有源电力滤波器谐波检测综述

有源电力滤波器谐波检测综述
有源电力滤波器谐波检测综述

有源电力滤波器谐波检测综述

新疆吐哈油田公司 陈致清 孙妍玮 杨洪儒 周波

摘要 介绍并归类了目前常用的几种谐波检测方法,叙述了小波变换、瞬时无功功率理论和神经网络等谐波检测新方法的原理及发展现状,简要概括了各种谐波检测方法的特点。

关键词:有源滤波 谐波检测 电能质量

1 引言

随着电力电子技术的飞速发展,各种功率开关器件以及其它非线性负载得到了广泛的应用,这一方面给电能的变换应用带来了方便,并提高了变换的效率;另一方面导致谐波被大量地注入电网,即电力污染[1]。为了解决谐波问题,使用有源滤波器是最常使用的方法。

有源滤波器的性能受到逆变器特性,采用的控制方法以及参考信号发生器准确性的限制。因此,如何快速准确的检测出谐波就成为APF 正常运行的基础问题,显得尤为重要。早在八十年代开始就已经陆续提出了许多种用于有源电力滤波器的谐波检测技术,从谐波检测方法发展的历史来看,它经历着一个由频域、时域、神经网络、自适应参数辨识的发展过程。本文将对几种常用的谐波检测技术进行分类,并给与简单介绍。

2 频域谐波检测技术

2.1 基于傅立叶级数的检测方法

傅立叶变换是检测谐波的常用方法,用于检测基波和整数次谐波。任何形式的无直流成分的周期电流均可以表示为[2]

()()()1

cos sin n f n f n i t a n t b n t ωω∞

=??=

+??

∑ (1) 其中,ωf 为基波的角频率。上式中的系数为:

()()()()

12cos k n s f s

j k N a k i jT n jT N

ω=--=

(2) ()()(

)()

12sin k n s f s

j k N b k i jT n jT N

ω=--=

(3)

其中T s 是采样周期,N 是整数。通过这种方法特殊的电流谐波可以被识别。

目前,傅立叶变换技术已成熟,但也有局限性:①需要信号是稳态的;②没有反映随时间变化的频率;③傅立叶变换需要一定时间的采样值,计算量大,计算时间长,致使检测时间长,实时性差;④即使信号是稳态的,当信号频率和采样频率不一致时,也会产生频谱泄漏效应和栅栏效应,致使计算的信号参数(频谱、幅值和相位)不准确,无法满足检测精度的要求。

2.2 快速傅立叶变换和离散傅立叶变换

离散傅里叶变换(DFT )是一种用于离散化信号处理的数学变换,通过这种变换可以同时得到要求谐波的幅值和相位信息。快速傅立叶变换(FFT )遵循与DFT 相同的数学表达式,但是采用不同的形式以减小计算数,从而减小要求的DSP 运算时间。

对于快速傅立叶变换和离散傅立叶变换的应用,有一些基本的假设。这些假设包括:(1)采样频率应高于分析信号中最高频率的2倍;(2)信号中每个频率都应该是基波频率的整数倍。

FFT 的应用条件:(1)采样数为2的整数幂,且高于整数周期;(2)波形是静止的。当采样数不满足FFT/DFT 的基本假设时,通常的FFT 或DFT 就无法满足要求了。此时可以应用一种基于卡尔曼滤波器的算法。应用FFT 可以有效降低DFT 的计算负担。 2.3 基于小波变换的分析方法

小波变换是一种新的信号变换分析方法,其突出特点就是可以通过数学变换充分突出信号的某些方面的特征。其不仅适用于稳态信号的研究,也适用于时变信号的研究[3]。

设x (t )是平方可积函数(记作x (t )∈L 2

(R )),

则信号x (t )的连续小波变换式(Wavelet Transform ,

简称WT )可以定义为:

()()(),,X a b W a b x t t dt ψ+∞

*

-∞=

?? (4) 式中,参数a 为尺度伸缩参数,参数b 为时间平移

参数,()(),//a b t t b a a ψψ??=-??是可以根据参数a ,

b 的变化而放大和移位的小波母函数,定义在右半平面上的开区间(b, a )上面,其中(b ∈R ,a ﹤0)。

上标“*”代表共轭。

3 时域谐波检测技术

3.1 模拟滤波器

在没有提出瞬时无功功率之前,普遍采用模拟滤波器来实现谐波检测。模拟滤波器有两种,一是通过滤波器滤除基波电流分量,得到谐波电流分量。二是用带通滤波器得出基波分量,再与被检测电流相减后得到谐波电流分量,其原理和电路结构简单,造价低,能滤除一些固有频率的谐波。其缺点是:①误差大,实时性差,电网频率变化时尤其明显;②对电路元件参数十分敏感,参数变化时检测效果明显变差。

3.2 改进低通滤波器

常用的采用低通滤波器的谐波检测法具有原理简单,能同时补偿功率因数和谐波电流的优点。同时它具有如下缺点:

①同相基波参考电压的幅值,模拟乘法器的定标系数和低通滤波器的增益都会影响有功电流的幅值。

②电压转换器中一个微小的相移,会降低电路的精度。

③参考电压中的的电压波形畸变将会在电路中引入一个污染的正弦信号。

为了解决上述问题,提出了一种改进的低通滤波器方法[4]。其原理只是在原方法中引入了一个反馈和一个积分增益环节,结构图如图1所示。

低通

滤波器

?

线电压同相正弦发生器

P

I ?P

I ()p i t +

-

()

F i t ()

s v t ()

L i t ()

cos t ω反馈环图1 改进低通滤波器方法

3.3 瞬时无功功率理论

1983年H. Akagi 提出三相电路瞬时无功功率理论,该理论是以瞬时有功功率p 和瞬时无功功率

q 定义为基础,亦称pq 理论。1991年

提出i p -i q 检测方法。与基于p-q

运算法相比,i p -i q 运算法的优点在于可以消除电压

谐波和不对称电压的影响,从而获得更广泛的使用

[5]

。i p -i q 运算方式检测三相电路谐波的原理如图2所

示。

PLL

LPF LPF

32C C

23

C C sin

cos -+

+

+

---

a i

b i c

i ah i bh i ch

i a

e

图2 i p -i q 运算方式的原理图

由于瞬时零序无功功率无法在通常的p-q 理论下定义,所以这种理论不遵循能量守恒定律。而p-q-r 理论同时具有p-q 理论和交叉矢量理论的优点,其定义的瞬时功率遵循能量守恒定律。该理论最大的优势是可以扩展到三相四线系统。

针对工程应用的需要,有文章提出了对i p -i q 方法在谐波检测和无功电流应用上的改进。其在三相坐标系下将瞬时电流矢量分解为与电压矢量同步旋转分量和动态旋转分量两部分,改进i p -i q 方法检测电网谐波电流的原理如图3所示。

PLL

sin

cos

LPF

LPF 1

C 2

C e

i

p

i 'q

i 'p i 'q

i '1i h

i +

-

图3 改进i p -i q 法原理图

2002年Hyosung Kim 提出了基于三维坐标变换

的p-q-r 理论,在这种方法中采用了一种不同的坐标变换[6]。电流从0-α-β坐标系变换到p-q-r 坐标系,如下式:

00

0000010p q r v v v i i v v v v i i v

v v i i v v v v v v v βα

βαββ

αβαααβ

αβαβ

β

ααβαβ

αβ------??

