局部水头损失实验 流体力学实验报告

局部水头损失实验 流体力学实验报告
局部水头损失实验 流体力学实验报告

《流体静力学实验》实验报告

实验报告打印格式说明

1.标题:三号加粗黑体

2.开课实验室:5号加粗宋体

3.表中内容:

(1)标题:5号黑体

(2)正文:5号宋体

4.纸张:16开(20cm×26.5cm)

5.版芯

上距:2cm

下距:2cm

左距:2.8cm

右距:2.8cm

说明:1、“年级专业班”可填写为“00电子1班”,表示2000级电子工程专业第1班。

2、实验成绩可按五级记分制(即优、良、中、及格、不及格),或者百分制记载,若需要将实

验成绩加入对应课程总成绩的,则五级记分应转换为百分制。

工程流体力学及水力学实验报告及分析讨论

工程流体力学及水力学实验报告及分析讨论

工程流体力学及水力学实验报告及分析讨论 实验一流体静力学实验 验原理 重力作用下不可压缩流体静力学基本方程 (1.1) 中: z被测点在基准面的相对位置高度; p被测点的静水压强,用相对压强表示,以下同; p0水箱中液面的表面压强; γ液体容重; h被测点的液体深度。 对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系: (1.2) 此可用仪器(不用另外尺)直接测得S0。 验分析与讨论 同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测头线指测压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根。 当P B<0时,试根据记录数据,确定水箱内的真空区域。 ,相应容器的真空区域包括以下三部分:

)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真。 )同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 若再备一根直尺,试采用另外最简便的方法测定γ0。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油 至油面的垂直高度h和h0,由式,从而求得γ0。 如测压管太细,对测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛由下式计算 中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃,=7.28dyn/mm,=0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0。于是有 单位为mm) 一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其h较普管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、时均有毛细现象,但在计算压差时,互相抵消了。 过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?

7 局部阻力损失实验

局部阻力损失实验 一、实验目的要求 1.掌握三点法、四点法量测局部阻力系数的技能; 2.通过对园管突扩局部阻力系数的包达公式和突缩局部阻力系数的经验公式的实验验证与分析,熟悉用理论分析法和经验法建立函数式的途径; 3.加深对局部阻力损失机理的理解。 二、实验原理 写局部阻力前后两断面的能量方程,根据推导条件,扣除沿程水头损失可得: ⒈突然扩大 采用三点法计算,下式中由按流长比例换算得出。 实测 理论 ⒉突然缩小

采用四点法计算,下式中B点为突缩点,由换算得出,由换算得出。 实测 经验 三、实验方法与步骤 1.测记实验有关常数。 2.打开电子调速器开关,使恒压水箱充水,排除实验管道中的滞留气体。待水箱溢流后,检查泄水阀全关时,各测压管液面是否齐平,若不平,则需排气调平。 3.打开泄水阀至最大开度,待流量稳定后,测记测压管读数,同时用体积法或用电测法测记流量。 4.改变泄水阀开度3~4次,分别测记测压管读数及流量。 5.实验完成后关闭泄水阀,检查测压管液面是否齐平?否则,需重做。 四、实验分析与讨论局部水头损失实验分析与讨论 问题一:结合实验成果,分析比较突扩与突缩在相应条件下的局部损失大小关系。 参考答案: 由式 及 表明影响局部阻力损失的因素是v和。由于有

突扩: 突缩: 则有 当或时,突然扩大的水头损失比相应突然收缩的要大。本实验= 2,在最大流量Q下,= 6. 6/3.58 = 1. 85,突扩损失较突缩损失约大一倍。 接近于1时,突扩的水流形态接近于逐渐扩大管的流动,因而阻力损失显著减小。 问题二:结合流动仪演示的水力现象,分析局部阻力损失机理何在?产生突扩与突缩局部阻力损失的主要部位在哪里?怎样减小局部阻力损失? 参考答案: 流动演示仪I—VII型可显示突扩、突缩、渐扩、渐缩、分流、合流、阀道、绕流等三十余种内、外流的流动图谱。据此对局部阻力损失的机理分析如下: 从显示的图谱可见,凡流道边界突变处,形成大小不一的漩涡区。漩涡是产生损失的主要根源。由于水质点的无规则运动和激烈的紊动,相互摩擦,便消耗了部分水体的自储能量。另外,当这部分低能流体被主流的高能流体带走时,还须克服剪切流的速度梯度,经质点间的动能交换,达到流速的重新组合,这也损耗了部分能量。这样就造成了局部阻力损失。 从流动仪可见,突扩段的漩涡主要发生在突扩断面以后,而且与扩大系数有关,扩大系数越大,漩涡区也越大,损失也越大,所以产生突扩局部阻力损失的主要部位在突扩断面的后部。而突缩段的漩涡在收缩断面前后均有。突缩前仅在死角区有小漩涡,且强度较小,而突缩的后部产生了紊动度较大的漩涡环区。可见产生突缩水头损失的主要部位是在突缩断面后。 从以上分析知,为了减小局部阻力损失,在设计变断面管道几何边界形状时应流线型化或尽量接近流线形,以避免漩涡的形成,或使漩涡区尽可能小。如欲减小管道的局部阻力,就应

管道局部水头损失实验(完成)

