无机非金属材料导论

无机非金属材料导论
无机非金属材料导论

1、陶瓷的烧结方法:烧结方法有多种,除粉末在室温下加压成形后再进行烧结的传统方法外,还有热等静压、水热烧结、热挤压烧结、电火花烧结、爆炸烧结、等离子体烧结、自蔓延高温合成等方法。这些方法各有优缺点。如自蔓延高温合成是利用金属与硅、硼、碳、氮等互相作用的强烈放热效应,不采用外部加热源,而利用元素内部潜在的化学能将原始粉末在几秒到几十秒的极短时间内转化成化合物或致密烧结体。这种方法的主要优点是:不需要高温炉,过程简单,几乎不消耗电能,制得的产品纯净,能获得复杂相和亚稳相等。主要缺点是:不易获得高密度材料,不易严格控制制品性能,所用原料往往易燃及有毒,存在一定的安全隐患。

2、陶瓷的性能:(力学性能)刚度、硬度、强度、塑性、韧性或脆性;(热学性能)热膨胀、导热性、热稳定性;(其他性能)导电性、耐火性及化学稳定性。

归纳一下,陶瓷材料的性能特点是:具有不可燃烧性、高耐热性、高化学稳定性、高的硬度和良好的抗压能力,但脆性很高,热稳定性差,抗拉强度较差。

3、玻璃的广义定义:是具有转变温度Tg的非晶态材料,非晶态材料是指其原子排列在近程有序而远程无序,原子排列不具有平移周期性关系;当温度连续升高(或降低)时,在某个温度范围内发生明显结构变化,导致热膨胀系数、比热容等性质发生突变。非晶态材料包括无机玻璃、金属玻璃、有机玻璃等。

玻璃的通性:各向同性、介稳性、无固定熔点、物理化学性质的渐变

4、玻璃的形成方法:熔体冷却法(最常用)、气相冷却技术、固态方法、溶胶—凝胶法

5、硅酸盐水泥的概念:凡以适当成分的生料烧至部分熔融得到的以硅酸钙为主要成分的硅酸盐水泥熟料,加以适量的石膏,磨细制成的水硬性胶凝材料,称为硅酸盐水泥,也称为纯熟料水泥,又名波特兰水泥。

6、水泥的制备工艺:“两磨一烧”,即生料的配制与磨细。将生料煅烧使之部分熔融形成以硅酸钙为主要成分的熟料矿物;将熟料与适量的石膏或适量混合材料共同磨细为水泥。

7、硅酸盐水泥的技术性能:细度、需水量、泌水性、凝结时间、强度与标号。

8、四种矿物:

*硅酸三钙(C3S)——阿里特矿,简称A矿,常温下存在的介稳的高温型矿物,结构是热力学稳定的,在阿里特矿物结构中存在大尺寸的"空穴"或通道,可是氢氧根离子直接进入晶格中,已而具有大的水化速度.

*硅酸二钙(C2S)贝里特矿,简称B矿,常温下存在的介稳的高温型矿物,结构是热力学稳定的,其结构不具备硅酸三钙结构中的那种大‘空穴’,因而比硅酸三钙水化速度慢

*铝酸三钙(C3A)有大空穴,水化速度较大

*铁铝酸四钙(C4AF)里特矿,简称C矿,铁铝酸盐的固溶体是铝

原子取代铁酸二钙中铁原子的结果,这种取代引起晶格稳定性降低,从而提高其水化活性。

9、硅酸三钙的水化过程:初始水解期、诱导期、加速期、衰退期、稳定期

10、硫铝酸盐快硬水泥:以铝质原料(如矾土)、石灰质原料(如石灰石)和石膏,经适当配合后,煅烧成含有适量无水硫铝酸钙的熟料,再掺适量石膏,共同磨细,即可制得。

11、耐火材料的概念:它是指耐火度不低于1580℃的无机非金属材料,它是为高温技术服务的基础材料,是砌筑窑炉等热工设备的结构材料,也是制造某些高温容器和部件或起特殊作用的功能材料。

耐火材料的分类:(按组成分)硅质制品、硅酸铝质制品、镁质制品、白云石质制品、铬质制品、碳质制品、锆质制品、纯氧化物制品及非纯氧化物制品等;(按工艺方法分)泥浆浇注制品、可塑成形制品、半干压成形制品、由粉状非可塑料捣固成形制品、由熔融料浇注的制品、经喷吹或拉丝成形的制品及由岩石锯成的天然制品等;(按耐火度分)普通耐火材料制品,耐火度为1580~1770℃、高级耐火材料制品,耐火度为1770~2000℃、特级耐火材料制品,耐火度为2000℃以上;(按耐火材料的外形分)定形耐火材料制品、不定形耐火材料制品、耐火纤维。

12、耐火度的概念:耐火材料在无荷重时抵抗高温作用而不熔化的性质。

耐火材料抵抗温度急剧变化而不被破坏的性能称为抗热震稳定性,也

称抗热震性或温度急变抵抗性。

13、不定形耐火材料是由耐火骨料和粉料、结合剂或另掺外加剂以一定比例组合的混合料,在使用地点才制成所需要的形状并进行热处理,故称为不定形耐火材料。

14、无机非金属基复合材料以无机非金属类物质为基础组成,包括单质、氧化物及复合氧化物、非氧化物、无机盐类,也包括上述各基体的复合物,还包括由上述基体复合而成的材料。这些基体可以与不同化学性质、不同组织相、不同功能的单一无机物或金属或有机物相复合,还可以与无机物、有机物及金属混杂复合。

配料 煅烧

磨细 温度达1450℃ 磨细

石灰质原料 黏土质原料

校正原料 生料 熟料 水泥 石膏 混合材料

材料概论

第二章 1 普通的混凝土中有几种相?请分别写出各种相的名称。若在其中加入钢筋,则钢筋起到什么作用?此时又有几种相? 答:3相;砂子、碎石、水泥浆;增强作用;4。 2 比较晶体与非晶体的结构特性,了解晶体的结构不完整性有哪些类型?并区分三大材料的结构类型与比较其各自的特点。 答:晶体结构的基本特征是原子或分子在三维空间呈周期性的规则而有序地排列,即存在长程的几何有序。 结构的不完整性:实际上,极大多数晶体都有大量的与理想原子排列的轻度偏离存在,依据其几何形状而分为点缺陷、线缺陷和面缺陷。 金属材料的结构:一般都是晶体。金属键无方向性,晶体结构具有最致密的堆积方式。体心立方、面心立方和紧密堆积六方结构,金刚石结构。 无机非金属材料的结构:金刚石型结构;硅酸盐结构; 玻璃结构; 团簇及纳米材料 高分子材料的结构包括高分子链的结构及聚集态结构 各自的特点: 3 高分子材料其聚集态结构可分为:晶态和非晶态(无定形)两种,与普通的晶态和非晶态结构比较有什么特点? 答:晶态有序程度远小于小分子晶态,但非晶态的有序程度大于小分子物质液态。 4 如何区分本征半导体与非本征半导体材料? 答:本征半导体:材料的电导率取决于电子-空穴对的数量和温度的材料。 非本征半导体:通过加入杂质即掺杂剂而制备的半导体,杂质的多少决定了电荷载流子 的数量。

