Taylor公式及Taylor级数应用的进一步讨论

Taylor公式及Taylor级数应用的进一步讨论
Taylor公式及Taylor级数应用的进一步讨论

第27卷第2期 齐 齐 哈 尔 大 学 学 报 Vol.27,No.2 2011年3月 Journal of Qiqihar University March,2011

Taylor 公式及Taylor 级数应用的进一步讨论

李腾

(陕西师范大学 国际商学院,西安 710062)

摘要:讨论了泰勒公式与泰勒级数的应用,即在求解函数方程、归零问题、求行列式的值、以及求重积分等问题,应用泰勒公式与泰勒级数对L’Hospital 法则进行了推广,其中用Taylor 展式结合概率论求解重积分是一种新方法。 关键词:泰勒公式;函数方程;归零问题;行列式;概率论

中图分类号:O172 文献标识码:A 文章编号:1007-984X(2011)02-0080-05

数学分析以及高等数学教材中对Taylor 公式和Taylor 级数在理论上已进行了详细介绍

[1,2],但对于Taylor 公式及Taylor 级数的应用涉及的较少。本文主要研究Taylor 公式和Taylor 级数在7个方面的应用,并且通

过实例进行介绍。 1 用Taylor 公式对罗比达(L’Hospital)法则进行推广

求函数极限时,等价无穷小代替只运用了一阶性质,罗比达法则一次只能降低一阶,应用Taylor 公式能一步到位。

定理1 设)(x f 与)x (?在0x 的领域内可以展开成Taylor 公式,

0x 是)(x f 的至少n 阶零点,0x 是)x (?的n 阶零点,则)()()()(lim 0)(0)(0

x x f

x x f n n x x ??=→。 证明 设0x 为)(x f 的m 阶零点()n m ≥,那么)()()(10x f x x x f m ?=,)()()(10x x x x n ???=,其中0)()(0101≠x x f ?。

当m =n 时,)()()()()()(lim )()(lim 00)(0101110

0x x f x x f x x f x x f n x x x x ????===→→; 当m >n 时,显然0)()()()(lim 0)(0)(0

==→x x f x x f n n x x ??。 2 通过给出的Taylor 级数的和函数来确定收敛半径

一般情况下,是通过先求Taylor 级数的收敛半径,然后再求出Taylor 级数的和函数。现在,通过给出的Taylor 级数,求出和函数然后再求出收敛半径,其主要理论是复变函数中的奇点理论。

例1 设,1121,1?++===n n n a a a a a 作幂级数11?+∞

=∑n n n x a ,求出其收敛半径。

解 显然}{n a 是正数数列,且当n >2后,}{n a 是严格递增,则有n n n n a a a a 211<+=?+,那么当2

1

?+∞=∑n n n x a 在21

)(,两式相减,整理得211)(x x x S ??=,据复分析的奇点理论2

11)(z z z S ??=有2个奇点251,25121??=+?=z z ,而0021?

收稿日期:2010-11-16

作者简介:李腾(1990-),男,山东兖州人,陕西师范大学国际商学院电商系2008级一班,专业:电子商务、数学与应用数学,sdqfliteng@https://www.360docs.net/doc/fd9569648.html,。

第2期 Taylor 公式及Taylor 级数应用的进一步讨论 ·81· 半径为

251+?,因此11)(?+∞=∑=n n n x a x S 的收敛半径也是251+?。 3 Taylor 公式在求解函数方程中的应用

利用Taylor 公式求解某些函数方程。

例2 设)(x f 在),(+∞?∞内有连续三阶导数,且满足方程)()()(h x f h x f h x f θ+′+=+,10<<θ(θ与h 无关),试求解方程。

解 对方程)()()(h x f h x f h x f θ+′+=+,两边对h 求导,注意θ与h 无,有

)()()(h x f h h x f h x f θθθ+′′++′=+′ (1) 从而

)()()()()(h x f h

h x f x f x f h x f θθθ+′′=+′?′+′?+′ 令0→h 取极限,得

)()()(x f x f x f ′′=′′?′′θθ,)(2)(x f x f ′′=′′θ 若2

1≠

θ,由此得0)(≡′′x f ,)(x f 为一次函数b ax x f +=)(; 若21=θ,在式(1)中,)2

1(21)21()(h x f h h x f h x f +′′++′=+′。 两边再对h 求导,然后令0→h 时取极限,即得0)(≡′′′x f 。 )(x f 为二次三项式e dx cx x f ++=2)(,故求解为b ax x f +=)(或e dx cx x f ++=2)((e d c b a ,,,,(为实常数)。

4 归零问题

在一定条件下,证明某函数0)(≡x f 的问题,称之为归零问题(归零问题的意义见文献[3]),这类问题很多可以用Taylor 公式来证明。

例3 已知函数)(x f 在区间(-1,1)内有二阶导数,且0)0()0(=′=f f ,

)

()()(x f x f x f ′+≤′′ (2)

试证存在0>δ,使得在),(δδ?内,0)(≡x f 。 证明 为了证明)(x f 在0=x 的邻域内恒为零,将式(2)右端的)(),(x f x f ′在0=x 处按Taylor 公式展开,并注意0)0()0(=′=f f ,有

22)(2

12)()0()0()(x f x f x f f x f ξξ′′=′′+′+= ξ在0与x 之间,x f x f f x f )()()0()(ηη′′=′′+′=′,η在0与x 之间,从而

x f x f x f x f )()(2

1)()(2ηξ′′+′′=′+ 令x 在41[?,41上取值,则)()(x f x f ′+在41[?,4

1上连续有界。那么存在]41,41[0?∈x ,使得 M x f x f x f x f x ≡′+=′+≤≤?})()({max )()(4

14100,只要证明M =0即可。 事实上++′≤′′+′′≤′′+′′=

′+=)()((4

1))()((41)()(21)()(00000020000ξξηηξf f f x f x f x f x f x f M M M f f 21241))()(00=≤+′ηη,即M M 210≤≤,所以M =0。故在41[?,4

1上0)(≡x f 。 注:这里求得41=δ并不一定是最大的。

·82· 齐 齐 哈 尔 大 学 学 报 2011年 5 利用Taylor 展开式求行列式的值

例4 计算行列式x

c c c c b b x c

c b

b b x

c b

b b b x D "#####

#"""=的值。 解 设)(x f D n =,将D 用Taylor 展式在c 处展开

n n n n n n n c x n c f c x c f c x c f c f x f )(!

