机械能守恒定律专题8 能量守恒定律(2) 传送带 18.5.21

机械能守恒定律专题8      能量守恒定律(2) 传送带  18.5.21
机械能守恒定律专题8      能量守恒定律(2) 传送带  18.5.21

机械能守恒定律专题8 能量守恒定律应用(2)传送带模型

1.静摩擦力做功的特点

(1)静摩擦力可以做正功,也可以做负功,还可以不做功.

(2)相互作用的一对静摩擦力做功的代数和总等于零.

(3)静摩擦力做功时,只有机械能的相互转移,不会转化为内能.

2.滑动摩擦力做功的特点

(1)滑动摩擦力可以做正功,也可以做负功,还可以不做功.

(2)相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功将产生两种可能效果:

①机械能全部转化为内能;

②有一部分机械能在相互摩擦的物体间转移,另外一部分转化为内能.

3.摩擦生热的计算:Q=F f x相对.其中x相对为相互摩擦的两个物体间的相对位移.

深化拓展从功的角度看,一对滑动摩擦力对系统做的功等于系统内能的增加量;从能量的角度看,其他形式能量的减少量等于系统内能的增加量.

4.求解相对滑动物体的能量问题的方法

(1)正确分析物体的运动过程,做好受力分析.

(2)利用运动学公式,结合牛顿第二定律分析物体的速度关系及位移关系.

(3)公式Q=F f·x相对中x相对为两接触物体间的相对位移,若物体在传送带上做往复运动时,则x相对为总的相对路程.

5.传送带模型是高中物理中比较成熟的模型,典型的有水平和倾斜两种情况.一般设问的角度有两个:(1)动力学角度:首先要正确分析物体的运动过程,做好受力分析,然后利用运动学公式结合牛顿第二定律求物体及传送带在相应时间内的位移,找出物体和传送带之间的位移关系.

(2)能量角度:求传送带对物体所做的功、物体和传送带由于相对滑动而产生的热量、因放上物体而使电动机多消耗的电能等,常依据功能关系或能量守恒定律求解.

6.传送带模型问题中的功能关系分析

(1)功能关系分析:W=ΔE k+ΔE p+Q.

(2)对W和Q的理解:

①传送带做的功:W=Fx传;

②产生的内能Q=F f x相对.

传送带模型问题的分析流程

命题点二 传送带模型问题

1.模型分类:水平传送带问题和倾斜传送带问题.

2.处理方法:求解的关键在于认真分析物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用.如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况.当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变.

例题1、如图11所示,质量为m 的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速度v 匀速运动,物体与传送带间的动摩擦因数为μ,物体在滑下传送带之前能保持与传送带相对静止,对于物体从静止释放到与传送带相对静止这一过程,下列说法中正确的是( D )

图11

A .电动机多做的功为12m v 2

B .物体在传送带上的划痕长v 2μg

C .传送带克服摩擦力做的功为1

2

m v 2 D .电动机增加的功率为μmg v

解析 物体与传送带相对静止之前,物体做匀加速运动,由运动学公式知x 物=v

2

t ,传送带做匀速运动,由

运动学公式知x 传=v t ,对物体根据动能定理μmgx 物=1

2

m v 2,摩擦产生的热量Q =μmgx 相对=μmg (x 传-x 物),

四式联立得摩擦产生的热量Q =1

2

m v 2,根据能量守恒定律,电动机多做的功一部分转化为物体的动能,一

部分转化为热量,故电动机多做的功等于m v 2,A 项错误;物体匀加速运动的时间t =v a =v

μg

,物体在传送

带上的划痕长等于x 传-x 物=v

22μg ,B 项错误;传送带克服摩擦力做的功为μmgx 传=m v 2,C 项错误;电动

机增加的功率也就是电动机克服摩擦力做功的功率为μmg v ,D 项正确.

例题2、如图所示,电动机带动水平传送带以速度v 匀速转动,一质量为m 的小木块由静止轻放在传送带上.若小木块与传送带之间的动摩擦因数为μ,当小木块与传送带相对静止时,求:

(1)小木块的位移. (2)传送带转过的路程. (3)小木块获得的动能. (4)摩擦过程产生的热量. (5)电动机因传送小木块多输出的能量.

[解析] 小木块刚放上传送带时,速度为0,受到传送带的滑动摩擦力作用,做匀加速直线运动,达到与传送带相同的速度后不再受摩擦力.整个过程中小木块获得一定的动能,系统内因摩擦产生一定的热量.

(1)对小木块,相对滑动时,由μmg =ma ,得a =μg , 由v =at ,得小木块与传送带相对静止时所用的时间t =v

μg

则小木块的位移l =12at 2=v

2

2μg

.

(2)传送带始终匀速运动,转过的路程s =vt =v 2

μg

.

(3)小木块获得的动能E k =12

mv 2

.

(4)摩擦过程产生的热量Q =μmg (s -l )=12

mv 2

.

(5)由能的转化与守恒得,电动机多输出的能量转化为小木块的动能与摩擦产生的热量,所以E 总=E k

+Q =mv 2

.

[答案] (1)v 2

2μg (2)v 2μg (3)12mv 2 (4)12

mv 2 (5)mv 2

例题3、一质量为M =2.0kg 的小物块随足够长的水平传送带一起运动,被一水平向左飞来的子弹击中并从物块中穿过,子弹和小物块的作用时间极短,如图6甲所示.地面观察者记录了小物块被击中后的速度随时间变化的关系如图乙所示(图中取向右运动的方向为正方向).已知传送带的速度保持不变,g 取10m/s 2.

图6

(1)指出传送带速度v 的大小及方向,说明理由. (2)计算物块与传送带间的动摩擦因数μ.

(3)传送带对外做了多少功?子弹射穿物块后系统有多少能量转化为内能? 答案 (1)2.0m/s 方向向右 (2)0.2 (3)24J 36J

解析 (1)从v -t 图象中可以看出,物块被击穿后,先向左做减速运动,速度为零后,又向右做加速运动,当速度等于2.0m /s ,则随传送带一起做匀速运动,所以,传送带的速度大小为v =2.0 m/s ,方向向右. (2)由v -t 图象可得,物块在滑动摩擦力的作用下做匀变速运动的加速度 a =Δv Δt =4.0

2

m /s 2=2.0 m/s 2,

由牛顿第二定律得滑动摩擦力F f =μMg ,则物块与传送带间的动摩擦因数μ=

Ma Mg =a g =2.0

10

=0.2. (3)由v -t 图象可知,传送带与物块间存在摩擦力的时间只有3s ,传送带在这段时间内移动的位移为x ,则x =v t =2.0×3m =6.0m ,

所以,传送带所做的功W =F f x =0.2×2.0×10×6.0J =24J.

设物块被击中后的初速度为v 1,向左运动的时间为t 1,向右运动直至和传送带达到共同速度的时间为t 2,则有

物块向左运动时产生的内能 Q 1=μMg (v t 1+v 1

2t 1)=32J ,

物块向右运动时产生的内能 Q 2=μMg (v t 2-v

2

t 2)=4J.

所以整个过程产生的内能Q =Q 1+Q 2=36J.

例题4、如图5所示,倾斜传送带沿逆时针方向匀速转动,在传送带的A 端无初速度放置一物块.选择B 端所在的水平面为参考平面,物块从A 端运动到B 端的过程中,其机械能E 与位移x 的关系图象可能正确的是( BD )

图5

解析 选择B 端所在的水平面为参考平面,可知初始状态下物块的机械能不为0,A 错误.由于物块初速度为0,在物块速度达到与传送带速度相等之前,物块相对传送带向上运动,受到向下的摩擦力,除重力外只有此摩擦力对物块做正功,其机械能增大.若传送带不是足够长时,物块速度与传送带达到共速前已到B 端,则对应于图象B ,否则达到共速后物块所受摩擦力方向突变为向上,摩擦力开始对物块做负功,物块的机械能开始减少,故C 错误,D 正确.

例题5、如图所示,一倾角为37。的传送带以恒定速度运行,现将一质量m="l" kg 的小物体抛上传送带,

物体相对地面的速度随时间变化的关系如图所示,取沿传送带向上为正方,g="10" ,sin37

=0.6,cos37=0.8.则下列说法正确的是(ACD )

A .物体与传送带间的动摩擦因数为0.875

B .0~8 s 内物体位移的大小为18m

C .O ~8 s 内物体机械能的增量为90J

D .O ~8 s 内物体与传送带由于摩擦产生的热量为126J

试题分析:根据速度时间图像分析,前6秒钟,物体的加速度方向沿传送带向上,大小即斜率为,

根据物体在斜面上受力分析有

,整理得

选项A 对。0~8 s 内物体位移等

于前8秒钟速度时间图像与时间轴围成的面积,时间轴上面的部分代表位移为正,下半部分代表位移为负,

结合图像得位移,选项B 错。O ~8 s 内物体动能增加量为

,重力势能增加,机械能增加量为,选项C 对。

摩擦生热分为三部分,第一部分为前2秒:70J 第二部分,摩擦生热,

最后匀速直线摩擦力为静摩擦,二者没有相对运动,不生热,所以0~8 s 内物体与传送带由于摩擦产生的热量为126选项D 。

例题6、如图10所示,绷紧的传送带与水平面的夹角θ=30°,传送带在电动机的带动下,始终保持v 0=2m /s 的速率运行,现把一质量为m =10 kg 的工件(可看做质点)轻轻放在传送带的底端,经过时间t =1.9 s ,工件被传送到h =1.5 m 的高处,取g =10 m/s 2求:

图10

(1)工件与传送带间的动摩擦因数;

(2)电动机由于传送工件多消耗的电能.

解析 (1)由题图可知,传送带长x =h

sin θ=3m.

假设工件在运动到最大高度之前已经开始做匀速运动.

工件速度达到v 0前,设工件运动的时间为t 1,则匀加速运动的位移x 1=v t 1=v 0

2t 1

匀速运动的位移为x -x 1=v 0(t -t 1)

解得加速运动的时间t 1=0.8s ,所以假设成立.

加速度a =v 0

t 1

=2.5m/s 2

由牛顿第二定律有:μmg cos θ-mg sin θ=ma ,解得μ=

32

. (2)从能量守恒的观点来看,显然电动机多消耗的电能用于增加工件的动能和势能以及克服传送带与工件之间发生相对位移时摩擦力做功产生的热量. 在时间t 1内,传送带运动的位移x 传=v 0t 1=1.6m

在t 1时间内,工件运动的位移x 1=v 0

2

t 1=0.8m

在时间t 1内,工件相对传送带的位移x 相对=x 传-x 1=0.8m

在时间t 1内,摩擦生热Q =μmg cos θ·x 相对=60J

工件获得的动能E k =1

2m v 20=20J

工件增加的势能E p =mgh =150J

电动机多消耗的电能W =Q +E k +E p =230J.