5 极大多数晶体实际上都存在有种种与理想原子排列的轻度偏离,依据结构不完整性的几何形状可分为哪几种缺陷类型?按溶质原子在溶剂晶格中的位置不同,固溶体可分成哪几种类型? 答:依据其几何形状而分为点缺陷、线缺陷和面缺陷。 按溶质原子在溶剂晶格中的位置不同,固溶体可分成: 置换型固溶体(或称取代型):溶剂A晶格中的原子被溶质B的原子取代所形成的固溶体。原子A同B的大小要大致相同。 填隙型固溶体(也称间隙型):在溶剂A的晶格间隙内有溶质B的原子填入(溶入)所形成的固溶体。B原子必须是充分小的,如C和N等是典型的溶质原子。 6 比较热塑性高分子材料和热固性高分子材料的结构特点,并说明由于结构的不同对其性能的影响。 答:线型结构的高分子化合物:在适当的溶剂中可溶胀or溶解,升高温度时则软化、流动,∴易加工,可反复加工使用,并具有良好的弹性和塑性。(热塑性) 交联网状结构高分子:性能特点:较好的耐热性、难溶剂性、尺寸稳定性和机械强度,但弹性、塑性低,脆性大。∴不能进行塑性加工,成型加工只能在网状结构形成前进行,材料不能反复加工使用。(热固性) 7 聚二甲基硅氧烷的结构式为?其柔顺性怎么样? 答:非常好 8 何为材料的力学强度?影响力学强度的主要因素有哪些?按作用力的方式不同,材料的力学强度可分为哪几种强度? 答:材料在载荷作用下抵抗明显的塑性变形或破坏的最大能力。 通常材料中缺陷越少、分子间键合强度越大,材料的强度也越高。 按作用力的方式不同,可分为:拉伸强度;压缩强度;弯曲强度;冲击强度;疲劳强度等。 9 区分高分子材料的大分子之间的相互作用中的主价力和次主价力,比较两者对其性能的影响。 答:大分子链中原子间、链节间的相互作用是强大的共价键这种结合力称为主价力,大小取决于链的化学组成→键长和键能。对性能,特别是熔点、强度等有重要影响。 大分子之间的结合力是范德华力和氢键,称为次价力,比主价力小得多(只有主价力1-10%),但对高分子化合物的性能影响很大。如乙烯呈气态,而聚乙烯呈固态并有相当强度,∵后者的分子间力较前者大得多。 10 按电阻率的大小,可将材料分成哪几类?何谓超导性? 答:按电阻率的大小,可将材料分:超导体;导体;半导体;绝缘体。 超导性:一旦T< Tc(超导体临界T)时,电阻率就跃变为零。Tc依赖于作用于导体的磁场强度。

无机非金属材料工程

无机非金属材料工程本科专业人才培养方案专业代码:080203 一、培养目标 本专业培养德智体美全面发展,掌握无机非金属材料工程专业的基本理论和基本知识,具备无机非金属材料的结构分析、材料制备、成型与加工等基本能力,能够在玻璃、水泥等行业从事生产技术开发、工艺设备设计、经营管理等工作,具有创新意识和创业精神的高素质应用型专门人才。 二、培养措施与要求 围绕高水平应用型创新创业人才的培养目标,以社会需求为依据,按照“整体素质高、知识结构优、专业应用能力强、实践动手能力强、创新创业能力强、个性化发展能力强”的总体要求,改革人才培养模式,优化课程体系和教学内容,改革教学方法和手段,创新培养体制和机制,使毕业生具备全面的素质、优良的知识结构、突出的实践技能和创新创业能力。 1、构建学校、企业和科研院所合作培养人才新模式。学校与企业、科研院所共同研制人才培养方案,合作开办“蚌埠玻璃设计院玻璃材料班”、“德力班”等冠名班,聘请实践经验丰富和教学能力较强的技术人员参与教学工作,学生进入合作单位顶岗实习,建立学校、企业和科研院所联合培养人才的新模式,培养适应职业岗位需求的高素质应用型人才。 2、围绕地方经济,设置专业方向。 根据当地“优化产业结构、培育特色支柱产业”的战略规划和“千亿元硅产业”发展对人才的需求,结合我校区位和资源优势,设置玻璃和水泥两个专业方向。 3、建立“平台+模块”的课程架构,优化课程体系。构建通识教育和专业教育两个平台,搭建专业方向、创新创业和个性化拓展三个模块,旨在培养学生的综合素质和能力。厘清课程性质、层次以及课程间的相

互关系,构建层次分明、科学合理的课程体系。 4、加强实验平台和实习基地建设,强化实践教学。 加大现有无机非金属材料工程专业实验平台的建设力度,利用政府、企业资源,分别在凤阳县质检中心组建无机非金属材料重点实验室,在德力日用玻璃股份有限公司、蚌埠八一化工厂、凤阳染化厂等企业建立稳定的学生实习基地。在优化通识教育课程和学科基础课程体系的基础上,增加实验课学时;增加综合实验、课程实习等实践教学比重;结合大学生创新课题、大学生科研技能培训、假期社会实践、大学生创新创业实践及学生毕业设计(论文)等,加强学生实践技能和创新创业能力的培养。 5、改革课程考核评价方式。改变传统单一的考核形式,合理采用开卷、口试、技能操作、课程小论文等方式,着重过程考核和动态评价,建立以知识、能力、素质为核心的综合评价体系,重点考察学生提出问题、分析问题、解决问题的能力,发挥学生学习的积极性和主动性,最大限度地激发学生学习的潜能。 三、专业方向 1、玻璃方向:学习和掌握玻璃材料的检测分析、原料配方、产品设计与加工及产品质量监测等方面的基本技能,能够在玻璃行业从事材料的生产、加工、质检、技术监督等工作。 2、水泥方向:学习和掌握水泥材料的检测分析、原料配方、产品设计与加工及产品质量监测等方面的基本技能,能够在水泥行业从事材料的生产、加工、质检、技术监督等工作。 四、素质与能力分析表(表一)

