李子发展前景如何

李子发展前景如何
李子发展前景如何

李子发展前景如何

李子发展前景如何,现在为大家,简答这个疑问

据有关部门调查,在全国整个水果产业中柑橘类占60%左右,桃子占6%左右,李子占4%都还不到!剩下的30%由其他水果占据。纵观整个水果产业来看,李子面积低,导致李子产量缺口大,可想而知。而且,以品质差的占大部分,优良品种稀缺,加上大家对李子养肝护肝的保健功能认识日益提高,所以李子正处于品种结构调整,面积扩大的黄金时期。能不能抓住这个机会,要看能不能把握以下几点:

找到市场认可产量高的李子优良品种

能有相应的成熟的技术指导

有土地和人力资源以及资金

推荐一个李子新品种---五月脆(又名凤凰李、一点红)

凤凰李(又名五月脆、一点红)前景分析

成熟时间:

凤凰李(又名五月脆、一点红)成熟时间在国历6月15号左右,这个时间,错开了西瓜,葡萄等大众水果的成熟集中上市期,这对它上市销售是一大利好,竞争较小。

从它的品质来分析

就目前,我们所掌握的品种来看,无论是晚熟脆红李,外国的布朗李(黑布朗,黑宝石,蓝宝石,红宝石)、恐龙蛋、西梅李、秋姬李、耐李,珍珠李、青脆李。三华李等李子品种,还没有能和凤凰李(又名五月脆、一点红)比肩的,“凤凰李(又名五月脆、一点红)”的出现,堪称,李子的味觉奇迹,脱骨、纯甜(甜度达18)、脆爽,果香浓郁,以及肉质的细腻,皮薄而脆、皮回口无任何苦味、酸味,涩味,在这几个方面的优点造就了它无与伦比的口感!

采摘期长、耐储存和运输

从成熟可以卖到卖完,有25天的采摘期,完全可以满足分批采摘的要求,可以长途运输,不软,不坏,所以能够卖到远方,这样它的销路自然更广,加之品质高,所以供不应求!

通过对比分析,我们发现,每种一亩柑橘所有的人工、肥料、农药的投资,种5亩李子都还有剩余。一般如果今年种下,明年有些会有试果,后年试产10斤到15斤左右,两年半35斤,三年半80-------120斤,亩产4000--------6000斤。按我们的技术,每生产一斤李子,所需的,土地租金,肥料、农药、人工成本,在7毛左右。所以,按这连续三年我们所了解的果园批发价都在10元以上平均13元以上。那么一亩地就按10元一斤算,也就是4万到6万的毛利,除去7毛一斤的成本,一亩地纯利有37200——55800元,这是连续三年的市场行情。

然后,我们,再以3元一斤算,一亩地在12000--------18000的毛利,去点7毛一斤的成本,一亩地纯利的在9200----13800元。也就是说,就三元

每斤,我们每亩纯利也在万元。

第五、凤凰李子树苗(又名五月脆李子树苗、一点红李子树苗)李子苗生长迅速

凤凰李子树苗(又名五月脆李子树苗、一点红李子树苗)作为一种早熟李子树苗,具有一般李子苗所没有的特点。

洪雅县付成德果树苗种植场

——30年专注李子品种,专业技术积累,积累出更好的品种。

欢迎成熟期前来亲自采摘品尝后满意再定苗,我们针对合作社,家庭农场,采摘园等规模化栽培。

从果苗到结果,全程技术指导,提供销售渠道,免去后顾之忧,以科技为本,走创新之路,用事实说话,努力为种植者提供科学依据。

我们始终相信

品种+技术=种植财富,推广品质更优,高产稳产,市场认可的品种是我们的责任。

我国的海洋渔业资源概况

我国的海洋渔业资源概况 发布时间:2011-11-2信息来源:华夏经纬网 中国海域从南到北,共跨越37个纬度,呈现暖温带、亚热带、热带各种不同的环境差异,鱼类种数的分布有南多北少的趋势。黄、渤海区的鱼类约有291种,东海大陆架海区的鱼类有727种,南海北部大陆架海域的鱼类有1064种。 (一)我国主要海洋经济渔业资源 在我国已经记录有鱼类1694种,近海的虾蟹类600多种,沿海分布有常见藻类200多种。经济价值较大鱼类有150多种,重要的捕捞对象有带鱼、鲐、鰺、鲱、鲅、鳓、鲮、大黄鱼、小黄鱼、鲆、鲽、鲳、鲷、笛鲷、金线鱼、鳕、马面飩、沙丁鱼、飩、鲨鱼、鳗鱼等;具有经济价值的软体动物有乌贼、柔鱼、章鱼、鲍鱼、扇贝等;节肢动物有对虾、毛虾、鹰爪虾、青虾、龙虾、梭子蟹、锯缘青蟹等;还有各种藻类。为了更好地掌握各种鱼类的分布情况,根据渔业资源分布特点和生物学特性,我国渔业资源可分为:底层经济鱼类资源、中上层经济鱼类资源、虾蟹经济类资源和经济藻类资源等。 (二)我国海洋渔业资源的特点 1.鱼的种类多 中国海域从热带、亚热带到温带,跨越37个纬度。生物种类组成复杂,有冷温、暖温、暖水性种类,暖水性种类约占总数的2/3。世界有2万多种,我国有近2000种。 2.生长快、成熟早、食性复杂 一般情况下,由于海水冬季对流强烈,常带来营养物质,初级生产力越大,食物越丰富,为鱼类提供食物越丰富,鱼类生长、成熟就越快。鱼类初次性成熟的年龄一般为2–3龄,繁殖力比较高。 3.产卵期交错,产卵场广布 不同的鱼种产卵的时间不一。一年四季都有鱼类产卵。如东海的小黄鱼在3–4月产卵,大黄鱼在4–6月产卵,带鱼在5– 7月产卵。 4.分布比较集中 中国海域的中下层鱼类多为浅海性种类,大多栖息在100米等深线以内的海区,受大陆架限