答案 (1)3

2

(2)230J

例题7、如图所示,长L=9m 的传送带与水平方向的傾角θ=37°,在电动机的带动下以υ=4m/s 的速率顺时针方向运行,在传送带的B 端有一离传送带很近的挡板P 可将传送带上的物块挡住,在传送带的A 端无初速地放一质量m=1kg 的物块,它与传送带间的动摩擦因数μ=0.5,物块与挡板的碰撞能量损失及碰撞时间不计.(g=10m/s2,sin37°=0.6)求:

(1)物块从第一次静止释放到与挡板P 第一次碰撞后,物块再次上升到传送带的最高点的过程中,因摩擦生的热;

(2)物块最终的运动状态及达到该运动状态后电动机的输出功率.

(1)物块从A 点由静止释放,物块相对传送带向下滑,物块沿传送带向下加速运动的速度

与P 碰前的速度

物块从A 到B 的时间 在此过程中物块相对传送带向下位移

物块与挡板碰撞后,以v1的速度反弹,因v1>v ,物块相对传送带向上滑,物块向上做减速运动的加速度

为 物块速度减小到与传送带速度相等的时间

在t2时间内物块向上的位移物块相对传送带向上的位移

物块速度与传送带速度相等后物块相对传送带向下滑,物块向上做减速运动的加速度

物块速度减小到零的时间

物块向上的位移 此过程中物块相对传送带向下的位移

摩擦生热

(2)物块上升到传送带的最高点后,物块沿传送带向下加速运动,与挡板P 第二次碰掸前的速度

碰后因v2>v ,物块先向上做加速度为a2的减速运动,再做加速度为

的减速运动,物块向上的位移为

物块与挡板第三次碰撞前的速度

在此类推经过多次碰撞后物块以

的速度反弹,故最终物块在P 与离P 4m 的范围内不断做向上

的加速度为2 m/s2的减速运动和向下做加速度为2 m/s2的加速运动,物块的运动达到这一稳定状态后,物块对传送带有一与传送带运动方向相反的阻力

故电动机的输出功率

例题8、如图3所示,有一个可视为质点的质量m =1kg 的小物块,从光滑平台上的A 点以v 0=1.8m /s 的

初速度水平抛出,到达C 点时,恰好沿C 点的切线方向进入固定在竖直平面内的光滑圆弧轨道,最后小物块无碰撞地滑上紧靠轨道末端D 点的足够长的水平传送带.已知传送带上表面与圆弧轨道末端切线相平,传送带沿顺时针方向匀速运行的速度为v =3 m/s ,小物块与传送带间的动摩擦因数μ=0.5,圆弧轨道的半径为R =2m ,C 点和圆弧的圆心O 点连线与竖直方向的夹角θ=53°,不计空气阻力,重力加速度g =10m/s 2,sin53°=0.8,cos53°=0.6.求:

(1)小物块到达圆弧轨道末端D 点时对轨道的压力;

(2)小物块从滑上传送带到第一次离开传送带的过程中产生的热量.

图3

答案 (1)22.5N ,方向竖直向下 (2)32J

解析 (1)设小物块在C 点的速度为v C ,在C 点由v C =v 0

cos θ

,解得v C =3m/s 设小物块在D 的速度为v D .从C 到D ,由动能定理得mgR (1-cos θ)=12m v 2D -12

m v 2

C ,解得v

D =5m/s

设在D 点轨道对小物块的作用力为F N :F N -mg =m v 2D

R

解得F N =22.5N ,

由牛顿第三定律,小物块对轨道的压力大小为22.5N ,方向竖直向下. (2)设小物块在传送带上的加速度为a ,则 μmg =ma a =μg =5m/s 2

设小物块由D 点向左运动至速度为零,所用时间为t 1,位移为x 1,则 v D =at 1

x 1=v D 2

t 1

设t 1时间内传送带向右的位移为x 2,则x 2=v t 1

小物速度由零增加到与传送带速度相等的过程,所用时间为t 2,t 2=v

a

通过的位移x 3,x 3=v

2t 2

传送带的位移为x 4=v t 2 小物块相对传送带移动的路程为 x =x 1+x 2+x 4-x 3

Q =μmgx ,解得Q =32J.

练习1:如图所示,一水平传送带以速度v 1向右匀速传动,某时刻有一物块以水平速度v 2从右端滑上传送

带,物块与传送带间的动摩擦因数为μ,则

[ B ]

A .如果物块能从左端离开传送带,它在传送带上运动的时间一定比传送带不转动时运动的时间长

B .如果物块还从右端离开传送带,则整个过程中,传送带对物块所做的总功一定不会为正值

C .如果物块还从右端离开传送带,则物块的速度为零时,传送带上产生的滑痕长度达到最长

D .物块在离开传送带之前,一定不会做匀速直线运动

练习2:如图所示,传送带以v 的初速度匀速运动。将质量为m 的物体无初速度放在传送带上的A 端,物体将被传送带带到B 端,已知物体到达B 端之前已和传送带相对静止,电动机的内阻不可忽略。则下列说法正确的是( AD ) A .传送带对物体做功为221

υm B .传送带克服摩擦做功2

21υm

C .电动机消耗的电能为2

2

1υm

D .在传送物体过程产生的热量为

22

1

υm 错误理解:两物体的相对位移就等于物体的对地位移,根据动能定理系统产生的热量就是物体动能的增加。D 正确。误区四、误认为摩擦产生的热量就等于物体动能的增加,混淆能量的转化与守恒定律。

应对办法:这种解法结果虽然碰对了,但是理解却是完全错误的。首先能量守恒是对系统而言的,其次上述观点不符合能的转化及守恒定律。摩擦力对物体做了正功,物体的动能增加了,而物体的内能却也应该增加了,显然不符合能量转化及守恒定律。系统摩擦发热产生的内能相对s F Q f =,滑动摩擦力对系统做功是阻力做功才损失机械能,增加内能。

分析与解:物体先加速后匀速,在加速过程中滑动摩擦力对物体做功,使物体的动能增加,由动能定

理知传送带对物体做功为2

21υm ,A 正确。

物体移动的位移是t v s 2

1=,皮带移动的位移是122s vt s ==,

根据功的定义,传送带克服摩擦做功应为2

mv ,B 错误。由能量守恒定律知电机消耗的电能就是

2221mv Rt I +

,C 错误。由能量守恒定律滑动摩擦产生的内能Q=212

1

mv mgs s mg ==?μμ,D 正确。 练习3:如图4所示,光滑轨道ABCD 是大型游乐设施过山车轨道的简化模型,最低点B 处的入、出口靠近但相互错开,C 是半径为R 的圆形轨道的最高点,BD 部分水平,末端D 点与右端足够长的水平传送带无缝连接,传送带以恒定速度v 逆时针转动,现将一质量为m 的小滑块从轨道AB 上某一固定位置A 由静止释放,滑块能通过C 点后再经D 点滑上传送带,则( )

图4

A .固定位置A 到

B 点的竖直高度可能为2R

B .滑块在传送带上向右运动的最大距离与传送带速度v 有关

C .滑块可能重新回到出发点A 处

D .传送带速度v 越大,滑块与传送带摩擦产生的热量越多 答案 CD

解析 设AB 的高度为h ,假设滑块从A 点下滑刚好通过最高点C ,则此时应该是从A 下滑的高度的最小值,刚好通过最高点时,由重力提供向心力,则mg =m v 2C

R ,解得v C =gR ,从A 到C 根据动能定理:mg (h

-2R )=1

2m v C 2-0,整理得到:h =2.5R ,故选项A 错误;从A 到滑块在传送带上向右运动距离最大,根据

动能定理得:mgh -μmgx =0,可以得到x =h

μ,可以看出滑块在传送带上向右运动的最大距离与传送带速

度v 无关,与高度h 有关,故选项B 错误;滑块在传送带上先做减速运动,可能反向做加速运动,如果再次到达D 点时速度大小不变,则根据能量守恒,可以再次回到A 点,故选项C 正确;滑块与传送带之间产生的热量Q =μmg Δx 相对,当传送带的速度越大,则在相同时间内二者相对位移越大,则产生的热量越大,故选项D 正确.

练习4:如图5所示,足够长的传送带以恒定速率顺时针运行.将一个物体轻轻放在传送带底端,第一阶段物体被加速到与传送带具有相同的速度,第二阶段与传送带相对静止,匀速运动到达传送带顶端.下列说法中正确的是( C )

图5

A.第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功

B.第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加量

C.第一阶段物体和传送带间的摩擦生热等于第一阶段物体机械能的增加量

D.物体从底端到顶端全过程机械能的增加量等于全过程物体与传送带间的摩擦生热

解析第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体仍做正功,选项A错误;第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加量和重力势能的增加量,选项B错误;第一阶段物体和传送带间的摩擦生热等于第一阶段物体机械能的增加量,选项C正确;物体从底端到顶端全过程机械能的增加量大

于全过程物体与传送带间的摩擦生热,选项D错误.

如图所示,足够长的传送带PQ与水平地面成角倾斜放置,传送带以速度v顺时针匀速转动,将物块以沿平行传送带向上

练习5:如图所示,倾斜的传动带以恒定的速度v2向上运动,一个小物块以初速度v1从底端冲上传动带,且v1大于v2,小物块从传动带底端到达顶端的过程中一直做减速运动,则( AD )

A.小物块到达顶端的速度可能等于零B.小物块到达顶端的速度不可能等于v2

C.小物块的机械能一直在减小D.小物块所受的合外力一直做负功

试题分析:由题意知,当传送带对物块的滑动摩擦力小于重力沿传送带向下的分力时,小物块由可能一直减速到达顶端速度恰好减为零,所以A正确;当物块的速度小于v2以后,摩擦力做物块做正功,机械能增大,所以C错误;若传送带对物块的滑动摩擦力大于重力沿传送带向下的分力,当物块速度减为v2时,以v2做匀速运动,所以到达顶端的速度有可能等于v2,故B错误;因物块一直在减速,根据动能定理可得合外力一直做负功,所以D正确。

练习6:如图3甲所示,倾角为θ的足够长的传送带以恒定的速率v0沿逆时针方向运行,t=0时,将质量m=1kg的物体(可视为质点)轻放在传送带上,物体相对地面的v-t图象如图乙所示.设沿传送带向下为正方向,取重力加速度g=10m/s2,则()

图3

A .传送带的速率v 0=10m/s

B .传送带的倾角θ=30°

C .物体与传送带之间的动摩擦因数μ=0.5

D .0~2.0s 摩擦力对物体做功W f =-24J 答案 ACD

解析 当物体的速度超过传送带的速度后,物体受到的摩擦力的方向发生改变,加速度也发生改变,根据v -t 图象可得,传送带的速率为v 0=10m /s ,选项A 正确;1.0 s 之前的加速度a 1=10 m/s 2,1.0s 之后的加速度a 2=2m/s 2,结合牛顿第二定律,g sin θ+μg cos θ=a 1,g sin θ-μg cos θ=a 2,解得sin θ=0.6,θ=37°,μ=0.5,选项B 错误,选项C 正确;摩擦力大小F f =μmg cos θ=4N ,在0~1.0s 内,摩擦力对物体做正功,在1.0~2.0s 内,摩擦力对物体做负功,0~1.0s 内物体的位移为5m ,1.0~2.0s 内物体的位移是11m ,摩擦力做的功为-4×(11-5) J =-24J ,选项D 正确.

