2-3x-2=0的两个实根,则(x1-2) (x2-2)= . 20、已知一元二次方程的一个根为,则. 21、方程的较大根为,方程的较小根为,则 。

一元二次方程培优专题讲义(最新整理)

数学培优专题讲义:一元二次方程 一.知识的拓广延伸及相关史料 1.一元二次方程几种解法之间的关系解一元二次方程有下列几种常用方法:(1)配方法:如,经配方得 2670x x ++=,再直接用开平方法; 2(3)2x +=(2)公式法;(3)因式分解法。 这三种方法并不是孤立的,直接开平方法,实际也是因式分解法,解方程,只2670x x ++=要变形为 即可,或原方程 22(3)0x +-=经配方化为,再求解时, 2670x x ++=2(3)2x +=还是归到用平方差公式的因式分解法,所以配方法归为用因式分解法的手段。公式法在推导公式过程中用的是配方法和直接开平方法,因此,它还是归到因式分解法,所不同的是,公式法用一元二次方程的系数来表示根,因而可以作为公式。由此可见,对因式分解法应予以足够的重视。因式分解法还可推广到高次方程。 2.我国古代的一元二次方程 提起代数,人们自然就把它和方程联系起来。事实上,过去代数的中心问题就是对方程的研究。我国古代对代数的研究,特别是对方程解法的研究有着优良的传统,并取得了重要成果。 下面是我国南宋数学家杨辉在1275年提出的一个问题:”直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步),问阔及长各几步?”答:”阔二十四步,长三十六步.” 这里,我们不谈杨辉的解法,只用已学过的知识解决上面的问题. 上面的问题选自杨辉所著的《田亩比类乘除算法》。原题另一个提法是:“直田积八百六十四步,只云阔与长共六十步,问阔及长各几步?”这个问题同样可以类似求解. 3. 掌握数学思想方法,以不变应万变。 本章内容蕴涵了丰富的数学方法,主要有转化思想、类比思想、降次法、配方法等。 (1)转化思想 我们知道,解方程的过程就是不断地通过变形把原方程转化为与它等价的最简单方程的过程。因此,转化思想就是解方程过程中思维活动的主导思想。在本章,转化无所不在,无处不有, 可以说这是本章的精髓和特色之一,其表现主要有以下方面: ①未知转化为已知,这是解方程的基本思路: ②一元二次方程转化为一元一次方程,这是通过将原方程降次达到的: ③特殊转化为一般,一般转化为特殊。例如,通过用配方法解数字系数的一元二次方程归纳出用配方法解一般形式2670x x ++=的一元二次方程的方法,进而得出20ax bx c ++=一元二次方程的求根公式,而用公式法又可以解各种具体的一元二次方程,推导出一元二次方程根与系数的关系。又如,通过设未知数,找出等量关系,列方程,把实际问题转化为解方程问题,等等。 掌握转化思想并举一反三,还可以解决很多其他方程问题,如高次方程转化为一元一次或一元二次方程,分式方程转化为整式方程,无理方程转化为有理方程,二元二次方程组转化为二元一次方程组,总之,本章学习的关键之一是学会如何”转化”. 练习: ;222 1 1.510a x x a a -+=+ 是方程的一根,求的值 2421032. a x a ?--=--是方程x 的一根,求a 的值 2 2 42 3101 x x x x x --=-+、若,求的值。 (2)类比思想 本章多次运用类比找出新旧知识的联系,在新旧知识间进行对比,以利于更快更好地掌握新知识. 如用配方法解一元二次方程时,可类比平方根的概念和意义,列一元二次方程解应用题,可类比列一元一次方程解应用题的思路和一般步骤. 类比思想是联系新旧知识的纽带,有利于帮助我们开阔思路,研究解题途径和方法,有利于掌握新知识、巩固旧知识,学习时应特别重视。