????

??

??

???

?

??

??=-

??????????????

??

??--?????

?

(5) 000p q r u v u u αβ--????

????

=????????????

(6) 当瞬时实功率p u (t )和两个瞬时无功功率q r (t )和q q (t )被定义后,电流成分i p ,i q 和i r 可以分别由三个功率变量计算如下:

1

0010100

1p u q r p

r q i p i q e i q ??

?????????

?=?????

?

??????-??????

(7)

3.4 单位功率因数法(UPF)

这种方法控制的目的是从电源侧来看,负载和补偿器可以看作是一个电阻。因为电源电流空间矢量与公共耦合点(PCC)电压矢量同相位,如下式所示

[7]

ref S i K u

=? (8)

其中,K 是一个定值,其值由PCC 电压和负载决定。

此时,电源产生的功率如式(9)所示。

()2

2

2

0s s p u i u K u K u u u αβ

=?=??=++ (9)

由于电源产生的功率等于负载侧瞬时有功功率的直流部分,因此,可以确定K 如下式。

()

2

2

2

0L L dc

p p K u u u αβαβ

+=

++ (10)

最终,可以得到电源电流的参考量为式(11)。

()000

02220ref ref

ref

S L L S dc

S i u u p p i K u u u u u u u i αβα

αααβββ

β????

????+??????==

????++??????????

????

(11)

3.5 同步参考坐标系检测原理

同步参考坐标系法又称DQ 法,在DQ 法中,负载电流由a-b-c 坐标系变换到旋转的d-q 坐标系,如下式[8]

22sin sin sin 332

322cos cos cos 33a

d b

q c

i i i

i i ππθ

θθππθθθ?

??

??

?-+??

?

? ????

??? ?

?=?? ? ????

???

?-+ ? ? ???

???

??

?(12) 其中,θ 是d-q 轴旋转的角度,θ =ωt ,ω是电源角频率。

这种方法在正弦电流不含无功成分时,可以在不平衡及非正弦条件下实现很好的性能。另外,这种方法的缺点在于,d-q 变换中假设电源频率不变,或者频率变化不大。所以当实际电网中的基波频率发生大的偏移时,这种谐波检测方法存在较大误差。 3.6 同步检测法

同步检测法是一种使补偿后电网电流波形与电网电压波形同相的谐波电流检测方法[9]

。在三相系统中,根据补偿分量的不同,可分为等功率法

(PSD )、等电流法(CSD )和等电阻法(RSD ),即分

别使补偿后各相的功率、电流和电阻相等。

同步检测法需要根据三相电压信号、电流信号求解补偿电流,原理如图4所示。图中e a (t ), e b (t ), e c (t )和i a (t ), i b (t ), i c (t )分别为三相电压和电流瞬时值;P 为三相平均有功功率;i af (t ), i bf (t ), i cf (t )和i ac (t ), i bc (t ), i cc (t )分别为检测所得三相基波电流值和补偿电流参考值。

瞬时有功功率求取

参考电流求取

基波电压求取

a

i b

i c

i ac i bc i cc

i +++

-

--P

a e

b e c

e

图4 同步检测法原理图

3.7 电容电压控制检测方法

电容电压控制技术通过调节功率变换器的直流环电压来完成谐波滤除。该技术是基于功率平衡原理,其中电源提供的实功率等于负载实功率加逆变器损耗。因此变换器直流电容的平均电压应保持为一个定值[10]。当功率不平衡时,如负载发生变化,逆变器的直流电容将提供主电路与负载间的功率差,这将导致直流电容平均电压的变化。直流电容平均电压的变化能够反映出主电路与负载间功率的转换情况,通过变换器直流电容的平均电压的变化情况可以计算预期的主电流幅值I *s ,如图5。

这种电容电压控制的检测方法避免了谐波电流复杂而大量的计算,提高了运算速度。同时,在负载频繁变化的情况下也能具有良好的动态性能。

直流电压控制器*DC V DC

V a

e b e c

e *sa i *sb

i *sc

i

图5 电容电压控制技术

4 其他谐波检测技术

4.1 基于自适应干扰消除技术的检测方法

自适应干扰消除技术通过持续的自动调节使得系统保持在最佳的运行状态。负载电流中的基波成分与交流源电压相互校正。交流源电压为参考输入,负载电流为原始输入。那么基波成分为噪声,而谐波则看作信号[11]。

根据上述分析,可以得到如图6所示的自适应

检测电路,检测负载电流i L中包含有谐波电流i c与基波有功电流i1p。

原始输入

)(t

i

L

)(t

u

s W

)(*t

i

c

)(*

1

t

i

p

+

-

)(t

i

c

图6 自适应谐波检测原理

传统的自适应方法需要大量的时间来训练样本,这就使得该方法难以满足实时的要求。

4.2 基于神经网络的检测方法

将神经网络应用于谐波测量,主要涉及网络构建、样本的确定和算法的选择,目前已有一些研究成果。人工神经网络(ANN)具有人脑的某些功能特征,可以用来解决模式识别与人工智能中用传统方法难以解决的问题[12]。

谐波的神经网络检测方法的优点有:①计算量小;②检测精度高,各次谐波检测精度不低于小波变换和傅立叶变换,能取得令人满意的结果;③对数据流长度的敏感性低于小波变换和傅立叶变换;

④实时性好,可以同时实时检测任意整数次谐波;

⑤抗干扰性好,在谐波检测中可以应用一些随机模型的信号处理方法,对信号源中的非有效成分(如直流衰减分量)当作噪声处理,克服噪声等非有效成分的影响。但是,神经网络用于工程实际还有很多问题,例如:没有规范的神经网络构造方法,需要大量的训练样本,如何确定需要的样本数没有规范方法,神经网络的精度对样本有很大的依赖性,等等。另外,神经网络和小波变换一样,都属于目前正在研究的新方法实现技术尚需完善,因此目前在工程应用中还未优先选用。

5结论

综上所述,傅立叶变换是目前谐波测量仪其中广泛应用的基本理论依据;神经网络理论和小波分析方法应用于谐波测量,仍是目前正在研究的新方法,它可以提高谐波的实时性和精度;瞬时无功功率理论可用于谐波的瞬时检测,也可以用于无功补偿等谐波治理领域;其他方法也有其各自的优缺点,可以应用于不同的场合,这里不再赘述。

参考文献

[1] Sutherland P E. Harmonic measurements in industrial

power system[J].IEEE Transactions on Industry

Applications. 1995, 31(1): 175-183.