练习7:如图8所示,质量为m 的滑块放在光滑的水平平台上,平台右端B 与水平传送带相接,传送带的运行速度为v 0,长为L .现将滑块缓慢水平向左移动压缩固定在平台上的轻弹簧,到达某处时突然释放,当滑块滑到传送带右端C 时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数为μ.

图8

(1)试分析滑块在传送带上的运动情况;

(2)若滑块离开弹簧时的速度大于传送带的速度,求释放滑块时弹簧具有的弹性势能;

(3)若滑块离开弹簧时的速度大于传送带的速度,求滑块在传送带上滑行的整个过程中产生的热量.

答案 (1)见解析 (2)12m v 20+μmgL (3)μmgL -m v 0(v 2

0+2μgL -v 0) 解析 (1)若滑块冲上传送带时的速度小于传送带的速度,则滑块由于受到向右的滑动摩擦力而做匀加速运动;若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受到向左的滑动摩擦力而做匀减速运动.

(2)设滑块冲上传送带时的速度大小为v ,由机械能守恒定律得E p =1

2

m v 2

滑块从B 运动到C 过程,由动能定理得

-μmgL =12m v 20-12

m v 2

所以E p =12m v 2=1

2m v 20

+μmgL

(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移x =v 0t ,v 0=v +at 由(2)得v =v 20+2μgL 滑块相对传送带滑动的位移 Δx =L -x

相对滑动生成的热量

Q =μmg ·Δx 解得Q =μmgL -mv 0(v 20+2μgL -v 0)

练习8:如图12所示,一质量为m =1kg 的可视为质点的滑块,放在光滑的水平平台上,平台的左端与水平传送带相接,传送带以v =2m /s 的速度沿顺时针方向匀速转动(传送带不打滑),现将滑块缓慢向右压缩轻弹簧,轻弹簧的原长小于平台的长度,滑块静止时弹簧的弹性势能为E p =4.5 J ,若突然释放滑块,滑块向左滑上传送带.已知滑块与传送带间的动摩擦因数为μ=0.2,传送带足够长,g =10 m/s 2.求:

图12

(1)滑块第一次滑上传送带到离开传送带所经历的时间; (2)滑块第一次滑上传送带到离开传送带由于摩擦产生的热量. 答案 (1)3.125s (2)12.5J

解析 (1)释放滑块的过程中机械能守恒,设滑块滑上传送带的速度为v 1,则E p =1

2m v 21,得v 1=3m/s

滑块在传送带上运动的加速度的大小a =μg =2m/s 2

滑块向左运动的时间t 1=v 1

a =1.5s

向左运动的最大位移x 1=v 21

2a =2.25m

向右匀加速运动的位移x 2=v 2

2a

=1m

x 1>x 2,所以滑块在向右运动的过程中先向右匀加速运动,再同传送带一起向右匀速运动.

向右匀加速运动的时间t 2=v

a

=1s

向右匀速运动的时间为t 3=x 1-x 2

v =0.625s 所以t =t 1+t 2+t 3=3.125s.

(2)滑块在传送带上向左运动x 1的位移时,传送带向右运动的位移为x 1′=v t 1=3m 则Δx 1=x 1′+x 1=5.25m

滑块向右运动x 2时,传送带向右运动的位移为x 2′=v t 2=2m

则Δx 2=x 2′-x 2=1m Δx =Δx 1+Δx 2=6.25m

则产生的热量为Q =μmg ·Δx =12.5J .

练习9:如图所示,光滑弧形轨道下端与水平传送带吻接,轨道上的A 点到传送带的竖直距离和传送带到地面的距离均为h =5m ,把一物体放在A 点由静止释放,若传送带不动,物体滑上传送带后,从右端B 水平飞离,落在地面上的P 点,B 、P 的水平距离OP 为x =2m ;若传送带顺时针方向转动,传送带速度大小为v =5m/s ,则物体落在何处?这两次传送带对物体所做的功之比为多大?

解析:原来进入传送带:由2

12

1mv mgh =,解得v 1=10m/s

离开B :由2

22

1gt h =

,解得t 2=1s ,222==t x v m/s

因为

12v v v <<,所以物体先减速后匀速,由5/2==v v m/s ,解得522

='='t v x m 第一次传送带做的功:

)(2

12

1221v v m W -=

第二次传送带做的功:)(21

2122v v m W -= 两次做功之比25

3275962212

22

121=

=--=v v v v W

W 练习10:如图7所示,质量为m =1kg 的滑块,在水平力作用下静止在倾角为θ=30°的光滑斜面上,斜面的末端B 与水平传送带相接(滑块经过此位置滑上传送带时无能量损失),传送带的运行速度为v 0=3 m/s ,长为l =1.4 m ;今将水平力撤去,当滑块滑到传送带右端C 时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数为μ=0.25,g 取10 m/s 2.求:

图7

(1)水平作用力F 的大小; (2)滑块下滑的高度;

(3)若滑块滑上传送带时速度大于3m/s ,滑块在传送带上滑行的整个过程中产生的热量. 答案 (1)103

3

N (2)0.1m 或0.8m (3)0.5J

解析 (1)滑块受到水平力F 、重力

mg 和支持力F N 作用处于平衡状态,水平力F =mg tan θ,F =103

3N.

(2)设滑块从高为h 处下滑,到达斜面底端速度为v , 下滑过程机械能守恒mgh =1

2m v 2,

得v =2gh

若滑块冲上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运

动;

根据动能定理有μmgl =12m v 02-1

2

m v 2

则h =v 2

2g

-μl ,代入数据解得h =0.1m

若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受到向左的滑动摩擦力而做匀减速运动;根据动能定理:

-μmgl =12m v 02-1

2

m v 2

则h =v 20

2g

+μl

代入数据解得h =0.8m.

(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移x =v 0t ,mgh =1

2m v 2,v 0=v -at ,μmg =ma

滑块相对传送带滑动的位移Δx =l -x 相对滑动生成的热量Q =μmg ·Δx 代入数据解得Q =0.5J.

练习11:如图4所示,小物块A 、B 由跨过定滑轮的轻绳相连,A 置于倾角为37°的光滑固定斜面上,B 位于水平传送带的左端,轻绳分别与斜面、传送带平行,传送带始终以速度v 0=2 m/s 向右匀速运动,某时刻B 从传送带左端以速度v 1=6 m/s 向右运动,经过一段时间回到传送带的左端,已知A 、B 的质量均为1kg ,B 与传送带间的动摩擦因数为0.2.斜面、轻绳、传送带均足够长,A 不会碰到定滑轮,定滑轮的质量与摩擦力均不计,g 取10m/s 2,sin37°=0.6,求:

图4

(1)B 向右运动的总时间; (2)B 回到传送带左端的速度大小;

(3)上述过程中,B 与传送带间因摩擦产生的总热量.

①光滑固定斜面;②B 与传送带间的动摩擦因数为0.2;③B 经过一段时间回到传送带的左端.

答案 (1)2s (2)25m/s (3)(16+45) J

解析 (1)B 向右减速运动的过程中,刚开始时,B 的速度大于传送带的速度,以B 为研究对象,水平方向B 受到向左的摩擦力与绳对B 的拉力,设绳子的拉力为F T1,以向左为正方向,得F T1+μmg =ma 1

以A 为研究对象,则A 的加速度的大小始终与B 相等,A 向上运动的过程中受力如图,则

mg sin37°-F T1=ma 1

② 联立①②可得a 1=g sin37°+μg 2

=4m/s 2

B 的速度与传送带的速度相等时所用的时间 t 1=

-v 0-(-v 1)

a 1

=1s.

当B 的速度与传送带的速度相等之后,B 仍然做减速运动,而此时B 的速度小于传送带的速度,所以受到的摩擦力变成了向右,所以其加速度发生了变化,此后B 向右减速运动的过程中,设绳子的拉力为F T2,以B 为研究对象,水平方向B 受到向右的摩擦力与绳对B 的拉力,则F T2-μmg =ma 2

以A 为研究对象,则A 的加速度的大小始终与B 是相等的,A 向上运动的过程中 mg sin37°-F T2=ma 2

联立④⑤可得a 2=g sin37°-μg 2=2m/s 2.

当B 向右速度减为0,经过时间 t 2=

0-(-v 0)

a 2

=1s. B 向右运动的总时间t =t 1+t 2=1s +1s =2s.

(2)B 向左运动的过程中,受到的摩擦力的方向仍然向右,仍然受到绳子的拉力,同时,A 受到的力也不变,所以它们受到的合力不变,所以B 的加速度a 3=a 2=2m/s 2. t 1时间内B 的位移x 1=-v 0+(-v 1)

2t 1=-4m ,

负号表示方向向右.

t 2时间内B 的位移x 2=0+(-v 0)

2×t 2=-1m ,

负号表示方向向右. B 的总位移x =x 1+x 2=-5m.

B 回到传送带左端的位移x 3=-x =5m. 速度v =2a 3x 3=25m/s.

(3)t 1时间内传送带的位移x 1′=-v 0t 1=-2m ,

该时间内传送带相对于B 的位移Δx 1=x 1′-x 1=2m. t 2时间内传送带的位移x 2′=-v 0t 2=-2m , 该时间内传送带相对于B 的位移Δx 2=x 2-x 2′=1m. B 回到传送带左端的时间为t 3,则t 3=v -0

a 3=5s.

t 3时间内传送带的位移x 3′=-v 0t 3=-25m , 该时间内传送带相对于B 的位移 Δx 3=x 3-x 3′=(5+25) m.

B 与传送带之间的摩擦力F f =μmg =2N. 上述过程中,B 与传送带间因摩擦产生的总热量 Q =F f (Δx 1+Δx 2+Δx 3)=(16+45) J.