武汉大学教学实验报告 学院:水利水电学院 专业:水利水电工程全英文班 2013年6月22日 实验名称 管道局部水头损失实验 指导老师 姓名 吴前进 年级 11级 学号 2011301580067 成绩 一:预习部分 1:实验目的 2:实验基本原理 3:主要仪器设备(含必要的元器件,工具) 一、实验目的 1、掌握测定管道局部水头损失系数ζ的方法。 2、将管道局部水头损失系数的实测值与理论值进行比较。 3、观测管经突然扩大时旋涡区测压管水头线的变化情况和水流情况,以及其他各种边界突变情况下的测压管水头线的变化情况。 二、实验原理 由于边界形状的急剧改变,水流就会与边界分离出现旋涡以及水流流速分布的改组,从而消耗一部分机械能。单位重量液体的能量损失就是水头损失。 边界形状的改变有水流断面的突然扩大或突然缩小、弯道及管路上安装阀门等。 局部水头损失常用流速水头与与系列的乘积表示。 g v h j 2ζ= 式中:ζ—局部水头损失系数。系数ζ是流动形状与边界形状的函数,即ζ= f (Re ,边界形状)。一般水流Re 数足够大时,可认为系数ζ不再随Re 数而变化,而看作常数。 管道局部水头损失目前仅有突然扩大可采用理论分析,并可得出足够精确的结果。其他情况则需要用实验方法测定ζ值。突然扩大的局部水头损失可应用动量方程与能量方程及连续方程联合求解得到如下公式: 2 2 112 112 1 22222)1(,2)1(,2A A g v h A A g v h j j -==-==ζζζζ 式中,A 1和v 1分别为突然扩大上游管段的断面面积和平均流速;A 2和v 2分别为突然扩大下游管段的断面面积和平均流速。 三、实验设备 实验设备及各部分名称如图一所示。 二:实验操作部分 1:实验数据,表格及数据处理 2:实验操作过程(可用图表示) 3结论 图一 局部水头损失实验仪 四、实验步骤 1、熟悉仪器,记录管道直径D 和d 。 2、检查各测压管的橡皮管接头是否接紧。 3、启动抽水机,打开进水阀门,使水箱充水,并保持溢流,使水位恒定。 4、检查尾阀K 全关时测压管的液面是否齐平,并保持溢流,使水位恒定。 5、慢慢打开尾阀K ,使流量在测压管量程范围内最大,待流动稳定后,记录测压管液面标高,用体积法测量管道流量。 6、调节尾阀改变流量,重复测量5次。 五、注意事项 1、实验必须在水流稳定后方可进行。 2、计算局部水头损失系数时,应注意选择相应流速水头;所选量测断面应选在渐变流上,尤其下游断面应选在旋涡区的末端,即主流恢复并充满全管的断面上。 六、实验成果及要求 1、有关常数。 圆管直径D =2.70 cm ,圆管直径d =1.46 cm 2、记录及计算(见表一)。

管路沿程水头损失实验

管路沿程水头损失实验 一、实验目的要求 1.加深了解圆管层流和紊流的沿程损失随平均流速变化的规律,绘制 l g V l g f h 曲线; 2.掌握管道沿程阻力系数的量测技术和应用水压差计及电测仪测量压差的方法; 3.将测得的Re-f 关系值与莫迪图对比,分析其合理性,并且与莫迪图比较,进一步提高实验成果分析能力。 二、实验装置 本实验的实验装置,如图1所示。 图1 自循环沿程水头损失实验装置图 1.自循环高压恒定全自动供水器; 2.实验台; 3.回水管; 4.水压差计; 5.测压计; 6.实验管道 8.滑动测量尺; 9.测压点; 10.实验流量调节阀; 11.供水管与供水阀; 12.旁通管路与旁通阀; 13.稳压筒

实验装置配备如下: 1.测压装置:U形管水压差计和电子量测仪。 低压差用U形管水压差计量测,而高压差需要用电子量测仪来量测。电子量测仪(见图2)由压力传感器和主机两部分组成,经由连通管将其接入测点。压差读数(以厘米水柱为单位)通过主机显示。 图2 电子量测仪 1.压力传感器; 2.排气旋钮; 3.连通管; 4.主机 2.自动水泵与稳压器: 自循环高压恒定全自动供水器由离心泵、自动压力开关、气--水压力罐式稳压器等组成。压力超高时能自动停机,过低能自动开机。为避免因水泵直接向实验管道供水而造成的压力波动等影响,离心泵的输水是先进入稳压器的压力罐,经稳压后再送向实验管道。 3.旁通管与旁通阀: 由于本实验装置所采用水泵的特性,在供小流量时有可能时开时停,从而造成供水压力的较大波动。为避免这种情况出现,供水器设有与蓄水箱直通的旁通管,通过分流可使水泵持续稳定运行。旁通管中设有调节分流量至水箱的阀门,即旁通阀。实验流量随旁通阀开度减小(分流量减小)而增大。设计上旁通阀又是本装置用以调节流量的阀门之一。所以调节流量有两种方法:一是调节实验流量调节阀(见图1);二是调节旁通阀。 4.稳压筒: 为了简化排气,并防止实验中再进气,在传感器前连接稳压筒(2只充水不满顶的密封立筒)。

