聚氨酯蒙脱土纳米复合材料

聚氨酯蒙脱土纳米复合材料
聚氨酯蒙脱土纳米复合材料

纳米复合材料最新研究进展与发展趋势

智能复合材料最新研究进展与发展趋势 1.绪论 智能复合材料是一类能感知环境变化,通过自我判断得出结论,并自主执行相应指令的材料,仅能感知和判断但不能自主执行的材料也归入此范畴,通常称为机敏复合材料。智能复合材料由于具备了生命智能的三要素:感知功能(监测应力、应变、压力、温度、损伤) 、判断决策功能(自我处理信息、判别原因、得出结论) 和执行功能(损伤的自愈合和自我改变应力应变分布、结构阻尼、固有频率等结构特性) ,集合了传感、控制和驱动功能,能适时感知和响应外界环境变化,作出判断,发出指令,并执行和完成动作,使材料具有类似生命的自检测、自诊断、自监控、自愈合及自适应能力,是复合材料技术的重要发展。它兼具结构材料和功能材料的双重特性。 在一般工程结构领域,智能复合材料主要通过改变自身的力学特性和形状来实现结构性态的控制。具体说就是通过改变结构的刚度、频率、外形等方面的特性,来抑制振动、避免共振、改善局部性能、提高强度和韧性、优化外形、减少阻力等。在生物医学领域,智能复合材料可以用于制造生物替代材料和生物传感器。在航空航天领域,智能复合材料已实际应用于飞机制造业并取得了很好的效果,航天飞行器上也已经使用了具有自适应性能的智能复合材料。智能复合材料在土木工程领域中发展也十分迅速。如将纤维增强聚合物(FRP)与光纤光栅(OFBG)复合形成的FRP—OFBG 复合筋大大提高了光纤光栅的耐久性。将这种复合筋埋入混凝土中,可以有效地检测混凝土的裂纹和强度,而且它可以根据需要加工成任意尺寸,十分适于工业化生产。本文阐述了近年来发展起来的形状记忆、压电等几种智能复合材料与结构的研究和应用现状,同时展望了其应用前景。 2.形状记忆聚合物(Shape-Memory Polymer)智能复合材料的研究 形状记忆聚合物(SMP)是通过对聚合物进行分子组合和改性,使它们在一定条件下,被赋予一定的形状(起始态),当外部条件发生变化时,它可相应地改变形状并将其固定变形态。如果外部环境以特定的方式和规律再次发生变化,它们能可逆地恢复至起始态。至此,完成“记忆起始态→固定变形态→恢复起始态”的循环,聚合物的这种特性称为材料的记忆效应。形状记忆聚合物的形变量最大可为200%,是可变形飞行器

酚醛树脂

酚醛树脂 1.摘要 酚醛树脂是一种最经典的人工合成树脂,有近百年的使用史。由于酚醛树脂的原料易得,价格低廉,生产工艺和设备简单,而且制品具有优异的机械性能,耐热性、耐寒性、电绝性、尺寸稳定性、成型加工型、阻燃性及低烟雾性。因此其成为工业部门不可缺少的材料,被广泛应用于固结磨具、涂附磨具、摩擦材料、耐火材料以及电木粉、烟花爆竹、铸造等各个领域。 2.引言 酚醛树脂是由苯酚和甲醛在催化剂条件下缩聚、经中和、水洗而制成的树脂,其中以苯酚和甲醛树脂为最重要。也是世界上最早由人工合成的,至今仍很重要的高分子材料。因选用催化剂的不同,可分为热固性和热塑性两类。酚醛树脂具有良好的耐酸性能、力学性能、耐热性能,广泛应用于防腐蚀工程、胶粘剂、阻燃材料、砂轮片制造等行业。 酚醛树脂为热固性树脂,与其它热固性树脂相比,其优点有:(1)固化时不需要加入催化剂、促进剂,只需加热、加压,调整酚与醛的摩尔比与介质pH值,就可得到具有不同性能的产物。(2)固化后密度小,机械强度、热强度高,变形倾向小,耐化学腐蚀及耐湿性高,是高绝缘材料。 3.1酚醛树脂的合成原理 酚醛树脂也叫电木,又称电木粉。原为无色或黄褐色透明物,市场销售往往加着色剂而呈红、黄、黑、绿、棕、蓝等颜色,有颗粒、粉末状。耐弱酸和弱碱,遇强酸发生分解,遇强碱发生腐蚀。不溶于水,溶于丙酮、酒精等有机溶剂中。苯酚与甲醛缩聚而得。它包括:线型酚醛树脂、热固性酚醛树脂和油溶性酚醛树脂。主要用于生产压塑粉、层压塑料;制造清漆或绝缘、耐腐蚀涂料;制造日用品、装饰品;制造隔音、隔热材料等。常见的高压电插座、家具塑料把手等等phenolic resin,简称PF,酚醛树脂.为黄色、透明、无定形块状物质,因含有游离分子而呈微红色,比重1.25~1.30,易溶于醇,不溶于水,对水、弱酸、弱碱溶液稳定。由苯酚和甲醛在催化剂条件下缩聚、经中和、水洗而制成的树脂。 3.2酚醛树脂的重要性能 高温性能酚醛树脂最重要的特征就是耐高温性,即使在非常高的温度下,也能保持其结构的整体性和尺寸的稳定性。正因为这个原因,酚醛树脂才被应用于一些高温领域,例如耐火材料,摩擦材料,粘结剂和铸造行业。 粘结强度酚醛树脂是一种多功能,与各种各样的有机和无机填料都能相容的物质。设计正确的酚醛树脂,润湿速度特别快。并且在交联后可以为磨具、耐火材料,摩擦材料以及电木粉提供所需要的机械强度,耐热性能和电性能。 水溶性酚醛树脂或醇溶性酚醛树脂被用来浸渍纸、棉布、玻璃、石棉和其它类似的物质为它们提供机械强度,电性能等。典型的例子包括电绝缘和机械层压制造,离合器片和汽车滤清器用滤纸。 高残碳率在温度大约为1000℃的惰性气体条件下,酚醛树脂会产生很高的残碳,这有利于维持酚醛树脂的结构稳定性。酚醛树脂的这种特性,也是它能用于耐火材料领域的一个重要原因。