渔业资源(仅供参考)

《渔业资源可持续利用》复习纲要 1海洋渔业资源的特点1)移动性--大多数种类有洄游习性2)公有性--配额问题 3)自我更新性--自我增殖、自我更新、自我调节,可再生 4)波动性--自然环境变化、人为干扰 5)有限性--环境容纳量、负载力6)生物资源数量的金字塔性--能量传递损耗7)未知性--难以准确计算2集群(定义、好处、缺点)2.1集群定义定义一:因某种原因(繁殖、索饵、越冬等),鱼类个体聚集在一起,通常是同种个体、大小、年龄相近,沿同一路径移动。定义二:集群是由于鱼类生理的要求和生活的需要,生理状况相同又有共同生活需要的个体集合成群,以营共同生活。2.2集群好处A提高繁殖成功率(四大家鱼 B利于寻找食物;C利于抵御捕食者(沙丁鱼)D逃避网具;E利于洄游2.3集群缺点A破坏食物资源(僧多粥少)B更易被捕食者发现3洄游的原因与机制3.1洄游的原因3.1.1历史原因:从短距离-长距离;冰川活动与地质变迁,如大西洋鲱,短距离,随冰川退缩,向北洄游距离增加 3.1.2环境因素 1)水温:寒温带鱼类洄游的主要因素-繁殖、饵料 2)水流:特别对被动洄游-水流携带;成鱼回归 3)水化学因子:盐度(河蟹)、pH、溶解氧、其它气体;大马哈鱼,'家乡味'4)饵料 5)敌害3.1.3内在因素:生理-性腺、渗透调节等3.1.4遗传因素3.2洄游的机制定向机制1)天体:太阳、月亮、星辰、地磁等2)水文水化学:水流、水温、盐度等3)多种感觉器,如侧线2-10cm/s的流速;皮肤粘膜细胞对温度的敏感如鲱0.2℃的温差,盐度调节。4)气味迁徙说:鲑科,20世纪50年代morpholine诱导4洋流(类型、暖流与寒流、世界主要洋流、中国近海主要洋流)4.1定义:海洋中除了由引潮力引起的潮汐运动外,海水沿一定途径的大规模流动4.2类型4.2.1按成因分类 1)风海流(吹送流 /漂流):在风力作用下形成的世界大洋表层的海流系统,大多属于风海流。2)密度流:在密度差异作用下引起温度和盐度不同→密度差异→海水水位差异→海水流动3)补偿流:某一海区的海水减少,相邻海区的海水便来补充,这样形成的洋流称为补偿流。补偿流既可以水平流动,也可以垂直流动,垂直补偿流又可以分为上升流和下降流,如秘鲁寒流属于上升补偿流。4.2.2按冷暖性质分类 1)暖流:从低纬度流向高纬度的洋流。暖流的水温比它所到区域的水温高2)寒流,亦称凉流,冷流:从高纬度流向低纬度的洋流。本身水温比周围水温低4.2.3按地理位置分类赤道流、大洋流、极地流及沿岸流等4.3世界主要洋流4.3.1太平洋北赤道暖流、台湾暖流、北太平洋暖流、阿拉斯加暖流、堪察加寒流、千岛寒流、滨海寒流、加利福尼亚寒流、赤道逆流(反赤道流,系暖流)、棉兰老暖流、南赤道暖流、东澳大利亚暖流、西风漂流(寒流)、合恩角寒流、秘鲁寒流(洪堡德洋流)、埃尔·尼纽暖流4.3.2大西洋北赤道暖流、圭亚那暖流、加勒比海暖流、佛罗里达暖流、安的列斯暖流、墨西哥湾暖流(简称湾流)、北大西洋暖流、伊尔敏格尔暖流、西格陵兰暖流、拉布拉多寒流、加那利寒流、赤道逆流(暖流)、几内亚暖流、南赤道暖流、巴西暖流、合恩角寒流、马尔维纳斯(福克兰)寒流、西风漂流(寒流)、本格拉寒流、厄加勒斯暖流4.3.3印度洋季风暖流、赤道逆流(暖流)、南赤道逆流、索马里暖流、莫桑比克暖流、马达加斯加暖流、厄加勒斯暖流、西风漂流(寒流)、西澳大利亚寒流4.3.4北冰洋挪威暖流、北角暖流、斯匹次卑尔根暖流、北冰洋寒流、东格陵兰寒流、东冰岛寒流4.4中国近海主要洋流台湾暖流、日本暖流、千岛寒流5鱼类生物学研究鱼类的生活方式、鱼类与环境之间相互作用关系的一门学科。它研究环境对鱼类年龄、生长、呼吸、摄食和营养、繁殖、早期发育、感觉、行为和分布、洄游、种群数量消长以及种内和中间关系等系列生生命机能和生活方式的影响,同时也是研究鱼类对环境的要求、适应和所起作用。5.1年龄鉴定材料、方法;生长退算5.1.1鉴定材料:鳞片、耳石、鳃盖骨、脊椎骨、鳍条5.1.2鉴定方法:长度法或称彼得生长度分布法年轮法用其他硬组织鉴定年龄5.2生长退算L-R关系式:L=3.7232+44.7650R-----①第