[2] Abrahamsen. F, David. A, et al. Adjustable speed drive

with active filtering capability for harmonic current compensation[C]// IEEE PESC 1995. Atlanta, USA: [s. n.], 1995: 1137-1143.

[3] 林湘宁, 刘沛. 小波分析基础理论及其在电力系统中的

应用[J]. 电力系统自动化,1997, 21(12): 79-83.

[4] J. Sebastian Tepper, Juan W. Dixon, Gustavo V enegas and

Luis Moran. A simple frequency-independent method for calculating the reactive and harmonic current in a nonlinear load[J]. IEEE Transactions on Industrial Electronics. 1996, 43(6): 647-654.

[5] 李圣清, 罗飞, 张昌凡. 基于ip及iq运算方式的改进型

谐波电流检测方法{J}. 电气传动, 2003, 33(2): 48-50. [6] H.Kim, H.Akagi, et al. The instantaneous power theory on

the rotating p-q-r reference frames[C]. IEEE PED 1999.

1999: 422-427.

[7] Fang Zheng Peng, Jih-Sheng Lai, et al. Generalized

instantaneous reactive power theory for three-phase power systems[J]. IEEE Transactions on Instrumentation and Measurement, 1995, 13(6): 293-297.

[8] V. Soares, P. V erdeiho, G. D. Marques, et al. An

instantaneous active and reactive current method for active filters[J]. IEEE Transactions on Power Electronics, 2000, 15(4): 660-669.

[9] Othman H A, Angquist L. Analytical modeling of

thyristor-controlled series capacitors for SSR studies[J].

IEEE Transactions on Power Systems, 1996, 11(1): 119-127.

[10] 张鹏鹰, 王向军, 曹跃云. 并联型电力有源滤波器直流

电容电压控制的研究[J]. 电工技术学报, 2000, 6(3): 3-6.

[11] Luo Shigguo, Hou Zhencheng. An adaptive detecting

method for harmonic and reactive current[J]. IEEE Transactions on Industry Electronics, 1995, 42(1): 85-89.

[12] Pecharanin N, Mitsui H, Sone M. Harmonic detection by

using neural network[J]. Proceedings of IEEE International Conference. 1995, 27(2): 923-926.

作者简介:陈致清,男,工程师。毕业于中国石油大学(华东)石油工程专业,长期从事油田地面工程设计、设计管理和科研工作。通信地址:新疆哈密市石油基地工程技术研究院,839009

电力系统谐波检测与治理的研究

电力系统谐波检测与治理的研究 摘要:目前电力系统谐波危害已经引起了各个部门的关注,为了整个供电系统 的供电质量,必须对谐波进行有效的检测和治理。 关键字:电力谐波检测治理 前言随着我国工业化进程的迅猛发展,电网装机容量不断加大,电网中电力电子元件的 使用也越来越多,致使大量的谐波电流注入电网,造成正弦波畸变,电能质量下降,不但对 电力系统的一些重要设备产生重大影响,对广大用户也产生了严重危害。目前,谐波与电磁 干扰、功率因数降低被列为电力系统的三大公害,因而了解谐波产生的机理,研究和清除供 配电系统中的高次谐波,对改于供电质量、确保电力系统安全、经济运行都有着十分重要的 意义。 一、电力系统谐波危害 ①谐波会使公用电网中的电力设备产生附加的损耗,降低了发电、输电及用电设备的效率。大量三次谐波流过中线会使线路过热,严重的甚至可能引发火灾。 ②谐波会影响电气设备的正常工作,使电机产生机械振动和噪声等故障,变压器局部严 重过热,电容器、电缆等设备过热,绝缘部分老化、变质,设备寿命缩减,直至最终损坏。 ③谐波会引起电网谐振,可能将谐波电流放大几倍甚至数十倍,会对系统构成重大威胁,特别是对电容器和与之串联的电抗器,电网谐振常会使之烧毁。 ④谐波会导致继电保护和自动装置误动作,造成不必要的供电中断和损失。 ⑤谐波会使电气测量仪表计量不准确,产生计量误差,给供电部门或电力用户带来直接 的经济损失。 ⑥谐波会对设备附近的通信系统产生干扰,轻则产生噪声,降低通信质量;重则导致信息丢失,使通信系统无法正常工作。 ⑦谐波会干扰计算机系统等电子设备的正常工作,造成数据丢失或死机。 ⑧谐波会影响无线电发射系统、雷达系统、核磁共振等设备的工作性能,造成噪声干扰 和图像紊乱。 二、谐波检测方法 1.模拟电路 消除谐波的方法很多,即有主动型,又有被动型;既有无源的,也有有源的,还有混合 型的,目前较为先进的是采用有源电力滤波器。但由于其检测环节多采用模拟电路,因而造 价较高,且由于模拟带通滤波器对频率和温度的变化非常敏感,故使其基波幅值误差很难控 制在10%以内,严重影响了有源滤波器的控制性能。近年来,人工神经网络的研究取得了较 大进展,由于神经元有自适应和自学习能力,且结构简单,输入输出关系明了,因此可用神 经元替代自适应滤波器,再用一对与基波频率相同,相位相差90度的正弦向量作为神经元 的输入。由神经元先得到基波电流,然后检测出应补偿的电流,从而完成谐波电流的检测。 但人工神经网络的硬件目前还是一个比较薄弱的环节,限制了其应用范围。 2.傅立叶变换 利用傅立叶变换可在数字域进行谐波检测,电力系统的谐波分析,目前大都是通过该方 法实现的,离散傅立叶变换所需要处理的是经过采样和A/D转换得到的数字信号,设待测信 号为x(t),采样间隔为 t秒,采样频率 =1/ t满足采样定理,即大于信号最高频率分量的2倍,则采样信号为x(n t),并且采样信号总是有限长度的,即n=0,1……N-1。这相当于对无限长 的信号做了截断,因而造成了傅立叶变换的泄露现象,产生误差。此外,对于离散傅立叶变 换来说,如果不是整数周期采样,那么即使信号只含有单一频率,离散傅立叶变换也不可能 求出信号的准确参数,因而出现栅栏效应。通过加窗可以减小泄露现象的影响。 3.小波变换 小波变换已广泛应用于信号分析、语音识别与合成、自动控制、图象处理与分析等领域。电力谐波是由各种频率成分合成的、随机的、出现和消失都非常突然的信号,在应用离散傅 立叶变换进行处理受到局限的情况下,可充分发挥小波变换的优势。即对谐波采样离散后,