流体力学实验报告

流体力学 实验指导书与报告 静力学实验 雷诺实验 中国矿业大学能源与动力实验中心

学生实验守则 一、学生进入实验室必须遵守实验室规章制度,遵守课堂纪律,衣着整洁,保持安静,不得迟到早退,严禁喧哗、吸烟、吃零食和随地吐痰。如有违犯,指导教师有权停止基实验。 二、实验课前,要认真阅读教材,作好实验预习,根据不同科目要求写出预习报告,明确实验目的、要求和注意事项。 三、实验课上必须专心听讲,服从指导教师的安排和指导,遵守操作规程,认真操作,正确读数,不得草率敷衍,拼凑数据。 四、预习报告和实验报告必须独自完成,不得互相抄袭。 五、因故缺课的学生,可向指导教师申请一次补做机会,不补做的,该试验以零分计算,作为总成绩的一部分,累计三次者,该课实验以不及格论处,不能参加该门课程的考试。 六、在使用大型精密仪器设备前,必须接受技术培训,经考核合格后方可使用,使用中要严格遵守操作规程,并详细填写使用记录。 七、爱护仪器设备,不准动用与本实验无关的仪器设备。要节约水、电、试剂药品、元器件、材料等。如发生仪器、设备损坏要及时向指导教师报告,属责任事故的,应按有关文件规定赔偿。 八、注意实验安全,遵守安全规定,防止人身和仪器设备事故发生。一旦发生事故,要立即向指导教师报告,采取正确的应急措施,防止事故扩大,保护人身安全和财产安全。重大事故要同时保护好现场,迅速向有关部门报告,事故后尽快写出书面报告交上级有关部门,不得隐瞒事实真相。 九、试验完毕要做好整理工作,将试剂、药品、工具、材料及公用仪器等放回原处。洗刷器皿,清扫试验场地,切断电源、气源、水源,经指导教师检查合格后方可离开。 十、各类实验室可根据自身特点,制定出切实可行的实验守则,报经系(院)主管领导同意后执行,并送实验室管理科备案。 1984年5月制定 2014年4月再修订 中国矿业大学能源与动力实验中心

沿程阻力 中国石油大学(华东)流体力学实验报告

实验七、沿程阻力实验 一、实验目的填空 1.掌握测定镀锌铁管管道沿程阻力系数的方法; 2.在双对数坐标纸上绘制λ-Re的关系曲线; 3.进一步理解沿程阻力系数随雷诺数的变化规律。 二、实验装置 在图1-7-1下方的横线上正确填写实验装置各部分的名称 本实验采用管流实验装置中的第1根管路,即实验装置中最细的管路。在测量较大压差时,采用两用式压差计中的汞-水压差计;压差较小时换用水-气压差计。 另外,还需要的测量工具有量水箱、量筒、秒表、温度计、水的粘温表。 F1——文秋利流量计;F2——孔板流量计;F3——电磁流量计; C——量水箱;V——阀门;K——局部阻力实验管路 图1-7-1 管流综合实验装置流程图 三、实验原理在横线正确写出以下公式 本实验所用的管路是水平放置且等直径,因此利用能量方程式可推得管路两点间的沿程水头

损失计算公式: 2 2f L v h D g λ = (1-7-1) 式中: λ——沿程阻力系数; L ——实验管段两端面之间的距离,m ; D ——实验管内径,m ; g ——重力加速度(g=9.8 m/s 2); v ——管内平均流速,m/s ; h f ——沿程水头损失,由压差计测定。 由式(1-7-1)可以得到沿程阻力系数λ的表达式: 2 2f h D g L v λ= (1-7-2) 沿程阻力系数λ在层流时只与雷诺数有关,而在紊流时则与雷诺数、管壁粗糙度有关。 当实验管路粗糙度保持不变时,可得出该管的λ-Re 的关系曲线。 四、实验要求 填空 1.有关常数 实验装置编号:No. 7 管路直径:D = 1.58 cm ; 水的温度:T = 13.4 ℃; 水的密度:ρ= 0.999348g/cm 3; 动力粘度系数:μ= 1.19004 mPa ?s ; 运动粘度系数:ν= 0.011908 cm 2/s ; 两测点之间的距离:L = 500 cm

沿程水头损失实验报告

竭诚为您提供优质文档/双击可除沿程水头损失实验报告 篇一:沿程水头损失实验 沿程水头损失实验 一、实验目的要求 1、加深了解圆管层流和紊流的沿程水头损失随平均流速变化的规律,绘制 lghf~lgv曲线; 2、掌握管道沿程阻力系数的量测技术和应用气—水压差计及电测仪测量压差的方法; 3、将测得的Re~?关系值与莫迪图对比,分析其合理性,进一步提高实验成果分析能力。二、实验装置 本实验的装置如图7.1所示 图7.1自循环沿程水头损失实验装置图 1.自循环高压恒定全自动供水器;2.实验台;3.回水管;4.水压差计;6.实验管道;7.水银压差计;8.滑支测量尺;9.测压点;10.实验流量调节阀;11.供水管与供水阀;12.旁通管与旁通阀;13.稳压筒。

根据压差测法不同,有两种方式测压差:1、低压差时 用水压差计量测; 2、高压差时用电子量测仪(简称电测仪)量测(但本仪器暂时不能测定高压)。 本实验装置配备有:1、自动水泵与稳压器 自循环高压恒定全自动供水器由离心泵、自动压力开关、气—水压力罐式稳压器等组成。压力超高时能自动停机,过低时能自动开机。为避免因水泵直接向实验管道供水而造成的压力波动等影响,离心泵的输水是先进入稳压器的压力罐,经稳压后再送向实验管道。 2 4 图7.2 1.压力传感器; 2.排气旋钮; 3.连接管; 4.主机 2、旁通管与旁通阀 由于本实验装置所采用水泵的特性,在供小流量时有可能时开时停,从而造成供水压力的较大波动,为了避免这种情况出现,供水器设有与蓄水箱直通的旁通管(图中未标出)。通过分流可使水泵持续稳定运行。旁通管中设有调节分流量至蓄水箱的阀门,即旁通阀,实验流量随旁通阀开度减小(分流量减小)而增大。实际上旁通阀又是本装置用以调节流量的重要阀门之一。