)()(!2)()(!1)()()()(2?++?″+?′+=" 那么对于任何自然数)(n k k ≤有1)()(??=k k b c c c f ,根据行列式求导法则,有

")()1()()()(211x f n x f x nf x f n n n n ????=′=′,1)(),(2)(112=′=′x f x f x f

所以)(x f n 在c x =处的各阶导数值有

)1,,2,1()()1()1()(1)(?=?+??=??n k b c c k n n n c f k n k n

""

而 !)()

(n c f n n =

因此 =)(x f n ++???+??+????"2321)()(!

2)1()()()(c x b c c n n c x b c nc b c c n n n n n c x n n n c x c n n n )(!

123)1()()!1(23)1(1?××?+??×??"" 当c =b 时,])1([)()(1b n x b x x f n n ?+?=?;

当b c ≠时,b

c c x b b x c x f n

n n ????=)()()(。 6 利用Taylor 展开式确定不等式中含有的常数的最大值或最小值

有些不等式含有一个常数,但这个常数取一些值时,不等式不成立;而取另一些值时不等式成立,那么通过Taylor 公式能确定使不等式成立的常数的最大值或最小值。

例5 证明集合A ={α任给e 11(,0>+>+αx x

x }有最小值,并求最小值。 证明 不等式(1+x 1)x +α> e 等价于(x +α)ln (x 11+>1,也即x x

?+>)11ln(1α(对任意0>x ),所以,A ∈α,等价于α为x x

x f ?+=)11ln(1)((x >0)的上界。按定义,即min A =)(sup 0x f x >,由于01)1()11(ln 1)(2>?++=′x x x

x f ,所以f (x )严格上升,)(lim )(sup 0x f x f x x ∞→>=,由Taylor 展开式,有 =???

??????????????????+?=?????????????+=?+=1)1(2111111ln(111ln 1)(x o x x x x x x x x x x f )(

第2期 Taylor 公式及Taylor 级数应用的进一步讨论 ·83·

21)1(211)1(2111)1(2111→+=???????++=???????????+?οοοx x x x x

x (当→x +∞时) 所以A 有最小值,且min A =2

1。 7 其它方面的应用

将Taylor 公式与数学分析中的其它问题以及概率论的某些知识结合起来来处理实际问题。

例6 设)(x f 在[]1,0上有二阶连续导数)(x f ′′,证明积分=?∑∫∫=∞→n n i i n x x x f x n f n d d d )]2

1()1([lim 2111010"" )2

1(241f ′′。 证明 因为)(x f 在[]1,0上有二阶连续导数)(x f ′′,所以)(x f 在2

1=x 处有Taylor 展式 )21(()21(21)2

1)(21()21()(22?+?′′+?′+=x o x f x f f x f 设n ξξξ,,,21"独立同分布,且1ξ服从[]1,0上的均匀分布,令∑==n k k n n 1

1ξη,则211=→ξηE P n =n E η,从而n 重积分

n n i i n x x x f x n f n d d d )21()1(lim 2110101

""∫∫∑???????=∞→= ???????+?′′+?′=?????

??→∞→∞))21(()21)(21(21)21)(21(lim )21()(lim 22n n n n n n o f f nE f f nE ηηηη= )21(241))1(1(121)21(21lim f n

n f n n ′′=+′′→∞ο 8 结束语

本文从7个方面讨论了Taylor 公式的应用,特别是用Taylor 公式来求解函数方程以及把Taylor 公式与概率论的某些知识结合起来。通过运用Taylor 公式与级数为教学拓展了解题思路。

参考文献

[1] 华东师范大学数学系编. 数学分析:上,下册[M]. 3版. 北京:高等教育出版社,2001.

[2] 同济大学数学系编. 高等数学:上,下册[M]. 6版. 北京:高等教育出版社,2007.

[3] 李腾. 关于函数零点存在性的几种判别方法[J]. 洛阳师范学院学报,2010(2):190-192.

[4] 安世全. 泰勒公式及其应用[J]. 高等数学研究,2001,4(3):26-28.

[5] 张劢. 泰勒公式的应用[J]. 天津轻工业学院学报,1999(2):50-53.

[6] 齐成辉. 泰勒公式的应用[J]. 陕西师范大学学报:自然科学版,2003(4):23-25.

[7] 裴礼文. 数学分析中的典型问题与方法[M]. 2版. 北京:高等教育出版社,2006:86-91.

The further discussion of application of Taylor formula and Taylor series

LI Teng

(Department of Electronic Business ,International Business School,Shaanxi Normal University,Xian 710062,China)

Abstract:The essay talks of some ways in Taylor formula and Taylor series. The L ′Hospital rule is extended by using

·84· 齐 齐 哈 尔 大 学 学 报 2011年the Taylor formula and Taylor series. It contains the solution of functional equations, the zero problem, calculating the value of determinant and calculating value of multiple integral, where the calculating value of multiple integral is a new method by using Taylor expansion and probabiliey.

Key words:Taylor formula;functional equation;the zero problem;determinant;probability

一种偏心检具

在机械加工中,回转运动变为往复直线运动或往复直线运动变为回转运动,经常是通过偏心曲套之类的工件完成的。它们在机械设备上的应用非常广泛,例如车床床头箱用偏心工件带动的润滑泵、汽车发动机中的曲轴、多连杆压力机传动系统中的偏心齿轮等。所谓偏心工件,就是指零件的外圆和外圆或外圆与内孔的轴线平行而不相重合,偏一个距离的工件。这两条平行轴线之间的距离称为偏心距。外圆与外圆偏心的零件叫做偏心轴或偏心盘。在加工此类零件的过程中需经常测量孔与孔的偏移量(以下统称为偏心距),以保证加工出合格的零件。