(完整版)一元二次方程知识点总结和例题——复习

知识点总结:一元二次方程 知识框架 知识点、概念总结 1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。 2.一元二次方程有四个特点: (1)含有一个未知数; (2)且未知数次数最高次数是2; (3)是整式方程。要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。如果能整理为 ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程。 (4)将方程化为一般形式:ax2+bx+c=0时,应满足(a≠0) 3. 一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,经过整理,?都能化成如下形式ax2+bx+c=0(a≠0)。 一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a 是二次项系数;bx是一次项,b是一次项系数;c是常数项。4.一元二次方程的解法 (1)直接开平方法 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如b a x= +2) (的一元二次方程。根据平方根的定义可知,a x+是b的平方根,当0 ≥ b时,b a x± = +,b a x± - =,当b<0时,方程没有实数根。 (2)配方法 配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。配方法的理论根据是完全平方公式 2 2 2) ( 2b a b ab a+ = + ±,把公式中的a看做未知数x,并用x代替,则有 2 2 2) ( 2b x b bx x± = + ±。 配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p ±√q;如果q<0,方程无实根. (3)公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程)0 (0 2≠ = + +a c bx ax的求根公式: )0 4 ( 2 4 2 2 ≥ - - ± - =ac b a ac b b x (4)因式分解法 因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。 5.一元二次方程根的判别式 根的判别式:一元二次方程)0 (0 2≠ = + +a c bx ax中,ac b4 2-叫做一元二次方程)0 (0 2≠ = + +a c bx ax的根的判别式,通常用“?”来表示,即ac b4 2- = ? 6.一元二次方程根与系数的关系 如果方程)0 (0 2≠ = + +a c bx ax的两个实数根是 2 1 x x,,那么a b x x- = + 2 1 , a c x x= 2 1 。也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。 7.分式方程

中考数学一元二次方程专题(附答案)

中考数学一元二次方程专题(附答案) 一、单选题(共12题;共24分) 1.下列一元二次方程有两个相等实数根的是() A. x2﹣2x+1=0 B. 2x2﹣x+1=0 C. 4x2﹣2x﹣3=0 D. x2﹣6x=0 2.方程=0有两个相等的实数根,且满足=,则的值是() A. -2或3 B. 3 C. -2 D. -3或2 3.若关于x的一元二次方程x2﹣2x﹣k+1=0有两个相等的实数根,则k的值是() A. ﹣1 B. 0 C. 1 D. 2 4.若关于的一元二次方程有两个不相等的实数根,则一次函数 的图象可能是: A. B. C. D. 5.下列一元二次方程中,有两个相等实数根的是() A. x2﹣8=0 B. 2x2﹣4x+3=0 C. 9x2﹣6x+1=0 D. 5x+2=3x2 6.已知m、n、4分别是等腰三角形(非等边三角形)三边的长,且m、n是关于的一元二次方程 的两个根,则k的值等于 A. 7 B. 7或6 C. 6或 D. 6 7.方程(x-1)?(x2+17x-3)=0的三根分别为x1,x2,x3 .则x1x2+x2x3+x1x3 =() A. 14 B. 13 C. -14 D. -20 8.一元二次方程x2﹣4x+3=0的两个根分别是⊙O1和⊙O2的半径长,圆心距O1O2=4,则⊙O1和⊙O2的位置关系() A. 外离 B. 外切 C. 相交 D. 内切 9.已知关于的方程有两个实数根,则的取值范围是( ) A. B. C. 且 D. 且 10.设a、b、c和S分别为三角形的三边长和面积,关于x的方程b2x2+(b2+c2-a2)x+c2=0的判别式为Δ.则Δ与S的大小关系为( ). A. Δ=16S2 B. Δ=-16S2 C. Δ=16S D. Δ=-16S 11.下列方程中,有两个不相等实数根的是(). A. x2-4x+4=0 B. x2+3x-1=0 C. x2+x+1=0 D. x2-2x+3=0 12.已知二次函数y=ax2+2ax+3a-2(a是常数,且a≠0)的图象过点M(x1,-1),N(x2,-1),若MN的长不小于2,则a的取值范围是() A. a≥ B. 0