几种新型无机材料简介

专 业 论 文 学校:天水师范学院 班级:2012级应化1班姓名:汪治华 学号:20122060155

几种新型无机材料简介 材料是人类生存和发展的物质基础,也是一切工程技术的基础。现代科学技术的发展对材料的性能不断提出新的更高的要求。材料科学是当前科学研究的前沿领域之一。以材料科学中的化学问题为研究对象的材料化学成为无机化学的重要学科之一。 材料主要包括金属材料、无机非金属材料、复合材料和高分子材料等各类化学物质。这里简单介绍几种新型无机材料。 ●氮化硅陶瓷材料 氮化硅(Si3N4)陶瓷是一种高温结构陶瓷材料,属于无机非金属材料。在Si3N4中,硅原子和氮原子以共价键结合,使Si3N4具有熔点高、硬度大、机械强度高、热膨胀系数低、导热性好、化学性质稳定、绝缘性能好等特点。它在1200℃的工作温度下可以维持强度不降低。氮化硅可用于制作高温轴承、制造无冷却式陶瓷发动机汽车、燃气轮机的燃烧室和机械密封环等,广泛应用于现代高科技领域。 工业上普遍采用高硅与纯氮在较高温度下非氧化气氛中反应制取Si3N4: 3Si+2N2 Si3N4 采用化学气相沉积法也可以得到纯度较高的Si3N4: 3SiCl4 +2N2 +6H2 Si3N4 +12HCl 除Si3N4外,高温结构陶瓷还有SiC,ZrO2,Al2O3等。 ●砷化镓半导体材料 砷化镓(GaAs)是一种多用途的高技术材料。除了硅之外,GaAs已成为最重要的半导体材料。 砷化镓是亮灰色晶体,具有金属光泽,质硬而脆。GaAs的晶体结构与单质硅和金刚石相似。它在常温下比较稳定,不与空气中的氧气和水作用,也不与HCl,H2SO4等反应。 砷化镓是一种本征半导体,其禁带宽度比硅大,工作温度比硅高(50~250)℃,引入惨杂元素的GaAs可用于制作大功率电子元器件。GaAs中电子运动速度快,传递信息块,GaAs可用于制造速度更快、功能更强的计算机。GaAs中的被激发的电子回到基态是以光的形式释放能量,它具有将电能转换为光能的性能,可作为发光二极管的发光组分,也可以制成二极管激光器,用于在光纤光缆中传递红外光。 ●氧化锡气敏材料 气敏陶瓷是一类对气体敏感的陶瓷材料。早在1931年人们就发现Cu2O的电导率随水蒸气吸附而发生改变。现代社会对易燃、易爆、有毒、有害气体的检测、控制、报警提出了越来越高的要求,因此促进了气敏陶瓷的发展。1962年以后,日本、美国等首先对SnO2和ZnO半导体陶瓷气敏元件进行实用性研究,并取得突破性进展。

无机功能材料

1.课堂上主要介绍了哪些无机功能材料? 答:纳米材料超导材料功能薄膜材料功能转换材料梯度材料生物医用材料 功能陶瓷磁性材料储氢材料 2.纳米材料有哪些基本性质? 答:物理性能:表面效应、小尺寸效应、量子尺寸效应、宏观量子隧道效应 化学性能:表面活性及敏感性、催化性能 表面效应:纳米粒子的表面原子数与总原子数之比随着粒子尺寸的减小而显著增加,粒子的表面能及表面张力随 着增加,物理、化学性质发生变 化。 小尺寸效应:随着颗粒尺寸的量变,在一定条件下会 引起颗粒性质的质变。由于颗粒尺寸变小所引起的宏观物理性 质的变化称为小尺寸效应。 量子尺寸效应:当粒子尺寸下降到某一值时,金属费 米能级附近的电子能级由准连续能级变为离散能级的现象和纳 米半导体微粒存在不连续的最高被占据轨道和最低被占据的分 子轨道能级,能隙变宽的现象。 宏观量子隧道效应:颗粒的一些宏观物理量,如微磁化 强度,量子相干器件中的磁通量等亦具有隧道效应,称其为宏 观量子隧道效应。 3.超导材料有哪些特性?以及超导材料的分类? 超导体主要具有三个特性: 零电阻性超导材料处于超导态时电阻为零,如果用磁场 在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。

完全抗磁性超导材料处于超导态时,只要外加磁场小于 临界磁场,磁场不能透入超导体内,超导材料内部的磁场恒为零。超导悬浮,就是利用超导体的完全抗磁性。 约瑟夫森效应当两超导体之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝 缘层两侧没有电压,即绝缘层也成了超导体。当电流超过一定 值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流 电流变成高频交流电,而且频率与电压成正比。 超导体的分类没有唯一的标准,最常用的分类如下: 由物理性质分类:可分成第一类超导体(若超导相变属于 一阶相变)和第二类超导体(若超导相变属于二阶相变)。 由超导理论来分类:可分成传统超导体(若超导机制可用BCS理论解释)和非传统超导体(若超导机制不能用BCS理论 解释)。 由超导相变温度来分类:可分成高温超导体(若可用液态 氮冷却就形成超导体)和低温超导体(若需要其他技术来冷却)。 由材料来分类:它们可以是化学元素(如汞和铅)、合金(如铌钛合金和铌锗合金)、陶瓷(如钇钡铜氧和二硼化镁) 或有机超导体(如富勒烯和碳纳米管,这可能都包括在化学元 素之内,因为它们是由碳组成)。 3.功能薄膜介绍了哪些?哪些类别?以及制造方法? 答:按化学组成分:无机膜有机膜复合膜 按相组成分为:固体薄膜液体薄膜气体薄膜胶体薄膜 按晶体形态分:单晶膜多晶膜微晶膜纳米晶膜超晶格膜 按薄膜的功能及其应用领域分:电学薄膜光学薄膜硬质 膜、耐蚀膜、润滑膜有机分子膜装饰膜、包装膜