1 传统偏心距的测量方法

一般情况下在机床上很难直接测量出偏心距(先进设备除外,比如数显三坐标测量仪、数控雷尼绍测头等国内外专用高精密机床),其手段仅局限于一些常规测量方法,例如:常用的传统方法是把工件放入v型铁中,用百分表在偏心圆处测量,缓慢转动工件,自左至右检查水平线是否水平;把工件转动90°,用同样的方法检查另一条水平线,观察其跳动量。这种方法装夹比较麻烦,不容易找正,而且也不十分准确,等到工件交检时,不合格的零件也就报废了,造成了一些不必要的浪费。另外在一些装配过程中,需要把2个不同直径的套安装成偏心套的形式,偏移量有要求,而且偏移的高低点也有位置要求。以往这种情况在装配时用偏心轴来装配,但安装的偏移高低位置误差大。为了解决上述状况,设计了一种偏心检具,它简单实用、测量精确,在加工过程中就可以应用,检查员也可以做为检验工具来检查工件的偏移量是否合格,是一种工检通用的量检具。另外在装配过程中,通过用偏心检具,也很好的解决了偏移量、偏移高低位置的问题。

2 偏心检具结构

图1为偏心检具结构。图1中检具体1由一个台阶轴和两块长方形钢板焊接组成,将两块长方形钢板按图示(前后)位置焊接在台阶轴上,2块长方形钢板上分别加工有透孔,用于安装手柄3,便于在操作过程中转动台阶轴,操作完毕后拔出台阶轴,台阶轴大直径端面上加工一个透孔,将卡头2安装在台阶轴大直径端面上的透孔中,卡头2下部便可与台阶轴连接,卡头2上部加工一个透孔和一个豁口,用于安装百分表4,如图中“K向放大”所示。

图1 偏心检具的结构

1——检具体 2——卡头 3——手柄 4——百分表

3 原理及具体实施方式

图1中的“e”即为被测工件的偏心距。e=切削工件完成后实测两条平行轴线之间偏心量+偏心量偏差。由于在加工偏心类零件时,大多都在车床上完成,故其基本原理都是相同的,即:把需要加工的偏心部分的轴线找正到与车床主轴旋转轴线相重合,由车刀根据工序卡片控制切削用量进行加工。

测量方法是:以一个已经加工完成的零件孔为基准,检具体1中的D圆与之相配合,将百分表4卡在卡头2的小孔中,转动手柄360°,表针在被测偏心孔的内壁划过一周,接触不同位置的测母线时,表针将发生变化,通过表针在不同位置的读数变化即可直接准确地测量出偏移距e,用同样的方法再次或多次测量,便可以判断出偏移距e的偏差值,从而检验实测的偏移距e是否符合图纸要求。通过这种测量方法,可以更多地发挥该项偏心检具的作用,例如:在装配时,也是将D圆与基准孔相配合,测另一零件的最大偏移距,确定其方向位置,完成装配要求。

4 偏心检具结构特(优)点

相比传统偏心距的测量方法,这种偏心检具克服了测量基准难以保证、定位基准难于选择等不确定因素。它结构简单、使用方便、测量精确,可以有效的避免零件在加工过程中出现的一些误差,减少了零件在加工、装配工艺流程中的检查工序,提高了工效,可以行之有效地降低一些不必要的浪费,解决了装配过程中偏心套的安装精度问题,提高了产品整体质量。

(尹相辉,李大明;齐齐哈尔二机床(集团)有限责任公司,黑龙江 齐齐哈尔 161005)

常用泰勒公式

简介 在数学上, 一个定义在开区间(a-r, a+r)上的无穷可微的实变函数或复变函数f的泰勒级数是如下的幂级数 这里,n!表示n的阶乘而f(n)(a) 表示函数f在点a处的n阶导数。如果泰勒级数对于区间(a-r, a+r)中的所有x都收敛并且级数的和等于f(x),那么我们就称函数f(x)为解析的。当且仅当一个函数可以表示成为幂级数的形式时,它才是解析的。为了检查级数是否收敛于f(x),我们通常采用泰勒定理估计级数的余项。上面给出的幂级数展开式中的系数正好是泰勒级数中的系数。 如果a = 0, 那么这个级数也可以被称为麦克劳伦级数。 泰勒级数的重要性体现在以下三个方面:首先,幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。第二,一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行。第三,泰勒级数可以用来近似计算函数的值。 对于一些无穷可微函数f(x) 虽然它们的展开式收敛,但是并不等于f(x)。例如,分段函数f(x) = exp(?1/x2) 当x≠ 0 且f(0) = 0 ,则当x = 0所有的导数都为零,所以这个f(x)的泰勒级数为零,且其收敛半径为无穷大,虽然这个函数f仅在x = 0 处为零。而这个问题在复变函数内并不成立,因为当z沿虚轴趋于零时 exp(?1/z2) 并不趋于零。 一些函数无法被展开为泰勒级数因为那里存在一些奇点。但是如果变量x是负指数幂的话,我们仍然可以将其展开为一个级数。例如,f(x) = exp(?1/x2) 就可以被展开为一个洛朗级数。 Parker-Sockacki theorem是最近发现的一种用泰勒级数来求解微分方程的定理。这个定理是对Picard iterati on一个推广。 [编辑]

泰勒公式的应用精选

泰勒公式及其应用 摘要

文章简要介绍了泰勒公式的证明及其推导过程,详细讨论了泰勒公式在最优化理论领域的应用,分别讨论了泰勒公式在理论证明和算法设计上面的应用,并用简单的算例加以说明。 关键词:泰勒公式,最优化理论,应用

一、泰勒公式 1.1 一元泰勒公式 若函数)(x f 在含有x 的开区间),(b a 内有直到1+n 阶的导数,则当函数在此区间内时,可展开为一个关于)(0x x -的多项式和一个余项的和: 1 0)1(00)(200000)()! 1()()(!)()(!2)())(()()(++-++-++-''+-'+=n n n n x x n f x x n x f x x x f x x x f x f x f ξ 其中=)(x R n 10)1()()! 1()(++-+n n x x n f ξ ξ在x 和0x 之间的一个数,该余项)(x R n 为拉格朗日余项。 1.1.1 泰勒公式的推导过程 我们知道α+-'+=))(()()(000x x x f x f x f ,其在近似计算中往往不够精确,于是我们需要一个能够精确计算的而且能估计出误差的多项式: n n x x a x x a x x a a x p )()()()(0202010-++-+-+= 来近似表达函数)(x f ; 设多项式)(x p 满足)()()()(),()(0)(0)(0000x f x p x f x p x f x p n n ='='= 因此可以得出n a a a 10,.显然,00)(a x p =,所以)(00x f a =;10)(a x p =',所以 )(01x f a '=;20!2)(a x p ='',所以 ! 2)(02x f a ''=n n a n x p !)(0)(=,所以有!)(0)(n x f a n n = 所以,n n x x n x f x x x f x x x f x f x p )(! )()(!2)())(()()(00)(200000-++-''+-'+= 1.1.2 泰勒公式余项的证明 我们利用柯西中值定理来推出泰勒公式的余项(拉格朗日余项): 设)()()(x p x f x R n -= 于是有0)()()(000=-=x p x f x R n 所以有0)()()()(0)(000===''='=x R x R x R x R n n n n n 根据柯西中值定理可得: n n n n n n n x n R x x x R x R x x x R ))(1()(0)()()()()(011)1(00)1(0-+'=---=-++ξξ 1ξ是在x 和0x 之间的一个数; 对上式再次使用柯西中值定理,可得:

泰勒公式及其应用

泰勒公式及其应用 数学学院数学与应用数学专业 2009级杨立 指导教师吴春 摘要:泰勒公式以一种逼近的思想成为数学分析中的一个重要知识,在分析和研究数学问题中有着重要的作用。本文研究了利用泰勒公式证明微分中值定理,求函数的极限,进行近似计算,求函数的高阶导数和偏导数等方面的应用,恰当的运用泰勒公式能够给我们的解题带来极大的方便。 关键词:泰勒公式;微分中值定理;极限;高阶导数;偏导数 Abstract:Taylor formula is an important knowledge of mathematics analysis in an approximation of the thought, and it plays an important role in the analysis and study of mathematical problems. This paper studies the application of the Taylor formula in proving differential mean value theorem, the limit of function, approximate calculation, the application of high order derivative for function and partial derivative, and using Taylor formula appropriate can bring great convenience to our problem. Keywords:Taylor formula; approximate calculation; limit; higher derivative; partial derivative 引言 泰勒公式最早是以泰勒级数的形式出现在泰勒1715年出版的著作《增量及其逆》中,但在该书中却没有给出具体的证明,直到19世纪由柯西给出了现在的形式及其严格的证明。泰勒公式是一种逼近的思想,集中体现了逼近法的精髓,可以将有理分式函数﹑无理函数和初等超越函数等复杂函数用简单的多项

《泰勒公式及其应用》的开题报告.doc

《泰勒公式及其应用》的开题报告 《泰勒公式的验证及其应用》的 关键词:泰勒公式的验证数学开题报告范文中国开题报告 1.本课题的目的及研究意义 目的:泰勒公式集中体现了微积分、逼近法的精髓,在微积分学及相关领域的各个方面都有重要的应用。泰勒公式是非常重要的数学工具,现对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。 研究意义:在初等函数中,多项式是最简单的函数,因为多项式函数的的运算只有加、减、乘三种运算。如果能将有理分式函数,特别是无理函数和初等超越函数以一种“逼近”的思想,用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。对泰勒公式的研究就是为了解决上述问题的。 2.本课题的研究现状 数学计算中泰勒公式有广泛的应用,需要选取点将原式进行泰勒展开,如何选取使得泰勒展开后,计算的结果在误差允许的范围内,并且使计算尽量简单、明了。泰勒公式是一元微积分的一个重要内容,不仅在理论上有重要的地位,而且在近似计算、极限计算、函数性质的研究方面也有重要的应用。对于泰勒公式在高等代数中的应用,还在研究中。 3.本课题的研究内容 对泰勒公式的证明方法进行介绍,并归纳整理了其在求极

限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。 本课题将从以下几个方面展开研究: 一、介绍泰勒公式及其证明方法 二、利用泰勒公式求极限、证明不等式、判断级数的敛散性、证明根的唯一存在性、判断函数的极值、求初等函数的幂级数展开式、进行近似计算、求高阶导数在某些点的数值、求行列式的值。 三、结论。 4.本课题的实行方案、进度及预期效果 实行方案: 1.对泰勒公式的证明方法进行归纳; 2.灵活运用公式来解决极限、级数敛散性等问题; 3.研究实际数学问题中有关泰勒公式应用题目,寻求解决问题的途径。 实行进度: 研究时间为第8 学期,研究周期为9周。 1.前期准备阶段: 收集有关信息进行分析、归类,筛选有价值的信息,确定研究主题;制定课题计划,学习理论。 2.研究阶段:2010年12月— 2011 年4 月 3.第一阶段:初期(2010年12月1日- 2011年3月15 日) 第二阶段:中期(2011年3月16 日- 2011年4月15日)第三阶段:结题(2011年4月16日- 2011年4月30日)

些常用函数及其泰勒展开式的图像

图 1 )exp(x y =及其 Taylor 展开式 其中, 。 ! 4!3!21)(; ! 3!21)(; ! 21)(; 1)(;)exp(4 32443 23322211x x x x x P y x x x x P y x x x P y x x P y e x y x ++++==+++==++==+==== -3 -2-1 0123 -50 5 10 15 20 25 Figure 1 y=exp(x) and its Taylor expansion equation X Y

图 2 )sin(x y =及其 Taylor 展开式 其中, 。 ! 7!5!3)(; !5!3)(; ! 3)(; )();sin(7 53775 35533311x x x x x P y x x x x P y x x x P y x x P y x y -+-==+-==-===== -4 -3-2-1 01234 -8-6-4-202468Figure 2 y=sin(x) and its Taylor expansion equation X Y

图 3 )cos(x y =及其 Taylor 展开式 其中, 。 ! 8!6!4!21)(; !6!4!21)(; ! 4!21)(; !21)(); cos(8 642886 42664 2442 22x x x x x P y x x x x P y x x x P y x x P y x y +-+-==-+-==+-==-=== -4 -3-2-1 01234 -8-6 -4 -2 2 4 Figure 3 y=cos(x) and its Taylor expansion equation X Y

泰勒公式及其应用

目录 摘要 (1) 英文摘要 (2) 第一章绪论 (3) 第二章泰勒公式 (5) 1.1泰勒公式的意义 (5) 1.2泰勒公式余项的类型 (5) 1.3泰勒公式 (6) 第三章泰勒公式的实际应用 (7) 2.1利用泰勒公式求极限 (7) 2.2利用泰勒公式进行近似计算 (8) 2.3在不等式证明中的应用 (9) 2.4泰勒公式在外推上的应用 (10) 2.5求曲线的渐近线方程 (11) 2.6泰勒公式在函数凹凸性及拐点判断中的应用 (13) 2.7在广义积分敛散性中的应用 (14) 2.8泰勒公式在关于界的估计 (15) 2.9泰勒公式展开的唯一性问题 (15) 结束语 (16) 致谢 (17) 参考文献 (18)