练习12:如图5所示,传送带与地面的夹角θ=37°,A 、B 两端间距L =16m ,传送带以速度v =10 m/s 沿顺时针方向运动,物体质量m =1 kg 无初速度地放置于A 端,它与传送带间的动摩擦因数μ=0.5,sin 37°=0.6,g =10 m/s 2,试求:

图5

(1)物体由A 端运动到B 端的时间; (2)系统因摩擦产生的热量. 答案 (1)2s (2)24J

解析 (1)物体刚放上传送带时受到沿斜面向下的滑动摩擦力,由牛顿第二定律得mg sin θ+μmg cos θ=ma 1,设物体经时间t 加速到与传送带同速,则v =a 1t 1,x 1=1

2a 1t 12,可解得a 1=10m/s 2,t 1=1s ,x 1=5m

因mg sin θ>μmg cos θ,故当物体与传送带同速后,物体将继续加速 mg sin θ-μmg cos θ=ma 2 L -x 1=v t 2+1

2a 2t 22

解得t 2=1s

故物体由A 端运动到B 端的时间 t =t 1+t 2=2s

(2)物体与传送带间的相对位移 x 相对=(v t 1-x 1)+(L -x 1-v t 2)=6m

故Q=μmg cosθ·x相对=24J.

练习13:已知一足够长的传送带与水平面的倾角为300,以一定的速度匀速运动。某时刻在传送带适当的位置放上具有一定初速度的物块,物块的质量m=1kg,以此时为t=0时刻记录了小物块之后在传送带上运动速度随时间的变化关系如图所示,若图中取沿斜面向下的运动方向为正方向,其中v1=-6m/s, v2=4m/s, t1="0.5s," g取10 m/s2,已知传送带的速度保持不变。求:

(1)物块与传送带间的摩擦系数;

(2)0~t2内带动传送带的电动机多消耗的电能;

(3)0~t2内系统产生的内能;

(1)(2)23.3J(3)29.17J

试题分析:(1)(3分)由于最终物块与带共速,所以物体开始向上运动,

由图象可知物体的加速度大小为,方向沿传送带向下,

根据牛顿第二定律有:

求得:(3分)由图可知:

传送带在0~t2内通过的位移:

(2)根据能的转化和守恒定律,电动机多消耗的电能

(3)(4分)因为物体与传送带的相对位移:

产生的内能:

练习14:如图所示的传送带装置,长度为4 m,与水平方向之间的夹角为37°,传送带以0.8 m/s的速度匀速运行,从流水线上下来的工件每隔2 s有一个落到A点(可认为初速度为零),工件质量为1 kg.经传送带运送到与B等高处的平台上,再由工人运走.已知工件与传送带之间的动摩擦因数为μ=0.8,sin 37°=0.6,cos 37°=0.8,g=10 m/s2.求:

(1)每个工件从落上传送带的A点开始到被传送至最高点B所经历的时间;

(2)传送带对每个工件所做的功;

(3)由于传送工件,传送带的动力装置需增加的功率.

解:(1)工件刚放上传送带时的加速度为a=μg cos 37°-g sin 37°=0.4 m/s2 (2分)

当工件速度达v=0.8 m/s时,工件相对传送带静止工件加速的时间t1==s=2 s (1分)

加速运动的位移s1=at12=×0.4×22m=0.8 m (1分)

在AB段匀速运动的位移为s2=4 m-0.8 m=3.2 (1分)

所用的时间为t2==s=4 s (1分) 总时间为t=t1+t2=6 s (1分)

(2)由动能定理得W-mgL sin 37°=mv2 (3分)

W=mgL sin 37°+mv2=1×10×4×0.6 J+×1×0.82J=24.32 J (2分)

(3)因工件在AB段上加速运动的时间为2 s,所以在位移x t内总是有一个工件位于传送带上,该工件对传送带的滑动摩擦力为F f1=mgμcos 37°=6.4 N (2分)

工件在AB段上匀速运动过程中,因前后两工件相隔时间为2 s,两工件之间的距离为2×0.8 m=1.6 m,所以这段距离内始终有两个工件位于传送带上,每个工件对传送带的摩擦力为F f2=mg sin 37°=6

N (3分)

传送带动力装置需增加的功率为P=(F f1+2F f2)v=18.4×0.8 W=14.72 W (2分)

练习15:如图7所示,传送带与地面的倾角θ=37°,从A端到B端的长度为16m,传送带以v0=10m/s的速度沿逆时针方向转动。在传送带上端A处无初速地放置一个质量为0.5kg的物体,它与传送带之间的动摩擦因数为μ=0.5,求(1)物体从A端运动到B端所需的时间是多少?(2)这个过程中系统产生的内能。

(sin37°=0.6,cos37°=0.8)

命题解读:该题目的关键就是要分析好各阶段物体所受摩擦力的大小和方向,若μ>0.75,第二阶段物体将和传送带相对静止一起向下匀速运动;若L <5m ,物体将一直加速运动。因此,在解答此类题目的过程中,对这些可能出现两种结果的特殊过程都要进行判断。

分析与解:物体放在传送带上后,开始阶段,传送带的速度大于物体的速度,传送带施加给物体一沿斜面向下的滑动摩擦力,物体由静止开始加速下滑,受力分析如图(a )所示;当物体加速至与传送带速度相等时,由于μ<tanθ,物体在重力作用下将继续加速,此后物体的速度大于传送带的速度,传送带给物体沿传送带向上的滑动摩擦力,但合力沿传送带向下,物体继续加速下滑,受力分析如图(b)所示。综上可知,滑动摩擦力的方向在获得共同速度的瞬间发生了“突变”。

开始阶段由牛顿第二定律 mgsinθ+μmgcosθ=ma 1

解得a 1=gsinθ+μgcosθ=10m/s 2

物体加速至与传送带速度相等时需要的时间t 1=v/a 1=1s

发生的位移为s =

2

1

a 1t12=5m <16m 可知物体加速到10m/s 时仍未到达B 点 第二阶段的受力分析如图(b)所示,应用牛顿第二定律

有mgsinθ-μmgcosθ=ma 2 所以a 2=2m/s 2

设第二阶段物体滑动到B 端的时间为t 2 则L AB -s =v t2+

2

1

a 2t22 解得t 2=1s t2′=-11s (舍去) 故物体经历的总时间t=t 1+t 2=2s (2)W 1=fs 1=μmgcos θ·s 1=10J W 2=-fs 2=-μmgcos θ·s 2= -22J 所以,W=W 1+W 2=10-22=-12J

故知系统发热产生的内能是12J

练习16:如图所示,许多工厂的流水线上安装有传送带用于传送工件,以提高工作效率。传送带以恒定的速率v =" 2" m/s 运送质量为m = 0.5kg 的工件,工件从A 位置放到传送带上,它的初速度忽略不计。工件与传送带之间的动摩擦因数

=

/2,传送带与水平方向夹角是θ= 30o

,传送带A 、B 间长度是l = 16m ;

每当前一个工件在传送带上停止相对滑动时,后一个工件立即放到传送带上,取g = 10m/s 2

,求:

⑴工件放到传送带后经多长时间停止相对滑动;

⑵在正常运行状态下传送带上相邻工件间的距离; ⑶在传送带上摩擦力对每个工件做的功;

⑷每个工件与传送带之间由于摩擦产生的内能;

⑸传送带满载工件比空载时增加多少功率?

图7 图8

分析:(1)工件先在传送带上做初速度为零的匀加速直线运动,后做匀速运动.相邻工件间的距离等于工件相对传送带滑行的位移大小.先根据牛顿第二定律求出工件的加速度,再由速度公式求出工件在传送带相对滑动的时间,由位移公式分别求出传送带与工件的位移,即可求得相对位移.

(2)工件先受到滑动摩擦力,大小为μmgcosθ,后速度与传送带相同后,受到静摩擦力,大小为mgsinθ,根据功的公式求解摩擦力对每个工件做的功.

(3)摩擦生热Q=fs相,s相是工件与传送带的相对位移.

(4)电动机多消耗的电能转化为工件的机械能与克服摩擦力做功转化成的内能,根据能量守恒求解.

(1);

即: 2.5 m/s2;又;∴t =" 2/2.5" =" 0.8" s ;

停止滑动前,工件相对地移动的距离为:m

(2)m或用图像法求解

(3)

=" 41" J

(4)=J

(5)满载时皮带上工件数11个,其中10个在做匀速直线运动,最下面的一个正在做匀加速运动且加速0.4秒时功率最大,

所以增加的功率P=10mgvsinθ+μmgcosθv =57.5w

点评:本题一方面要分析工件的运动情况,由牛顿第二定律和运动学公式结合求解相对位移,即可求出摩擦产生的热量,另一方面要分析能量如何转化,由能量守恒定律求解电动机消耗的电能.

物理高一下册 机械能守恒定律专题练习(word版

一、第八章 机械能守恒定律易错题培优(难) 1.如图所示,竖直墙上固定有光滑的小滑轮D ,质量相等的物体A 和B 用轻弹簧连接,物体B 放在地面上,用一根不可伸长的轻绳一端与物体A 连接,另一端跨过定滑轮与小环C 连接,小环C 穿过竖直固定的光滑均匀细杆,小环C 位于位置R 时,绳与细杆的夹角为θ,此时物体B 与地面刚好无压力。图中SD 水平,位置R 和Q 关于S 对称。现让小环从R 处由静止释放,环下落过程中绳始终处于拉直状态,且环到达Q 时速度最大。下列关于小环C 下落过程中的描述正确的是( ) A .小环C 、物体A 和轻弹簧组成的系统机械能不守恒 B .小环 C 下落到位置S 时,小环C 的机械能一定最大 C .小环C 从位置R 运动到位置Q 的过程中,弹簧的弹性势能一定先减小后增大 D .小环C 到达Q 点时,物体A 与小环C 的动能之比为cos 2 θ 【答案】BD 【解析】 【分析】 【详解】 A .在小环下滑过程中,只有重力势能与动能、弹性势能相互转换,所以小环C 、物体A 和轻弹簧组成的系统机械能守恒,选项A 错误; B .小环 C 下落到位置S 过程中,绳的拉力一直对小环做正功,所以小环的机械能一直在增大,往下绳的拉力对小环做负功,机械能减小,所以在S 时,小环的机械能最大,选项B 正确; C .小环在R 、Q 处时弹簧均为拉伸状态,且弹力大小等于B 的重力,当环运动到S 处,物体A 的位置最低,但弹簧是否处于拉伸状态,不能确定,因此弹簧的弹性势能不一定先减小后增大,选项C 错误; D .在Q 位置,环受重力、支持力和拉力,此时速度最大,说明所受合力为零,则有 cos C T m g θ= 对A 、B 整体,根据平衡条件有 2A T m g = 故 2cos C A m m θ=