无机材料的性能特点分类

无机非金属材料性能 一、绪论(2学时) 1、无机非金属材料的特点 (1)化学组成上为无机化合物或非金属元素单质,包括传统的氧化物、硅酸盐、碳酸盐、硫酸盐等含氧酸盐、氮化物、碳化物、硅化物、硼化物、氟化物、硫系化合物、硅、锗及碳材料等。 (2)形态与形状上包括多晶、单晶、非晶、薄膜、纤维、复合材料等。 (3)晶体结构复杂。单个晶格可能包含多种元素的原子,晶格缺陷种类多。 (4)原子间结合力丰要为离子键、共价键或者离了—共价混合键,具有高的键能、大的极性。 (5)制备上通常要求高纯度、高细度原料,并在化学组成、添加物的数量和分布、晶体结构和材料微观结构上能精确控制。 (6)性能多样。具有高熔点高强度、耐磨损、高硬度、耐腐蚀及抗氧化,宽广的导电性能、导热性、透光件以及良好的铁电性、铁磁性和压电性等待殊性能;但大多数无机材料拉伸强度低,韧性差,脆性大。 (7)应用极其广泛。几乎在所有的领域都有无机材料的应用,尤其新型无机材料更是现代技术的发展基础、在电子信息技术、激光技术、光纤技术、光电子技术、传感技术、超导技术以及空间技术的发展中占有十分重要的地位。 2、传统无机非金属材料与新型无机非金属材料 传统无机材料一般是指以天然的硅酸盐矿物(粘土、石英、长石等)为主要原料,经高温窑烧制而成的一大类材料。故又称窑业材料,主要有陶瓷、玻璃、水泥和耐火材料四种,其化学组成均为硅酸盐,因此也称为硅酸盐材料。新型无机材料则是指应用于高科技领域的用氧化物、氮化物、碳化物、硼化物、硫化物、硅化物以及各种无机非属化合物经持殊的先进工艺制成的具有优异性能的无机新材料,包括特种陶瓷、特种玻璃、特性水泥、新型耐火材料、人工晶体、增导体材料等。 3、无机非金属材料的分类 无机材料种类繁多、性能各异。从传统硅酸盐材料到新型无机材料,众多门类的无机材料已经渗透到人类生活、生产的各个领域,需从多个角度对无机材料进行分类。无机材料按成分特点、可分为单质和化合物两大类;按结构特征,可

无机非金属材料的主角硅教学设计

《无机非金属材料的主角──硅》教学设计 北京潞河中学孟祥雯 1.指导思想与理论依据 高中化学新课程着眼于学生发展、社会发展和学科发展的需要,强调密切联系社会生活实际,关注化学发展的前沿,注重化学与生活、社会、技术之间的相互影响和相互联系,高度重视实验与探究,倡导自主、探究、合作的学习方式。 因此,本节课在内容安排上突破传统的物质中心模式,不再追求元素化合物知识系统(存在、组成、结构、性质、制法、用途)的完整,而是注重STS教育,从学生已有的生活经验出发,引导学生学习身边的常见物质,将物质性质的学习融入有关的生活现象和社会问题的分析解决活动中,体现其社会应用价值。这样的学习顺序符合学生的认知规律,有利于学生的学习。 2.教学内容分析 (1)主要内容 本课时位于化学必修1的第四章第一节,主要内容是二氧化硅和硅酸。本节课的主线是: 本节课重点介绍了硅酸凝胶的制取方法、硅胶的用途以及二氧化硅的重要性质和用途。 (2)地位与作用 硅及其化合物作为非金属元素知识的开端,是在第三章“金属及其化合物”内容的基础上,继续进行关于元素化合物知识的学习和研究方法的训练,本节教学采用主线为“硅酸盐──硅酸──二氧化硅(硅的亲氧性)──硅单质(应用)”的纵向学习方法,有别于第三章的横向对比学习法,丰富了元素族概念及元素性质的递变规律的形成,为元素周期律、元素周期表的学习积累了丰富的感性材料,同时,也为以后学习选修模块2 “化学与技术”中的第三单元“化学与材料的发展”奠定了知识基础。 本节内容与生产生活、材料科学、信息技术等联系较为密切,知识面广,趣味性强,能使学生真正认识化学在促进社会发展,改善人类的生活条件方面所起的重要作用,全面地体现了化学学科的社会应用价值。通过本节的学习,有利于贯彻STS教育的观点,激发学生学习的兴趣,促进学生科学素养的提高。 (3)教材处理 本节课从生活中常见的干燥剂入手,创设问题情景,激发学生的学习兴趣和求知欲,进而主动接受学习任务;通过探究实验,体验硅酸的制取,进一步了解硅胶和变色硅胶;通过对比碳和硅原子结构的相同点和不同点,认识二氧化硅的结构,采用比较的方法学习SiO2的化学性质,并把硅及其化合物在信息技术、材料化学等领域的应用和发展融合在性质的介绍中,从而让生活在信息技术时代的学生体会到常见硅及其化合物知识的价值,深刻理解硅成为无机非金属材料的主角的原因,激发学生对材料科学的兴趣和求知欲望,全面体现化学课程的科学教育功能。 本节课也为不同层次的学生设计了不同的教学目标,基础较弱的学生把重点放在课前的预习和课堂上的性质对比教学中,而学有余力的优秀学生可以在课后对课堂上没有深入研究的一些问题进行挖掘和拓展,如将硅及其化合物的结构理论知识、在材料领域中的应用等作为拓展性内容,通过查阅资料、讨论等方法进行更深入的学习。 3.学生情况分析 (1)本节课的教学对象为高一学生,学生已有知识和未知知识分析: (2)学生学习本单元可能会遇到的障碍点