聚氨酯_无机纳米复合材料的应用研究进展

聚氨酯/无机纳米复合材料的应用研究进展 3 贾建民 郭 睿 (陕西科技大学教育部轻化工助剂化学与技术重点实验室 西安710021) 摘 要:综述了无机纳米粒子改性聚氨酯复合材料在智能材料、导电材料、光学材料、生物医学材 料等领域应用研究的进展,并对聚氨酯/无机纳米复合材料存在的问题和研究方向进行了展望。关键词:聚氨酯;无机纳米粒子;复合材料;应用中图分类号:T Q 32318 文献标志码:A 文章编号:1005-1902(2010)01-0006-03 聚氨酯(P U )材料性能优异,发展非常迅速,应用领域广泛。由于无机纳米粒子具有小尺寸效应、表面与界面效应、量子尺寸效应及宏观量子隧道效应,在 热、声、磁、光、催化等方面远优于普通材料[1] 。纳米改性聚氨酯复合材料宏观表现出优良的力学特性、热学特性、光学特性、电学特性、磁学特性、催化特性、敏感特性。聚氨酯与纳米材料的协同效应,赋予了聚氨酯纳米复合材料良好的导电、吸波、抗静电、阻燃、抗紫外、生物相容、杀菌等诸多性能。 目前用于改性聚氨酯制备纳米复合材料的纳米粒子主要有蒙脱土、炭纳米管、二氧化硅、二氧化钛。除此之外,还有镍、氧化铝、碳酸钙、氧化锌、二氧化铈、氢氧化镁、氧化锡锑、炭黑、石墨、累托石、羟基磷灰石等众多纳米粒子。但无机纳米粒子极易发生团聚且难以在基体中均匀分散,严重影响纳米粒子优异特性的发挥和复合材料的性能。因此,需对其表面进行处理。目前无机纳米粒子改性聚氨酯制备复合材料的方法主要有插层法、共混法、溶胶2凝胶法、原位聚合法等。近年来,无机纳米改性聚氨酯复合材料在智能材料、导电复合材料、光学材料、生物医学材料等领域的研究日益增加,引起人们广泛关注。1 聚氨酯/无机纳米复合材料的应用研究1.1 智能材料 聚氨酯可以作为热敏型形状记忆高分子材料[2] 。形状记忆聚氨酯(S MP U )通过加热,超过其 相变温度,能够恢复原始形状。其形状记忆特性已 在建筑、医学、纺织及包装行业得到应用,但还存在形状恢复力小、恢复速度较慢、恢复精度低、重复记忆效果不够理想等问题。通过纳米粒子改性可增强形状记忆基体的力学性能,提高形状记忆能力及开发电致形状记忆材料。 陈少军,等[3] 采用经硅烷偶联剂表面处理的纳米Si O 2粒子制备了S MP U /Si O 2纳米复合材料。研究表明,纳米Si O 2使S MP U 的形状回复起始温度提高约10℃左右,形变回复响应温度和最终恢复温度也稍有提高,加入质量分数为1%的纳米Si O 2粒子的S MP U 与纯S MP U 样品相比,其形状回复速率提高了近318倍。 Cho J W ,等 [4] 将酸化处理后的碳纳米管与聚氨 酯溶液共混制备了电敏形状记忆复合材料。当碳纳米管添加质量分数为5%时,复合材料的电导率可 达10-3 S/c m ,具有很好的形状记忆功能;当外加电压为40V 时,在40s 内材料可完全恢复为初始形 状,其复合材料有望作为智能执行器。 112 导电材料 聚氨酯本身是绝缘材料,通过与具有导电性的纳米粒子,如石墨、炭黑或碳纳米管等填充或共混等方式,使材料表现出导电性能。可用作导电体材料(包括导电弹性体、导电塑料、导电纤维、导电涂料、导电胶粘剂及导电薄膜材料)、抗静电材料、电磁波屏蔽材料和气敏导电材料等,具有广阔的应用前景。 ? 6?聚氨酯工业 P OLY URETHANE I N DUSTRY 2010年第25卷第1期 2010.Vol .25No .1 3 基金项目:由陕西科技大学研究生创新基金资助。

磁电复合材料研究进展.

《复合材料学》课程论文 题目:磁电复合材料的研究进展 学生姓名:李名敏 学号: 051002109 学院:化学工程学院 专业班级:材料化学101 电子邮箱: 904721996@https://www.360docs.net/doc/f25614291.html, 2013年 6 月