工程流体力学及水力学实验报告(实验总结)

工程流体力学及水力学实验报告实验分析与讨论 1.同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测压管水头线指测 压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根水平线。 2.当P B <0时,试根据记录数据,确定水箱内的真空区域。 ,相应容器的真空区域包括以下三部分: (1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。 (2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。 (3)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 3.若再备一根直尺,试采用另外最简便的方法测定γ 。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂 直高度h和h 0,由式,从而求得γ 。 4.如测压管太细,对测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃)的水,=7.28dyn/mm, =0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0。于是有(h、d单位为mm) 一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质不洁时,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其h较普通玻璃管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。 5.过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面? 不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。因为只有全部具备下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5与水箱之间不符合条件(4),因此,相对管5和水箱中的液体而言,该水平面不是等压面。 6.用图1.1装置能演示变液位下的恒定流实验吗? 关闭各通气阀门,开启底阀,放水片刻,可看到有空气由c进入水箱。这时阀门的出流就是变液位下的恒定流。因为由观察可知,测压管1的液面始终与c点同高,表明作用于底阀上的总水头不变,故为恒

(行业报告)沿程水头损失实验报告(报告范文)

沿程水头损失实验 一、实验目的要求 1、加深了解圆管层流和紊流的沿程水头损失随平均流速变化的规律,绘制v h f lg ~lg 曲线; 2、掌握管道沿程阻力系数的量测技术和应用气—水压差计及电测仪测量压差的方法; 3、将测得的 ~e R 关系值与莫迪图对比,分析其合理性,进一步提高实验成果分析能力。 二、实验装置 本实验的装置如图7.1所示 图7.1 自循环沿程水头损失实验装置图 1.自循环高压恒定全自动供水器; 2.实验台; 3.回水管; 4.水压差计; 6.实验管道; 7.水银压差计;8.滑支测量尺; 9.测压点; 10.实验流量调节阀; 11.供水管与供水阀; 12.旁通管与旁通阀; 13.稳压筒。 根据压差测法不同,有两种方式测压差: 1、低压差时用水压差计量测;

2、高压差时用电子量测仪(简称电测仪)量测(但本仪器暂时不能测定高压)。 本实验装置配备有: 1、自动水泵与稳压器 自循环高压恒定全自动供水器由离心泵、自动压力开关、气—水压力罐式稳压器等组成。压力超高时能自动停机,过低时能自动开机。为避免因水泵直接向实验管道供水而造成的压力波动等影响,离心泵的输水是先进入稳压器的压力罐,经稳压后再送向实验管道。 4 2 1.压力传感器; 2.排气旋钮; 3.连接管; 4.主机 2、旁通管与旁通阀 由于本实验装置所采用水泵的特性,在供小流量时有可能时开时停,从而造成供水压力的较大波动,为了避免这种情况出现,供水器设有与蓄水箱直通的旁通管(图中未标出)。通过分流可使水泵持续稳定运行。旁通管中设有调节分流量至蓄水箱的阀门,即旁通阀,实验流量随旁通阀开度减小(分流量减小)而增大。实际上旁通阀又是本装置用以调节流量的重要阀门之一。 3、稳压筒为了简化排气,并防止实验中再进气,在传感器前连接由2只充水(不满顶)之密封立筒构成。 4、电测仪由压力传感器和主机两部分组成,经由连通管将其接入测点(图7.2),压差读数(以厘米水柱为单位)通过主机显示。 三、实验原理

流体力学-伯努利方程实验报告

中国石油大学(华东)工程流体力学实验报告 实验日期:2014.12.11成绩: 班级:石工12-09学号:12021409姓名:陈相君教师:李成华 同组者:魏晓彤,刘海飞 实验二、能量方程(伯诺利方程)实验 一、实验目的 1.验证实际流体稳定流的能量方程; 2.通过对诸多动水水力现象的实验分析,理解能量转换特性; 3.掌握流速、流量、压强等水力要素的实验量测技能。 二、实验装置 本实验的装置如图2-1所示。 图2-1 自循环伯诺利方程实验装置 1.自循环供水器; 2.实验台; 3.可控硅无极调速器;4溢流板;5.稳水孔板; 6.恒压水箱; 7.测压机;8滑动测量尺;9.测压管;10.试验管道; 11.测压点;12皮托管;13.试验流量调节阀 说明 本仪器测压管有两种: (1)皮托管测压管(表2-1中标﹡的测压管),用以测读皮托管探头对准点的总水头; (2)普通测压管(表2-1未标﹡者),用以定量量测测压管水头。 实验流量用阀13调节,流量由调节阀13测量。

三、实验原理 在实验管路中沿管内水流方向取n 个过水断面。可以列出进口断面(1)至另一断面(i )的能量方程式(i =2,3,…,n ) i w i i i i h g v p z g p z -++ + =+ + 1222 2 111 1αγυαγ 取12n 1a a a ==???==,选好基准面,从已设置的各断面的测压管中读出 z+p/r 值,测 出透过管路的流量,即可计算出断面平均流速,从而即可得到各断面测压管水头和总水头。 四、实验要求 1.记录有关常数实验装置编号 No._4____ 均匀段1d = 1.40-210m ?;缩管段2d =1.01-210m ?;扩管段3d =2.00-2 10m ?; 水箱液面高程0?= 47.6-2 10m ?;上管道轴线高程z ?=19 -2 10m ? (基准面选在标尺的零点上) 2.量测(p z γ + )并记入表2-2。 注:i i i p h z γ =+ 为测压管水头,单位:-2 10m ,i 为测点编号。 3.计算流速水头和总水头。