电力系统谐波及其检测方法研究

第23卷 第5期 电子测量与仪器学报 Vol. 23 No. 5 2009年5月 JOURNAL OF ELECTRONIC MEASUREMENT AND INSTRUMENT · 29 · 本文于2008年1月收到。 *基金项目: 国家自然科学基金(编号: 60775047)资助项目; 国家863计划(编号: 2007AA042244)资助项目。 电力系统谐波及其检测方法研究* 唐 求 王耀南 郭斯羽 (湖南大学电气与信息工程学院, 长沙 410082) 摘 要: 谐波测量在电力系统中占有重要的作用和地位。本文概述了谐波测量的主要方法, 对基于加窗插值FFT 的谐波测量方法进行了分析和研究。在此基础上, 设计并实现了一种多功能虚拟谐波测量系统, 采用加窗插值FFT 算法, 以图形化编程语言LabVIEW 为开发平台, 实现了电力系统电压、电流谐波参数的测量。与传统的谐波测量系统相比, 该系统硬件简单、编程灵活、可自定义、数据分析与处理能力强、使用方便, 测量结果证明了系统的可行性和准确性。 关键词: 谐波测量;加窗插值FFT ;虚拟仪器;LabVIEW 中图分类号: TM714 文献标识码: A 国家标准学科分类代码: 470.4054 Research on harmonics and its measurement method in power system Tang Qiu Wang Yaonan Guo Siyu (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China) Abstract: The harmonic measurement plays an important role in power system. In this paper, some main harmon-ics measurement methods are generally described, and a harmonic measurement method based on interpolating win-dowed FFT is discussed. According to the interpolating windowed FFT method, a multifunctional virtual instrument system for harmonic measurement of voltage and current signals is designed and implemented with LabVIEW envi-ronment. Compared with traditional harmonic measurement system, this system is flexible, self-defined, capable of data processing and analysis, with simple hardware and so on. The measurement results show the feasibility and the validity of the system. Keywords: Harmonic measurement;interpolating windowed FFT;virtual instrument;LabVIEW 1 引 言 近年来, 随着工业和民用用电负荷的迅速增加以及各种电力电子设备的广泛应用, 非线性负载的数量和容量日益增加, 电力系统谐波污染日趋严重。电网谐波使得电压、电流的波形发生畸变, 使电力系统的发、供、用电设备出现许多异常现象和故障, 对电力系统的安全、经济运行造成极大的危害。谐波问题已成为电力部门普遍重视和关心的问题[1] 。谐波测量是处理谐波问题的基础, 是分析和控制电网谐波含量的依据。 传统的电力谐波测量方法多采用电力谐波分析仪或MATLAB 软件包, 但是它们不具有图形化编程 和远程测控能力, 因此具有局限性。 本文在研究谐波测量的主要方法的基础上, 设计了基于加窗插值FFT 的虚拟谐波测量系统。实现了三相电压、三相电流的总谐波畸变率(THD)以及各次(1~13次)谐波畸变率的测量。系统集信息采集、处理和传输于一体, 具有数据采集、谐波分析处理和显示等功能, 试验结果表明了其性能良好, 测量稳定。 2 谐波测量方法 谐波测量是解决谐波问题的基础和主要依据, 通过对谐波的检测, 可以实时监测电网中谐波的含量及其潮流方向, 计量各次谐波含量、 谐波电压电流幅值、相位等参数, 从而提高测量和计量仪表的准确

有源电力滤波器的应用及效果.

有源电力滤波器的应用 所在学院:信息科学与工程学院 专业班级: 学生姓名: 学生学号: 指导教师:

有源电力滤波器的应用 上学期我们学习了《电力电子技术》这门课,通过这门课的学习我了解到:以非线性负载为主产生的谐波会对电力系统形成很大的危害,而传统的电力电子装置本身就是产生谐波的主要污染源。要想抑制电力电子装置和其它谐波源造成的电力系统谐波,基本思路有两条:一是装设补偿装置,设法补偿其产生的谐波;而是对电力电子装置本身进行改进,使其不产生谐波,同时也不消耗无功功率,或者根据需要能对其功率因数进行控制,即采用高功率因数变流器。 装设LC 调谐滤波器是传统的补偿谐波的主要手段。LC 调谐滤波器虽然存在很多缺陷,但其结构简单,既可补偿谐波,又可补偿无功,一直被广泛应用与电力系统中谐波和无功功率补偿。目前的趋势是采用先进的电力电子装置进行谐波补偿,这就是有源电力滤波器(APF )。与LC 无源滤波器相比,有源滤波器具有明显的优越性能,能对变化的谐波进行迅速的动态跟踪补偿,而且补偿特性不受电网频率和阻抗的影响。有源电力滤波器的变流电路可以分为电压型和电流型。从与补偿对象的连接方式看,有源电力滤波器又可分为并联型和串联型。电压型和并联型在实际中应用较广。 本学期做了一个谐波的产生和抑制的实验,其中谐波是由三相桥式整流电路这一非线性负载产生的,在实验中采用了两种抑制谐波的方法,一种是并联无功补偿电容器和LC 滤波器,另一种是并联一个有源电力滤波器。目标是经过这两次滤波,使谐波电流的畸变率降到5%左右。 有源电力滤波器基本原理如下图1所示。设负载电流为l i ,谐波检测器从负载电流中检测出谐波电流h i ,令指令电流*c h i i =-,补偿电流控制算法控制逆变 器产生补偿电流*c c i i =,注入母线,抵消负载电流中的谐波,达到抑制谐波电流流向电源的目的。系统由四个主要部分组成有源滤波主电路、外围驱动板、谐波检测器 、DSP 器件。