第一章 绪论 近代微积分的蓬勃发展,促使几乎所有的数学大师都致力于相关问题的研究,特别是泰勒,笛卡尔,费马,巴罗,沃利斯等人作出了具有代表性的工作.泰勒公式是18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒,在微积分学中将函数展开成无穷级数而定义出来的.泰勒将函数展开成级数从而得到泰勒公式,对于一般函数f ,设它在点0x 存在直到n 阶的导数,由这些导数构成一个n 次多项式 ()20000000()()()()()()()(),1!2!! n n n f x f x f x T x f x x x x x x x n '''=+-+-++- 称为函数f 在点0x 处的泰勒多项式,若函数f 在点0x 存在直至n 阶导数,则有0()()(()),n n f x T x x x ο=+-即 ()200000000()()()()()()()()(()).2!! n n f x f x f x f x f x x x x x x x x x n ο'''=+-+-++-+- 称为泰勒公式. 众所周知,泰勒公式是数学分析中非常重要的内容,它的理论方法已经成为研究函数极限和估计误差等方面不可或缺的数学工具,集中体现了微积分“逼近法”的精髓,在近似计算上有着独特的优势,利用它可以将非线性问题化为线性问题,并能满足很高的精确度要求,在微积分的各个方面都有重要的应用. 泰勒公式在分析和研究数学问题中有着重要作用,它可以应用于求极限、判断函数极值、求高阶导数在某些点的数值、判断广义积分收敛性、近似计算、不等式证

开题报告浅谈泰勒公式及其应用

附件 7 论文(设计)管理表一 昌吉学院本科毕业论文(设计)开题报告 论文(设计)题目 浅谈泰勒公式及其应用 系(院) 数学系 专业班级 数学与应用数学 B1002 学科 理学 学生 姓名 马尚红 指导教师 姓名 马园媛 学号 1025809043 职称 讲师 一、选题的根据 ( 1、内容包括:选题的来源及意义,国内外研究状况,本选题的研究目标、内容创新点及主 要参考文献等。 2、撰写要求: 宋体、小四号 。) 1. 选题的来源及意义 泰勒公式是数学分析中非常重要的内容, 是一个用函数在某点的信息描述其附近 取值的公式。如果函数足够光滑的话, 在已知函数在某一点的各阶导数值的情况之下, 泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中值。 泰勒公式还给出了这个多项式和实际的函数值之间的偏差。 泰勒公式的初 衷是用多项 式来近似表示函数在某点周围的情况。比如说,指数函数 e x 在x 0的 附近可以用以 2 3 n 下多项式来近似地表示: e x 1 x x x x 称为指数函数在 0处的 n 阶泰勒 2! 3! n! 展开公式。这个公式只对 0附近的 x 有用, x 离 0越远,这个公式就越不准确。实际 函数值和多项式的偏差称为泰勒公式的余项。对于一般的函数,泰勒公式的系数的选 择依赖于函数在一点的各阶导数值,这个想法的原由可以由微分的定义开始。微分是 函数在一点附近的最佳线性近似: f a h f a f ' a h o h ,其中 o h 是比 h 高 阶 的无穷小。 也就是说 f a h f a f ' a h,或 f x f a f ' a x a .注意到 f x 和 f ' a x a 在a 处的零阶导数和 一阶导数都相同。对足够光滑的函数,如果一个 多 项式在 a 处的前 n 次导数值都与函数在 a 处的前 n 次导数值重合,那么这个多项 式应 该能很好地近似描述函数在 a 附近的情况。对于多元函数,也有类似的泰勒公式。设 a,r 是欧几里得空间 RN 中的开球, f 是定义在 a,r 的闭包上的实值函数,并在 每一点都存在所有的 n 1次偏导数。这时的泰勒公式为:对所有, f x 1 f a x a x x a ,其中的 是多重指标 0 ! x n 1 泰勒公式也是大学数学中的一个重要知识, 由此本文将总结几种泰勒公式的证明 及其应用。其泰勒公式在近似计算,求极限,判断函数凸凹性等方面的应用,除此之 外,它还可应用于行列式,证明不等式,判断无穷级数、无穷积分的收敛性,求函数 导数的中值估计、求曲面的渐进线方程,高阶求导等等。 2. 国内外研究状况 其中的余项也满足不等式:对所有 n 1的 满足 x

泰勒公式及其在解题中的应用

本科生毕业设计(论文) ( 2014届) 设计(论文)题目泰勒公式及其在解题中应用 作者周立泉 分院理工分院用数学1001班 指导教师(职称)徐华(讲师) 专业班级数学与应用数学) 论文字数 8000 论文完成时间 2014年4月3日 杭州师范大学钱江学院教学部制

泰勒公式及其在解题中应用 数学与应用数学1001班周立泉指导教师徐华 摘要:泰勒公式是数学分析中的一个重要公式,它的基础思想是运用多项式来逼近一个已知函数,而该多项式的系数由给定的函数的各阶导数决定.本文主要归纳了其在证明不等式、等式,求极限,求近似值等各方面的应用. 关键词:泰勒公式;数学分析;导数 Taylor Formula and Its Application in Solving Problem Mathematics and Applied Mathematics class 1001 ZhouLiQuan Instructor: XuHua Abstract:Taylor's formula is an important equation of mathematical analysis, it is the basic idea is to use polynomial approximation to a known function, and the polynomial coefficients given by the derivatives of the function determined. This paper describes the method to prove the Taylor formula,summarized in inequalities, find the limit,the approximate value and the other applications. Keyword:Taylor's formula;Mathematical analysis; derivative.