沿程阻力系数测定-实验报告

沿程水头损失实验 实验人 XXX 合作者 XXX XX 年XX 月XX 日 一、实验目的 1.加深了解圆管层流和紊流的沿程损失随平均流速变化的规律,绘制lgh f ~-lg v 曲线; 2.掌握管道沿程阻力系数的量测技术和应用压差计的方法; 3.将测得的R e -λ关系值与莫迪图对比,分析其合理性,进一步提高实验成果分析能力。 二、实验设备 本装置有下水箱、自循环水泵、[供水阀、稳压筒、实验管道、流量调节阀]三组,计量水箱、回水管、压差计等组成。实验时接通电源水泵启动,全开供水阀,逐次开大流量调节阀,每次调节流量时,均需稳定2-3分钟,流量越小,稳定时间越长;测流量时间不小于8-10秒;测流量的同时,需测记压差计、温度计[自备,应挂在水箱中]读数。三根实验管道管径不同,应分别作实验。 三、实验原理 由达西公式g v d L h r 22 ??=λ 得2 22422?? ? ??==d Q L gdh Lv gdh f f πλ=K ×h f /Q 2 另有能量方程对水平等直径圆管可得γ 2 1P P h f -= 对于多管式水银压差有下列关系 h f =(P 1-P 2)/γw =(γm /γw -1)(h 2-h 1+h 4-h 3)=12.6△h m Δh m = h 2-h 1+h 4-h 3 h f —mmH 2O 四、实验结果与分析 实验中,我们测量了三根管的沿程阻力系数,三根管的直径分别为10mm ,14mm ,20mm 。对每根管进行测量时,我们通过改变水的流速,在相距80cm 的两点处分别测量对应的压强。

得到表1至表3中的实验结果。 相关数据说明: 水温29.4℃,对应的动力学粘度系数为2 0.01/cm s ν= 流量通过水从管中流入盛水箱的体积和时间确定。水箱底面积为2 202 0S cm =?,记录水箱液面升高12h cm =(从5cm 到17cm 或者从6cm 到18cm )的时间t ,从而计算出流量 34800(/)() Sh Q cm s t t s = =; 若管道直径为D ,则水流速度为2 4Q v D π= ; 对三根管进行测量时,测量的两点之间距离均为80L cm =; 雷诺数Re vD ν = ;计算沿程阻力系数:层流164Re λ= ;紊流0.25 20.316R e λ-= 测量沿程阻力系数:2/f Kh Q λ=,其中25K /8gD L π=,29.8/g m s = 第一根管 表-1(52 1110,15.113/D mm K cm s ==)

管道局部水头损失实验

管道局部水头损失实验 一、实验目的 1、掌握测定管道局部水头损失系数ζ的方法。 2、将管道局部水头损失系数的实测值与理论值进行比较。 3、观测管经突然扩大时旋涡区测压管水头线的变化情况和水流情况,以及其他各种边界突变情况下的测压管水头线的变化情况。 二、实验原理 由于边界形状的急剧改变,水流就会与边界分离出现旋涡以及水流流速分布的改组,从而消耗一部分机械能。单位重量液体的能量损失就是水头损失。 边界形状的改变有水流断面的突然扩大或突然缩小、弯道及管路上安装阀门等。 局部水头损失常用流速水头与一系数的乘积表示。 h j =g v 22 ζ 式中:ζ─局部水头损失系数。系数ζ是流动形态与边界形状的函数,即ζ =f (Re ,边界形状)。一般水流Re 数足够大时,可认为系数ζ不再随Re 数而变化,而看作常数。 管道局部水头损失目前仅有突然扩大可采用理论分析,并可得出足够精确的结果。其他情况则需要用实验方法测定ζ值。突然扩大的局部水头损失可应用动量方程与能量方程及连续方程联合求解得到如下公式: h j = 2222g v ζ,?=122(A A ζ)2 h j = g v 22 11ζ ,2211)1(A A ?=ζ 式中:A 1和1v 分别为突然扩大上游管段的断面面积和平均流速;A 2和2v 分别为突然扩大下游管段的断面面积和平均流速。 三、实验设备 实验设备及各部分名称如图一所示。

图一局部水头损失实验仪 四、实验步骤 1、熟悉仪器,记录管道直经D和d。 2、检查各测压管的橡皮管接头是否接紧。 3、启动抽水机,打开进水阀门,使水箱充水,并保持溢流,使水位恒定。 4、检查尾阀K全关时测压管的液面是否齐平,若不平,则需排气调平。 5、慢慢打开尾阀K,使流量在测压管量程范围内最大,待流动稳定后,记录测压管液面标高,用体积法测量管道流量。 6、调节尾阀改变流量,重复测量三次。 五、注意事项 1、实验必须在水流稳定后方可进行。 2、计算局部水头损失系数时,应注意选择相应流速水头;所选量测断面应选在渐变流上,尤其下游断面应选在旋涡区的末端,即主流恢复并充满全管的断面上。 六、实验成果及要求 1、有关常数。 圆管直径D= cm,圆管直经d= cm,实验装置台号: 2、记录及计算(见表一)。 3、成果分析:将实测的局部水头损失数与理论计算值进行比较,试分析

管道局部水头损失实验(完成)