有源电力滤波器的发展历史和研究现状概述

有源电力滤波器的发展历史和研究现状概述 1969 年,Bird 和Marsh 等人提出通过向电网注入三次谐波电流来减少电流中 的谐波成分,从而改善电流波形的思想,这就是有源电力滤波技术的萌芽 [11]。 1971 年,日本的H.Sasaki 和T.Machida 提出有源电力滤波器技术,首次完整地描述了有源电力滤波器的基本原理:通过产生与负载谐波和无功电流大小相 等方向相反的补偿电流,来抵消负载谐波和无功电流,从而达到净化电网的目 的。但是由于当时电力电子技术的发展水平不高,全控型器件功率小、频率 低,采用线性放大器产生补偿电流, 损耗大、成本高,因而有源电力滤波器仅局限于实验研究,未能在工业中应 用。 1976 年,L.Gyugyi 等人提出用大功率晶体管构成PWM 逆变器控制APF 来抑制谐波,引起了普遍关注,确立了有源电力滤波器的主电路的基本拓扑结构和控 制方法,从原理上阐明了有源电力滤波器是一个理想的电流发生器,并讨论了 实现方法和相应的控制原理,奠定了有源电力滤波器的基础。 80 年代以来,随着大中功率全控型半导体器件的成熟和脉宽调制(Pulse Width Modulation PWM)控制技术的进步,对有源电力滤波器的研究逐渐活跃起来。这 一时期的一个重大突破是,1983 年H.Akagi 等人提出了“三相电路瞬时无功 功率理论”[12],以该理论为基础的谐波和无功电流检测方法在有源电力滤波 器中得到了成功的应用,极大地促进了有源电力滤波器的发展。 随着电力电子技术的发展,特别是高功率大电流的半导体器件及可关断晶闸管(GTO)的发展以及瞬时无功功率理论提出的发展,国内外对谐波问题的研究也不 断有新的进展,近年来,国际上有关有害电流检测和抑制技术的研究更是十分 活跃,每年都有量的论文发表。这一方面说明了这一研究的重要性,另一方面 也预示着这一领域的研究有望取得重大突破。 国外对有源电力滤波装置的开发研究工作始于20 世纪90 年代初期,到现在已进入实用化阶段。有源电力滤波技术作为改善供电质量的一项关键技术,其补 偿范围包括谐波、无功、畸变电压等,补偿对象有工业整流负载、电弧炉以及 电气化铁道等。在日本、美国以及德国等工业发达国家已得到了高度重视和日 益广泛的应用,APF 被公认为是今后改善电力系统电能质量的发展方向,现在 也已出现具有快速响应、稳定性高的有源滤波装置。目前,世界上APF 的主要生产厂家有日本三菱电机公司、美国西屋电气公司、德国西门子公司等。文献 显示,从1981 年以来,仅日本就有500 多台APF 投入运行,容量范围在 50kVA-60MVA;而在欧洲,投入运行的工业用并联APF 最大容量已经达到 610KVA[13]。

电力系统谐波检测算法分析

本科生毕业论文(设计)题目电力系统谐波检测算法分析 学生姓名 学号 学院电子与信息工程学院 专业电子信息工程 指导教师 二O一九年五月二十日

目录 1 绪论 (3) 1.1 谐波检测的目的及意义 (3) 1.2 国内外研究现状及发展趋势 (3) 1.3 课题研究内容 (4) 2 电力系统谐波简介 (4) 2.1 谐波的基本概念 (4) 2.1.1 什么是谐波 (4) 2.1.2 谐波的表示方法 (5) 2.1.3 谐波的特征量 (6) 2.2 谐波产生的原因 (6) 2.3 谐波的危害 (7) 2.4 电力系统谐波检测方法 (7) 3 基于瞬时无功功率的电力谐波检测技术 (8) 3.1 传统功率理论 (8) 3.2 三相瞬时无功功率 (9) 3.3 p-q谐波检测法 (11) 3.4 ip-iq谐波检测法 (12) 3.5 d-q谐波检测法 (13) 4 改进型ip-iq谐波检测法 (14) 4.1 调节LPF截止频率 (14) 4.2 增加PI调节器 (15) 5 仿真与分析 (16) 5.1 MATLAB简介 (16) 5.2 仿真模型的建立 (17) 5.2.1 p-q谐波检测法仿真模型 (17) 5.2.2 ip-iq谐波检测法仿真模型 (20) 5.2.3 d-p谐波检测法仿真模型 (23) 5.2.4 改进型ip-iq谐波检测法仿真模型 (24) 5.3 仿真实验 (25) 5.4 波形分析 (29)

5.5 本章小结 (29) 6 总结 (30) 参考文献 (30) 致谢 (33)

电力系统谐波检测算法分析 摘要:本篇论文,旨在针对电力系统谐波所涉及的算法检测过程,进行相对深入的细致研究。其中,本文着重于针对以三相瞬时无功功率理论为基础,而积极构建出的谐波电流检测算法,进行科学合理的综合探究,并深入阐述基于该理论的p-q、i p?i q、d-q这三种算法的原理,并在MATLAB平台上构建相应仿真系统,验证三种算法的可行性,对比三种算法的优劣,其中i p?i q算法检测谐波时更加精准迅速,适用范围更广,通过借助PI调节器以及更改LPF的参数,改进其中的i p?i q算法,进一步增加其谐波检测的精准度,实验结果表明,改进后的i p?i q 算法在检测精度上,较改进之前而言有较大提高。 关键词:谐波检测;瞬时无功功率; p-q;i p?i q; d-q;

电力系统谐波影响及消除

电力系统谐波影响及消除(网络摘录)2011.12.20 返回日志列表 从补偿电容无法投入,谈谐波危害,分析谐波来源,提出治理谐波的初步建议随着个私经济特别是特钢和化学工业在我市的发展,我公司的供电量也不断的增长,为了使功率因素达到标准,必须投入补偿电容,但是这几个乡镇的变电所的补偿电容器却无法投上,强行投入后,电容器熔丝也会很快熔断。但根据其他变电所运行经验,在此功率因数下,无功电流不应大于熔丝熔断电流。这是为什么呢? 经过对该地区的供电现状分析,这是由于谐波引起的。所谓谐波,即理想的电力系统向用户提供的应该是一个恒定工频的正弦波形电压,但是由于各种原因,使这种理想状态在实际中无法存在。因此通过对周期性电压或电流的傅立叶分解,所得到的频率为基波整数倍分量的含有量,称为谐波。 谐波对于电网的危害非常大,主要表现在以下方面: 1.由于电网主要是按基波设计的。由于LC元件的存在,虽然在基波时不会发生谐振,但在某个特定谐波时却可能引起谐振,可能将谐波电流放大几倍甚至数十倍,电网谐振引起设备过电压,产生谐波过流,对设备造成危害。特别是对电容器和与之串联的电抗器。其中,特别要注意的是,由于电容器是容性负载,能与电网上感性设备(其它设备主要是感性设备)配合,构成共振条件,又由于其大小与谐波频率成反比,因此,电容更容易吸收谐波共振电流,引起电容过载,造成电容损坏,或者熔丝熔断。 2.使电网中的电气设备产生额外的损耗(谐波功率),降低了设备的效率,同时谐波会影响设备的正常工作,例如变压器局部严重过热,电容器、电缆等设备过热,电机产生机械振动等故障,绝缘部分老化、变质,严重时候甚至设备损坏。 3.导致继电保护和自动装置误动或拒动,造成不必要的损失,谐波会使电气测量仪表测量不准确,造成计量误差。 另外,谐波还会产生对设备附近的通信系统产生干扰等其他危害。 既然谐波危害如此之大,那么谐波是如何产生的?又如何能减小它的影响和危害呢? 谐波来源 1、中频炉、电弧炉等设备是该地区谐波的主要来源 对该地区负荷进行分析,发现主要的原因是该地区特钢工业发达,中频炉、电弧炉等作为一类高效的加热源已经非常普及。电弧炉是利用电极物料间产生的电弧熔炼金属,因此,它的电流波形很不规则,含有多种谐波(2次到7次)以及间谐波,这是谐波的一个重要来源。而中频炉是工频电流整流后再变为中频,再利用电磁感应来熔炼金属,因此产生大量的高次谐波,其中以5次、7次、11次等奇次谐波为主。这正是该地区谐波的主要来源。 2、用户变压器群是该地区谐波的重要来源 一般情况下,三相变压器由于铁芯为“日”形状,中相比边相要短一半,因此,三个磁路的不对称引起变压器励磁电流中含有谐波分量。所以当对空载三相变压器加电压激励时,即使受电侧没有零序电流通路(中性点不接地或三角形接线),励磁电流中也会有谐波分量。虽然在实际运行时,这个谐波分量很小,但由于变压器绕组接法以及各绕组和电网各相的连接统一规定时,则各台变压器励磁电流里的同次谐波彼此叠加,形成了电网中谐波的又一重要来源。例如,在绝大多数配变中,都是Y,yn接线,变压器的中间的铁柱对应的线圈即中相接的都是B相,这样的统一接法,就为3、5、7等次谐波提供了一个分别互相叠加的条件。在该地区,现有35kV用户变压器5台,总容量400kVA,10kV用户变压器约800台,总容量330kVA.如此庞大的用户变群又成为了谐波的又一个重要来源。