甘肃省民勤县第一中学物理第十二章 电能 能量守恒定律专题试卷

甘肃省民勤县第一中学物理第十二章 电能 能量守恒定律专题试卷 一、第十二章 电能 能量守恒定律实验题易错题培优(难) 1.某实验小组要测量干电池组(两节)的电动势和内阻,实验室有下列器材: A 灵敏电流计G (量程为0~10mA ,内阻约为100Ω) B 电压表V (量程为0~3V ,内阻约为10kΩ) C .电阻箱R 1(0~999.9Ω) D .滑动变阻器R 2(0~10Ω,额定电流为1A) E.旧电池2节 F.开关、导线若干 (1)由于灵敏电流计的量程太小,需扩大灵敏电流计的量程.测量灵敏电流计内阻的电路如图甲所示,调节R 2和电阻箱,使得电压表示数为2.00V ,灵敏电流计示数为4.00mA ,此时电阻箱接入电路的电阻为398.3Ω,则灵敏电流计内阻为___________Ω(保留一位小数). (2)为将灵敏电流计的量程扩大为100mA ,该实验小组将电阻箱与灵敏电流计并联,则应将电阻箱R 1的阻值调为___________Ω(保留三位有效数字). (3)把扩大量程后的电流表接入如图乙所示的电路,根据测得的数据作出G U I - (U 为电压表的示数,G I 为灵敏电流计的示数)图象如图丙所示则该干电池组的电动势E =___________V ,内阻r =___________Ω(保留三位有效数字) 【答案】101.7 11.3 2.910.01± 9.10.2± 【解析】 【分析】 (1)根据题意应用欧姆定律可以求出电流表内阻. (2)把灵敏电流计改装成电流表需要并联分流电阻,应用并联电路特点与欧姆定律求出并联电阻阻值. (3)由闭合电路欧姆定律确定出G U I -的关系式,结合图象求得E ,r . 【详解】 (1)[1]灵敏电流计内阻: 13 2.00398.3101.74.0010g U R R I -= -=-=?Ω

能量守恒定律及应用

【本讲教育信息】 一、教学内容: 能量守恒定律及应用 二、考点点拨 能的转化和守恒定律是自然界最普遍遵守的守恒定律,它在物理学中的重要地位是无可替代的,而用能的转化和守恒定律的观点解决相关问题是高中阶段最重要的内容之一,是历年高考必考和重点考查的内容。 三、跨越障碍 (一)功与能 功是能量转化的量度,即做了多少功就有多少能量转化,而且能的转化必通过做功来实现。 功能关系有: 1. 重力做的功等于重力势能的减少量,即P G E W ?-= 2. 合外力做的功等于物体动能的增加量,即K E W ?=∑ 3. 重力、弹簧弹力之外的力对物体所做的功等于物体机械能的增加量,即E W ?=其它 4. 系统内一对动摩擦力做的功等于系统损失的机械能,等于系统所增加的内能,即相对动内s f Q E E ?==?=? (二)能的转化和守恒定律 1. 内容:能量既不能凭空产生,也不会凭空消失。它只能从一个物体转移到另一个物体或从一种形式转化为另一种形式,而能的总量不变。 2. 定律可以从以下两方面来理解: (1)某种形式的能减少,一定存在其他形式的能增加,且减少量和增加量相等。 (2)某个物体的能量减少,一定存在另一物体的能量增加,且减少量和增加量相等。 这也是我们应用能量守恒定律列方程式的两条基本思路。 (三)用能量守恒定律解题的步骤 1. 分清有多少种形式的能(如动能、势能、内能、电能等)在变化。 2. 分别列出减少的能量减E ?和增加的能量增E ?的表达式。

3. 列恒等式减E ?=增E ? 例1:如图所示,质量为m 的小铁块A 以水平速度0v 冲上质量为M 、长为l 、置于光滑水平面C 上的木板B 。正好不从木板上掉下。已知A 、B 间的动摩擦因数为μ,此时长木板对地位移为s 。求这一过程中: (1)木板增加的动能; (2)小铁块减少的动能; (3)系统机械能的减少量; (4)系统产生的热量 解析:在此过程中摩擦力做功的情况:A 和B 所受摩擦力分别为F 、F ',且F =mg μ,A 在F 的作用下减速,B 在F '的作用下加速,当A 滑动到B 的右端时,A 、B 达到一样的速度A 就正好不掉下 (1)根据动能定理有:mgs s f E B KB μ=?=? (2)滑动摩擦力对小铁块A 做负功,根据功能关系可知)(l s mg s f E A KA +=?=?μ (3)系统机械能的减少量mgl mv mv mv E E E μ=+-= -=?)2121(212220末初 (4)m 、M 相对位移为l ,根据能量守恒mgl s f Q μ=?=相对动 例2:物块质量为m ,从高为H 倾角为θ的斜面上端由静止开始沿斜面下滑。滑至水平面C 点处停止,测得水平位移为x ,若物块与接触面间动摩擦因数相同,求动摩擦因数。 解析:以滑块为研究对象,其受力分析如图所示,根据动能定理有0)cot (sin cos =---θμθθμH x mg H mg mgH 即0=-x H μ x H = μ 例3:某海湾共占面积7100.1?2m ,涨潮时平均水深20m ,此时关上水坝闸门,可使水 位保持在20 m 不变。退潮时,坝外水位降至18 m (如图所示)。利用此水坝建立一座水力发电站,重力势能转化为电能的效率为10%,每天有两次涨潮,该发电站每天能发出多少

功能关系能量守恒定律专题

功能关系能量守恒定律专题 一、功能关系 1.内容 (1)功是的量度,即做了多少功就有发生了转化. (2)做功的过程一定伴随着 ,而且必通过做功来实现. 2.功与对应能量的变化关系 说明 每一种形式的能量的变化均对应一定力的功. 二、能量守恒定律 1.内容:能量既不会消灭,也 .它只会从一种形式为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量 . 2.表达式:ΔE减= . 说明ΔE增为末状态的能量减去初状态的能量,而ΔE减为初状态的能量减去末状态的能量. 热点聚焦 热点一几种常见的功能关系 1.合外力所做的功等于物体动能的增量,表达式:W合=E k2-E k1 , 即动能定理. 2.重力做正功,重力势能减少;重力做负功,重力势能增加.由于“增量”是终态量减去始态量,所以重力的功等于重力势能增量的负值,表达式: WG=-ΔEp=Ep1-Ep2. 3.弹簧的弹力做的功等于弹性势能增量 的负值,表达式:W F=-ΔEp=Ep1-Ep2.弹力做多少正功,弹性势能减少多少;弹力做多少负功,弹性势能增加多少. 4.除系统内的重力和弹簧的弹力外,其他力做的总功等于系统机械能的增量,表达式: W其他=ΔE. (1)除重力或弹簧的弹力以外的其他力做多少正功,物体的机械能就增加多少. (2)除重力或弹簧的弹力以外的其他力做多少负功,物体的机械能就减少多少. (3)除重力或弹簧的弹力以外的其他力不做功, 物体的机械能守恒.

特别提示 1.在应用功能关系解决具体问题的过程中,若只涉及动能的变化用“1”,如果只涉及重力势能的变化用“2”,如果只涉及机械能变化用“4”,只涉及弹性势能的变化用“3”. 2.在应用功能关系时,应首先弄清研究对象,明确力对“谁”做功,就要对应“谁”的位移,从而引起“谁”的能量变化.在应用能量的转化和守恒时,一定要明确存在哪些能量形式,哪种是增加的,哪种是减少的,然后再列式求解. 热点二对能量守恒定律的理解和应用1.对定律的理解 (1)某种形式的能减少,一定存在其他形式的能增加,且减少量和增加量一定相等. (2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等. 这也是我们列能量守恒定律方程式的两条基本思路. 2.应用定律解题的步骤 (1)分清有多少形式的能[如动能、势能(包括重力势能、弹性势能、电势能)、内能等]在变化. (2)明确哪种形式的能量增加,哪种形式的能量减少,并且列出减少的能量ΔE减和增加的能量ΔE增的表达式. (3)列出能量守恒关系式:ΔE减=ΔE增. 特别提示 1.应用能量守恒定律解决有关问题,关键是准确分析有多少种形式的能量在变化,求出减少的总能量ΔE减和增加的总能量ΔE增,然后再依据能量守恒定律列式求解. 2.高考考查该类问题,常综合平抛运动、圆周运动以及电磁学知识考查判断、推理及综合分析能力. 热点三摩擦力做功的特点

机械能守恒定律高考专题复习

第八章机械能守恒定律专题 考纲要求: 1.弹性势能、动能和势能的相互转化——一Ⅰ级 2.重力势能、重力做做功与重力势能改变的关系、机械能守恒定律——一Ⅱ级 3.实验 验证机械能守恒定律 知识达标: 1.重力做功的特点 与 无关.只取决于 2 重力势能;表达式 (l )具有相对性.与 的选取有关.但重力势能的改变与此 (2)重力势能的改变与重力做功的关系.表达式 .重力做正功时. 重力势能 .重力做负功时.重力势能 . 3.弹性势能;发生形变的物体,在恢复原状时能对 ,因而具有 . 这种能量叫弹性势能。弹性势能的大小跟 有关 4.机械能.包括 、 、 . 5.机械能守恒的条件;系统只 或 做功 6 机械能守恒定律应用的一般步骤; (1)根据题意.选取 确定研究过程 (2)明确运动过程中的 或 情况.判定是否满足守恒条件 (3)选取 根据机械能守恒定律列方程求解 经典题型: 1.物体在平衡力作用下的运动中,物体的机械能、动能、重力势能有可能发生的是 A 、机械能不变.动能不变 B 动能不变.重力势能可变化 C 、动能不变.重力势能一定变化 D 若重力势能变化.则机械能变化 2.质量为m 的小球.从桌面上竖直抛出,桌面离地高为h .小球能到达的离地面高度为H , 若以桌面为零势能参考平面,不计空气气阻力 则小球落地时的机械能为 A 、mgH B .mgh C mg (H +h ) D mg (H-h ) 3.如图,一小球自A 点由静止自由下落 到B 点时与弹簧接触.到C 点时弹簧被压缩到最 短.若不计弹簧质量和空气阻力 在小球由A -B —C 的运动过程中 A 、小球和弹簧总机械能守恒 B 、小球的重力势能随时间均匀减少 C 、小球在B 点时动能最大 D 、到C 点时小球重力势能的减少量等于弹簧弹性势能的增加量 4、如图,固定于小车上的支架上用细线悬挂一小球.线长为L .小车以速度V 0做匀 速直线运动,当小车突然碰到障障碍物而停止运动时.小球上升的高度的可能值是. A. 等于g v 202 B. 小于g v 202 C. 大于g v 202 D 等于2L A B C