人教版数学九年级上册 课程讲义第二十一章:21.2 解一元二次方程-解析版

解一元二次方程 知识定位 讲解用时:3分钟 A、适用范围:人教版初三,基础一般 B、知识点概述:本讲义主要用于人教版初三新课,本节课我们要主要学习一元二次方程的求解,重点掌握直接开平方法、因式分解法、配方法以及公式法解一元二次方程,本节的重点是能够根据不同的方程特征选择合适的解法,难点是一元二次方程与其他知识点的结合考查,希望同学们认真学习,熟练使用各种解法,为后面一元二次方程的应用奠定良好基础。 知识梳理 讲解用时:30分钟

A.有两个相等的实数根B.有两个不相等的实数根 C.只有一个实数根D.无实数根 【答案】D 【解析】考查了直接开平方法解一元二次方程, 由原方程得到:(x﹣2019)2=﹣2019, ①(x﹣2019)2≥0, ﹣2019<0,①该方程无解,故选:D. 讲解用时:2分钟 解题思路:先移项,然后利用直接开平方法解方程。 教学建议:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程。 难度:3 适应场景:当堂例题例题来源:余干县校级期末年份:2019秋【练习1】 已知一元二次方程mx2+n=0(m≠0),若方程有解,则必须()。 A.n=0 B.mn同号C.n是m的整数倍D.mn异号【答案】D 【解析】此题主要考查了直接开平方法解一元二次方程,

n, mx2+n=0,则mx2=﹣n,即x2=﹣ m ①x2≥0,m≠0,①mn异号,故选:D. 讲解用时:2分钟 n,再解题思路:由mx2+n=0移项得mx2=﹣n,再两边同时除以m,可得x2=﹣ m 根据偶次幂的非负性可得mn异号。 教学建议:解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解。 难度:3 适应场景:当堂练习例题来源:海原县校级期中年份:2019秋【例题2】 在实数范围内定义运算“①”,其规则为a①b=a2﹣b2,则方程(4①3)①x=13的根为。 【答案】x1=6,x2=﹣6 【解析】本题考查的是用直接开平方法解一元二次方程, 根据新定义可以列方程: (42﹣32)①x=13,则72﹣x2=13, ∴49﹣x2=13,则x2=36, ①x1=6,x2=﹣6,故答案为:x1=6,x2=﹣6.

初中数学一元二次方程复习专题教案资料

一元二次方程专题复习 【中考考点】①利用一元二次方程的意义解决问题; ②用整体思想对复杂的高次方程或分式方程进行变形(换元法); ③考查配方法(主要结合函数的顶点式来研究); ④一元二次方程的解法; ⑤一元二次方程根的近似值; ⑥建立一元二次方程模型解决问题; ⑦利用根的判别式求方程中字母系数的值和利用根与系数关系求代数式的值; ⑧与一元二次方程相关的探索或说理题; ⑨与其他知识结合,综合解决问题。 一元二次方程的定义与解法 ? 【要点、考点聚焦】 1. 加深理解一元二次方程的有关概念及一元二次方程的一般形式2 0(0)ax bx c a ++=≠; 2.熟练地应用不同的方法解方程;直接开平方法、配方法、公式法、因式分解法;并体会“降幂法”在解方程中的含义.(其中配方法很重要) ? 【典型例题解析】 1、关于x 的一元二次方程2 (1)(2)26ax ax x x --=-+中,求a 的取值范围. 2、已知:关于x 的方程226350x x m m -+--=的一个根是1-,求方程的另一个根及m 的值。