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构为特征的固态量子器件和电路的新时代,并极有可能触发新的技术革命。半导体微电子和光电子材料已成为21世纪信息社会的二大支柱高技术产业的基础材料。它的发展对高速计算、大容量信息通信、存储、处理、电子对抗、武器装备的微型化与智能化和国民经济的发展以及国家的安全等都具有非常重要的意义。 一、几种重要的半导体材料的发展现状与趋势 1.硅单晶材料 硅单晶材料是现代半导体器件、集成电路和微电子工业的基础。目前微电子的器件和电路,其中有90%到95%都是用硅材料来制作的。那么随着硅单晶材料的进一步发展,还存在着一些问题亟待解决。硅单晶材料是从石英的坩埚里面拉出来的,它用石墨作为加热器。所以,来自石英里的二氧化硅中氧以及加热器的碳的污染,使硅材料里面包含着大量的过饱和氧和碳杂质。过饱和氧的污染,随着硅单晶直径的增大,长度的加长,它的分布也变得不均匀;这就是说材料的均匀性就会遇到问题。杂质和缺陷分布的不均匀,会使硅材料在进一步提高电路集成度应用的时候遇到困难。特别是过饱和的氧,在器件和电路的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,它有着很好的应用前景。当然还有以硅材料为基础的SOI材料,也就是半导体/氧化物/绝缘体之意,这种材料在空间得到了广泛的应用。总之,从提高集成电路的成品率,降低成本来看的话,增大硅单晶的直径,仍然是一个大趋势;因为,只有材料的直径增大,电路的成本才会下降。我们知道硅技术有个摩尔定律,每隔18个月它的集成度就翻一番,它的价格就掉一半,价格下降是同硅的直径的增大密切相关的。在一个大圆片上跟一个小圆片上,工艺加工条件相同,但出的芯片数量则不同;所以说,增大硅的直径,仍然是硅单晶材料发展的一个大趋势。那我们从提高硅的

半导体材料的发展现状与趋势

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs 等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构

的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,

(新)半导体材料发展现状及趋势 李霄 1111044081

序号:3 半导体材料的发展现状及趋势 姓名:李霄 学号:1111044081 班级:电科1103 科目:微电子设计导论 二〇一三年12 月23 日

半导体材料的发展进展近况及趋向 引言:随着全球科技的飞速发展成长,半导体材料在科技进展中的首要性毋庸置疑,半导体的发展进展历史很短,但半导体材料彻底改变了我们的生活,从半导体材料的发展历程、半导体材料的特性、半导体材料的种类、半导体材料的制备、半导体材料的发展。从中我们可以感悟到半导体材料的重要性 关键词:半导体、半导体材料。 一、半导体材料的进展历程 20世纪50年代,锗在半导体产业中占主导位置,但锗半导体器件的耐高温和辐射性能机能较差,到20世纪60年代后期逐步被硅材料代替。用硅制作的半导体器件,耐高温和抗辐射机能较好,非常适合制作大功率器件。因而,硅已经成为运用最多的一种半导体材料,现在的集成电路多半是用硅材料制作的。二是化合物半导体,它是由两种或者两种以上的元素化合而成的半导体材料。它的种类不少,主要的有砷化镓(GaAs)、磷化铟(InP)、锑化铟(InSb)、氮化镓(GaN)、碳化硅(SiC)、硫化镉(CdS)等。此中砷化镓是除了硅以外研讨最深切、运用最普遍的半导体材料。氮化镓可以与氮化铟(Eg=1.9eV)、氮化铝(Eg=6.2eV)构成合金InGaN、AlGaN,如许可以调制禁带宽度,进而调理发光管、激光管等的波长。三是非晶半导体。上面介绍的都是拥有晶格构造的半导体材料,在这些材料中原子布列拥有对称性和周期性。但是,一些不拥有长程有序的无定形固体也拥有显著的半导体特征。非晶半导体的种类繁多,大体上也可按晶态物质的归类方式来分类。从现在}研讨的深度来看,很有适用价值的非晶半导体材料首推氢化非晶硅(α-SiH)及其合金材料(α-SiC:H、α-SiN:H),可以用于低本钱太阳能电池和静电光敏感材料。非晶Se(α-Se)、硫系玻璃及氧化物玻璃等非晶半导体在传感器、开关电路及信息存储方面也有普遍的运用远景。四是有机半导体,比方芳香族有机化合物就拥有典范的半导体特征。有机半导体的电导特征研讨可能对于生物体内的基础物理历程研究起着重大推进作用,是半导体研讨的一个热点领域,此中有机发光二极管(OLED)的研讨尤为受到人们的看重。 二、半导体材料的特性 半导体材料是常温下导电性介于导电材料以及绝缘材料之间的一类功效材