机械能守恒定律练习题含答案

机械能守恒定律练习题 一、选择题(每题6分,共36分) 1、下列说法正确的是:(选CD ) A 、物体机械能守恒时,一定只受重力和弹力的作用。(是只有重力和弹力做功) B 、物体处于平衡状态时机械能一定守恒。(吊车匀速提高物体) C 、在重力势能和动能的相互转化过程中,若物体除受重力外,还受到其他力作用时,物体的机械能也可能守恒。(受到一对平衡力) D 、物体的动能和重力势能之和增大,必定有重力以外的其他力对物体做功。 2、两个质量不同而动能相同的物体从地面开始竖直上抛(不计空气阻力),当上升到同一高度时,它们(选C) A.所具有的重力势能相等(质量不等) B.所具有的动能相等 C.所具有的机械能相等(初始时刻机械能相等) D.所具有的机械能不等 3、一个原长为L 的轻质弹簧竖直悬挂着。今将一质量为m 的物体挂在弹簧的下端,用手托住物体将它缓慢放下,并使物体最终静止在平衡位置。在此过程中,系统的重力势能减少,而弹性势能增加,以下说法正确的是(选A ) A 、减少的重力势能大于增加的弹性势能(手对物体的支持力也有做功,根据合外力做功为0) B 、减少的重力势能等于增加的弹性势能 C 、减少的重力势能小于增加的弹性势能 D 、系统的机械能增加(动能不变,势能减小) 4、如图所示,桌面高度为h ,质量为m 的小球,从离桌面高H 处 自由落下,不计空气阻力,假设桌面处的重力势能为零,小球落到 地面前的瞬间的机械能应为(选B ) A 、mgh B 、mgH C 、mg (H +h ) D 、mg (H -h ) 6、质量为m 的子弹,以水平速度v 射入静止在光滑水平面上质量为M 的木块, 并留在其中,下列说法正确的是(选BD ) A.子弹克服阻力做的功与木块获得的动能相等(与木块和子弹的动能,还有热能) B.阻力对子弹做的功与子弹动能的减少相等(子弹的合外力是阻力) C.子弹克服阻力做的功与子弹对木块做的功相等 D.子弹克服阻力做的功大于子弹对木块做的功(一部分转化成热能) 二、填空题(每题8分,共24分) 7、从离地面H 高处落下一只小球,小球在运动过程中所受到的空气阻力是它重 力的k 倍,而小球与地面相碰后,能以相同大小的速率反弹,则小球从释放开始,直至停止弹跳为止,所通过的总路程为 H/k 。 8、如图所示,在光滑水平桌面上有一质量为M 的小车,小车跟 绳一端相连,绳子另一端通过滑轮吊一个质量为m 的砖码, 则当砝码着地的瞬间(小车未离开桌子)小车的速度大小为 在这过程中,绳的拉力对小车所做的功为________。 9、物体以100 k E J 的初动能从斜面底端沿斜面向上运动,当该物体经过斜面上某一点时,动能减少了80J ,机械能减少了32J ,则物体滑到斜面顶端时的机

北京市丰台区物理第十二章 电能 能量守恒定律专题试卷

北京市丰台区物理第十二章 电能 能量守恒定律专题试卷 一、第十二章 电能 能量守恒定律实验题易错题培优(难) 1.用图甲中所示的电路测定一种特殊的电池的电动势和内阻,它的电动势E 约为8V ,内阻r 约为30Ω,已知该电池允许输出的最大电流为40mA .为防止调节滑动变阻器时造成短路,电路中用了一个定值电阻充当保护电阻,除待测电池外,可供使用的实验器材还有: A .电流表A(量程0.05A ,内阻约为0.2Ω) B .电压表V(量程6V ,内阻20kΩ) C .定值电阻R 1(阻值100Ω,额定功率1W) D .定值电阻R 2(阻值200Ω,额定功率1W) E.滑动变阻器R 3(阻值范围0~10Ω,额定电流2A) F.滑动变阻器R 4(阻值范围0~750Ω,额定电流1A) G.导线和单刀单掷开关若干个 (1)为了电路安全及便于操作,定值电阻应该选___________;滑动变阻器应该选___________.(均填写器材名称代号) (2)接入符合要求的实验器材后,闭合开关S ,调整滑动变阻器的阻值,读取电压表和电流表的示数.取得多组数据,作出了如图乙所示的图线.根据图象得出该电池的电动势E 为___________V ,内阻r 为___________Ω.(结果均保留2位有效数字) 【答案】R 2 R 4 7.8 29 【解析】 【分析】 (1)应用欧姆定律求出电路最小电阻,然后选择保护电阻;根据电源内阻与保护电阻的阻值,选择滑动变阻器. (2)电源的U -I 图象与纵轴交点的坐标值是电源的电动势,图象斜率的绝对值是电源内阻. 【详解】 (1)[1]为保护电源安全,电路最小电阻 8 Ω200Ω0.040 R = =最小, 保护电阻阻值至少为 200Ω30Ω170Ω100Ω-=>,

能量守恒定律

一. 教学内容: 第九节实验:验证机械能守恒定律 第十节能量守恒定律与能源 二. 知识要点: 1. 会用打点计时器打下的纸带计算物体运动的速度。掌握验证机械能守恒定律的实验原理。通过用纸带与打点计时器来验证机械能守恒定律,体验验证过程和物理学的研究方法。培养学生的观察和实践能力,培养学生实事求是的科学态度。 2. 理解能量守恒定律,知道能源和能量耗散。通过对生活中能量转化的实例分析,理解能量守恒定律的确切含义。 三. 重难点解析: 1. 实验:验证机械能守恒定律 实验目的:验证机械能守恒定律。 实验原理: 通过实验,分别求做自由落体运动物体的重力势能的减少量和相应过程动能的增加量。若二者相等,说明机械能守恒,从而验证机械能守恒定律:△EP=△EK 实验器材 打点计时器及电源、纸带、复写纸、重物、刻度尺、带有铁夹的铁架台、导线。 实验步骤: (1)如图所示装置,将纸带固定在重物上,让纸带穿过打点计时器。

(2)用手握着纸带,让重物静止地靠近打点计时器的地方,然后接通电源,松开纸带,让重物自由落下,纸带上打下一系列小点。 (3)从打出的几条纸带中挑选第一、二点间的距离接近2mm且点迹清晰的纸带进行测量,记下第一个点的位置O,并在纸带上从任意点开始依次选取几个计数点1、2、3、4…,并量出各点到O点的距离h1、h2、h3…,计算相应的重力势能减少量,mgh。如图所示。 (4)依步骤(3)所测的各计数点到O点的距离hl、h2、h3…,根据公式vn= 计算物体在打下点l、2…时的即时速度v1、v2…。计算相应的动能 (5)比较实验结论: 在重力作用下,物体的重力势能和动能可以互相转化,但总的机械能守恒。 选取纸带的原则: (1)点迹清晰。 (2)所打点呈一条直线。 (3)第1、2点间距接近2mm。 本实验应注意的几个问题: (1)安装打点计时器时,必须使两个纸带限位孔在同一竖直线上,以减小摩擦阻力; (2)实验时必须保持提起的纸带竖直,手不动。待接通电源,让打点计时器工作稳定后再松开纸带,以保证第一点是一个清晰的点; (3)打点计时器必须接50Hz的4V?D6V的交流电; (4)选用纸带时应尽量挑选第一、二点间距接近2mm的点迹清晰且各点呈一条直线的纸带;

2020高三高考物理二轮复习专题强化练习卷:机械能守恒及能量守恒定律

机械能守恒及能量守恒定律 1.(2019·山西高三二模)2018年2月13日,平昌冬奥会女子单板滑雪U 形池项目中,我国选手刘佳宇荣获亚军。如图所示为U 形池模型,其中a 、c 为U 形池两侧边缘,在同一水平面,b 为U 形池最低点。刘佳宇从a 点上方h 高的O 点自由下落由左侧进入池中,从右侧飞出后上升至最高位置d 点相对c 点高度为h 2。不计空气阻力,下列判 断正确的是( ) A .从O 到d 的过程中机械能减少 B .从a 到d 的过程中机械能守恒 C .从d 返回到c 的过程中机械能减少 D .从d 返回到b 的过程中,重力势能全部转化为动能 2. (2019·广东省“六校”高三第三次联考)(多选)如图固定在地面上的斜面倾角为θ=30°,物块B 固定在木箱A 的上方,一起从a 点由静止开始下滑,到b 点接触轻弹簧,又压缩至最低点c ,此时将B 迅速拿走,然后木箱A 又恰好被轻弹簧弹回到a 点。已知木箱A 的质量为m ,物块B 的质量为3m ,a 、c 间距为L ,重力加速度为g 。下列说法正确的是( ) A .在A 上滑的过程中,与弹簧分离时A 的速度最大 B .弹簧被压缩至最低点c 时,其弹性势能为0.8mgL C .在木箱A 从斜面顶端a 下滑至再次回到a 点的过程中,因摩擦产生的热量为1.5mgL D .若物块B 没有被拿出,A 、B 能够上升的最高位置距离a 点为L 4 3. (2019·东北三省三校二模)(多选)如图所示,竖直平面内固定两根足够长的细杆L 1、L 2,两杆分离不接触,且两杆间的距离忽略不计。两个小球a 、b (视为质点)质量均为m ,a 球套在竖直杆L 1上,b 球套在水平杆L 2上,a 、b 通过铰链用长度为L 的刚性轻杆连接。将a 球从图示位置由静止释放(轻杆与L 2杆夹角为45°),不计一切摩擦,已知重

机械能守恒定律典型例题精析(附答案)

机械能守恒定律 一、选择题 1.某人用同样的水平力沿光滑水平面和粗糙水平面推动一辆相同的小车,都使它移动相同的距离。两种情况下推力做功分别为W1和W2,小车最终获得的能量分别为E1和E2,则下列关系中正确的是()。 A、W1=W2,E1=E2 B、W1≠W2,E1≠E2 C、W1=W2,E1≠E2 D、W1≠W2,E1=E2 2.物体只在重力和一个不为零的向上的拉力作用下,分别做了匀速上升、加速上升和减速上升三种运动.在这三种情况下物体机械能的变化情况是() A.匀速上升机械能不变,加速上升机械能增加,减速上升机械能减小 B.匀速上升和加速上升机械能增加,减速上升机械能减小 C.由于该拉力与重力大小的关系不明确,所以不能确定物体机械能的变化情况 D.三种情况中,物体的机械能均增加 3.从地面竖直上抛一个质量为m的小球,小球上升的最大高度为H.设上升过程中空气阻力F阻恒定.则对于小球的整个上升过程,下列说法中错误的是() A.小球动能减少了mgH B.小球机械能减少了F阻H C.小球重力势能增加了mgH D.小球的加速度大于重力加速度g 4.如图所示,一轻弹簧的左端固定,右端与一小球相连,小球处于光滑水平面上.现对小球施加一个方向水平向右的恒力F,使小球从静止开始运动,则小球在向右运动的整个过程中() A.小球和弹簧组成的系统机械能守恒 B.小球和弹簧组成的系统机械能逐渐增加 C.小球的动能逐渐增大 D.小球的动能先增大后减小 二、计算题 1.如图所示,ABCD是一条长轨道,其AB段是倾角为的斜面,CD段是水平的,BC是与AB和CD相切的一小段弧,其长度可以略去不计。一质量为m的物体在A点从静止释放,沿轨道滑下,最后停在D点,现用一沿轨道方向的力推物体,使它缓慢地由D点回到A点,设物体与轨道的动摩擦因数为,A点到CD间的竖直高度为h,CD(或BD)间的距离为s,求推力对物体做的功W为多少 2.一根长为L的细绳,一端拴在水平轴O上,另一端有一个质量为m的小球.现使细绳位于 水平位置并且绷紧,如下图所示.给小球一个瞬间的作用,使它得到一定的向下的初速度. (1)这个初速度至少多大,才能使小球绕O点在竖直面内做圆周运动 (2)如果在轴O的正上方A点钉一个钉子,已知AO=2/3L,小球以上一问中的最小速度开始运动,当它运动到O点的正上方,细绳刚接触到钉子时,绳子的拉力多大 3.如图所示,某滑板爱好者在离地h=1.8m高的平台上滑行,水平离开A点后落在水平地