3、用配方法解方程:2 210x x --= 【考点训练】 1、关于x 的一元二次方程22(1)10a x x a -++-=的一个根是0,则a 的值为( ) A. 1 B.1- C.1或1- D. 12 2、解方程23(121)4(121)x x -=-的最适当的方法( ) A. 直接开平方法 B. 配方法 C. 因式分解法 D. 公式法 3、若0a b c -+=,则一元二次方程2 0ax bx c ++=有一根是( ) A. 2 B. 1 C. 0 D. -1 4、当k __________时,22(9)(5)30k x k x -+--=不是关于x 的一元二次方程. 5、已知方程23214x x -+=,则代数式21283x x -+=_____________. 6、解下列方程: (1)2(1)4x -=; (2)2230x x --= (3)22740t t --=(用配方法) 一元二次方程根的判别式 ? 【要点、考点聚焦】 1.一元二次方程2 0(0)ax bx c a ++=≠根的情况与?的关系;6 2.一元二次方程根的判别式的性质反用也成立,即已知根的情况,可以得到一个等式或不等式,从而确定系数的值或取值范围. ? 【典型考题】 1.已知关于x 的方程2(2)2(1)10m x m x m ---++=,当m 为何非负整数时: (1)方程只有一个实数根; (2)方程有两个相等的实数根; (3)方程有两个不等的实数根. 2.已知,,a b c 是三角形的三条边,求证:关于x 的方程222222 ()0b x b c a x c ++-+=没有实数根. 切记:不要忽略a ≠0

一元二次方程试题及答案

一元二次方程根与系数的关系 一、选择题 1. (2011?南通)若3是关于方程x 2-5x +c =0的一个根,则这个方程的另一个根是( ) A 、﹣2 B 、2 C 、﹣5 D 、5 分析:由根与系数的关系,即3加另一个根等于5,计算得. 解答:解:由根与系数的关系,设另一个根为x ,则3+x=5,即x=2.故选B . 点评:本题考查了根与系数的关系,从两根之和出发计算得. 2. (2011南昌,9,3分)已知x =1是方程x 2+bx ﹣2=0的一个根,则方程的另一个根是( ) A.1 B.2 C.﹣2 D.﹣1 分析:根据根与系数的关系得出x 1x 2=a c =﹣2,即可得出另一根的值. 解答:解:∵x =1是方程x 2+bx ﹣2=0的一个根,∴x 1x 2==﹣2,∴1×x 2=﹣2,则方程的另一个根是:﹣2,故选C . 点评:此题主要考查了一元二次方程根与系数的关系,得出两根之积求出另一根是解决问题的关键. 3. (2011湖北荆州,9,3分)关于x 的方程ax 2-(3a+1)x+2(a+1)=0有两个不相等的实根x 1、x 2,且有x 1-x 1x 2+x 2=1-a ,则a 的值是( ) A 、1 B 、-1 C 、1或-1 D 、2 分析:根据根与系数的关系得出x 1+x 2=- ba ,x 1x 2= ca ,整理原式即可得出关于a 的方程求出即可. 解答:解:依题意△>0,即(3a+1)2-8a (a+1)>0, 即a 2-2a+1>0,(a -1)2>0,a≠1, ∵关于x 的方程ax 2-(3a+1)x+2(a+1)=0有两个不相等的实根x 1、x 2,且有x 1-x 1x 2+x 2=1-a , ∴x 1-x 1x 2+x 2=1-a , ∴x 1+x 2-x 1x 2=1-a , ∴ 3a+1a - 2a+2a=1-a ,

(完整)一元二次方程专题复习资料

(完整)一元二次方程专题复习资料 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)一元二次方程专题复习资料)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)一元二次方程专题复习资料的全部内容。