船舶电力系统中的谐波检测方法综述

船舶电力系统中的谐波检测方法综述 船舶电力系统是一个独立的、小型的完整电力系统,由于整流型,冲击性等非线性负荷的存在,所以对比陆地大电网,船舶电力系统有着更加严重的电能质量问题,而其中最主要的问题就是谐波,谐波会使船舶电网供电质量指标严重下降,同时使得电网各个部件运行情况恶化。所以如何更快速更准确的测量出系统中的谐波与简谐波,成为了全世界的焦点。文章主要介绍了目前流行的谐波检测方法,并详细论述了各种检测方法上的优势与不足,以便在检测过程中选择更加恰当的方法。 标签:船舶电力系统;谐波;检测方法 1 概述 船舶電力系统是一个独立的系统,随着电力技术的飞速发展以及科技的进步,船舶电力系统已经从早期的单一照明供电,逐渐发展成现代的船舶电力。然而,正是由于大量半导变流器的普遍投入使用,以及电力技术的应用,这使得船舶电力系统中的谐波污染日益严重[1]。 谐波会造成电动机的电机和变压器的附加损耗,并且产生噪声、过热现象、谐波过电压以及机械振动,甚至会损坏变压器与电机。同时谐波会引起,电流变化率电压变化率过高或产生过热效应,控制系统误差,会给换流装置带来影响、并且引起晶闸管故障[2]。高次谐波也会对线路以及通讯设备带来干扰,从而产生电力测量仪表中的误差。 而谐波问题涉及面很广,其中包括畸变波形、谐波抑制的分析方法、谐波潮流计算、电网谐波潮流计算、谐波测量、谐波源分析以及谐波限制标准等[2]。谐波检测是谐波问题的一个重要分支,也是研究谐波问题的基础与出发点。 2 基于傅里叶变换的谐波检测算法 虽然加窗插值法能够减小一定的误差,但为了检测出信号中所有的间谐波和谐波分量,窗宽在大多数情况下可能会高达几十个信号周期,并且容易受噪声干扰,这对实时检测是不利的。 3 基于小波变换的谐波检测方法 小波变换是将信号与一个时域和频域均具有局部化性质的平移伸缩小波基函数进行卷积,将信号分解成位于不同频带时段上的各个成分。小波变换是在工程应用中最重要的是最优小波选择,目前主要是通过小波分析处理信号的结果与结论的误差来判定小波的好坏,并由此选择小波基。 特殊地,取a0=2,b0=1,可以得到二进小波(Dyadic Wavelet),相应的变

电力系统谐波检测与治理的研究

电力系统谐波检测与治理的研究 1、谐波的定义 供电系统谐波的定义是对周期性非正弦电量进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的力量,这部分电量称为谐波。谐波频率与基波频率的比值(n=fn/f1)称为谐波次数。电网中有时也存在非整数倍谐波,称为非谐波或分数谐波。谐波实际上是一种干扰量,使电网受到“污染”。 2、谐波的危害 电网谐波造成电网污染,正弦电压波形畸变,使电力系统的发供用电设备出现许多异常现象和故障,情况日趋严重。电力系统中谐波的危害是多方面的,概括起来有以下几个方面: 2.1 对供配电线路的危害 2.1.1 影响线路的稳定运行 供配电系统中的电力线路与电力变压器一般采用电磁式继电器、感应式继电器或晶体管继电器予以检测保护,使得在故障情况下保证线路与设备的安全。但由于电磁式继电器与感应式继电器对10%以下含量高达40%时又导致继电保护误动作,因而在谐波影响下,不能全面有效地起到保护作用。晶体管继电器虽然具有许多优点,但由于采用了整流取样电路,容易受谐波影响,产生误动或拒动。这样,谐波将严重威胁供配电系统的稳定与安全运行。 2.1.2影响电网的质量 电力系统中的谐波能使电网的电压与电流波形发生畸变。如民用电配电系统中的中性线,由于荧光灯、调光灯、计算机等负载,会产生大量的奇次谐波,其中3次谐波的含量较低,可达40%;三相配电线路中,相线上的3的整数倍谐波,在中性线上会叠加,使中性线的电流值可能超过相线上的电流。另外,相同频率的谐波电压与谐波电流要产生同次谐波的有功功率与无功功率,从而降低电网电压,浪费电网的容量。 2.2 对电力设备的危害 2.2.1对电力容器的危害 当电网存在谐波时,投入电容器后,其端电压增大,通过电容器的电流增加得更大,使电容器损耗功率增加。对于膜低复合介质电容器,虽然允许有谐波时的损耗功率为无谐波时损耗功率的1.38倍;对于全膜电容器,允许有谐波时的损耗功率为无谐波时的1.43倍,但如果谐波含量较高,超出电容器允许条件,就会使电容器过电流和过负荷,损耗功率超过上述值,使电容器异常发热,在电场和温度的作用下绝缘介质会加速老化。尤其是电容器投入在电压已经畸变的电网中时,还可能使电网的谐波加剧,即产生谐波扩大现象。另外,谐波的存在往往使电压器呈现尖顶波形,尖顶电压波易在介质中诱发局部放电,且由于电压变化率大,局部放电强度大,对绝缘介质更能起到加速老化的作用,从而缩短电容器的使用寿命。一般来说,电压每升高10%,电容器的寿命就要缩短1/2左右。再者,在谐波严重的情况下,还会使电容器鼓肚、击穿或爆炸。 2.2.2 对电力变压器的危害 谐波使变压器的铜耗增大,其中包括电阻损耗、导体中的涡流损耗与导体外部因漏磁通引起的杂散损耗都要增加。谐波还使变压器的铁耗增大,这主要表现在铁心中的磁滞损耗增加,谐波使电压的波形变得越差,则磁滞损耗越大。同时