无机非金属材料专业材料概论英语词汇

alloy 合金atomic-scale architecture 原子尺度结构(构造)brittle 脆性的 ceramic 陶瓷composite 复合材料concrete 混凝土conductor? 导体crystalline? 晶态的devitrified 反玻璃化的(晶化的) ductility (可)延(展)性,可锻性electronic and magnetic material? 电子和磁性材料element 元素fiberglass 玻璃钢 glass 玻璃glass-ceramic 玻璃陶瓷/微晶玻璃insulator 绝缘体materials science and engineering 材料科学与工程 materials selection 材料选择metallic 金属的microcircuitry 微电路microscopic-scale architecture 微观尺度结构(构造)noncrystalline 非晶态的nonmetallic 非金属的oxide 氧化物periodic table 周期表plastic 塑性的、塑料polyethylene 聚乙烯polymer 聚合物 property 性能(质)refractory 耐火材料、耐火的semiconductor 半导体silica 石英、二氧化硅silicate 硅酸盐silicon 硅 steel 钢structural material 结构材料wood 木材 Chapter 7 aluminum alloy 铝合金gray iron 灰口铁amorphous metal 无定形金属high-alloy steel 高合金钢austenitic stainless steel 奥氏体不锈钢high-strength low-alloy steel 高强度低合金钢Brinell hardness number 布氏硬度值Hooke’s law 胡克定律carbon steel 碳钢 impact energy 冲击能cast iron 铸铁lead alloy 铅合金Charpy test Charpy试验low-alloy steel 低合金钢 cold working 冷作加工lower yield point 屈服点下限copper alloy 铜合金magnesium alloy 镁合金creep curve 蠕变曲线 malleable iron 可锻铸铁primary stage 第一(初期)阶段martensitic stainless steel 马氏体不锈钢secondary stage 第二阶段 modulus of elasticity 弹性模量tertiary(final)? stage 第三(最后)阶段modulus of rigidity 刚性模量 dislocation climb 位错攀(爬)移nickel alloy 镍合金ductile iron 球墨铸铁nickel-aluminum superalloy 镍铝超合金 ductile-to-brittle transition temperature 韧性-脆性转变温度nonferrous alloy 非铁合金ductility (可)延(展)性,可锻性 plastic deformation 塑性变形elastic deformation 弹性变形Poission’s ratio 泊松比engineering strain 工程应变 precious metal 贵金属engineering stress 工程应力precipitation-hardened stainless steel 沉淀(脱溶)硬化不锈钢fatigue curve 疲劳曲线rapidly solidified alloy 速凝合金/快速固化合金fatigue strength (endurance limit) 疲劳强度(耐久极限)refractory? metal 耐火(高温)金属 ferritic stainless steel 铁素体不锈钢Rockwell hardness 洛氏硬度ferrous alloy 铁基合金shear modulus 剪(切)模量 fracture mechanics 断裂机制shear strain 剪(切)应变fracture toughness 断裂韧性shear stress 剪(切)应力 gage length 标距(长度),计量长度,有效长度solution hardening 固溶强化galvanization 电镀,镀锌steel 钢 strain hardening 应变强化white iron 白铁,白口铁superalloy 超合金wrought alloy 可锻(锻造、轧制)合金tensile strength 拉伸强度yield point 屈服点titanium alloy 钛合金yield strength 屈服强度tool steel 工具钢Young’s modulus 杨氏模量toughness 韧性 zinc alloy 锌合金upper yield point 屈服点上限 Chapter 8 annealing point 退火点linear coefficient of thermal expansion线性热膨胀系数refractory 耐火材料borosilicate glass 硼硅酸盐玻璃expansion 膨胀silicate 硅酸盐brittle fracture 脆性断裂magnetic ceramic 磁性陶瓷silicate glass 硅酸盐玻璃clay 粘土 melting range 熔化(温度)范围soda-lime silica glass 钠钙硅酸盐玻璃color 颜色modulus of rupture 断裂模量softening point 软化点cosine law 余弦定律network former 网络形成体specular reflection 镜面反射creep 蠕变netwrok modifier 网络修饰体/网络外体 static fatigue 静态疲劳crystalline ceramic 晶态陶瓷nonoxide ceramic 非氧化物陶瓷structural clay product 粘土类结构制品 diffuse reflection 漫反射nonsilicate glass 非硅酸盐玻璃surface gloss 表面光泽E-glass 电子玻璃(E玻璃) nonsilicate oxide ceramic 非硅酸盐氧化物陶瓷tempered glass 钢化玻璃electronic ceramic 电子陶瓷nuclear ceramic 核用陶瓷 thermal conductivity 热传导率enamel 搪瓷nucleate 成(形)核thermal shock 热震Fourier’s law 傅立叶定律Opacity 乳浊transformation toughening 相变增韧fracture toughness 断裂韧性optical property 光学性质translucency 半透明 Fresnel’s formula Fresnel公式partially stabilized zirconia ??部分稳定氧化锆transparency 透明glass 玻璃polar diagram 极坐标图viscosity 粘度glass-ceramic 玻璃陶瓷/微晶玻璃pottery 陶器(制造术)viscous deformation 粘性变形 glass transition temperature 玻璃转变温度pure oxide 纯氧化物vitreous silica 无定形二氧化硅/石英玻璃glaze 釉 reflectance 反射(率)whiteware 白瓷Griffith crack model Griffith裂纹模型refractive index 折射率working range 工作(温度)范围intermediate 中间体/中间的

无机非金属材料结构知识点整理

一概述 1.材料是人类社会所能接受的、可经济地制造有用物品的物质。材料性能关系到材料的应用材料含义在于应用,材料的什么决定应用的概念和设计,决定了应用的基础——综合的性能决定最终产品的形态和应用…… 2.材料研究的核心问题:以材料的结构和性能为研究对象,并重点研究结构与材料性能之间的关系,为材料性能的改进和新材料的开发提供指导。 3材料结构层次:原子结构,晶体结构——功能材料密切相关;显微结构,微观组织——结构材料密切相关;宏观结构——复合材料相关;、 4材料的电子结构——指材料中的电子分布和状态,它不同于单个的分子和原子的电子结构,因为这两者不是长程的完整的材料。它是决定材料晶体结构的主要和本质原因。 5. 电子波动反映到原子中,为驻波。 6.现代材料结构和性能测量的重要原理和基础:X光衍射和电子显微技术——微观结构,磁性分布和能隙空间分布等等,其中大都以微观过程或性能直接体现了量子效应和作用…… 7.量子理论是解决电子结构的惟一工具。是以能量的量子化和波函数概念为核心的,可依照薛定额方程确定的第一性原理分析方法。 二、晶体结构 1晶体的特征:均匀性;各向异性;自发地形成多面体外形;晶体具有明显确定的熔点;晶体的对称性;晶体对X射线的衍射; 2晶体的宏观特性是由晶体内部结构的周期性决定的,即晶体的宏观特性是微观特性的反映。 3晶体结构即晶体的微观结构,是指晶体中实际质点(原子、离子或分子)的具体排列情况 4晶体与非晶体的最本质差别在于组成晶体的原子、离子、分子等质点是规则排列的(长程序),而非晶体中这些质点除与其最近邻外,基本上无规则地堆积在一起(短程序)。晶体与非晶体之间的主要差别在于它们是否有三维长程点阵结构。 5晶体――原子或原子团、离子或分子在空间按一定规律呈周期性地排列构成的固体 6固体分类(按结构)――晶体:长程有序;非晶体:不具有长程序的特点,短程有序;准晶体:有长程取向性,而没有长程的平移对称性。 7在晶体中适当选取某些原子作为一个基本结构单元,这个基本结构单元称为基元,基元是晶体结构中最小的重复单元,基元在空间周期性重复排列就形成晶体结构。晶格+基元=晶体结构 8晶体的内部结构可以概括为是由一些相同的点子在空间有规则地做周期性无限分布,通过这些点做三组不共面的平行直线族,形成一些网格,称为晶格(或者说这些点在空间周期性排列形成的骨架称为晶格)。9取一格点为顶点,由此点向近邻的三个格点作三个不共面的矢量,以此三个矢量为边作平行六面体即为固体物理学(简称原胞)。 10结晶学原胞(简称单胞)构造:使三个基矢的方向尽可能地沿着空间对称轴的方向,它具有明显的对称性和周期性。 11维格纳--塞茨原胞构造:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即为W--S原胞。特点:它是晶体体积的最小重复单元,每个原胞只包含1个格点。其体积与固体物理学原胞体积相同。 12原胞与分类—7大晶系 晶系晶轴轴间夹角实例 立方 a = b = c α=β=γ= 900Cu, NaCl 四方 a = b ≠ c α=β=γ= 900Sn, SiO2 正交 a = ≠ b ≠ c α=β=γ= 900I2, BaCO3 三方 a = b = c α=β=γ≠ 900As, Al2O3 a = b ≠ c α=β= 900,γ = 1200 单斜 a ≠ b ≠ c α= γ= 900,β≠ 900KClO3 三斜 a ≠ b ≠ c α≠ β≠ γ≠ 900 K2CrO7 六方 a = b ≠ c α=β= 900,γ =1200 Mg,CuS