黑龙江省大庆铁人中学物理第十二章 电能 能量守恒定律专题试卷

黑龙江省大庆铁人中学物理第十二章 电能 能量守恒定律专题试卷 一、第十二章 电能 能量守恒定律实验题易错题培优(难) 1.用图甲中所示的电路测定一种特殊的电池的电动势和内阻,它的电动势E 约为8V ,内阻r 约为30Ω,已知该电池允许输出的最大电流为40mA .为防止调节滑动变阻器时造成短路,电路中用了一个定值电阻充当保护电阻,除待测电池外,可供使用的实验器材还有: A .电流表A(量程0.05A ,内阻约为0.2Ω) B .电压表V(量程6V ,内阻20kΩ) C .定值电阻R 1(阻值100Ω,额定功率1W) D .定值电阻R 2(阻值200Ω,额定功率1W) E.滑动变阻器R 3(阻值范围0~10Ω,额定电流2A) F.滑动变阻器R 4(阻值范围0~750Ω,额定电流1A) G.导线和单刀单掷开关若干个 (1)为了电路安全及便于操作,定值电阻应该选___________;滑动变阻器应该选___________.(均填写器材名称代号) (2)接入符合要求的实验器材后,闭合开关S ,调整滑动变阻器的阻值,读取电压表和电流表的示数.取得多组数据,作出了如图乙所示的图线.根据图象得出该电池的电动势E 为___________V ,内阻r 为___________Ω.(结果均保留2位有效数字) 【答案】R 2 R 4 7.8 29 【解析】 【分析】 (1)应用欧姆定律求出电路最小电阻,然后选择保护电阻;根据电源内阻与保护电阻的阻值,选择滑动变阻器. (2)电源的U -I 图象与纵轴交点的坐标值是电源的电动势,图象斜率的绝对值是电源内阻. 【详解】 (1)[1]为保护电源安全,电路最小电阻 8 Ω200Ω0.040 R = =最小, 保护电阻阻值至少为 200Ω30Ω170Ω100Ω-=>,

高中物理能量守恒定律【高中物理能量守恒定律公式

高中物理能量守恒定律【高中物理能量守恒定律公式 在高中物理学习过程中,能量守恒属于一项极为重要的知识点,熟练掌握这一内容对于提高学生的物理知识分析能力有很大帮助,下面是小编给大家带来的高中物理能量守恒定律公式,希望对你有帮助。高中物理能量守恒定律公式 1.阿伏加德罗常数NA=×1023/mol;分子直径数量级10-10米 2.油膜法测分子直径d=V/s {V:单分子油膜的体积,S:油膜表面积2} 3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4.分子间的引力和斥力r10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0 5.热力学第一定律W+Q=ΔU{,W:外界对物体做的正功,Q:物体吸收的热量,ΔU:增加的内能,涉及到第一类永动机不可造出} 6.热力学第二定律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化; 开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化{涉及到第二类永动机不可造出} 7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-摄氏度} 注: 布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈; 温度是分子平均动能的标志; 分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快; 分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小; 气体膨胀,外界对气体做负功W0;吸收热量,Q>0 物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零; r0为分子处于平衡状态时,分子间的距离; 其它相关内容:能的转化和定恒定律/能源的开发与利用、环保/物体的内能、分子的动能、分子势能。高中物理能量守恒知识点 功是一个过程量,与力在空间的作用过程相关。恒力功的计算公式与物体运动过程无关;重力功、弹力功与路径无关。功是一个标量,但有正负之分。 功率P:功率是表征力做功快慢的物理量、是标量:P=W/t 。若做功快慢程度不同,上式为平均功率。注意恒力的功率不一定恒定,如初速为零的匀加速运动,第一秒、第二秒、第三秒……内合力的平均功率之比为1:3:5……。已知功率可以求力在一段时间内所做的功W=Pt,这时可能是变力再做功。上式常常用于分析解决机车牵引功率问题,常设有以下两种约束条件:1)发动机功率一定:牵引力与速度成反比,只要速度改变,牵引力F=P/v 将改变,这时的运动一定是变加速运动。2)机车以恒力启动:牵引力F恒定,由P=Fv可知,若车做匀加速运动,则功率P将增加,这种过程直到P达到机车的额定功率为止。 能:自然界有多种运动形式,与不同运动形式相应的存在不同形式的能量:机械运动--机械能;热运动--内能;电磁运动--电磁能;化学运动--化学能;生物运动--生物能;原子及原子核运动--原子能、核能……。动能:物体由于有机械运动速度而具有的能量Ek=mv2/2 能,包括动能和势能,都是标量。都是状态量,如动能由速度决定,重力势能由高度决定,弹性势能由形变状态决定。都具有相对性,物体速度相对于不同的参照物有不同的结果,相应的动能相对于不同的参照物有不同的动能。势能相对于不同的零势能参考面有不同的结果,势能有可能取负值,它意味着此时物体的势能比零势能低。

机械能守恒定律专题复习

第七章 机械能守恒定律 一、选择题(共15小题。,1~12小题只有一个选项正确,13~15小题有多个选项正确;) 1.下列说法中正确的是( ) A.物体受力的同时又有位移发生,则该力对物体做的功等于力乘以位移 B.力很大,位移很大,这个力所做的功一定很多 C.机械做功越多,其功率越大 D.汽车以恒定功率上坡的时候,司机必须换挡,其目的是减小速度,得到较大的牵引力 2.一小石子从高为10 m 处自由下落,不计空气阻力,经一段时间后小石子的动能恰等于它的重力势能 (以地面为参考平面),g=10 m/s 2,则该时刻小石子的速度大小为( ) A.5 m/s B.10 m/s C.15 m/s D.20 m/s 3.从空中以30 m/s 的初速度水平抛出一个重10 N 的物体,物体在空中运动4 s 落地,不计空气阻力,g 取10 m/s 2,则物体落地时重力的瞬时功率为( ) A.400 W B.500 W C.300 W D.700 W 4.将地面上静止的货物竖直向上吊起,货物由地面运动至最高点的过程中,v -t 图象如图所示。以下判断正确的是( ) A.前3 s 内货物处于失重状态 B.最后2 s 内货物只受重力作用 C.前3 s 内与最后2 s 内货物的平均速度相同 D.第3 s 末至第5 s 末的过程中,货物的机械能守恒 5.如图所示,在地面上以速度v 0抛出质量为m 的物体,抛出后物体落到 比地面低的海平面上。若以地面为零势能面而且不计空气阻力,则( ) A .物体到海平面时的重力势能为mgh B .从抛出到落至海平面,重力对物体做功为mgh+1 2 mv 02 C .物体在海平面上的动能为mgh D .物体在海平面上的机械能为 12 mv 02 6.如图,表面光滑的固定斜面顶端安装一定滑轮,小物块A 、B 用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦)。初始时刻,A 、B 处于同一高度并恰好处于静止状态。剪断轻绳后,A 下落、B 沿斜面下滑,则从剪断轻绳到物块着地,两物块( )

机械能守恒定律典型分类例题

一、单个物体的机械能守恒 判断一个物体的机械能是否守恒有两种方法:(1)物体在运动过程中只有重力做功,物体的机械能守恒。 (2)物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。 所涉及到的题型有四类:(1)阻力不计的抛体类。(2)固定的光滑斜面类。(3)固定的光滑圆弧类。(4)悬点固定的摆动类。(1)阻力不计的抛体类 包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。 (2)固定的光滑斜面类 在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。 (3)固定的光滑圆弧类 在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。 (4)悬点固定的摆动类 和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。由于悬线的拉力自始至终都沿法线方向,和物体运动的速度方向垂直而对运动物体不做功。因此只有重力做功,物体的机械能守恒。 作题方法: 一般选取物体运动的最低点作为重力势能的零势参考点,把物体运动开始时的机械能和物体运动结束时的机械能分别写出来,并使之相等。 注意点:在固定的光滑圆弧类和悬点定的摆动类两种题目中,常和向心力的公式结合使用。这在计算中是要特别注意的。 习题: 1、三个质量相同的小球悬挂在三根长度不等的细线上,分别把悬线拉至水平位置后轻轻释放小球,已知线长L a L b L c,则悬线摆至竖直位置时,细线中张力大小的关系是() A T c T b T a B T a T b T c C T b T c T a D T a=T b=T c 4、一质量m = 2千克的小球从光滑斜面上高h = 3.5米高处由静止滑下斜面底端紧接着一个半径R = 1米的光滑圆环(如图)求: (1)小球滑至圆环顶点时对环的压力; (2)小球至少要从多高处静止滑下才能越过圆环最高点; (3)小球从h0 = 2米处静止滑下时将在何处脱离圆环(g =9.8米/秒2)。 二、系统的机械能守恒 由两个或两个以上的物体所构成的系统,其机械能是否守恒,要看两个方面 (1)系统以外的力是否对系统对做功,系统以外的力对系统做正功,系统的机械能就增加,做负功,系统的机械能就减少。不做功,系统的机械能就不变。 (2)系统间的相互作用力做功,不能使其它形式的能参与和机械能的转换。 系统内物体的重力所做的功不会改变系统的机械能 系统间的相互作用力分为三类: 1)刚体产生的弹力:比如轻绳的弹力,斜面的弹力,轻杆产生的弹力等 2)弹簧产生的弹力:系统中包括有弹簧,弹簧的弹力在整个过程中做功,弹性势能参与机械能的转换。 3)其它力做功:比如炸药爆炸产生的冲击力,摩擦力对系统对功等。 在前两种情况中,轻绳的拉力,斜面的弹力,轻杆产生的弹力做功,使机械能在相互作用的两物体间进行等量的转移,系统的

浙江省台州市物理第十二章 电能 能量守恒定律专题试卷

浙江省台州市物理第十二章电能能量守恒定律专题试卷 一、第十二章电能能量守恒定律实验题易错题培优(难) 1.在练习使用多用电表的实验中, (1)某同学使用多用电表的欧姆档粗略测量一定值电阻的阻值R x,先把选择开关旋到“×10”挡位,测量时指针偏转如图所示.以下是接下来的测量过程: a.将两表笔短接,调节欧姆档调零旋钮,使指针对准刻度盘上欧姆档的零刻度,然后断开两表笔 b.旋转选择开关至交流电压最大量程处(或“OFF”档),并拔出两表笔 c.将选择开关旋到“×1”挡 d.将选择开关旋到“×100”挡 e.将选择开关旋到“×1k ”挡 f.将两表笔分别连接到被测电阻的两端,读出阻值R x,断开两表笔 以上实验步骤中的正确顺序是________(填写步骤前的字母). (2)重新测量后,指针位于如图所示位置,被测电阻的测量值为____Ω. (3)如图所示为欧姆表表头,已知电流计的量程为I g=100μA,电池电动势为E=1.5V,则该欧姆表的内阻是____kΩ,表盘上30μA刻度线对应的电阻值是____kΩ. (4)为了较精确地测量另一定值电阻的阻值R y,采用如图所示的电路.电源电压U恒定,电阻箱接入电路的阻值可调且能直接读出.