武汉大学教学实验报告 学院:水利水电学院专业:水利水电工程全英文班2013年6月22日实验名称管道局部水头损失实验指导老师 姓名吴前进年级11级学号2011301580067 成绩 一:预习部分 1:实验目的 2:实验基本原理 3:主要仪器设备(含必要的元器件,工具)一、实验目的 1、掌握测定管道局部水头损失系数ζ的方法。 2、将管道局部水头损失系数的实测值与理论值进行比较。 3、观测管经突然扩大时旋涡区测压管水头线的变化情况和水流情况,以及其他各种边界突变情况下的测压管水头线的变化情况。 二、实验原理 由于边界形状的急剧改变,水流就会与边界分离出现旋涡以及水流流速分布的改组,从而消耗一部分机械能。单位重量液体的能量损失就是水头损失。 边界形状的改变有水流断面的突然扩大或突然缩小、弯道及管路上安装阀门等。 局部水头损失常用流速水头与与系列的乘积表示。 g v h j 2 ζ = 式中:ζ—局部水头损失系数。系数ζ是流动形状与边界形状的函数,即ζ= f(Re,边界形状)。一般水流Re数足够大时,可认为系数ζ不再随Re数而变化,而看作常数。 管道局部水头损失目前仅有突然扩大可采用理论分析,并可得出足够精确的结果。其他情况则需要用实验方法测定ζ值。突然扩大的局部水头损失可应用动量方程与能量方程及连续方程联合求解得到如下公式: 2 2 1 1 2 1 1 2 1 2 2 2 2 2 ) 1( , 2 )1 ( , 2 A A g v h A A g v h j j - = = - = = ζ ζ ζ ζ 式中,A1和v1分别为突然扩大上游管段的断面面积和平均流速;A2和v2分别为突然扩大下游管段的断面面积和平均流速。 三、实验设备 实验设备及各部分名称如图一所示。

【免费下载】 土木工程流体力学实验报告答案

实验一 管路沿程阻力系数测定实验1.为什么压差计的水柱差就是沿程水头损失?如实验管道安装成倾斜,是否影 响实验成果?现以倾斜等径管道上装设的水银多管压差计为例说明(图中A —A 为水平线):如图示O—O 为基准面,以1—1和2—2为计算断面,计算点在轴心处,设,,由能量方程可得21v v =∑=0j h ???? ??+-???? ??+=-γγ221121p Z p Z h f 1112222 1 6.136.13H H h h H h h H p p +?-?-?+?+?-?+-=γγ 1 12226.126.12H h h H p +?+?+-=γ ∴()()1 22211216.126.12h h H Z H Z h f ?+?++-+=-) (6.1221h h ?+?=这表明水银压差计的压差值即为沿程水头损失,且和倾角无关。2.据实测m 值判别本实验的流动型态和流区。 ~曲线的斜率m=1.0~1.8,即与成正比,表明流动为层流 f h l g v lg f h 8.10.1-v (m=1.0)、紊流光滑区和紊流过渡区(未达阻力平方区)。接管口处理高中资料试卷电保护进行整核对定值试卷破坏范围,或者对某

3.本次实验结果与莫迪图吻合与否?试分析其原因。 通常试验点所绘得的曲线处于光滑管区,本报告所列的试验值,也是如此。但是,有的实验结果相应点落到了莫迪图中光滑管区的右下方。对此必须认真分析。 如果由于误差所致,那么据下式分析 d和Q的影响最大,Q有2%误差时,就有4%的误差,而d有2% 误差时,可产 生10%的误差。Q的误差可经多次测量消除,而d值是以实验常数提供的,由仪器制作时测量给定,一般< 1%。如果排除这两方面的误差,实验结果仍出现异常,那么只能从细管的水力特性及其光洁度等方面作深入的分析研究。还可以从减阻剂对水流减阻作用上作探讨,因为自动水泵供水时,会渗入少量油脂类高分子物质。总之,这是尚待进一步探讨的问题。

局部阻力实验

局部水头损失实验 一、实验目的要求 1.掌握三点法、四点法量测局部阻力系数的技能; 2.通过对铜闸阀阻力系数和弯管阻力系数的实验验证与分析,熟悉用理论分析法和经验法建立函数式的途径; 3.加深对局部阻力损失机理的理解。 二、实验装置 本实验装置见设备 三、实验方法与步骤 1.测记实验有关常数。 2.打开电子调速器开关,使恒压水箱充水,排除实验管道中的滞留气体。待水箱溢流后,检查泄水阀全关时,各测压管液面是否齐平,若不平,则需排气调平。 3.打开泄水阀至最大开度,待流量稳定后,测记测压管读数,同时用体积法测记流量。 4.改变泄水阀开度3~4次,分别测记测压管读数及流量。 5.实验完成后关闭泄水阀,检查测压管液面是否齐平?否则,需重做。 四、实验成果及要求 1.记录、计算有关常数: 实验装置台号No 11d D == cm , 2342d d d D ==== cm ,

563d d D === cm , 212 (1)e A A ζ'=-= , 5 3 0.5(1)s A A ζ'=- = 。 2.整理记录、计算表。 3.将实测ζ值与理论值(突扩)或公认值(突缩)比较。 实验数据 记录表 六、实验分析与讨论 1.结合实验成果,分析比较突扩与突缩在相应条件下的局部损