磁电复合材料的研究进展 摘要:本文介绍磁电复合材料的研究现状和合成工艺,讨论了磁电复合材料性能的影响因素,最后提出了其目前存在的问题及对今后的展望。 关键词:磁电复合材料铁电相铁磁相纳米材料合成工艺性能 1 引言 材料在外加磁场作用下产生自发极化或者在外加电场作用下感生磁化强度的效应称为磁电效应,具有磁电效应的材料称为磁电材料[1]。而磁电复合材料,它由两种单相材料—铁电相与铁磁相经一定方法复合而成。磁电复合材料的磁电转换功能是通过铁电相与铁磁相的乘积效应实现的, 这种乘积效应即磁电效应。磁电复合材料不仅具有前者的压电效应和后者的磁致伸缩效应,而且还能产生出新的磁电转换效应。这种材料能够直接将磁场转换成电场,也可以把电场直接转换为磁场。这种不同能量场之间的转换一步而成,不需要额外的设备,因此转换效率高、易操作。磁电复合材料不但具有较高的尼尔和居里温度,磁电转换系数大等诸多优点,而且还可被用于微波、高压输电、宽波段磁探测,磁场感应器等领域,尤其是在微波泄露、高压输电系统中的电流测量方面有着很突出的优势。此外,磁电复合材料在智能滤波器、磁电传感器、电磁传感器等领域也潜在着巨大的的应用前景[2]。目前, 磁电复合材料作为一种非常重要的功能材料,已成为当今铁电、铁磁功能材料领域的一个新的研究热点。 2 磁电复合材料的研究现状 2.1 磁电复合材料的历史 1894年法国物理学家居里首先提出并证明了一个不对称的分子体在外加磁场的影响下有可能直接被极化,磁电材料概念就此被提出。随后,一些科学家又指出了从对称性角度来考虑,在磁有序晶体中可能存在与磁场强度成正比的电极化以及与电场强度成正比的磁极化即线性磁电效应。直到20世纪80年代,已经发现50多种具有磁电效应的化合物,以及几十种具有此性能的固溶体。虽然发现了一系列具有磁电效应的单相材料,而这类材料虽然既具有铁电性(或反铁电性),又具有铁磁性(或反铁磁性),然而这些材料的居里温度大都远远低于室温,并且只有在居里温度以下这些材料才会表现出微弱的磁电效应。当环境温度上升到居里温度以上时,磁电系数就迅速下降为零,磁电效应也就随之消失。因此,难以利用单相磁电材料开发出具有实际应用价值的器件。这些局限性使得材料科学工作者们又将目光转移到复合材料上,Van Suchtelen首先提出通过复合材料的乘积效应来获得磁电效应,为制备高性能磁电材料开辟了一条新途径。1978

酚醛树脂

酚醛树脂 酚醛树脂也叫电木,又称电木粉。原为无色或黄褐色透明物,市场销售往往加着色剂而呈红、黄、黑、绿、棕、蓝等颜色,有颗粒、粉末状。耐弱酸和弱碱,遇强酸发生分解,遇强碱发生腐蚀。不溶于水,溶于丙酮、酒精等有机溶剂中。苯酚醛或其衍生物缩聚而得。[1] 中文名:酚醛树脂 英文名:PHENOL-FORMALDEHYDE RESIN 别称:电木 化学式:C7H6O2 分子量:122.12134 CAS登录号:9003-35-4 诞生:1872年 1性质 直线型酚醛树脂结构图 固体酚醛树脂为黄色、透明、无定形块状物质,因含有游离酚而呈微红色,实体的比重平均1.7左右,易溶于醇,不溶于水,对水、弱酸、弱碱溶液稳定。由苯酚和甲醛在催化剂条件下缩聚、经中和、水洗而制成的树脂。因选用催化剂的不同,可分为热固性和热塑性两类。酚醛树脂具有良好的耐酸性能、力学性能、耐热性能,广泛应用于防腐蚀工程、胶粘剂、阻燃材料、砂轮片制造等行业。[1] 液体酚醛树脂为黄色、深棕色液体,如:碱性酚醛树脂主要做铸造黏结剂。 高温性能

酚醛树脂最重要的特征就是耐高温性,即使在非常高的温度下,也能保持其结构的整体性和尺寸的稳定性。正因为这个原因,酚醛树脂才被应用于一些高温领域,例如耐火材料,摩擦材料,粘结剂和铸造行业。 酚醛树脂耐火材料 粘结强度 酚醛树脂一个重要的应用就是作为粘结剂。酚醛树脂是一种多功能,与各种各样的有机和无机填料都能相容的物质。设计正确的酚醛树脂,润湿速度特别快。并且在交联后可以为磨具、耐火材料,摩擦材料以及电木粉提供所需要的机械强度,耐热性能和电性能。 水溶性酚醛树脂或醇溶性酚醛树脂被用来浸渍纸、棉布、玻璃、石棉和其它类似的物质为它们提供机械强度,电性能等。典型的例子包括电绝缘和机械层压制造,离合器片和汽车滤清器用滤纸。 高残碳率 在温度大约为1000℃ 的惰性气体条件下,酚醛树脂会产生很高的残碳,这有利于维持酚醛树脂的结构稳定性。酚醛树脂的这种特性,也是它能用于耐火材料领域的一个重要原因。 低烟低毒 与其他树脂系统相比,酚醛树脂系统具有低烟低毒的优势。在燃烧的情况下,用科学配方生产出的酚醛树脂系统,将会缓慢分解产生氢气、碳氢化合物、水蒸气和碳氧