①用多用电表测电路中的电流,则与a点相连的是多用电表的____(选填“红”或“黑”)表笔. ②闭合电键,多次改变电阻箱阻值R,记录相应的R和多用电表读数I,得到R-1 I 的关系 如图所示.不计此时多用电表的内阻.则R y=___Ω,电源电压U=___V. (5)一半导体电阻的伏安特性曲线如图所示.用多用电表的欧姆挡测量其电阻时,用“×100”挡和用“×1k”挡,测量结果数值不同.用____(选填“×100”或“×1k”)挡测得的电阻值较大,这是因为____________. 【答案】dafb 2200 15k?35kΩ红 200 8 ×1k 欧姆表中挡位越高,内阻越大;由于表内电池的电动势不变,所以选用的挡位越高,测量电流越小;该半导体的电阻随电流的增大而减小,所以选用的档位越高,测得的电阻值越大 【解析】 【分析】 【详解】 (1)[1]先把选择开关旋到“×10”挡位,测量时指针偏转如图所示.指针指在示数较大处,为使指针指在刻度盘中央附近,应换用“×100 ”挡(几百×10=几十×100),再欧姆调零,测量,

能量守恒定律与能

高中物理课堂教案教案年月日

生:能量耗散和能量守恒并不矛盾,能量耗散表明,在能源利用的过程中,即在能量的转化过程中,能量在数量上并没有减少.但是可利用的品质上降低了,从便于利用变为不便于利用了. 师:这说明什么问题? 生:这说明能量的耗散从能量转化的角度反映出自然界中宏观过程的方向性.师:我们为什么要节约能源呢? 生:正是因为能量转化的方向性,能量的利用受这种方向性的制约,所以能量的利用是有条件的,也是有代价的. 生:节约能源同时开发可再生能源. 师:通过下面材料的阅读。加深你对能源的理解. (多媒体播放世界能源的解决途径)(参考案例) 世界能源问题的解决途径是什么?能源,是人类敕以生存和进行生产的不可缺少的资源.近年来,随着生产力的发展和能源消费的增长.能源问题已被列为世界上研究的重大问题之一.解决世界能源问题的根本途径,主要有两个方面:其一是广泛开源,其二是认真节流.所谓开源,就是积极开发和利用各种能源.在继续加紧石油勘探和寻找新的石油产地的同时,积极开发丰富的煤炭资源,还要大力开发水能,生物能等常规能源,加强核能、太阳能,风能、沼气,海洋能,地热能以及其他各种新能源的研究和利用,从而不断扩大人类的能源资源的种类和来源.所谓节流,就是要大力提倡节约能源.节能是世界上许多国家关心和研究的重要课题,甚至有人把节能称为世界的“第五大能源”,与煤、石油和天然气、水能、核能等并列.在节能方面,在有计划地控制人口增长的同时,重点要发挥先进科学技术的优势,提高各国的能源利用效率.如果世界各国家和各地区都能改进各种用能设备,不断提高能源的质量规范和降低单位产品的能耗,加强科学经管,适当控制生活能源的合理使用,就能使能源更加有效地用于生产和生活之中,从而解决人类面临的能源问题. [小结] 新课程更多地与社会实际相联系,鼓励学生提出问题.本节“思考与讨论”对能源问题做了讨论,这是一个质疑的范例.它引导我们考虑能量转化和转移的方向性.从物理学的角度研究宏观过程的方向性,在现阶段只需用一些简单的实例,让学生初步地体会一下就可以了.例如:摩擦力做功的过程,要损耗机械能而生热,产生的热不可能全部转化为机械功.在其他的宏观过程中也是如此,例如:两种气体放到一个容器内,总会均匀地混合到一起,但不会再自发地分离开来.通过实例说明.在能量的转化和转移过程中,能量是守恒的,但能量的品质却降低了,可被人直接利用的能在逐渐减少,这是能量耗散现象.所以,能量虽然守恒,但我们还要节约能源.对功能关系的理解 [例1]一小滑块放在如图所示的凹形斜面上,用力F沿斜面向下拉小滑块,小滑块沿斜面运动了一段距离。若已知在这过程中,拉力F所做的功的大小(绝对值)为A,斜面对滑块的作用力所做的功的大小为B,重力做功的大小为G,空气阻力做功的大小为D。当用这些量表达时,小滑块的动能的改变(指末态动能减去初态动能)等于多少?,滑块的重力势能的改变等于多少?滑块机械能(指动能与重力势能之和)的改变等于多少? 解读:根据动能定理,动能的改变等于外力做功的代数和,其中做负功的有空气阻力,斜面对滑块的作用力的功(因弹力不做功,实际上为摩擦阻力的功),因此ΔE k=A - B+C - D;根据重力做功与重力势能的关系,重力势能的减少等于重力做的功,因此ΔE p= - C;滑块机械能的改变等于重力之外的其他力做的功,因此ΔE = A – B – D

专题练习:连接体中的机械能守恒定律

连接体中的机械能守恒定律 例题精讲 例、(2017年重庆调研)如图所示,A 、B 、C 三个可视为质点的物体通过轻绳连接,A 、B 间轻绳长为L .C 静置于水平地面上,用手托住A ,两段轻绳都伸直,A 距水平地面高也为L ,然 后将A 从静止开始释放.已知物体A 、B 的质量均为m ,物体C 的质量为32m ,重力加速度 为g ,定滑轮光滑且质量不计,不计空气阻力,物体A 着地后不反弹.求: (1)刚释放A 时,A 、B 间绳的弹力大小F T ; (2)运动过程中,物体C 距离地面的最大高度H . 【答案】F T =67mg ; H =127L 同步练习 1.(多选)轻绳一端通过光滑的定滑轮与物块P 连接,另一端与套在光滑竖直杆上的圆环Q 连接,Q 从静止释放后,上升一定距离到达与定滑轮等高处,则在此过程中( ) A .任意时刻P 、Q 两物体的速度大小满足v P

动能E k 与离地高度h 的关系如图乙所示,其中高度从h 1下降到h 2,图象为直线,其余部分为曲线,h 3对应图象的最高点,轻弹簧劲度系数为k ,小物体质量为m ,重力加速度为g .以下说法正确的是( ) A .小物体下落至高度h 3时,弹簧形变量为0 B .小物体下落至高度h 5时,加速度为0 C .小物体从高度h 2下降到h 4,弹簧的弹性势能增加了2m 2g 2k D .小物体从高度h 1下降到h 5,弹簧的最大弹性势能为2mg (h 1-h 5) 【答案】:C 3.如图所示,带有挡板的光滑斜面固定在水平地面上,斜面的倾角为θ=30°.质量均为1 kg 的A 、B 两物体用轻弹簧拴在一起,弹簧的劲度系数为5 N/cm ,质量为2 kg 的物体C 用细线通过光滑的轻质定滑轮与物体B 连接.开始时A 、B 均静止在斜面上,A 紧靠在挡板处,用手托住C ,使细线刚好被拉直.现把手拿开,让C 由静止开始运动,从C 开始运动到A 刚要离开挡板的过程中,下列说法不正确的是(取g =10 m/s 2)( ) A .初状态弹簧的压缩量为1 cm B .末状态弹簧的伸长量为1 cm C .物体B 、C 与地球组成的系统机械能守恒 D .物体C 克服绳的拉力所做的功为0.2 J 【答案】:C 【解析】 4.(多选)(2017年广东广州模拟)如图所示,A 、B 两小球由绕过轻质定滑轮的细线相连,A 放在固定的光滑斜面上,B 、C 两小球在竖直方向上通过劲度系数为k 的轻质弹簧相连,C

机械能守恒定律单元测试题

机械能及其守恒定律 一、单项选择题(每小题4分,共40分) 1. 关于摩擦力做功,下列说法中正确的是( ) A. 静摩擦力一定不做功 B. 滑动摩擦力一定做负功 C. 静摩擦力和滑动摩擦力都可做正功 D. 相互作用的一对静摩擦力做功的代数和可能不为0 2.一个人站在高出地面h 处,抛出一个质量为m 的物体.物体落地时的速率为v ,不计空气阻力,则人对物体所做的功为( ) A .mgh B .mgh /2 C . 2 1mv 2 D . 2 1mv 2 -mgh 3.从同一高度以相同的速率分别抛出质量相等的三个小球,一个竖直上抛,一个竖直下抛,另一个平抛,则它们从抛出到落地( ) ①运行的时间相等 ②加速度相同 ③落地时的速度相同 ④落地时的动能相等 以上说法正确的是 A .①③ B .②③ C .①④ D .②④ 4.水平面上甲、乙两物体,在某时刻动能相同,它们仅在摩擦力作用下停下来.图7-1中的a 、b 分别表示甲、乙两物体的动能E 和位移s 的图象,则( ) 图7-1 ①若甲、乙两物体与水平面动摩擦因数相同,则甲的质量较大 ②若甲、乙两物体与水平面动摩擦因数相同,则乙的质量较大 ③若甲、乙质量相同,则甲与地面间的动摩擦因数较大 ④若甲、乙质量相同,则乙与地面间的动摩擦因数较大 以上说法正确的是( ) A .①③ B .②③ C .①④ D .②④ 5.当重力对物体做正功时,物体的( ) A .重力势能一定增加,动能一定减小 B .重力势能一定增加,动能一定增加 C .重力势能一定减小,动能不一定增加 D .重力势能不一定减小,动能一定增加 6.自由下落的小球,从接触竖直放置的轻弹簧开始,到压缩弹簧有最大形变的过程中,以下说法中正确的是( ) A .小球的动能逐渐减少 B .小球的重力势能逐渐减少 C .小球的机械能守恒 D .小球的加速度逐渐增大 7.一个质量为m 的物体以a =2g 的加速度竖直向下运动,则在此物体下降h 高度的过程中,物体的( )

相关文档
最新文档