一些常用函数及其泰勒(Taylor)展开式的图像

其中, 。 ! 4!3!21)(; ! 3!21)(; ! 21)(; 1)(;)exp(4 32443 23322211x x x x x P y x x x x P y x x x P y x x P y e x y x ++++==+++==++==+==== -3 -2-1 0123 -50 5 10 15 20 25 Figure 1 y=exp(x) and its Taylor expansion equation X Y

其中, 。 ! 7!5!3)(; !5!3)(; ! 3)(; )();sin(7 53775 35533311x x x x x P y x x x x P y x x x P y x x P y x y -+-==+-==-===== -4 -3-2-1 01234 -8-6-4-202468Figure 2 y=sin(x) and its Taylor expansion equation X Y

其中, 。 ! 8!6!4!21)(; !6!4!21)(; ! 4!21)(; !21)(); cos(8 642886 42664 2442 22x x x x x P y x x x x P y x x x P y x x P y x y +-+-==-+-==+-==-=== -4 -3-2-1 01234 -8-6 -4 -2 2 4 Figure 3 y=cos(x) and its Taylor expansion equation X Y

其中, 。 4 32)(; 3 2)(; 2 )(; )();1ln(4 32443 23322211x x x x x P y x x x x P y x x x P y x x P y x y -+-==+-==-====+= -1 -0.50 0.51 1.52 -3-2 -1 1 2 3 Figure 4 y=ln(x) and its Taylor expansion equation X Y

泰勒公式的应用

泰勒公式及其应用

摘要 文章简要介绍了泰勒公式的证明及其推导过程,详细讨论了泰勒公式在最优化理论领域的应用,分别讨论了泰勒公式在理论证明和算法设计上面的应用,并用简单的算例加以说明。 关键词:泰勒公式,最优化理论,应用

一、泰勒公式 1.1 一元泰勒公式 若函数)(x f 在含有x 的开区间),(b a 内有直到1+n 阶的导数,则当函数在此区间内时,可展开为一个关于)(0x x -的多项式和一个余项的和: 1 0)1(00)(200000)()!1()()(!)()(!2)())(()()(++-++-++-''+-'+=n n n n x x n f x x n x f x x x f x x x f x f x f ξ 其中=)(x R n 10)1()()!1() (++-+n n x x n f ξ ξ在x 和0x 之间的一个数, 该余项)(x R n 为拉格朗日余项。 1.1.1 泰勒公式的推导过程 我们知道α+-'+=))(()()(000x x x f x f x f ,其在近似计算中往往不够精确,于是我们需要一个能够精确计算的而且能估计出误差的多项式: n n x x a x x a x x a a x p )()()()(0202010-++-+-+= 来近似表达函数)(x f ; 设多项式)(x p 满足)()()()(),()(0)(0)(0000x f x p x f x p x f x p n n ='='= 因此可以得出n a a a 10,.显然,00)(a x p =,所以)(00x f a =;10)(a x p =',所以 )(01x f a '=;20!2)(a x p ='',所以 !2)(02x f a ''= n n a n x p !)(0) (=,所以有! )(0)(n x f a n n = 所以,n n x x n x f x x x f x x x f x f x p )(! )()(!2)())(()()(00)(2 00000-++-''+ -'+= 1.1.2 泰勒公式余项的证明 我们利用柯西中值定理来推出泰勒公式的余项(拉格朗日余项): 设)()()(x p x f x R n -= 于是有0)()()(000=-=x p x f x R n 所以有0)()()()(0) (000===''='=x R x R x R x R n n n n n 根据柯西中值定理可得: n n n n n n n x n R x x x R x R x x x R ))(1()(0)()()()()(011)1(00)1(0-+'=---=-++ξξ 1ξ是在x 和0x 之间的一个数; 对上式再次使用柯西中值定理,可得:

(完整版)泰勒公式及其应用(数学考研)

第2章 预备知识 前面一章我们介绍了一下泰勒和他的成就,那他的主要杰作泰勒公式究竟在数学中有多大的用处呢?那么从这一章开始我们就要来学习一下所谓的泰勒公式,首先来了解一下它是在什么样的背景下产生的. 给定一个函数)(x f 在点0x 处可微,则有: )()()()(000x x x f x f x x f ?+?'+=?+ο 这样当1<

泰勒公式及其应用

泰勒公式及其应用 [摘 要] 文章简要介绍了泰勒公式及其几个常见函数的展开式,针对泰勒公式的应用讨论了九个问题, 即应用泰勒公式求极限,证明不等式,判断级数的敛散性,证明根的唯一存在性,判断函数的极值,求初等函数的幂级数展开式,进行近似计算,求高阶导数在某些点的数值,求行列式的值. [关键词] 泰勒公式;极限;不等式;敛散性;根的唯一存在性;极值;展开式;近似计算;行列式. 1 引言 泰勒公式是高等数学中一个非常重要的内容,它将一些复杂函数近似地表示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆.作者通过阅读大量的参考文献,从中搜集了大量的习题,通过认真演算,其中少数难度较大的题目之证明来自相应的参考文献,并对这些应用方法做了系统的归纳和总结.由于本文的主要内容是介绍应用,所以,本文会以大量的例题进行讲解说明. 2 预备知识 定义2.1]1[ 若函数f 在0x 存在n 阶导数,则有 '''200000()() ()()()()1!2! f x f x f x f x x x x x =+-+-+ ()000() ()(())! n n n f x x x o x x n +-+- (1) 这里))((0n x x o -为佩亚诺型余项,称(1)f 在点0x 的泰勒公式. 当0x =0时,(1)式变成)(! )0(!2)0(!1)0()0()()(2'''n n n x o x n f x f x f f x f +++++= ,称此式 为(带有佩亚诺余项的)麦克劳林公式.

定义2.2]2[ 若函数 f 在0x 某邻域内为存在直至 1+n 阶的连续导数,则 ''()' 2 0000000()()()()()()()...()()2!! n n n f x f x f x f x f x x x x x x x R x n =+-+-++-+ , (2)这里 ()n R x 为拉格朗日余项(1)10() ()()(1)! n n n f R x x x n ξ++=++,其中ξ在x 与0x 之间,称(2)为f 在0x 的泰勒 公式. 当0x =0时,(2)式变成''()' 2(0)(0)()(0)(0)...()2!! n n n f f f x f f x x x R x n =+++++ 称此式为(带有拉格朗日余项的)麦克劳林公式. 常见函数的展开式: 12)! 1(!!21+++++++=n x n x x n e n x x x e θ . )()! 12()1(!5!3sin 221 253++++-+-+-=n n n x o n x x x x x . 24622cos 1(1)()2!4!6!(2)! n n n x x x x x o x n =-+-++-+ . )(1 )1(32)1ln(11 32++++-+-+-=+n n n x o n x x x x x . )(111 2n n x o x x x x +++++=- +-+ +=+2 ! 2)1(1)1(x m m mx x m . 定理 2.1]3[(介值定理) 设函数 f 在闭区间 ],[b a 上连续,且 )()(b f a f ≠,若0μ为介于 )(a f 与)(b f 之间的任何实数,则至少存在一点0x ),(b a ∈,使得