聚氨酯 二氧化硅纳米复合材料的合成与表征

聚氨酯/ 二氧化硅纳米复合材料的合成与表征 摘要: 为了取得具有优良分散性的纳米二氧化硅,增强纳米二氧化硅和PU基材的聚合。纳米二氧化硅首先与一种新的高分子表面活性剂聚合成的聚(丙二醇)酯(PPG)和多聚磷酸(PPA)来改性,接着通过与一系列的聚氨酯(PU)/ 二氧化硅纳米材料进行原位聚合来制备。通过红外光谱、扫描电镜(SEM)、x射线衍射和TGA,研究纳米二氧化硅的表面改性,微观结构以及纳米复合材料的性能。研究发现,通过PU /二氧化硅纳米复合材料与PPG-P改进后的纳米二氧化硅具有良好的分散性。聚氨酯的分段结构在纳米复合材料中没有受到纳米二氧化硅的影响。 前言: 聚氨酯(PU)是非常受人关注的工业人造材料,其广泛应用在粘合剂业,服装业,合成皮革业,建筑业,自动化机械业等。聚氨酯(PU)的聚合体,腐化性,抗辐射性,化学性和机械性能的研究受到广泛的关注。现在,为扩大PU 的应用领域,学者开始向更深的领域对PU进行研究。以聚合基物的纳米复合物比传统的高分子物质在机械性能,介电磁热光学和声学特性有更好的表现。此外,一些专门针对填料及聚合物基质之间的界面相互作用的研究。因此,将纳米材料聚合到PU是一个非常有前景的产业。 在过去的数十年,二氧化硅纳米材料已经广泛应用到高分子领域来提高高分子材料的耐热性,传导性,机械性和导电性。然而,纳米材料的扩大应用和只表现出于高分子材料较少的差异性,它的应用更专注于减少它的尺寸。为了能够使纳米材料更好的纳米粒子和聚合基物。为实现纳米材料的分散性和产量提高的相互兼容,学者使用各种不同的改性剂,如trialkoxy硅烷、硬脂酸、溴化十六烷三甲基铵。在合适的纳米粒子进行表面改性,不仅可以使得纳米材料在高分子材料中具有更好的分散性和性,也能够链接在高分子材料的化学和物理性质,这样更加能够在这两种互不兼容的材料中产生一种持久的化学联系。 本次试验致力于合成一种改性剂来提高纳米二氧化硅和PU基体的分散性和兼容性,以及通过良好的热稳定性制备一系列的PU /二氧化硅纳米复合材料。PPG 是一种因成本低而倍受欢迎的多元醇。在此项试验中,聚(丙二醇)磷酸酯合成PPG-P是通过PPG和多聚磷酸PPA的酯化反应获得。这是一种新的高分子表面活性剂与-PO(OH)2作为曾和剂和PPG作为可溶性链造成的。 PPG - P可以很容易地以较低的成本合成,此外,它的长链烷基聚氨酯为基

复合材料的最新研究进展

复合材料的最新研究进展 季益萍1, 杨云辉2 1天津工业大学先进纺织复合材料天津市重点实验室 2天津工业大学计算机技术与自动化学院, (300160) thymeping@https://www.360docs.net/doc/f25614291.html, 摘要:本文主要介绍了当前复合材料的最新发展情况,主要集中在复合材料的增强纤维、加工技术、智能材料和非破坏性检测技术等方面。希望能抛砖引玉,激发研究人员更有价值的创意。 关键词:复合材料,最新进展 1. 引言 人类社会正面临着诸多的问题和需求,如矿物能源、资源的枯竭、环境问题、信息技术以及生活质量等,这推动了复合材料的发展,也促进了各种高新技术的发展。但目前人们已不仅仅局限于新材料的创造、发现和应用上,科学研究已进入一个各种材料综合使用的新阶段,即向着按预定的性能或功能设计新材料的方向发展。并且,在复合材料性能取得飞速发展的同时,其应用领域不断拓宽,性能持续优化,加工工艺不断改善,成本不断降低。 复合材料的独特之处在于其可提供单一材料难以拥有的性能,其最大的优势是赋予材料可剪切性,从而优化设计每个特定技术要求的产品,最大限度地保证产品的可靠性、减轻重量和降低成本。近年以来,复合材料在加工领域中取得了一系列重要的进展,由于计算机辅助设计工具的介入和先进加工技术的开发,使复合材料的市场竞争力有了很大的提高,应用领域不断扩大,除用于结构复合材料外,还大量的进入了功能材料市场。我们观察到,复合材料的发展趋势是[1]: (1)进一步提高结构型先进复合材料的性能; (2)深入了解和控制复合材料的界面问题; (3)建立健全复合材料的复合材料力学; (4)复合材料结构设计的智能化; (5)加强功能复合材料的研究。 近年来,复合材料在增强纤维、加工技术、智能材料和非破坏性检测技术等方面研究较多,并且不断有新的市场应用,能够代表复合材料的最新发展方向。 2. 增强纤维环保化[2] 目前,增强纤维的发展趋势主要是强度、模量和断裂伸长的提高。但随着全球环保意识的风行,复合材料产品也逐渐受到环保方面要求的压力,尤其欧洲地区已有相关规定,热固性复材产品由于无法回收再利用而不易销往欧洲。在树脂之外,复材产品中的增强纤维迄今绝大部分都是无法回收再利用的,包括玻璃纤维、碳纤维、芳纶等,全都是如此。 最近有一种新型增强纤维-玄武岩纤维(Basalt Filament),是由火山岩石所提炼而成的,堪称100% 天然且环保,预期在不久的未来,将会取代相当比例的各种纤维,而加入复合 - 1 -

酚醛树脂胶黏剂综述

酚醛树脂胶黏剂综述 08高分子一班08206020118 李兆峰 摘要:综述了酚醛树脂的性状、发展历史,合成原理及工艺,和其作胶黏剂的主要性能,一些改性研究情况及在各领域的应用和发展趋势。 关键字:酚醛树脂胶黏剂改性应用发展趋势 一、概述 酚醛树脂,phenolic resin,简称PF。酚醛树脂是酚类与醛类在催化剂作用下形成树脂的统称,酚类主要是苯酚、甲酚、二甲酚、间苯二酚等,醛类主要是甲醛、乙二醛、糠醛等。 1872年德国化学家拜尔首先合成了酚醛树脂,1907年比利时裔美国人贝克兰提出酚醛树脂加热固化法,使酚醛树脂实现工业化生产,1910年德国柏林建成世界第一家合成酚醛树脂的工厂,开创了人类合成高分子化合物的纪元。由于采用酚、醛的种类、催化剂类别、酚与醛的摩尔比的不同可生产出多种多样的酚醛树脂,它包括:线型酚醛树脂、热固性酚醛树脂和油溶性酚醛树脂、水溶性酚醛树脂。 直线型酚醛树脂结构图 固体酚醛树脂为黄色、透明、无定形块状物质,因含有游离酚而呈微红色,比重1.25~1.30,易溶于醇,不溶于水,对水、弱酸、弱碱溶液稳定。液体酚醛树脂为黄色、深棕色液体。 二、合成 由苯酚和甲醛在催化剂条件下缩聚、经中和、水洗而制成的树脂。因酚与醛的摩尔比、选用催化剂的不同,可分为热固性和热塑性两类:醛与酚的摩尔比大于一,用碱类物质作催化剂,生成热固性酚醛树脂,醛与酚的摩尔比小于一,用酸类物质作催化剂,生成热塑性酚醛树脂。 酚醛树脂的合成和固化过程,完全遵循体型缩聚反应的规律。控制不同的合成条件(如酚和醛的比例,所用催化剂的类型等),可以得到两类不同的酚醛树脂:一类称为热固性酚醛树脂,它是一种含有可进一步反应的羟甲基活性基团的树脂,如果合成过程不加控制,则会使体型缩聚反应一直进行至形成不熔、不溶的具有三向网络结构的固化树脂,因此这类树脂又称为一阶树脂;另一类称为热塑性酚醛树脂,它是线型树脂,在合成过程中不会形成三向网络结构,在进一步的固化过程中必须加入固化剂,这类树脂又称为二阶树脂。这两类树脂的合成和 固化原理并不相同,树脂的分子结构也不同[1]。 生产酚醛树脂的最主要工艺是间歇釜式常压合成法,反应开始是溶液均相体系,当缩聚体树脂分子量达一定程度后,反应体系转为非均相,这时分子量增长 反应主要在树脂相中进行[2]。