一元二次方程专题复习 知识盘点 1.方程中只含有 个未知数,并且整理后未知数的最高次数是 ,这样的 方程叫做一元二次方程。 通常可写成如下的一般形式 ( a 、b 、c 、为常数,a )。 2. 一元二次方程的解法: (1)直接开平方法:当一元二次方程的一边是一个含有未知数的 的平方,而另一边是一个 时,可以根据 的意义,通过开平方法求出这个方程的解. (2)配方法:用配方法解一元二次方程 的一般步骤是: ①化二次项系数为 ,即方程两边同时除以二次项系数; ②移项,使方程左边为 项和 项,右边为 项; ③配方,即方程两边都加上 的平方; ④化原方程为 的形式, 如果n 是非负数,即,就可以用 法求出方程的解。 如果n <0,则原方程 。 (3)公式法: 方程,当_______ 0时,x = ________ (4)因式分解法:用因式分解法解一元二次方程的一般步骤是: ①将方程的右边化为 ; ②将方程的左边化成两个 的乘积; ③令每个因式都等于 ,得到两个 方程; ④解这两个方程,它们的解就是原方程的解。 3.一元二次方程的根的判别式 . (1)〉0一元二次方程有两个 的实数根, 即 (2)=0一元二次方程有两个 的实数根,即, (3)〈0一元二次方程 实数根。 4。 一元二次方程根与系数的关系 如果一元二次方程的两根为, 则 , 提示:在应用一元二次方程根与系数的关系时,一定要保证元二次方程有实数根。 5。 列一元二次方程解应用题 列一元二次方程解应用题的步骤和列一元一次方程解应用题的步骤一样,即审、找、设、列、解、答六步。 考点一 一元二次方程的基本概念及解法 ()02 ≠=++a o c bx ax 2 ()x m n +=0n ≥20(0)a x b xc a ++ =≠24b a c -ac b 4 2-?()002 ≠=++a c bx ax -----=-----=2,1x x ac b 4 2-?-----==21x x ac b 4 2-?()002 ≠=++a c bx ax 20a x b x c ++=(0)a ≠12,x x 12x x +=12x x =

初中数学竞赛讲义一元二次方程公共根问题定稿版

初中数学竞赛讲义一元二次方程公共根问题精 编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

一元二次方程公共根问题 若已知若干个一元二次方程有公共根,求方程系数的问题,叫一元二次方程的公共根问题, 解题方法: 1、直接求根法,再讨论根与根之间的公共关系。 2、由题意用以下解题步骤:若两个一元二次方程只有一个公共根,则: (1).设公共根为α,则α同时满足这两个一元二次方程; (2).用加减法消去α2的项,求出公共根或公共根的有关表达式; (3).把共公根代入原方程中的任何一个方程,然后通过恒等变形求出公共根.或求出字母系数的值或字母系数之间的关系式. 例1 已知一元二次方程x2-4x+k=0有两个不相等的实数根, 1.求k的取值范围. 2.如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有 一个相同的根,求此时m的值. 解: (1)b2-4ac=16-4k>0, k<4; (2)由题意得:k=3.∴x2-4x+3=0,即(x-1)(x-3)=0,解方程,得x1=3,x2=1,

当x=3时9+3m-1=0, m=-8/3, 当x=1时,1+m-1=0,m=0。 ∵m2+4>0 ∴此时 m 的值为m=0,或m=-8/3. 例2 若两个关于x的方程x2+x+a=0与x2+ax+1=0只有一个公共的实数根,求a的值 解:设两个方程的公共根为α,则有α2+α+a=0 ① α2+aα+1=0 ② ①-②得(1-a)α+a-1=0,即(1-a)(α-1)=0因为只有一个公共根,所以 a≠1,所以α=1 把α=1代入x2+x+a=0得12+1+a=0,a=-2 又解:两个方程相减,得:x+a-ax-1=0,整理得:x(1-a)-(1-a)=0,即(x-1)(1-a)=0,若a-1=0,即a=1时,方程x2+x+a=0和x2+ax+1=0的b2-4ac都小于0,即方程无解;故a≠1,∴公共根是:x=1.把x=1代入方程有:1+1+a=0∴a=-2. 例3、已知a>2,b>2,试判断关于x的方程x2-(a+b)x+ab=0与x2-abx+(a+b)=0有没有公共根,请说明理由. 解:不妨设关于x的方程x2-(a+b)x+ab=0与x2-abx+(a+b)=0有公共根,设为x0, 则有x 02(a+b)x +ab=0① x 2abx +(a+b)=02 整理可得(x 0+1)(a+b-ab)=0.∵a>2,b>2,∴a+b≠ab,∴x =-1;

相关文档
最新文档