常用的泰勒公式

常用的泰勒公式 e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+…… ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1) sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。(-∞

泰勒公式及其应用论

本科毕业论文(设计) 论文题目:泰勒公式及其应用 学生姓名: 学号: 专业:数学与应用数学 班级: 指导教师: 完成日期:2012年 5月20日

泰勒公式及其应用 内容摘要 本文介绍泰勒公式及其应用,分为两大部分:第一部分介绍了泰勒公式的相关基础知识,包括带Lagrange余项、带Peano余项两类不同泰勒公式;第二部分通过详细的例题介绍了泰勒公式在八个方面的应用. 通过本文的阅读,可以提高对泰勒公式及其应用的认识,明确其在解题中的作用,为我们以后更好的应用它解决实际问题打好坚实的基础. 关键词:泰勒公式 Lagrange余项 Peano余项应用

The Taylor Formula and The Application Of Taylor Formula Abstract This paper focuses on Taylor formula and the application of Taylor formula. It has two parts. The first part of this paper introduces the basic knowledge of the Taylor formula,Including Taylor formula with Lagrange residual term and with Peano residual term. With the detailed examples,The second part introduces eight applications of Taylor formula. By reading this paper,you can build a preliminary understanding of Taylor formula,define the function in problem solving ,in the later application that can be a good reference. Key Words:Taylor formula Lagrange residual term Peano residual term application

泰勒公式及其应用典型例题

泰勒公式及其应用 常用近似公式,将复杂函数用简单的一次多项式函数近似地表示,这是一个进步。当然这种近似表示式还较粗糙(尤其当较大时),从下图可看出。 上述近似表达式至少可在下述两个方面进行改进: 1、提高近似程度,其可能的途径是提高多项式的次数。 2、任何一种近似,应告诉它的误差,否则,使用者“心中不安”。 将上述两个想法作进一步地数学化: 对复杂函数,想找多项式来近似表示它。自然地,我们希望尽可能多地反映出函数所具有的性态——如:在某点处的值与导数值;我们还关心的形式如何确定;近似所产生的误差。 【问题一】 设在含的开区间内具有直到阶的导数,能否找出一个关于的次多项式

近似? 【问题二】 若问题一的解存在,其误差的表达式是什么? 一、【求解问题一】 问题一的求解就是确定多项式的系数。 …………… 上述工整且有规律的求系数过程,不难归纳出:

于是,所求的多项式为: (2) 二、【解决问题二】 泰勒(Tayler)中值定理 若函数在含有的某个开区间内具有直到阶导数,则当时,可以表示成 这里是与之间的某个值。 先用倒推分析法探索证明泰勒中值定理的思路:

这表明: 只要对函数及在与之间反复使用次柯西中值定理就有可能完成该定理的证明工作。 【证明】 以与为端点的区间或记为,。 函数在上具有直至阶的导数, 且 函数在上有直至阶的非零导数, 且 于是,对函数及在上反复使用次柯西中值定理,有

三、几个概念 1、 此式称为函数按的幂次展开到阶的泰勒公式; 或者称之为函数在点处的阶泰勒展开式。 当时,泰勒公式变为 这正是拉格朗日中值定理的形式。因此,我们也称泰勒公式中的余项。 为拉格朗日余项。 2、对固定的,若 有

常见泰勒公式展开式

泰勒公式 泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值做系数构建一个多项式来近似表达这个函数。 泰勒公式得名于英国数学家布鲁克·泰勒,他在1712年的一封信里首次叙述了这个公式。泰勒公式是为了研究复杂函数性质时经常使用的近似方法之一,也是函数微分学的一项重要应用内容历史发展 泰勒公式是高等数学中的一个非常重要的内容,它将一些复杂的函数逼近近似地表示为简单的多项式函数,泰勒公式这种化繁为简的功能,使得它成为分析和研究许多数学问题的有力工具。 18世纪早期英国牛顿学派最优秀的代表人物之一的数学家泰勒( Brook T aylor),其主要著作是1715年出版的《正的和反的增量方法》,书中陈述了他于1712年7月给他老师梅钦信中提出的著名定理——泰勒定理。1717年,泰勒用泰勒定理求解了数值方程。泰勒公式是从格雷戈里——牛顿差值公式发展而来,它是一个用函数在某点的信息描述其附近取值的公式。如果函数足够光滑,在已知函数某一点各阶导数的前提下,泰勒公式可以利用这些导数值作为系数构建一个多项式来近似该函数在这一点的邻域中的值。1772年,拉格朗日强调了泰勒公式的重要性,称其为微分学基本定理,但是泰勒定理的证明中并没有考虑级数的收敛性,这个工作直到19世纪20年代,才由柯西完成。泰勒定理开创了有限差分理论,使任何单变量函数都

可以展开成幂级数,因此,人们称泰勒为有限差分理论的奠基者。 泰勒公式是数学分析中重要的内容,也是研究函数极限和估计误差等方面不可或缺的数学工具,泰勒公式集中体现了微积分“逼近法”的精髓,在近似计算上有独特的优势。利用泰勒公式可以将非线性问题化为线性问题,且具有很高的精确度,因此其在微积分的各个方面都有重要的应用。泰勒公式可以应用于求极限、判断函数极值、求高阶导数在某点的数值、判断广义积分收敛性、近似计算、不等式证明等方面。

泰勒公式及其应用

泰勒公式的应用 内容摘要:泰勒公式是数学分析中一个非常重要的内容,不仅在理论上占有重要的地位,在近似计算、极限计算、函数凹凸性判断、敛散性的判断、等式与不等式的证明、中值问题以及行列式的计算等方面有重要的应用。本文着重对极限计算、敛散性的判断、中值问题以及等式与不等式的证明这四个方面进行论述。 关键词:泰勒公式皮亚诺余项级数拉格朗日余项未定式