聚氨酯纳米复合材料(英语原文)

Designed Monomers and Polymers12(2009)279–290 www.brill.nl/dmp Review Polyurethane Nanocomposites Igor V.Khudyakov a,R.David Zopf a and Nicholas J.Turro b,? a Bomar Specialties,Torrington,CT06790,USA b Chemistry Department,Columbia University,New York,NY10027,USA Abstract This review describes the present state of science and technology of photopolymerizable(UV-curable) polyurethane(PU)nanocomposites which include nanosilica and organically-modi?ed clay(organoclay). A number of documented improvements of properties of PU nanocomposites compared to the pristine PU are presented.Many data on the structure and properties of PU nanocomposites were obtained not only for UV-cured urethane acrylate oligomers,but also for nanocomposites produced in the dark reactions.These data are critically reviewed.There is an expectation in the?eld of dramatic improvement of properties of PU nanocomposites under low loading(1–5wt%)of organoclay. ?Koninklijke Brill NV,Leiden,2009 Keywords Polyurethane,organoclay,UV-cure,nanosilica,nanocomposite,montrillomonite 1.Introduction Nanocomposites are polymers containing nano?llers[1–3].The microstructure of nanocomposites has inhomogeneities in the scale range of nanometers.Nanocom-posite materials cover the range between inorganic glasses and organic polymers [4].Fillers of polymers have been used for a long time with the goal of enhanced performance of polymers,and especially of rubber.The present paper provides a brief critical review of the literature and some our results on polyurethane(PU) nanocomposites studies.Polymer–clay nanocomposites were reported in the litera-ture as early as1961[5].Nanocomposites demonstrate often unusual and bene?cial for the user properties.Scienti?c and technical literature report the improvement or enhancement of properties of polymer nanocomposites compared to the pristine polymers.This vague statement means an improvement of polymer properties from the standpoint of polymer application.However,different applications may have *To whom correspondence should be addressed.E-mail:njt3@https://www.360docs.net/doc/f25614291.html, ?Koninklijke Brill NV,Leiden,2009DOI:10.1163/156855509X448253

有机改性蒙脱土对氧化乐果的吸附

有机改性膨润土在有机磷农药废水处理中的应用研究 杨性坤,岳闪闪,尚成江 (信阳师范学院化学化工学院,河南信阳464000) 摘要:以钙基膨润土为原料,经提纯钠化后用十二烷基三甲基溴化铵(DTAB)进行有机改性,制得有机膨润土。采用批量平衡实验,研究了阳离子表面活性剂DTAB改性的有机膨润土及厡土对有机磷农药氧化乐果的吸附性能,并考察了pH、温度、吸附时间以及有机蒙脱土的用量对吸附的影响。结果表明,改性膨润土对水中氧化乐果的去除能力优于厡土,对50mL浓度为0.8g/L的氧化乐果溶液,在pH值为3.0、温度25℃、吸附时间30min、有机膨润土的加入量10g/L.条件下,对氧化乐果的去除率可达80.6%。 关键词:有机膨润土;十二烷基三甲基溴化铵;吸附;去除率 Study on the Sorption of Omethoate from Water by Organobentonite YANG Xing-kun ,YUE Shan-shan,SHANG Cheng-jiang (College of Chemical Engineering,Xinyang Normal University,Xinyang 464000,China) Abstract: DTAB-bentonite was synthesized by inserting dodecyltrimenthylammonium bromide(DTAB) into the interlayer of bentonite mineral that had been purified and Na-modified. The sorption of organophosphorus pesticide omethoate by natural and DTAB modified bentonite was investigated using a batch equilibrium technique, and the effect of pH, temperature, contact time and dosage of modified bentonite were also observed. The results show that the sorption capacity of those modified to remove omethoate from aqueous solution seems to be more effective than unmodified sample, the omethoate removal rate reached 80.6% at a omethoate concentration of 0.8g/L in the water under the conditions of pH value 3.0, contact temperature of 25℃, contact time of 30min, and dosage of modified bentonite of10g/L. Keywords:organobentonite;DTAB; adsorption; removal rate 引言 农药的使用促进了农业的增产增收,同时也对地下水及地表水造成污染,破坏了生态平衡,严重影响人类的健康和生存。因此,研究农药废水的治理有着重要意义。膨润土中主要矿物成分是蒙脱石,具有较强的亲水特性和吸附性能,但对水溶液中的有机物的吸附能力较差[1]。经改性后制得的有机膨润土对水中非离子有机物吸附能力显著增强,且随着改性剂碳链的增长而显著增加[2-6]。朱利中等[7-9]比较深入地研究了各种有机膨润土吸附水中非极性、弱极性、强极性及离子型有机污染物的性能、机理和规律。也有有学者研究了改性膨润土对不同农药的吸附特性及其去除效果[10-11]。本文研究了以DTAB改性制得的有机膨润土对氧化乐果的吸附性能,确立了吸附最佳工艺条件。 1 材料与方法 1.1仪器与实验材料 主要实验仪器:D8/Advance型多晶X-射线衍射仪,德国Bruker公司;立鹤牌电热恒温干燥箱,山东潍坊医药集团股份有限公司医疗器械厂;KM快速研磨机,湘潭湘仪仪器有限公司;8411电动振筛机,湘潭湘仪仪器有限公司;FA2004电子天平,上海上平仪器公司;D2KW-4电子恒温水浴锅,