电力有源滤波器的设计-开题报告

工程学院 本科毕业设计(论文)开题报告题目:电力有源滤波器的设计 专业: 班级:学号: 学生: 指导教师: 2014 年3月

文献综述1.3谐波的抑制方法 (1)无源滤波 无源滤波器,又称LC滤波器,是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最易于采用的无源滤波器结构是将电感与电容串联,可对主要次谐波构成低阻抗旁路;单调谐滤波器、双调谐滤波器、高通滤波器都属于无源滤波器。无源滤波器具有结构简单、成本低廉、运行可靠性较高、运行费用较低等优点。基本的无源滤波器的拓扑结构如下图所示: (2)有源滤波 目前,谐波抑制的一个重要趋势是采用电力有源滤波器(Active Power Filter-APF)[2]。有源电力滤波器也是一种电力电子装置。其基本原理是从补偿对象中检测出谐波电流,由补偿装置产生与该谐波电流大小相等而极性相反的补偿电流,从而消除电网中的谐波。这种滤波器能对频率和幅值都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响,因而受到广泛的重视,并且在日本等国得到广泛的应用。有源电力滤波器的基本思想在六七十年代就己经形成。80年代以来,由于大中功率全控型半导体器件的成熟,脉冲宽度调制(Pulse Width Modulation-PWM)控制技术的进步,以及基于瞬时无功功率理论的谐波电流瞬时检测方法的提出,有源电力滤波器才得以迅速发展。

文 献 综 述 2.1按联接方式确定APF的种类 APF的结构形式很多,但其基本原理都是类似的,按电路拓朴结构可分为并联型APF、串联型APF和串--并联型APF。 (1)并联型APF 下图为并联型APF 基本结构。由于与系统并联, 可等效为一受控电流源。并联型APF 可产生与负荷电流大小相等、方向相反的谐波电流, 从而将电源侧电流补偿为正弦基波电流。主要适用于抵消非线性负载的谐波电流、无功补偿及平衡三相系统中的不平衡电流等。并联型APF 在技术上比较成熟[4]。 并联型有源滤波器结构图 2)串联型APF 图2.3为串联型APF基本结构。通过1个匹配变压器将APF串联在电源和负载之间, 以消除电压谐波, 平衡或调整负载的端电压。与并联型APF相比, 串联型APF损耗较大, 且各种保护电路也较复杂。因此, 很少单位使用串联型APF, 大多将其作为混合型APF 的一部分。 串联型有源滤波器结构图

电力系统谐波检测方法综述

综述 2019年第9期 1电力系统谐波检测方法综述 陈和洋1,3 吴文宣2 郑文迪1 晁武杰3 唐志军3 (1. 福州大学电气工程与自动化学院,福州 350108; 2. 国网福建省电力有限公司,福州 350003; 3. 国网福建省电力有限公司电力科学研究院,福州 350007) 摘要 电力系统谐波检测为谐波治理提供了方向,同时也是谐波监测系统的核心。本文首先 阐述了电力系统谐波的诸多危害;其次对一些传统检测方法和近期新方法展开讨论和分析,比如瞬时无功功率法、快速傅里叶变换法、小波变换法、希尔伯特-黄变换法等;最后阐述了将来谐波检测领域的发展趋势。 关键词:谐波检测;瞬时无功功率;快速傅里叶变换;小波变换;希尔伯特-黄变换;人工神 经网络;复合检测 Reviews of power system harmonic measurement methods Chen Heyang 1,3 Wu Wenxuan 2 Zheng Wendi 1 Chao Wujie 3 Tang Zhijun 3 (1. College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108; 2. State Grid Fujian Electric Power Co., Ltd, Fuzhou 350003; 3. Electric Power Reserch Institute of State Grid Fujian Electric Power Co., Ltd, Fuzhou 350007) Abstract Power system harmonic detection provides the direction for harmonic control and is also the core of the harmonic monitoring system. This paper first expounds the many hazards of power system harmonics, and then discusses and analyzes some traditional detection methods and recent new methods, such as: instantaneous reactive power method, fast Fourier transform method, wavelet transform method, Hilbert-Hang transformation method, etc., finally pointed out the future development trend and personal outlook in the field of harmonic detection. Keywords :harmonic detection; instantaneous reactive power; fast Fourier transform (FFT); wavelet transform; Hilbert-Huang transform (HHT); artificial neural network (ANN); composite detection 100多年来,随着电力系统的不断发展,以非化石能源为主的新一代电力系统格局已经产生,将来清洁能源和可再生能源将占有很大的比重。在此背景下,电力电子元器件的大量使用导致电力系统不可避免地受到谐波的污染。电力系统中的谐波分量过大将造成诸多危害:①使电能利用率降低,电力系统设备产生附加能耗,同时增加了电气应力,影响设备安全稳定运行[1];②大量分布式电源在公共连接点(point of common coupling, PCC )集中被 接入,可能放大电网的谐波振荡;③在柔性直流输 电运行过程中,直流场持续的谐波扰动可能引发一 系列不稳定现象,从而影响系统的安全稳定运行; ④谐波还可能使得保护误动作,测量装置产生误差,甚至可能会对通信线路产生干扰,影响通信效果。 针对谐波产生的种种危害,我国在20世纪90年代就已经开展了谐波治理的相关研究,并制定了《电能质量:公用电网谐波》(GB/T 14549—93)国家标准对公共电网谐波允许值进行了限制。此后对电力系统进行谐波治理,改善电能质量成为一项持续而长久的工作。有源电力滤波器(active power filter, APF )是一种能够动态抑制谐波、全面改善电能质量的电力电子装置,谐波电流的精确、实时检测直接影响其动态抑制的效果。 对谐波信号进行高精度、实时地检测是谐波治 福建省自然基金项目(2017J01480) 国网福建省电力有限公司科技项目(52130416001P )

电力谐波的检测和治理

随着我国工业化进程的迅猛发展,电网装机容量不断加大,电网中电力电子元件的使用也越来越多,致使大量的谐波电流注入电网,造成正弦波畸变,电能质量下降,不但对电力系统的一些重要设备产生重大影响,对广大用户也产生了严重危害。目前,谐波与电磁干扰、功率因数降低被列为电力系统的三大公害,因而了解谐波产生的机理,研究和清除供配电系统中的高次谐波,对改于供电质量、确保电力系统安全、经济运行都有着十分重要的意义。 一、电力系统谐波危害 ①谐波会使公用电网中的电力设备产生附加的损耗,降低了发电、输电及用电设备的效率。大量三次谐波流过中线会使线路过热,严重的甚至可能引发火灾。 ②谐波会影响电气设备的正常工作,使电机产生机械振动和噪声等故障,变压器局部严重过热,电容器、电缆等设备过热,绝缘部分老化、变质,设备寿命缩减,直至最终损坏。 ③谐波会引起电网谐振,可能将谐波电流放大几倍甚至数十倍,会对系统构成重大威胁,特别是对电容器和与之串联的电抗器,电网谐振常会使之烧毁。 ④谐波会导致继电保护和自动装置误动作,造成不必要的供电中断和损失。 ⑤谐波会使电气测量仪表计量不准确,产生计量误差,给供电部门或电力用户带来直接的经济损失。 ⑥谐波会对设备附近的通信系统产生干扰,轻则产生噪声,降低通信质量;重则导致信息丢失,使通信系统无法正常工作。 ⑦谐波会干扰计算机系统等电子设备的正常工作,造成数据丢失或死机。 ⑧谐波会影响无线电发射系统、雷达系统、核磁共振等设备的工作性能,造成噪声干扰和图像紊乱。 二、谐波检测方法 1.模拟电路 消除谐波的方法很多,即有主动型,又有被动型;既有无源的,也有有源的,还有混合型的,目前较为先进的是采用有源电力滤波器。但由于其检测环节多采用模拟电路,因而造价较高,且由于模拟带通滤波器对频率和温度的变化非常敏