我国海洋渔业管理现状分析报告

WORD文档下载可编辑 学院 中国海洋渔业管理现状分析 学号 0911403110 鹏程 专业海洋科学 班级海洋本091 成绩 二 O 一二年六月

中国海洋渔业管理现状分析 鹏程 摘要:改革开放以来,我国海洋渔业发展迅速,海洋捕捞总产量稳居世界首位,已成为世界上最重要的海产品生产国。一些制约我国海洋捕捞业发展的因素也在不断显现,比较突出的是渔业资源的枯竭,这个问题一直困绕着我国海洋捕捞业的发展。。为了有效 保护渔业资源,中国政府积极采取一系列管理措施,但由于管理体制的限制,渔业资源衰退趋势仍然很突出。因此,如何优化中国 海洋渔业管理体制就显得很重要了。本文着重对渔业合作经济组织能否在渔业管理制度中发挥管理作用作可行性分析。 关键词:海洋渔业;渔业管理;渔业管理优化;《渔业法》;可持续发展;TAC制度;海洋牧场 1. 我国海洋渔业情况 中国海域已鉴定到的海洋生物资源约有20278种[1],海洋生物净生产能力为28亿吨,近海年平均生物生产量为3.02吨每平方公里[2],目前海洋水产品产量为1100万吨左右,海洋生物资源的利用率是很低的,有很大的开发潜力。其中近海约有生物种类1万多种,其中鱼类约1500 多种,软体动物3000多种,甲壳动物3000多种。在中国海280万平方千米渔场围,支撑了中国海洋渔业90%的渔获量。据估计中国近海和外海鱼类最大持续渔获量约为735万吨,其中渤海24.3万吨,黄海87.2万吨,东海168.9万吨,南海472.5万吨。按鱼类栖息类型划分的最大渔获量构成。虾类资源也是中国海的主要渔业资源之一。据考察中国近海虾蟹类约1000多种。其中主要种类分布是:渤海30多种,黄海40多种,东海1000多种,南海130 多种。头足类资源在中国海各海区也有较大数量分布,构成渔业资源的重要组成部分。头足类资源以东海居多,约60多种,南海为37种,黄海、渤海均为20多种。另外中国还有藻类约1000多种,其中包括海带、紫菜等。海水养殖备选的品种较为丰富,主要有230 多种,鱼、虾、贝、藻俱全。全国沿海各省区养殖规模较大的主要有海带、紫菜、贻贝、牡蛎、蛏、蛤、泥蚶、对虾、鱼类等。目前的海水养殖产量主要是直接利用光合作用或初级生产力(浮游植物)贝藻为主,具有生态转化率高、生产成本低的特点,但同时表明,我国的海水养殖目前处于相对落后阶段,以集约化养殖为代表的现代海水养殖业还处于起步阶段,随着生产力的发展,科技水平的提高,开发种类将逐渐增加,一定会有强劲的增长势头。 20世纪90年代以来,受捕捞量长期过度增长的影响,我国海洋渔业发展出现阶段性的困难:一些海洋珍稀物种濒临灭绝,传统经济鱼类资源逐渐衰退,严重的已经形不成鱼讯等[3] 全球性的渔业资源衰退引起了世界各沿海渔业国家和有关国际组织的高度重视。加强捕捞能力管理,开展负责任捕捞,是目前乃至今后相当长时期世界海洋渔业可持续发展的必然要求,也是渔业管理的一项重要任务[4] 2. 渔业管理现况 我国是世界渔业大国,从古至今,海洋渔业在我国国民经济中占有重要地位,海洋渔业的发展拓宽了传统农业的围,为人们提供了食物的来源、增加了农民收入,很大程度上缓和了人多地少的矛盾。新中国成立以来,随着渔业生产关系的变革,渔民生产积极性空前高涨,海洋渔业经济快速发展。尤其是改革开放以来,我国渔业在世界渔业中的地位迅速上升,从 8 年起至今,总产量一直居世界首位[3],并拥有世界上最多的机械渔船和渔业劳动力。然而海洋渔业迅速发展为人类创造巨大财富的同时,同时面临着捕捞强度过大、水域污染严重、资源持续衰退等问题。各种各样的人类活动不间断地向海洋索取有限的渔业资源,带来了捕捞能力的不断膨胀和捕捞总产量的居高不下。 分析制约我国海洋渔业资源可持续利用的因素主要有:由于四大海域受世界主要暖流、寒流的影响很小,无强劲的上升流区,从空间上造成我国资源具有一定的独立性和局限性,同时渔业资源的数量在区域性差异明显、缺乏广布性和生物量巨大的鱼种特征,也在一定程度上制约我国海洋渔业资源可持续利用[5]。

院士讲材料——半导体材料的发展现状与趋势汇总

主持人: 观众朋友,欢迎您来到CETV学术报告厅,最近美国的一家公司生产出一千兆的芯片,它是超微技术发展史上的一个分水岭,个人电脑业的发展,也将步入一个新的历史阶段,对整个信息业来说,它的意义不亚于飞行速度突破音速的极限,当然整个技术上的突破,也要依赖于以硅材料为基础的大规模集成电路的进一步微型化,50年代以来,随着半导体材料的发现与晶体管的发明,以硅为主的半导体材料,成为整个信息社会的支柱,成为微电子、光电子等高技术产业的核心与基础,这个情况,将会持续到下个世纪的中叶,当然,面对更大信息量的需求,硅电子技术也有它的极限,将会出现新的、替补性的半导体材料。关于半导体材料的发展现状与发展趋势,请您收看中国科学院王占国院士的学术报告。 王占国: 材料已经成为人类历史发展的里程碑,从本世纪的中期开始,硅材料的发现和硅晶体管的发明以及五十年代初期的以硅为基的集成电路的发展,导致了电子工业大革命。今天,因特网、计算机的到户,这与微电子技术的发展是密不可分的,也就是说以硅为基础的微电子技术的发展,彻底地改变了世界的政治、经济的格局,也改变着整个世界军事对抗的形式,同时也深刻影响着人们的生活方式。今天如果没有了计算机,没有了网络,没有了通信,世界会是什么样子,那是可想而知的。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs 等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。 70年代超晶格概念的提出,新的生长设备,像分子束外延和金属有机化合物化学汽相淀积等技术的发展,以及超晶格、量子阱材料的研制成功,使半导体材料和器件的设计思想发生了彻底的改变。就硅基材料的器件和电路而言,它是靠P型与N型掺杂和PN结技术来制备二极管、晶体管和集成电路的。然而基于超晶格、量子阱材料的器件和电路的性质,则不依赖于杂质行为,而是由能带工程设计决定的。也就是说,材料和器件的光学与电学性质,可以通过能带的设计来实现。设计思想从杂质工程发展到能带工程,以及建立在超晶格、量子阱等半导体微结构材料基础上的新型量子器件,极有可能引发新的技术革命。从微电子技术短短50年的发展历史来看,半导体材料的发展对高速计算、大容量信息通信、存储、处理、电子对抗、武器装备的微型化与智能化和国民经济的发展以及国家的安全等都具有非常重要的意义。 现在,我来讲一讲几种重要的半导体材料的发展现状与趋势。我们首先来介绍硅单晶材料。硅单晶材料是现代半导体器件、集成电路和微电子工业的基础。目前微电子的器件和电路,其中有90%到95%都是用硅材料来制作的。根据预测,到2000年底,它的规模将达到60多亿平方英寸,整个硅单晶材料的产量将达到1万吨以上。目前,8英寸的硅片,已大规模地应用于集成电路的生产。到2000年底,或者稍晚一点,这个预计可能会与现在的情况稍微有点不同,有可能完成由8英寸到12英寸的过渡。预计到2007年前后,18英寸的硅片将投入生产。我们知道,直径18英寸相当于45厘米,一个长1米的晶锭就有几百公斤重。那么随着硅单晶材料的进一步发展,是不是存在着一些问题亟待解决呢?我们知道硅单晶材料是从石英的坩埚里面拉出来的,它用石墨作为加热器。所以,来自石英里的二氧化硅中氧以及加热器的碳的污染,使硅材料里面包含着大量的过饱和氧和碳杂质。过饱和氧的污染,随着硅单晶直径的增大,长度的加长,它的分布也变得不均匀;这就是说材料的均匀性就会遇到问题。杂质和缺陷分布的不均匀,会使硅材料在进一步提高电路集成度应用的时候遇到困难。特别是过饱和的氧,在器件和电路的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂

我国渔业资源现状

中国渔业资源的现状问题及可持续发展学院:南通大学杏林学院班级:海洋技术141姓名:褚鹏学号:1409043042 摘要:为了实现海洋渔业的可持续发展,目前在我国渔业生产经营体制和渔区的行政管理制度下,我国渔民的组织化程度比较弱,通过对我国当前的管理制度进行优化,提高我国渔业的组织化程度,是我认为的比较可行的制度优化之路,由于近几年来渔业的快速发展,导致我国渔业资源的短缺,造成一定的生态环境影响,为了从根源上解决此类问题,应从政治上制定合理的政策规划,加大经济市场的监管力度,从而有效的缓解渔业的资源问题。 关键字:优化资源管理政治经济可持续发展 一.我国海洋渔业情况 中国海域已鉴定到的海洋生物资源约有20278种,海洋生物净生产能力为28亿t,近海年平均生物生产量为3.02t/km,目前海洋水产品产量为1100万t 左右,海洋生物资源的利用率是很低的,有很大的开发潜力。其中近海约有生物种类1万多种,其中鱼类约1500 多种,软体动物3000多种,甲壳动物3000多种。在中国海280万km[2]渔场范围内,支撑了中国海洋渔业90%的渔获量。据估计中国近海和外海鱼类最大持续渔获量约为735万t,其中渤海24.3万t,黄海87.2万t,东海168.9万t,南海472.5万t。按鱼类栖息类型划分的最大渔获量构成。虾类资源也是中国海的主要渔业资源之一。据考察中国近海虾蟹类约1000多种。其中主要种类分布是:渤海30多种,黄海40多种,东海1000多种,南海130 多种。头足类资源在中国海各海区也有较大数量分布,构成渔业资源的重要组成部分。头足类资源以东海居多,约60多种,南海为37种,黄海、渤海均为20多种。另外中国还有藻类约1000多种,其中包括海带、紫菜等。海水养殖备选的品种较为丰富,主要有230多种,鱼、虾、贝、藻俱全。全国沿海各省区养殖规模较大的主要有海带、紫菜、贻贝、牡蛎、蛏、蛤、泥蚶、对虾、鱼类等。目前的海水养殖产量主要是直接利用光合作用或初级生产力(浮游植物)贝藻为主,具有生态转化率高、生产成本低的特点,但同时表明,我国的海水养殖目前处于相对落后阶段,以集约化养殖为代表的现代海水养殖业还处于起步阶段,随着生产力的发展,科技水平的提高,开发种类将逐渐增加,一定会有强劲的增长势头。

中国半导体材料行业市场调研报告

2011-2015年中国半导体材料行业市场调 研及投资前景预测报告 半导体材料是指电阻率在10-3~108Ωcm,介于金属和绝缘体之间的材料。半导体材料是制作晶体管、集成电路、电力电子器件、光电子器件的重要基础材料,支撑着通信、计算机、信息家电与网络技术等电子信息产业的发展。电子信息产业规模最大的是美国。近几年来,中国电子信息产品以举世瞩目的速度发展,半导体材料及应用已成为衡量一个国家经济发展、科技进步和国防实力的重要标志。 中国报告网发布的《2011-2015年中国半导体材料行业市场调研及投资前景预测报告》共十六章。首先介绍了半导体材料相关概述、中国半导体材料市场运行环境等,接着分析了中国半导体材料市场发展的现状,然后介绍了中国半导体材料重点区域市场运行形势。随后,报告对中国半导体材料重点企业经营状况分析,最后分析了中国半导体材料行业发展趋势与投资预测。您若想对半导体材料产业有个系统的了解或者想投资半导体材料行业,本报告是您不可或缺的重要工具。 本研究报告数据主要采用国家统计数据,海关总署,问卷调查数据,商务部采集数据等数据库。其中宏观经济数据主要来自国家统计局,部分行业统计数据主要来自国家统计局及市场调研数据,企业数据主要来自于国统计局规模企业统计数据库及证券交易所等,价格数据主要来自于各类市场监测数据库。 第一章半导体材料行业发展概述 第一节半导体材料的概述 一、半导体材料的定义 二、半导体材料的分类 三、半导体材料的特点 四、化合物半导体材料介绍 第二节半导体材料特性和制备 一、半导体材料特性和参数 二、半导体材料制备