酚醛树脂

苯酚 羟甲基的存在使酚的酸性提高,羟基是吸电子基并有共扼效应,因此对位取代反应比较有利,邻位反应比较困难(位阻)。若变成酚氧基,邻位反应更容易些。 在酸性介质易发生亲电取代而在碱性介质中酚氧形成π络合物,易发生酚氧的亲核反应,因存在溶剂作用、分子内氢键和分子间氢键,实际反应更加复杂。在极性溶剂酸性条件下,有利于在对位反应,而非极性溶剂碱性条件下和碱土金属氧化物、氢氧化物及其醋酸盐,将有利于邻位反应,,酚和有关化合物及相应阴离子电子密度分布将影响反应,列于表3-3和表3一4,酚氧离子的对位电子密度要高于邻位。以此可解释邻对位之比例。 甲醛与苯酚的加成反应 用氢氧化钠为催化剂时,首先苯酚与甲醛进行加成反应,生成多种羟甲酚,并形成一元酚醇和多元酚醇的混合物。这些羚甲基苯酚在室温下是稳定的。羚甲基酚可进一步发生加成反应 缩聚反应 在通常加成条件下,如在较高pH(约9),温度60℃以下,缩聚反应很少发生,加成反应大约是缩聚反应的5倍,且甲醛与羟甲基苯酚的反应要比甲醛与酚反应容易,此现象将持续到50%甲醛被反应掉。在温度>60℃下,缩聚反应通常发生在单、双、三羟甲基苯酚、游离酚和甲醛之间,反应比较复杂,在加成反应发生的同时,也发生缩聚反应。由上述反应形成的一元酚醇、多元酚醇或二聚体等在反应过程中不断进行缩聚反应,使树脂相对分子量不断增大,若反应不加控制,树脂就会发生凝胶。 虽然上述两种反应都可发生,但在加热和碱性催化条件下,醚键不稳定,所以反应以后一种为主。在此条件下,羟甲基主要与酚环上邻、对位的活泼氢反应形成次甲基(—CH2—)桥,而不是二个经甲基之间的脱水反应。羚甲基苯酚之间的反应要比羟甲基苯酚与苯酚的反应快。 20世纪40年代有人研究指出,热固性酚醛树脂中尚有少量醚键存在,但在后来加热固化过程中,在较高温度(如>160℃)下,醚键就脱去一分子甲醛而转变为次甲基键。酚环上的经甲基位置及活性与发生的反应类型有关,在加成反应中,酚羚基的对位较邻位的活性稍大,若以酚的第一个邻位引人释甲基的相对速率为1,则对位的相对速率为}.}}。但由于酚环l.-有两个邻位,所以在实际反应中邻羚甲酚较对赶甲酚生成速率要大得多;在缩聚反应中,对经甲酚较邻经甲酚活泼,因此缩聚反应时对位的容易进行,使酚醛树脂分子中主要留下了邻位的经甲基。 用冷却法可使反应在凝胶点前任何时候停止,再加热又可使反应继续进行,由此可合成适合各种用途的树脂,如可控制较低的反应程度,制得平均相对分子质量很低的、在室温下可溶于水的水溶性酚醛树脂;也可进一步使缩聚反应进行至脱水成半固体的树脂,然后溶于醇类溶剂成为醇溶性酚醛树脂;若再进一步反应至脱水后成为固体树脂。显然,上述各种树脂的分子中都含有可以进一步缩聚的羟甲基.因为加成反应速率较缩聚反应的速率大得多,所以只要控制好反应让条件,就可得到一定相对分子质量的酚醛缩聚物。 在聚合物中,凝胶点后,在其中的溶胶逐渐消失。按flory-Stockmayer理论,凝胶将在P/F=0 .75发生,但实际上不发生凝胶,仅在低于P/F=0 .5,甚至更低才发生凝胶。flory-Stockmayer理论预测的前提是无自聚、无取代、等反应活性等,而酚醛反应并非等活性,有位阻效应和分子屏蔽效应等. 邻、对位比取决于阳离子和pH值。对位取代用K* , Na十和较高的pH有利,而邻位取代在低对pH值、用二价阳离子如Ba、Ca+和Mg+有利。邻位的酮式结构由于位阻及氢键,较对位难于形成:.其反应动力学还未完全弄清楚、,般认为二级反应即取决干酚盐浓度和甲二醇浓度。反应速率一K[pH-][甲二醇](但对氨催化反应不一样,是一级反应)。Freeman和Lewis