无机非金属材料概论新教学大纲

《无机非金属材料概论》课程教学大纲 第一部分:课程设置概述 一、课程定位 1.课程性质 无机非金属材料概论是建筑装饰材料及检测专业的一门主干课程,是建筑装饰材料管理和产品质量控制人员检验和控制产品质量,进行产品质量管理、合理地处理生产过程中出现的问题所必备的基本知识和能力。 本课程的实践性较强,与检测、生产和工程实际结合紧密,需要学生较多地参与教学活动。 2.课程作用 培养学生掌握无机非金属材料结构、性能以及制备方面的知识和能力。 二、课程教学目标 1.能力目标 (1)具有熟练地掌握材料性能、用途和生产工艺基本知识的能力; (2)具有一定的生产工艺技能; (3)具有设备使用、维护的能力以及相应的产品生产技术和检测技能。 2.知识目标 (1)掌握玻璃的结构、性能以及制备工艺; (2)掌握陶瓷的结构、性能以及制备工艺; (3)掌握水泥的结构、性能以及制备工艺; (4)掌握耐火材料的结构、性能以及制备工艺; 3.素质目标 培养学生树立严谨、认真、刻苦的学习态度,养成善于观察周围事物,及时发现相互间的差异,积极接受新鲜事物的素质。 三、课程教学设计

本课程主要讲授水泥、玻璃、陶瓷和耐火材料方面的知识内容,教学上以理论教学为主,以参观和现场教学为辅。主要是通过各种有效的教学方法向学生介绍各种水泥、玻璃、陶瓷和耐火材料产品性能、生产工艺、检测方法和施工应用,增加学生对生产工艺、生产设备和检测要求的感性认识。 第二部分:课程教学内容纲要 一、课程教学内容学时分配表 《无机非金属材料概论》课程教学内容学时分配见表551620-1。 《无机非金属材料概论》课程教学内容学时分配表表551620-1 二、课程教学内容纲要 (一)绪论 1、教学要求 了解无机材料的发展历史和发展方向;材料的分类及功能;掌握各种材料材料的物理、力学性能。 2、教学内容 材料的发展历史和发展方向;材料的分类及功能;各种材料材料的物理、力学性能。

无机非金属材料名词解释

1. 胶凝材料:凡能在物理、化学作用下,从浆体变成坚固的石状体,并能 胶结其它物料而具有一定机械强度的物质,统称为胶凝材料,又称胶结料。 2. 陶瓷:陶瓷是以无机非金属天然矿物或化工产品为原料,经原料处理、成型、干燥、烧成等工序制成的产品。是陶器和瓷器的总称。 3.IM :铝率又称铁率,其数学表达式为: IM=Al2O2 /Fe2O3 铝率表示熟料中氧化铝与氧化铁含量的质量比,也表示熟料熔剂矿物中 铝酸三钙与铁铝酸四钙的比例。 4. 玻璃形成体;能单独形成玻璃,在玻璃中能形成各自特有的网络体系的 氧化物,称为玻璃的网络形成体,如SiO2、B2O3和P2O5等。 5. 萤石含率:指由萤石引入的CaF2量与原料总量之比,即: 萤石含率=(萤石x CaF2含量)/原料总量X 100% 1. 水硬性胶凝材料:和水成浆体后,既能在空气中硬化,又能在水中硬化的胶凝材料。如各种水泥等 2. 贱烧:指物料经过高温,合成某些矿物入水泥、水泥熟料,矿物等)或 使矿物分解获得某些中间产物〔如石灰和黏土熟料)的过程。 4. 玻璃熔化:玻璃配合料经过高温加热转变为化学组成均勾的、无气泡的、并复合成型要求的玻璃液的过程 3. 急凝:急凝是指水泥的一种不正常的早期固化或过早变硬现象。在水泥用水拌和的几分钟内物料就显示凝结。急凝放热,急凝往往是由于缓凝不够所引起,浆体已具有一定强度,重拌并不能使其再具塑性。 5. 水泥混凝土:由水泥、颗粒状集料以及必要时加入化学外加剂和矿物掺 和料,经合理配合的混合料,加水拌合硬化后形成具有凝聚结构的材料。