失大小关系。 2.结合流动仪演示的水力现象,分析局部阻力损失机理何在?产生突扩与突缩局部阻力损失的主要部位在哪里?怎样减小局部阻力损失? 3.现备有一段长度及联接方式与调节阀相同,内径与实验管道相同的直管段,如何用两点法测量阀门的局部阻力系数? 4.实验测得突缩管在不同管径比时的局部阻力系数(5 10 R ) e 如下:试用最小二乘法建立局部阻力系数的经验公式. 5.试说明用理论分析法和经验法建立相关物理量间函数关系式的途径。

实验报告:管路沿程水头损失实验

实验报告:管路沿程水头损失实验 一、实验目的 1、掌握管道沿程阻力系数的测量技术及电测仪测量压差的方法。 2、掌握沿程阻力系数 λ 与雷诺数Re 等的影响关系。 二、实验原理 由达西公式 g d L h 22 f υλ= 2f 2 2f 2f /4212Q h K Q d L gdh L gdh =?? ? ??= =πυλ (1) L gd K 8/5 2π= 式中:h f 为管流沿程水头损失;d 为实验管段内径;L 为管段长度;υ为断面平 均流速;g 为重力加速度;Q 为过流流量;λ 为沿程阻力系数。 另由能量方程应用于水平等直径圆管可得 2121f /h h P P h -=-=γ)( (2) 式中:P 1、P 2为实验管段起点、终点处压强;h 1、h 2为研究管段起点、终点处测 压管水头高度。压差可用压差计或电测。由上述(1)、(2)两式可求得管流在不同流量状态下的水头损失系数 λ 值。 雷诺数: υ vd R e = 其中 24d Q v π= 式中:Re 为雷诺数;v 为断面平均流速;d 为实验管道内径;υ 为流体运动 粘度; Q 为过流流量。 三、实验装置 实验装置为自循环水流系统,水泵2将蓄水箱1中的水抽出,沿上水管3流入实1—蓄水箱; 2—水泵; 3—上水管; 4—实验管道; 5—回水管; 6—回水通道; 7—差压计; 8—量水箱; 9—秒表; 10—活动接头; 11—水位计; 12—底阀; 13—分流管; 14—分流及流量调节阀; 15—实验管道阀门。

验管段4,经回水管5通过回水通道6又流回蓄水箱1。差压计7用作测量沿程水头损失,量水箱8和秒表9用作测量流量。 四、实验步骤 1、记录有关实验常数。测定并记录水的温度。 2、将所选实验管路的阀15开到最大,同时关闭其它实验管路的阀门,然后接通电源,启动水泵。 3、流量调节通过阀14(注意实验过程中不再旋动其它阀门),顺时针旋动阀14流量增大,逆时针旋阀流量减小。当流量调至一定时,开始测定流量Q 及沿程水头损失h f 。 Q 的测定为体积法(t V Q =),它的测量由量水箱8及秒表9实现,先通过量水 箱的水位计记录量水箱内的起始水位,然后将活动接头10拨至量水箱,同时用秒表记录下接水的时间,读取接水的终了水位,就可计算流量Q 。 同时读取差压计7的读数1h 、2h ,以计算沿程水头损失f h 。 4、改变流量重复步骤3,需测定10组以上数据。 5、测定结束再测记水的温度,两次水温的平均值用作计算运动粘度。 6、关闭仪器及电源。 五、实验原始记录 1、记录有关常数 管径d = 1.0 cm 测量段长度L = 160 cm 水温1t = 22.9 ?C 2t = 23.4 ?C 运动粘度2 000221.00337.0101775.0t t ++= υ= 9.349×10-3 cm 2/s , 式中221t t t +== 23.15 ?C 常数K=π2gd 5/8L = 7.54876 cm 5/s 2 2、记录测量值 测 次 水箱水位高度 时间 / s 水银柱高度 h 1 / ㎝ h 2 / ㎝ 水位高度差/ Δh/cm h 3 / ㎝ h 4 / ㎝ 水银柱高度差/ Δh '/cm 1 7.3 13.5 6. 2 4.9 16.9 63.9 47 2 13.5 21.0 7.5 6. 3 19 61.7 42.7 3 3.7 8.5 4.8 4.3 21. 4 59.1 37.7 4 8. 5 13. 6 5.1 4.8 23.3 57.2 33.9 5 13.6 18.3 4. 7 4. 8 24. 9 55.5 30.6 6 18.3 22.9 4.6 4.7 26.1 54.1 28 7 22.9 27.1 4.2 5 30.1 50.2 20.1 8 7.8 12.6 4.8 5.8 29.4 50.9 21.5 9 12.6 16.1 3.5 4.6 31 49.4 18.4 10 16.1 21.2 5.1 7.1 31.7 48.4 16.7

工程流体力学实验报告之实验分析与讨论

工程流体力学实验报告之分析与讨论 实验一流体静力学实验 实验分析与讨论 1.同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测压管水头线指 测压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根水平线。 2.当P B<0时,试根据记录数据,确定水箱内的真空区域。 ,相应容器的真空区域包括以下三部分: (1)过测压管2液面作一水平面,由等压面原理知,相对测压管2 及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。 (2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。 (3)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2 液面低于水箱液面的高度相等,亦与测压管4 液面高于小水杯液面高度相等。 3.若再备一根直尺,试采用另外最简便的方法测定γ0。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5 油水界面至水面和油水界面至油面的 垂直高度h和h0,由式,从而求得γ0。 4.如测压管太细,对测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 式中,为表面张力系数;为液体的容量;d 为测压管的内径;h 为毛细升高。常温(t=20℃)的水, =7.28dyn/mm,=0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0。于是有(h、d 单位为mm) 一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质不洁时,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其h较普通玻璃管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。 5.过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是 同一等压面? 不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。因为只有全部具备下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5与水箱之间不符合条件(4),因此,相对管5和水箱中的液体而言,该水平面不是等压面。 6.用图1.1装置能演示变液位下的恒定流实验吗? 关闭各通气阀门,开启底阀,放水片刻,可看到有空气由c 进入水箱。这时阀门的出流就是变液位