形状记忆聚氨酯

形状记忆聚氨酯 陈金香 04300003 摘要 介绍了形状记忆聚氨酯的发展状况,分析了记忆过程及原理、影响因素、合成制备、性能以及应用,并指出了其目前性能上的不足今后研究的重点及其发展趋势 关键词:形状记忆;聚氨酯;进展;综述。 形状记忆聚合物(Shape Momery Polymer ,SMP) 的发现甚至比形状记忆合金还早,它是智能结构中最先应用的一种驱动元件[5]。它是指具有初始形状的制品经形变固定后,通过加热等外部刺激手段的处理又可使其恢复初始形状的聚合物[1]。SMP 可以是单—组分的聚合物,也可以是软化温度不同、相容性良好的两种聚合物的共混物或嵌段、接枝共聚物[2]。世界上第一例SMP 是由法国的煤化学公司(CdF - Chimie) 于1984 年开发成功的聚降冰片烯,作为功能材料,它有重要的实用价值[2]。与形状记忆合金( SMA) 和形状记忆陶瓷(SMC) 相比较,形状记忆高分子材料有很多优:(1) 形变量大,使用方便; (2) 原料充足,品种多,形状记忆回复温度范围宽; (3) 质量轻,易包装和运输; (4) 易制成结构复杂的异型品,能耗低; (5) 价格便宜,仅为形状记忆合金的10 %; (6) 耐腐蚀,电绝缘性和保温效果好。目前,得到应用的形状记忆高分子材料已有:聚降冰片烯、反式1 ,4 - 聚异戊二烯、苯乙烯- 丁二烯共聚物、交联聚乙烯、聚氨酯( PU) 、环氧树脂和几种凝胶体系等。 自法国的ORKEM公司1984 年开发出第1 例形状记忆聚合(SMP) 聚降冰片烯以来,目前得到应用的形状记忆高分子材料已有聚降冰片烯、反式1 ,42聚异戊二烯、苯乙烯2丁二烯、聚氨酯等,此外含氟高聚物、聚己内酯、聚酰胺等也具有形状记忆功能[2 ] 。在许多材料之中,形状记忆聚氨酯以其优异的性能成为SMP 研究的热点;与其他SMP 相比,形状记忆聚氨酯(SMPU) 具有下列优点: (1) 具有热塑性,加工容易; (2) 原料配比变化多,形状恢复温度在- 30~70 ℃易于调整; (3) 可任意着色,色彩丰富; (4) 变形率大,最大可达400 %; (5) 质轻,相对密度约为1. 1~1. 2 ; (6) 成本低,为形状记忆合金的1/ 10 以下; (7)分子链上含有极性基团,便于改性以提高其综合性能。 1 形状记忆PU的发展状况 PU的分子链一般由两部分组成,Estes等首先采用“软段”与“硬段”描述其结构[3]。软段一般为聚醚、聚酯或聚烯烃等,硬段一般由异氰酸酯和扩链剂组成[3]。该聚合物以软段(非结晶部分) 作可逆相,硬段(结晶部分) 作物理交联点(固定相) ,软段的Tg为形状回复温度( - 30~70 ℃) ,通过原料类的选择和配比调节Tg ,即可得到不同响应温度的形状记忆PU[2]。现已制得Tg 在25~55 ℃范围内的几种形状记忆PU[5 ] 。由于分子链为直链结构,具有热塑性,因此可通过注射、挤出和吹塑等方法加工。由于该SMP 质轻价廉、着色容易、形变量大(最高可达400 %) 以及耐候重复形变效果好,因此受到广泛重视。Hayashi 等[6 ,8 ] 对各种不同成本的原材料进行配方设计,研究了PU 形状记忆高分子材料的有关性能。日本Mitsubishi 公司开发了综合性能优异的形状记忆PU ,室温模量与高弹模量比值可达到200 ,甚至更大;与通常的形状记忆高分子材料相比,具有极高的湿热稳定性与减震性能;且tgδ很大,在47 ℃时tg δ近似于1[2]。中国科学院化学所李凤奎等[2,3]也对PCL/ TDI 或MDI/ BDO 形状记忆PU体系进行研究,提出了热塑性PU 具有形状记忆功能的两个必要条件:软段分子量必须高于某一临界值以及硬段聚集形成微区起到物理交联点的作用。日本三菱重工公司于1988 年成功开

酚醛树脂性能综述

热固性聚合物是从低粘度液体开始,通过催化剂或外加能量(热或射线)固化为固体。最早的热固性基体是酚醛,紧随其后的是环氧,接着是不饱和聚酯、脲醛,再接着是硅树脂,以及更新的基体。从实用的角度看,最重要的仍然是前三种:酚醛、环氧和不饱和聚酯 二、简介 酚醛树脂也叫电木,又称电木粉,英文名称phenolic resin,简称PF,比重1.25~1.30是热固性塑料家族中最古老的成员,可以追溯到1870年。合成酚醛树脂的两种单体是苯酚和甲醛,通过聚合形成, 酚醛树脂原为无色或黄褐色透明物,因含有游离分子而呈微红色,市场销售往往加着色剂而呈红、黄、黑、绿、棕、蓝等颜色,有颗粒、粉末状。耐弱酸和弱碱,遇强酸发生分解,遇强碱发生腐蚀。不溶于水,溶于丙酮、酒精等有机溶剂中。对水、弱酸、弱碱溶液稳定。由苯酚和甲醛在催化剂条件下缩聚、经中和、水洗而制成的树脂。酚与醛的摩尔比大于一,用酸类物质作催化剂,生成热塑性酚醛树脂。酚与醛的摩尔比小于一,用碱类物质作催化剂,生成热固性酚醛树脂。主要包括:线型酚醛树脂、热固性酚醛树脂和油溶性酚醛树脂。 三、酚醛树脂固化原理 酚醛树脂只有在形成交联网状(或称体型)结构之后才具有优良的使用性能,包括力学性能、电绝缘性能、化学稳定性、热稳定性等。 酚醛树脂的固化就是使其转变为网状结构的过程,表现出凝胶化和完全固化的两个阶段,这一转变不仅是物理过程,更要强调的是,这是一个化学过程。表现出以下一些特点: (1)树脂在固化前的结构因素(组成、分子量大小、反应官能度等)影响显著; (2)固化反应受催化剂、固化剂、树脂pH值等的影响显著;(3)固化过程有热效应;(4)固化速率受温度、压力的影响