4. 凝结时间;水泥从加水开始到失去流动性,即从流体状态发展到较致密的固体状态,这个过程所需要的时间称凝结时间 1. 无机非金属材料;无机非金属材料是以某些元素的氧化物、碳化物、氮化物、人素化合物、硼化物、以及硅酸盐、铝酸盐、磷酸盐、硼酸盐和非氧化物等物质组成的材料。是除金属材料和有机高分子材料以外的所有材料的统称。 2. 水泥;凡细磨成粉末状,加入适量水后成为塑性浆体,既能在空气中硬化,又能在水中硬化,并能将砂、石等散粒或纤维材料牢固地胶结在一起的水硬性胶凝材料,统称为水泥 3. 烧成;烧成通常是指将初步密集定形的粉块(生坯)经高温烧结成产品的过程。其实质是将粉料集合体变成致密的、具有足够强度的烧结体,如砖 瓦、陶瓷、耐火材等 4. KH: KH= (CaO-1.65Al2O3-0.35Fe2O3 ) /2.8SiO2 石灰饱和系数KH是熟料中全部氧化硅生成硅酸钙(C3S+C3S)所需的氧化钙量与全部二氧化硅理论上全部生成硅酸三钙所需的氧化钙含量的比 值。(即KH表熟料中二氧化硅被氧化钙饱和形成硅酸三钙的程度。) 5. 澄清剂:凡在玻璃熔制过程中能分解产生气体,或能降低玻璃粘度,促进排除玻璃液中气泡的物质称为澄清剂 2.玻璃:玻璃是由熔融物冷却、硬化而得到的非晶态固体。其内能和构性炳局于相应的晶体,其结构为短程有序,长程无序 4.SM: SM=SiO2/Al2O3+Fe2O3 硅率是表示熟料中氧化硅含量与氧化铝、氧化铁之和的质量比。(表示了熟料中硅酸盐矿物与熔剂矿物的比例) 5. 玻璃调整体;凡不能单独生成玻璃,一般不进入网络而是处于网络之外的氧化物,称为玻璃的网络外体。它们往往起调整玻璃一些性质的作用。

无机功能材料

无机功能材料 一、化学气相 1.1.5 对原料、产物和反应类型的要求 ①反应原料是气态或易于挥发成蒸气的液态或固态物质 ②反应易于生成所需要的沉积物, 副产品保留在气相中排出或易于分离 ③整个操作较易于控制 1.1.2 分类 化学气相沉积Chemical Vapor Deposition,CVD 物理气相沉积Physical Vapor Deposition,PVD 1.3 化学气相沉积法的技术装置 气源控制部件沉积反应室加热系统气体压强控制 = 特点:沉积温度低,应用范围拓宽 例通过化学转移反应的沉积……化学反应输运沉积 1\在气相沉积输运过程中,沉积位置不同所形成的晶体颗粒大小不同,其反应如下:2HgS(s) 2Hg(g)+S2(g) 2 原料物质本身不容易发生分解时,而需添加另一物质(称为输运剂)来促进输运中间气态产物的生成。例如2ZnS(s)+2I2(g)2ZnI2(g)+S2(g) 这类输运反应中通常是,T2>T1,即生成气态化合物的反应温度T2往往比重新反应沉积时的温度T1要高一些 3 有时沉积反应反而在较高温度的地方发生。例如碘钨灯(或溴钨灯)管工作时不断发生的化学输运过程就是由低温向高温方向进行的 W(s)+3I2(g)1400℃约3000℃WI6(g)不断地循环工作 巧妙地利用化学输运反应沉积原理,碘钨灯(或溴钨灯)的钨丝温度显著提高,寿命也大幅度地延长 主要制备的材料:半导体单晶外延薄膜:单晶,各向同性 多晶硅薄膜:沉积时间长,反复沉积 半绝缘的掺氧多晶硅薄膜 绝缘的二氧化硅 氮化硅:耐高温,超硬抗磨损 磷硅玻璃 硼磷硅玻璃薄膜:膜的稳定性与可靠性 金属钨薄膜:羰基钨的热分解,白色金属光泽,硬度大 第二章通常的水溶液中,金属离子可能有三种配体: 水(OH2) 羟基(OH-1) 氧基(=O) 胶体工艺和聚合工艺主要区别:①反应的前驱体不同②反应介不同 CeO2的晶粒大小与烧结温度和烧结时间钠米CeO2粒子为球型 ●250℃时生成的纳米粒子的平均粒径为8 nm ●在250~800℃之间,均可生成单相的萤石型结构的CeO2纳米粒子材料 第三章水热与溶剂热合成法

无机非金属材料工程概论

第二篇无机非金属材料工程基础 第三章无机非金属材料工程概论 本章内容及要求 1.本章共三节,教授课时2学时,通过本章学习,要掌握无机非金属材料生产工艺过程的共性和特性。 3.1 概述 3.2 无机非金属材料生产工艺过程的共性 3.3 不同类型无机非金属材料生产过程的特性 2.重点是无机非金属材料生产工艺过程的共性。 3.要求: ①掌握无机非金属材料生产工艺过程的共性; ②掌握几种典型无机非金属材料生产工艺过程的特性; ③了解无机非金属材料的分类和发展简史。 具体内容 第一节概述 一、无机非金属材料定义与分类 无机非金属材料(inorganic nonmetallic materials)是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐、硫酸盐、碳酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。无机非金属材料是20世纪40年代以后,随着现代科学技术的发展从传统的硅酸盐材料演变而来的。与有机高分子材料和金属材料并列的三大类型材料之一。 在晶体结构上,无机非金属材料的元素结合力主要为离子键、共价键或离子—共价混合键。这些化学键所特有的高键能、高键强度赋于这一大类材料以高熔点、高硬度、耐腐蚀、耐磨损、高强度和良好的抗氧化性等基本属性,以及宽广的导电性、隔热性、透光性及良好的铁电性、铁磁性和压电性。 无机非金属材料品种和名目极其繁多,用途各异,因此,分类方法较多,但还