目录 内容摘要 0 关键词 0 1.引言 (2) 2.泰勒公式 (2) 2.1具有拉格朗日余项的泰勒公式 (2) 2.2带有皮亚诺型余项的泰勒公式 (2) 2.3带有积分型余项的泰勒公式 (2) 2.4带有柯西型余项的泰勒公式 (3) 3.泰勒公式的应用 (3) 3.1利用泰勒公式求未定式的极限 (3) 3.2利用泰勒公式判断敛散性 (6) 3.3 利用泰勒公式证明中值问题 (11) 3.4 利用泰勒公式证明不等式和等式 (13) 4. 结束语 (19) 参考文献 (20)

1.引言 泰勒公式是数学分析中一个非常重要的内容,微分学理论中最一般的情形是泰勒公式, 它建立了函数的增量,自变量增量与一阶及高阶导数的关系,将一些复杂的函数近似地表示为简单的多项式函数,这种化繁为简的功能使它成为分析和研究其他数学问题的有力杠杆。我们可以使用泰勒公式, 来很好的解决某些问题, 如求某些极限, 确定无穷小的阶, 证明等式和不等式,判断收敛性,判断函数的凹凸性以及解决中值问题等。本文着重论述泰勒公式在极限,敛散性判断,中值问题以及等式与不等式的证明这四个方面的具体应用方法。 2.泰勒公式 2.1具有拉格朗日余项的泰勒公式 如果函数()x f 在点0x 的某邻域内具有n+1阶导数,则对该邻域内异于0x 的任意点x,在0x 和x 之间至少?一个ξ使得: 当0x =0时,上式称为麦克劳林公式。 2.2带有皮亚诺型余项的泰勒公式 如果函数()x f 在点0x 的某邻域内具有n 阶导数,则对此邻域内的点x 有: 2.3带有积分型余项的泰勒公式

浅谈泰勒公式及其应用

论文提要 泰勒公式是数学分析中的重要组成部分,它的理论方法已成为研究函数极限和估计误差等方面的不可或缺的工具集中体现了微积分“逼近法”的精髓,它是微积分中值定理的推广,亦是应用高阶导数研究函数性态的重要工具,它的用途很广泛,本文论述了泰勒公式的一些基本内容,并着重介绍了它在数学分析中的一些应用。即应用泰勒公式求极限,利用泰勒公式证明中值公式,判断函数敛散性,证明不等式,判断函数的极值,求幂级数展开式,进行近似计算,求高阶导数在某些点的数值。

浅谈泰勒公式及其应用 摘 要: 本文介绍了泰勒公式及几个常见函数的展开式,针对泰勒公式的应用讨论了八个问题.即应用泰勒公式求极限,利用泰勒公式证明中值公式,判断函数敛散性,证明不等式,判断函数的极值,求幂级数展开式,进行近似计算,求高阶导数在某些点的数值. 关键词:泰勒公式 泰勒公式是高等数学中一个非常重要的内容,它将一些复杂函数近似地表示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆.作者通过阅读大量的参考文献,从中搜集了大量的习题,通过认真演算,其中少数难度较大的题目之证明来自相应的参考文献,并对这些应用方法做了系统的归纳和总结.由于本文的主要内容是介绍应用,所以,本文会以大量的例题进行讲解说明. 1 预备知识 定义 1.1 若函数f 在点0x 存在直至n 阶导数,则有()()()n n f x T x T x ==+ ()0n o x x +,即 ()()()()()()()()()().! !20002 00000n n n x x o x x n x f x x x f x x x f x f x f -+-+?+-''+ -'+=为⑴式. ⑴式称为函数f 在点0x 处的泰勒公式,()()()x T x f x R n n -=称为泰勒公式的余项,形如()n x x o 0-的余项称为佩亚诺型余项.所以⑴式又称为带有佩亚诺余项的泰勒公 式. 当00=x 时,得到泰勒公式: ()()()()()()() n n x o n f x f x f f x f ++?+''+'+=! 0!20002. 它也称为(带有佩亚诺余项的)麦克劳林公式. 定义1.2 若函数f 在[]b a ,上存在直至n 阶的连续导函数,在()b a ,内存在()1+n 阶导函数,则对任意给定的x ,[]b a x ,0∈,至少存在一点()b a ,∈ξ,使得

泰勒公式及应用论文

泰勒公式及应用论文 Prepared on 22 November 2020

毕业论文 题目:泰勒公式及应用学生姓名:陆连荣 学生学号: 05 系别:数学与计算科学系专业:数学与应用数学届别: 2012届 指导教师:向伟

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 前言: (1) 1泰勒公式 (2) 带有拉格朗日余项的泰勒公式 (2) 带有佩亚诺余项的泰勒公式 (2) 带有积分型余项的泰勒公式 (2) 带有柯西型余项的泰勒公式 (3) 2 泰勒公式的应用 (3) 利用泰勒公式求极限 (3) 利用泰勒公式证明不等式及中值问题 (5) 利用泰勒公式讨论积分及级数的敛散性 (8) 利用泰勒公式求函数的高阶导数 (11) 研究泰勒公式在近似计算中的应用 (12) 结语 (12) 致谢 (13) 参考文献 (13)

泰勒公式及应用 学生:陆连荣 指导教师:向伟 淮南师范学院数学与计算科学系 摘要;泰勒公式是数学分析中一个非常重要的内容,不仅在理论上占有重要的地位,而且在求极限、证明不等式、讨论级数及积分的敛散性、求函数的高阶导数、证明中值公式、求解导数问题及在近似计算等中都有极其重要的作用.在本文中上述所列的几个作用都有论述,但着重论述泰勒公式在求极限、级数及积分的敛散性判断、证明不等式及中值公式与求解导数问题中的作用。 关键词:泰勒公式;应用;级数;敛散性 Taylor formula and its application Student: Lu Liangrong Instructor : Xiang Wei Department of Mathematics and Computational Science: Huainan Normal University Abstract:Taylor formula in mathematical analysis is a very important content, not only in theory occupies an important position, and in the limit, to prove inequality, discuss the convergence and divergence of ser- ies and integral of function, high order derivative, mean value formula for solving the problem of proof, derivative and approximate calculation are an extremely important role. In this paper the above listed several roles are discussed, but focuses on Taylor's formula in calculating the limit, the series and the in- tegral of the divergence and judge, the proof of inequality and median formula and solving the problem of derivative function. Key words: Taylor formula; Application; Series; Convergence and divergence

相关文档
最新文档