04 局部水头损失实验

§8 局部水头损失实验 8.1 实验目的和要求 1.学习掌握三点法、四点法测量局部阻力因数的技能,并将突扩管的实 测值与理论值比较,将突缩管的实测值与经验值比较; 2.通过阀门局部阻力因数测量的设计性实验,学习二点法测量局部阻力 因数的方法。 8.2 实验装置 1.实验装置简图 实验装置及各部分名称如图8.1所示。 图8.1 局部水头损失实验装置简图 1.自循环供水器 2.实验台 3.可控硅无级调速器 4.恒压水箱 5.溢流板 6.稳水孔板 7.圆管突然扩大 8.气阀 9.测压计10.测压管①~⑥11.滑动测量尺 12. 圆管突然收缩13.实验流量调节阀14.回流接水斗15.下回水管 2.装置说明 实验管道由圆管突扩、突缩等管段组成,各管段直径已知。在实验管道上共设有六个测压点,测点①-③和③-⑥分别用以测量突扩和突缩的局部阻力

因数。其中测点①位于突扩的起始界面处,这里引用公认的实验结论 “在突扩的环状面积上的动水压强近似按静水压强规律分布”,认为该测点可用以测量小管出口端中心处压强值。 气阀8用于实验开始时排除管中滞留气体。 3.基本操作方法 (1) 排气。启动水泵待恒压水箱溢流后,关闭实验流量调节阀13,打开阀8排除管中滞留气体。排气后关闭阀8,并检查测压管各管的液面是否齐平,若不平,重复排气操作,直至齐平。 (2) 测压管水头用测压计测量,基准面可选择在滑动测量尺零点上。 (3) 流量测量。实验流量用阀13调节,流量由称重法测量,用秒表计时,用电子称称重。 8.3 实验原理 流体在流动的局部区域,如流体流经管道的突扩、突缩和闸门等处(图4.4.2),由于固体边界的急剧改变而引起速度分布的变化,甚至使主流脱离边界,形成旋涡区,从而产生的阻力称为局部阻力。由于局部阻力作功而引起的水头损失称为局部水头损失,用h j 表示。局部水头损失是在一段流程上,甚至相当长的一段流程上完成的,如图8.2,断面1至断面2,这段流程上的总水头损失包含了局部水头损失和沿程水头损失。若用h i (i =1,2…)表示第i 断面的测压管水头,即有 闸门 突缩 图8.2 局部水头损失 2 212 w j f1212()()22h h h h h g g αα-=+=+ -+ v v 或 2 212 j 12f 12()()22h h h h g g αα-=+-+ -v v 局部阻力因数ζ为 2 j /2g h ζ=v

流体力学综合实验报告

四川大学 化工原理实验报告 学院化学工程学院专业化学工程与工艺班号姓名学号实验日期年月日指导老师 一.实验名称 流体力学综合实验 二.实验目的 测定流体在管道内流动时的直管阻力损失,作出与Re的关系曲线。 观察水在管道内的流动类型。 测定在一定转速下离心泵的特性曲线。 标定孔板流量计,绘制Co与Re的关系曲线。 熟悉流量、压差、温度等化够不够仪表的使用。 三.实验原理 1求与Re的关系曲线 流体在管道内流动时,由于实际流体有粘性,其在管内流动时存在摩擦阻力,必然会引起流体能量损耗,此损耗能量分为直管阻力损失和局部阻力损失。流体在水平直管内作稳态流动(如图1所示)时的阻力损失可根据伯努利方程求得。 以管中心线为基准面,在1、2截面间列伯努利方程: 因,,故流体在等直径管的1、2两截面间的阻力损失为流体以流速u通过管内径d、长度为l的一段管道时,其直管阻力为

由上面两式得: 而 由此可见,摩擦系数与流体流动类型、管壁粗糙度等因素有关。由因次分析法整理可形象地表示为 式中: f h -----------直管阻力损失,J/kg ; λ------------摩擦阻力系数; d l .----------直管长度和管内径,m ; P ?---------流体流经直管的压降,Pa ; ρ-----------流体的密度, ; μ-----------流体黏度,Pa ·s ; u -----------流体在管内的流速,m/s ; 流体在一段水平等管径管内流动时,测出一定流量下流体流经这段管路所产生的压降,即可算得。两截面压差由差压传感器测得;流量由涡轮流量计测得,其值除以管道截面积即可求得流体平均流速。在已知管径和平均流速的情况下,测定流体温度,确定流体的密度和黏度 ,则可求出雷诺数,从而关联出流体流过水平直管的摩擦系数与雷诺数 的关系曲线图。 2求离心泵的特性曲线 离心泵的特性,可用该泵在一定转速下,扬程与流量 , 轴功 率与流量 ,效率与流量 三条曲线形式表示。若将扬程 H 、轴功率N 和效率 对流量之间的关系分别绘制在同一直角坐标上所得的 三条曲线,即为离心泵的特性曲线,如图二所示。 ①流量:离心泵输送的流量由涡轮流量计测定。 ②扬程H :扬程是指离心泵对单位重量的液体所提供的外加能量。以离心

相关文档
最新文档