没有一个统一而完善的分类方法。可以按无机非金属材料所含化学成分和矿物组成分类、按材料性能(功能)分类、按材料用途分类、按材料内部结构和生产工艺特点分类等,通常把它们分为普通的(传统的)和先进的(新型的)无机非金属材料两大类。 传统的无机非金属材料是工业和基本建设所必需的基础材料。如水泥是一种重要的建筑材料,耐火材料与高温技术与冶金钢铁工业的发展关系密切,各种规格的平板玻璃、仪器玻璃和普通的光学玻璃以及日用陶瓷、卫生陶瓷、建筑陶瓷、化工陶瓷和电瓷等与我们的生活密切相关,它们产量大,用途广。其他产品,如搪瓷、磨料(碳化硅、氧化铝)、铸石(辉绿岩、玄武岩等)、碳素材料等也都属于传统的无机非金属材料。 新型无机非金属材料是指20世纪中期以后发展起来的、具有特殊性能和用途的无机非金属材料。它们是现代新技术、新产业、传统工业技术改造、现代国防和生物医学所不可缺少的物质基础。主要有先进陶瓷(advanced ceramics)、非晶态材料(noncrystal material)、人工晶体(artificial crystal)、无机涂层(inorganic coating)、无机纤维(inorganic fibre)和功能矿物材料(non—metallic materials)等。 二、无机非金属材料发展简史 传统的硅酸盐材料一般是指以天然的硅酸盐矿物(粘土、石英、长石等)为主要原料,经粉磨、混合、成型及高温窖烧制而成的一大类材料,故又称窑业材料,包括日用陶瓷、一般工业用陶瓷、普通玻璃、水泥、耐火材料等。这类材料具有非常悠久的历史。从远古旧石器时代的石器工具,原始部落所制作的粗陶器,中国商代开始出现的原始瓷器和上釉的彩陶,东汉时期的青瓷,经过唐、宋、元、明、清不断发展,已达到相当高的技术和水平,并成为中华民族的瑰宝。与此并行发展的耐火材料(粘土质和硅质材料),从青铜器时代、铁器时代到近代钢铁工业的兴起,都起过关键的作用。距今五六千年前的古埃及文物中即发现有绿色玻璃珠饰品,中国白色玻璃珠亦有近3000年的历史。17世纪以来,由于用工业纯碱代替天然草木灰与硅石、石灰石等矿物原料生产钠钙硅酸盐玻璃,各种日用玻璃和技术玻璃迅速进入普通家庭、建筑物和工业领域。 在距今五六千年的史前和古代建筑中已大量使用石灰和石膏等气硬性胶凝材料,公元初期有了水硬性石灰和火山灰胶凝材料。但是用人工方法合成硅酸盐水泥制品还只有100多年的历史。19世纪初,英国人J.阿斯普丁(Aspdin)发明用硅酸盐矿物和石灰原料经高温煅烧制成波特兰水泥(portlamd cement)(又称硅酸盐水泥),从而开始了高强度水硬性胶凝材料的新纪元。

新型无机非金属材料概述

0920732 32 王瞧

目录 1.无机非金属材料技术发展现状 2.特种水泥的使用性能、种类和发展 2.1特种水泥的重要性 2.2特种水泥的种类 2.3特种水泥的发展方向 3.特种玻璃 3.1特种玻璃的概述 3.1.1光学功能玻璃 3.1.2电磁功能玻璃 3.1.3热学功能玻璃 3.1.4力学与机械功能玻璃 3.1.5生物活性玻璃 3.2特种玻璃的制备和加工 4.新型陶瓷 4.1新型陶瓷的定义、性能 4.2新型陶瓷与传统陶瓷的区别 4.3新型陶瓷的分类 5.特种耐火材料 5.1特种耐火材料的概述 5.2特种耐火材料的特点 5.3特种耐火材料的性能 5.4特种耐火材料的组织结构 5.5特种耐火材料的用途 5.6特种耐火材料展望 6.结束语

摘要:材料是人类赖以生存的物质基础,是科技进步的核心,是高新技术发展和社会现代化的先导,是一个国家科学技术和工业水平的反映和标志。20世纪80年代以高技术群为代表的新技术革命,把新材料、信息技术和生物技术并列为新技术革命的重要标志,世界各先进工业国家都把新材料作为优先发展的领域。在材料领域,无机非金属材料(简称无机材料)占有举足轻重的地位。无机非金属材料(inorganic nonmetallic materials)是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。无机非金属材料是与有机高分子材料和金属材料并列的三大材料之一。本文简要介绍无机非金属材料领域几类主要的新型材料的发展前景、类型、应用等。 关键词:特种水泥特种玻璃新型陶瓷特种耐火材料 1.无机非金属材料技术发展现状 无机非金属材料包括结构陶瓷、水泥与建筑材料、日用陶瓷、玻璃制品、非金属矿物材料等,是国防军工、现代工业、现代交通和基本建设的物质基础,无机非金属材料的发展对于保障和加快我国国民经济和国防工业的发展有着十分重要的意义。 近几十年来,我国无机非金属材料工业取得离突飞猛进的发展,其中水泥、平板玻璃、建筑卫生陶瓷等的产量多年来一直位居世界第一位。水泥工业从科研、设计到制造等各个环节的技术水平有了很大提高。新型干法窑外分解水泥生产线实现了国产化,其主要经济技术指标达到国际先进水平,且已出口国外。中国水泥品种的研究开发处于世界先进行列,已形成六大通用系列、约六十多个品种,包括快硬、膨胀、油井、水工、耐高温、防腐防护、装饰等特种水泥系列,并研究开发了具有中国自主知识产权的流铝酸盐等系列水泥。 建筑卫生陶瓷工业在我国也得到了飞速发展,先后从发达国家引进了大量世界先进的技术装备,经过科技攻关和引进技术的消化吸收,中国建筑卫生陶瓷产品质量的整体水平大幅度提高,花色品种大量增加,产品档次逐步提高,有的品种已达到国外高档产品水平。 我国独立自主研究开发出浮法玻璃生产工艺,经过多次攻关,技术不断完善,取得了日产500吨玻璃生产工艺技术的突破。目前,我国浮法玻璃产量占平板玻璃工业总产量的近70%。浮法玻璃生产工艺技术已向国外出口。此外,发达国家先后在上海、深圳、大连等地与中方合资建设了大型浮法玻璃生产线,提高了我国玻璃生产的总体技术水平。 2.特种水泥的使用性能、种类和发展 2.1特种水泥的重要性 水泥是一种细磨成粉末装、加水可为塑性浆体、在空气或水中均能硬化、并能将沙石与金属等材料牢固胶结在一起的水硬性凝胶材料。水泥自从与18世纪20年代问世以来,已有正规生产达170多年的历史。中国大量生产的是传统的硅酸盐水泥,但是这些通用水泥不可能完全满足各种现代化建设工程和施工新工艺的不同技术要求,某些特种工程就必须采用某种特种水泥来确保建设成功。如油田的油井,需要有适用于不同深度油井固井工程的各种温度的油井水泥品种系列。国防等用的紧急抢修工程需要不同性能的快硬高强水泥、特快硬水泥、快凝快硬水泥等。在房屋建设中,需要用高强度、水硬性好的白水泥和彩色水泥,是建筑物的造型、色彩和纹理更为美观而经久耐用。此外,还要因地制宜、因原燃料制宜,力求更好的经济效益与社会效益。中国地大物博,如有色杂质含量低的优质石灰石、黏土和燃料,既有利于制造白水泥;储量大的优质矾土可制高铝水泥、耐火材料和膨胀水泥:低品位矾土和石膏可制硫铝酸盐水泥:有铁矾土可知铁铝酸盐水泥:明矾石可制膨胀水泥等。中国已成为世界上水泥品种较多的国家之一。 2.2特种水泥的种类

相关文档
最新文档