第三节产业链结构及发展阶段分析 一、半导体材料行业的产业链结构 二、半导体材料行业发展阶段分析 三、行业所处周期分析 第二章全球半导体材料行业发展分析 第一节世界总体市场概况 一、全球半导体材料的进展分析 二、全球半导体材料市场发展现状 三、第二代半导体材料砷化镓发展概况 四、第三代半导体材料GaN发展概况 第二节世界半导体材料行业发展分析 一、2010年世界半导体材料行业发展分析 二、2011年世界半导体材料行业发展分析 三、2011年半导体材料行业国外市场竞争分析 第三节主要国家或地区半导体材料行业发展分析 一、美国半导体材料行业分析 二、日本半导体材料行业分析 三、德国半导体材料行业分析 四、法国半导体材料行业分析 五、韩国半导体材料行业分析 六、台湾半导体材料行业分析 第三章我国半导体材料行业发展分析 第一节2010年中国半导体材料行业发展状况 一、2010年半导体材料行业发展状况分析 二、2010年中国半导体材料行业发展动态 三、2010年半导体材料行业经营业绩分析 四、2010年我国半导体材料行业发展热点 第二节2011年半导体材料行业发展机遇和挑战分析一、2011年半导体材料行业发展机遇分析

几种半导体材料的现状与发展趋势

几种半导体材料的现状与发展趋势 摘要:本文重点对半导体硅材料,gaas和inp单晶材料,半导体超晶格、量子阱材料,一维量子线、零维量子点半导体微结构材料等目前达到的水平和器件应用概况及其发展趋势作了概述。 关键词:半导体材料量子线量子点材料 上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和gaas激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。 一、硅材料 从提高硅集成电路成品率,降低成本看,增大直拉硅(cz-si)单晶的直径和减小微缺陷的密度仍是今后cz-si发展的总趋势。目前直径为8英寸(200mm)的si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(ic’s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ulsi生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。 从进一步提高硅ic’s的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,soi材料,包括智能剥离(smart cut)和simox材料等也发展很快。目前,直径8英寸的硅外延片和soi材料已研制成功,更大尺寸的片材也在开发中。 理论分析指出30nm左右将是硅mos集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、sio2自身性质的限制。尽管人们正在积极寻找高k介电绝缘材料(如用si3n4等来替代sio2),低k介电互连材料,用cu代替al引线以及采用系统集成芯片技术等来提高ulsi的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和dna生物计算等之外,还把目光放在以gaas、inp为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容gesi合金材料等,这也是目前半导体材料研发的重点。 二、gaas和inp单晶材料 gaas和inp与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。 目前,世界gaas单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(vgf)和水平(hb)方法生长的2-3英寸的导电gaas衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的si-gaas 发展很快。美国莫托罗拉公司正在筹建6英寸的si-gaas集成电路生产线。inp具有比gaas更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的inp单晶的关键技术尚未完全突破,价格居高不下。

半导体材料发展简史

半导体材料的发展简史 半导体材料是半导体工业的基础,它的发展对半导体工业的发展具有极大的影响。如果按化学成分及内部结构,半导体材料大致可以分为以下几类:一是元素半导体材料,包括锗(Ge)、硅(Si)、硒(Se)、硼(B)等。20世纪50年代,锗在半导体工业中占主导地位,但锗半导体器件的耐高温和抗辐射性能较差,到20世纪60年代后期逐渐被硅材料取代。用硅制造的半导体器件,耐高温和抗辐射性能较好,特别适宜制作大功率器件。因此,硅已成为应用最多的一种半导体材料,目前的集成电路大多数是用硅材料制造的。 二是化合物半导体,它是由两种或两种以上的元素化合而成的半导体材料。它的种类很多,重要的有砷化镓(GaAs)、磷化铟(InP)、锑化铟(InSb)、氮化镓(GaN)、碳化硅(SiC)、硫化镉(CdS)等。其中砷化镓是除硅之外研究最深入、应用最广泛的半导体材料。由于砷化镓是一种直接带隙的半导体材料,并且具有禁带宽度宽、电子迁移率高的优点,因而砷化镓材料不仅可直接研制光电子器件,如发光二极管、可见光激光器、近红外激光器、量子阱大功率激光器、红外探测器和高效太阳能电池等,而且在微电子方面,以半绝缘砷化镓(Si-GaAs)为基体,用直接离子注入自对准平面工艺研制的砷化镓高速数字电路、微波单片电路、光电集成电路、低噪声及大功率场效应晶体管,具有速度快、频率高、低功耗和抗辐射等特点。碳化硅由于其抗辐射能力强、耐高温和化学稳定性好,在航天技术领域有着广泛的应用。氮化镓材料是近十年才成为研究热点,它是一种宽禁带半导体材料(Eg=3.4eV),具有纤锌矿结构的氮化镓属于直接跃迁型半导体,是制作绿光、蓝光、紫光乃至紫外发光二极管、探测器和激光器的材料。氮化镓可以与氮化铟(Eg=1.9eV)、氮化铝(Eg=6.2eV)形成合金InGaN、AlGaN,这样可以调制禁带宽度,进而调节发光管、激光管等的波长。 三是非晶半导体。上面介绍的都是具有确定晶格结构的半导体材料,在这些材料中原子排列具有对称性和周期性。然而,一些不具有长程有序的无定形固体(非晶体)也具有明显的半导体特征。非晶半导体的种类繁多,大体上也可按晶态物质的归类方法来分类。从目前研究的深度来看,颇有实用价值的非晶半导体材料首推氢化非晶硅(α-SiH)及其合金材料(α-SiC:H、α-SiN:H),可以用于低成本太阳能电池和静电光敏感材料。非晶Se(α-Se)、硫系玻璃及氧化物玻璃等非晶半导体在传感器、开关电路及信息存储方面也有广泛的应用前景。 四是有机半导体,例如芳香族有机化合物就具有典型的半导体特征。有机半导体的电导特性研究可能对生物体内的基本物理过程研究起着重大推动作用,是半导体研究的一个热门领域,其中有机发光二极管(OLED)的研究尤其受到人们的重视。 半导体材料有重要的战略地位,上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地着世界的、格局和军事对抗的形式,彻底改变人们的生活方式。 常用的半导体材料分为元素半导体和化合物半导体。元素半导体是由单一元素制成的半导体材料。主要有硅、锗、硒等,以硅、锗应用最广。化合物半导体