聚丙烯酰胺_蒙脱土复合材料结构研究

第21卷第4期高分子材料科学与工程Vo l.21,N o.4 2005年7月POLYM ER M ATERIALS SCIENCE AND ENGIN EERING Jul.2005聚丙烯酰胺/蒙脱土复合材料结构研究X 高德玉1,RB-海曼2,B-托马斯2,李 红3,刘宇光1, 侯 静1,郑 辉1,倪靖滨1 (1.黑龙江省科学院技术物理研究所,黑龙江哈尔滨150086; 2.德国弗莱堡矿业大学; 3.黑龙江大学,黑龙江哈尔滨150080) 摘要:用红外(F T-I R),X射线衍射(X RD),核磁共振(NM R,13C,27A l,29Si)对电子束和紫外辐照制备的纳米结构聚丙烯酰胺/蒙脱土复合材料进行了表征。结果表明,丙烯酰胺以双分子层嵌入蒙脱土层间形成复合体,使蒙脱土层距由1.25nm增大到2.09nm。在复合材料中丙烯酰胺有三种形式:嵌入蒙脱土层间,通过氢键结合在蒙脱土表面和“自由”聚合物。 关键词:蒙脱土;聚丙烯酰胺;纳米复合材料 中图分类号:T B383 文献标识码:A 文章编号:1000-7555(2005)04-0201-04 蒙脱土由于其特有的层状结构,目前被广泛用于纳米材料的制备[1~5]。关于聚丙烯酰胺和蒙脱土复合材料的制备及应用已有很多研究[6~10]。制备蒙脱土/聚合物插层复合材料通常有两种方法,一种是将聚合物直接嵌入蒙脱土;另一种是将单体先嵌入蒙脱土然后进行原位聚合。本文使用仪器分析方法对第二种方法制备的聚丙烯酰胺/蒙脱土复合材料结构进行了初步研究。 1 实验部分 1.1 试样制备 试剂:丙烯酰胺(AM),丙烯酸钠(AANa),苯乙烯磺酸钠(SSNa),乙烯磺酸钠(VSNa),以上试剂均为分析纯,Fluka Chem ie,瑞士产品;蒙脱土:分析纯,S D-CHEMIE,德国产品。 SAP/蒙脱土复合试样(SAPC)的制备:将蒙脱土(30%质量比)悬浮在蒸馏水中,与含有丙烯酰胺及添加剂的水溶液混合(30%),然后使用电子束或紫外线照射完成聚合过程[6,7]。 1.2 结构表征 红外(FT-IR)光谱分析使用Nicolet510 FT-IR分光光度计,NM R(13C,27Al和29Si)分析使用Bruker M SL300核磁共振(NM R)分光计,X光衍射(XRD)分析使用Rigaku Ru-200B 测定。 Fig.1 FT-IR spectra of A:AM/AANa(1∶1),B: AM/mont-morillonite(1∶1),C:AM/AANa/ montmorillonite(1∶3∶4),D:AM/AANa/ montmorillonite(1∶1∶2)and montmorillonite 2 结果与讨论 2.1 FT-IR分析 在Fig.1中,试样A是AM和A ANa共聚物(AM/AANa=1∶1),试样B是AM/蒙脱土 X收稿日期:2004-02-02;修订日期:2004-05-24  基金项目:德国联邦政府教育科学研究技术部(BM BF)(WT Z CHN346-97)及黑龙江省自然科学基金资助项目(E0024) 作者简介:高德玉(1954-),男,博士,研究员.

蒙脱土改性

超支化有机插层剂对蒙脱土的结构及性能影响研究 041206107 高雅琴 摘要:目前,蒙脱土(MMT)由于其独特的结构优势、来源广、价格低而成为制备聚合物/粘土纳米复合材料最重要的粘土矿物之一。为增加蒙脱土与有机相的相容性,制备有机蒙脱土,并观察蒙脱土的层状结构及性能在有机化前后的变化,以无机蒙脱土为原料,用超支化季铵盐作为有机插层剂对蒙脱土进行改性,制备出一系列有机蒙脱土。通过红外、热失重等测试结果对其结构及性能进行表征,并论述了不同实验情况下改性的蒙脱土结构及性能上的差异。 关键词:蒙脱土超支化季铵盐插层结构性能 前言 蒙脱土是一种由纳米厚度的硅酸盐片层构成的粘土,因其来源广泛,价格低廉且具有独特的层状结构和良好的力学性能,已成为制备新型高性能聚合物/粘土纳米复合材料的重要无机原料。 蒙脱土的基本结构单元是由一片铝氧八面体夹在两片硅氧四面体之间,靠共用氧原子而形成的层状结构。在这些片层表面有过剩的负电荷,致使蒙脱土片层通常吸附有Na+,K+,Ca2+,Mg2+等水合阳离子,这种亲水的微环境不利于亲油的单体和聚合物插入。所以制备聚合物/粘土纳米复合材料时必须对蒙脱土表面进行改性。对于表面改性,国内外报道较多的是利用有机季胺盐阳离子与蒙脱土层间的阳离子进行离子交换后,阳离子部分附着在硅酸盐片层上,有机部分留在层间,从而使层间距增大,同时改善了层间微环境,使蒙脱土层间由亲水疏油性变为亲油疏水性,提高复合材料中有机相与无机相的相容性,利于单体或聚合物插入蒙脱土层间形成复合材料[1]。 近年来人们对蒙脱土的有机改性进行了大量的研究[2],蒙脱土的有机化处理一般采用插层剂。大量实验表明:在制备层复合纳米材料过程中,插层剂的选择和使用是关键,因此必须加强插层剂的合成、筛选及插层工艺的研究。常用的插层剂是烷基季铵盐,本文就采用了双羟乙基十二烷基三甲基氯化铵,试图对其进行超支化改性,并研究其不同质量配比对插层蒙脱土的结构及性能的影响,从而找出性能最好的有机蒙脱土插层剂。 1.超支化 近年来,具有特殊分子构造从而具有独特性质的树枝状与超支化聚合物受到了广泛的关

相关文档
最新文档