海洋资源类型

海洋资源类型 海洋中有丰富的资源。在当今全球粮食、资源、能源供应紧张与人口迅速增长的矛盾日益突出的情况下,开发利用海洋中丰富的资源,已是历史发展的必然趋势。目前,人类开发利用的海洋资源,主要有海洋化学资源、海洋生物资源、海底矿产资源和海洋能源四类。 海水可以直接作为工业冷却水源,也是取之不尽的淡化水源。发展海水淡化技术,向海洋要淡水,是解决世界淡水不足问题的重要途径之一。 海水中已发现的化学元素有80多种。目前,海洋化学资源开发达到工业规模的有食盐、镁、溴、淡水等。随着科学技术的发展,丰富的海洋化学资源,将广泛地造福于人类。 海洋中有20多万种生物,其中动物18万种,包括16000多种鱼类。在远古时代,人类就已开始捕捞和采集海产品。现在,人类的海洋捕捞活动已从近海扩展到世界各个海域。渔具、渔船、探鱼技术的改进,大大提高了人类的海洋捕捞能力。海洋中由鱼、虾、贝、藻等组成的海洋生物资源,除了直接捕捞供食用和药用外,通过养殖、增殖等途径还可实现可持续利用。 在大陆架浅海海底,埋藏着丰富的石油、天然气以及煤、硫、磷等矿产资源。在近岸带的滨海砂矿中,富集着砂、贝壳等建筑材料和金属矿产。在多数海盆中,广泛分布着深海锰结核,它们是未来可利用的潜力最大的金属矿产资源(图3.14《深海锰结核》)。 海水运动中蕴藏着巨大的能量,它们属于可再生能源,而且没有污染。但是,这些能量密度很小,要开发利用它们,必须采用特殊的能量转换装置。现在,具有商业开发价值的是潮汐发电和波浪发电,但是工程投资较大,效益也不高。 海洋渔业生产 海洋渔业资源主要集中在沿海大陆架海域,也就是从海岸延伸到水下大约200米深的大陆海底部分。这里阳光集中,生物光合作用强,入海河流带来丰富的营养盐类,因而浮游生物繁盛(图3.15《大陆架剖面示意》)。这些浮游生物是鱼类的饵料,它们在海洋中分布很不均匀,一般在温带海区比较多。 温带地区季节变化显著,冬季表层海水和底部海水发生交换时,上泛的底部海水含有丰富的营养盐类,这些营养盐类来自海洋中腐烂的生物遗体。暖流和寒流交汇处或有冷海水上泛的地方,饵料比较丰富。这些地方通常是渔场所在地(图3.16《世界主要渔业地区的分布》)。因此,尽管大陆架水域只占海洋总面积的7.5%,渔获量却占世界海洋总渔获量的90%以上。 世界主要渔业国都分布在温带地区,这些温带国家鱼产品消费量高,市场需求大。中国和日本是世界海洋渔获量较多的国家。中国在充分利用近海渔场(图3.17《舟山渔场的沈家门渔港》)和浅海滩涂大力发展海洋捕捞和海水增养殖业的同时,远洋捕捞也获得了较大的发展。日本可耕地有限,人口密度高,因此海洋水产品在食品结构中比重较大。 海洋油、气开发 海底油气的开发,开始于20世纪初。它的发展经历了从近海到远海、从浅海到深海的过程。受技术条件的限制,最初只能开采从海岸直接向浅海延伸的油气矿藏。80年代以来,在能源危机和技术进步的刺激下,近海石油勘探与开发飞速发展,海洋石油开发迅速向大陆架挺进,逐渐形成了崭新的近海石油工业部门。 地质学家和地球物理学家通常利用地震波方法来寻找海底油气矿藏,然后通过海上钻井来估

半导体材料发展

题目半导体材料的发展导师马晓华 学生姓名王语晨 学生学号1614123118

半导体材料发展 第一代半导体硅材料 第一代半导体材料主要是指硅(Si)、锗元素(Ge)半导体材料。作为第一代半导体材料的锗和硅,在国际信息产业技术中的各类分立器件和应用极为普遍的集成电路、电子信息网络工程、电脑、手机、电视、航空航天、各类军事工程和迅速发展的新能源、硅光伏产业中都得到了极为广泛的应用,硅芯片在人类社会的每一个角落无不闪烁着它的光辉。硅制程是大量生产且便宜的制程。且硅(Si)有较好的物理应力,所以可做成大尺寸的晶圆(现今,Si晶圆直径约为300 mm,而GaAs晶圆最大直径约只有150 mm)。在地球表面上有大量硅(Si)的原料:硅酸盐矿。硅工业已发展到规模经济(透过高的产能以降低单位产品的成本)的情形了。第二个主要的优点是,硅很容易就会变成二氧化硅,二氧化硅在电子元件中是一种很好的绝缘体。二氧化硅可以轻易地被整合到硅电路中,且二氧化硅和硅(Si)拥有很好的界面特性。第三,大概也是最重要的优点,是硅拥有高很多的空穴移动率。在需要CMOS逻辑时,高的空穴率可以做成高速的P-沟道场效应晶体管。如果需要快速的CMOS结构时,虽然GaAs的电子迁移率快,但因为它的功率消耗高,所以使的GaAs电路无法被整合到Si逻辑电路中。 第二代半导体GaAs和InP单晶材料 GaAs 和InP是微电子和光电子的基础材料,为直接带隙,具有电子饱和漂移速度高、耐高温、抗辐照等特点,在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。近年来,为满足高速移动通信的迫切需求,大直径(4,6 和8 英寸)的SI-GaAs 发展很快,4 英寸70cm 长,6 英寸35cm 长和8 英寸的半绝缘砷化钾S I - G a A s)也在日本研制成功。 第三代半导体GaN和SiC 以碳化硅和氮化镓为代表的第三代半导体材料凭借其宽禁带、高热导率、高击穿电场、高抗辐射能力等特点,在许多应用领域拥有前两代半导体材料无法比拟的优点,有望突破第一、二代半导体材料应用技术的发展瓶颈,市场应用潜力巨大。根据第三代半导体不同的发展情况,其主要应用为半导体照明、电力电子器件、激光器和探测器以及其他4个领域,每个领域产业成熟度各不相同,其中前沿研究领域,宽禁带半导体还处于实验室研发阶段。预计到2020年,第三代半导体技术应用将在节能减排、信息技术、国防三大领域催生上万亿元潜在市场,而碳化硅和氮化镓器件很可能成为推动整个电力电子、光电子和微波射频三大领域效率提升和技术升级的关键动力之一。 国际上第三代半导体产业已经整体进入产业形成期,并开始步入激烈竞争的阶段,众多国家将其列入国家战略,从国际竞争角度看,美、日、欧等发达国家已将第三代半导体材料列入国家计划,并展开全面战略部署,欲抢占战略制高点。我国政府高度重视第三代半导体材料的研究与开发,从2004年开始对第三代半导体领域的研究进行了部署,启动了一系列重大研究项目,2013年科技部在863计划新材料技术领域项目征集指南中明确将第三代半导体材料及应用列为重要内容。2015年5月,国务院发布《中国制造2025》,新材料是《〈中国制造

海洋渔业资源开发图表分析

我国海洋渔业资源开发图表分析 引言:渔业资源一直在人类文明的发展中扮演着重要的角色。鱼的存在是人类的幸运,因为不管对以前的还是现在的人类来说鱼总是最容易捕获的猎物。我国拥有300 万平方公里的海域面积,其主要特点是:海域辽阔,海岸线漫长,海洋自然环境复杂多样,海洋生态系统类型丰富。本文查找了1999-2012年间海洋捕捞的相关数据以分析我国海洋渔业资源开发现况,包括捕捞力量的变化,捕捞量的变化,日常食用鱼类的捕捞量的变化等。 90年代前渔船与捕捞量增长表 年代(平均) 捕捞量 (万吨) 非机动 渔船数 (万艘) 机动渔 船数 (万艘) 总马力 数(万 马力) 平均单船 产量(吨/ 艘) 平均马 力产量 (吨/马 力) 50年代134.2 12.11 0.09 7.45 11.0 17.6 60年代131.1 19.98 1.24 58.5 12.7 1.34 70年代274.7 13.18 2.74 191.6 17.3 1.03 80年代347.5 9.50 13.5 511.2 15.1 0.68 1988年463.3 7.10 21.8 757.3 16.4 0.61 1998-2009年年捕捞量及平均马力产量表 年份1998 1999 2000 2001 2002 2003 捕捞量(万1496.6 1497.6 1477.5 1440.6 1433.5 1432.3

吨) 平均马力 0.95 0.93 0.90 0.84 0.79 0.77 产量(吨/ 马力) 年份2004 2005 2006 2007 2008 2009 捕捞量(万 1451.1 1453.3 1245.5 1243.5 1149.6 1178.6 吨) 0.77 0.77 0.75 0.62 0.60 0.59 平均马力 产量(吨/ 马力) 上图数据来自《中国渔业年鉴》1998-2009 从表中可见,海洋捕捞机动渔船不断增加,1988年比60年代平均船数增加近20倍,比70年代增加近10倍,但平均单船产量却下降,平均单位马力的产量已不足60年代的二分之一,不足50十年代的二十五分之一。然1998年后平均马力产量比之1988年又有所上升,而后不断下降,如果不是我的数据出处错误,我所分析的有一下几个原因。1.远洋渔业的迅速发展。在海洋捕捞量中包括了远洋捕捞量,这可以缓解我国近海渔业资源的枯竭现状。2.科学技术的发展,可以用更加先进的技术来捕捞到更多的鱼。比如说捕捞到更加深处的鱼,用新方法吸引更多的鱼群,声呐技术能够更加清楚的锁定鱼群的位置。3.渔民们可持续发展的意识不强,公地悲剧持续发生。渔民捕鱼用的网的网眼越来越小,拖网捕捞等竭泽而渔的捕捞手段的使用越来越频繁。

相关文档
最新文档