电力系统谐波管理暂行规定

电力系统谐波管理暂行规定 SD126~84 第一章总则 第一条电力系统中的谐波主要是治金、化工、电气化铁路等换流设备及其他非线性用电设备产生的。随着硅整流及可控硅换流设备的广泛使用和各种非线性负荷的增加,大量的谐波电流注入电网,造成电压正弦波形畸变,使电能质量下降,给发供电设备及用户用电设备带来严重危害。为保证向国民经济各部门提供质量合格的50赫兹电能,必须对各种非线性用电设备注入电网的谐波电流加以限制,以保证电网和用户用电设备的安全经济运行,特制订本规定。 第二条本规定适于电力系统以及由电网供电的所有电力用户。 第三条电网原有的谐波超过本规定的电压正弦波形畸变率极限值时,应查明谐波源并采取措施,把电压正弦波形畸变率限制在规定的极限值以内。在本规定颁发前已接入电网的非线性用电设备注入电网的谐波电流超过本规定的谐波电流允许值时,应制订改造计划并限期把谐波电流限制在允许范围以内。所需投资和设备由非线性用电设备的所属单位负责。 第四条新建或扩建的非线性用电设备接入电网,必须按本规定执行。如用户的非线性用电设备接入电网,增加或改变了电网的谐波值及其分布,特别是使与电网连接点的谐波电压、电流升高,用户必须采取措施,把谐波电流限制在允许的范围内,方能接入电网运行。 第五条进口设备和技术合作项目亦应执行本规定。但如对方的国家标准或企业标准的全部或部分规定比本规定严格,则应按对方较严格的规定执行。 第六条谐波对通讯等的影响应按国内有关规定执行。 第七条用户用电设备对谐波电压的要求较本规定的电压正弦波畴变率极限更严格时,由用户自行采取限制谐波电压的措施。 第二章电压正弦波形畸变率极限值和谐波电流允许值 第八条电网中任何一点的电压正弦波形畴变率均不得超过表1规定的极限值。 表1 电网电压正弦畸形畸变率极限值(相电压)

有源电力滤波器中的谐波检测电路设计

有源电力滤波器中的谐波检测电路设计 摘要:针对现在有源电力滤波器中谐波检测的缺陷,设计出一种基于DSP、AD756和MAX260等硬件相结合的谐波检测电路。分析了ip-iq谐波电流检测算法,并且在硬件上实现。介绍了硬件结构原理,给出硬件设计框图和谐波检测各部分的程序流程,并研制出谐波检测电路。实验结果验证了谐波检测的快速性和准确性,系统运行稳定可靠,有较好的应用前景。关键词:谐波检测;TMS320F2812;AD7656;PLL;MAX260;C8051F330 对于有源电力滤波器(APF)而言,实时准确地检测出谐波电流是非常关键的,它的快速性、准 确性、灵活性以及可靠性直接决定APF的补偿性能。设计的谐波检测电路检测出的多路模拟信号会有一定的延迟性,这会大大影响APF计算谐波的精确性和准确性。本文中谐波检测装置所用的AD7656具有6路同步采样特性,克服了测量结果之间延迟的缺点,使得测量精度高。以上优点弥补了目前APF中谐波电流检测技术的缺陷,而且抗混叠滤波器、隔离放大器、过零检测电路、锁相倍频电路的设计增强了检测的精确性。1 装置整体运行原理及相关算法1.1 装置运行原理图1为并联型有源电力滤波器的原理结构框图。图中,交流电网对非线性负载电,非线性负载为谐波源,产生谐波并且消耗无功功率。有源电力滤波器由4部分组成:谐波电流检测电路、电流跟踪控制电路、主开关器件驱动电路和主电路。谐波电流检测电路采用基于瞬时无功功率理论的ip-iq算法,根据有源电力滤波器的补偿目的检测出负载电流中的谐波分量,同时还要检测直流侧母线电容电压。然后将这些信号输入电流跟踪控制电路,通过控制算法生成一系列PWM信号,以此作为补偿电流的指令信号。这些信号经过电平转换后输入主开关器件驱动电路,驱动主电路中的主开关器件。此时,APF 产生并向电网注入补偿电流,该电流与非线性负载电流相位相反,幅值为负载

电力系统中的谐波检测及谐波抑制-最新年文档

电力系统中的谐波检测及谐波抑制 刖言 随着我国工业化进程的迅猛发展,电网装机容量不断加大。 电网中电力电子原件的使用也越来越多,致使大量的谐波电流注入电网,造成正弦波畸变,电能质量下降,不但对电力系统的一些重要设备产生重大影响,对广大用户也产生了严重危害。目前, 谐波于电磁干扰、功率因数降低被列为电力系统的三大公害,因而了解谐波产生的机理,演技和清除供配电系统中的高次谐波, 对于改善供电质量、确保电力系统安全、经济运行都有着十分重要的意义。 、电力系统谐波危害 ①谐波会使公用电网中的电力设备产生附加的损耗,降低了 发电、输电及用电设备的效率。 ②谐波会影响电气设备的正常工作, 使电机产生机械振动和 噪声等故障,变压器局部严重过热,电容器、电缆等设备过热, 绝缘部分老化、变质,设备寿命缩减,直至最终损坏。 ③谐波会引起电网谐振,可能将谐波电流放大几倍甚至数十 倍,会对系统构成重大威胁,特别是对电容器和与之串联的电抗器,电网谐振常会使之烧毁。 ④谐波会导致继电保护和自动装置误动作,造成不必要的供电中断和损失。 ⑤谐波会使电气测量仪表不准确,产生计量误差,给供电部门或电力用户带来直接的经济损失。 ⑥谐波会对设备附近的通信系统产生干扰,轻则产生噪音,境地通信质量;重则导致信息丢失,使通信系统无法正常工作。 ⑦谐波会干扰计算机系统等电子设备的正常工作,造成数据丢失或

死机。 ⑧谐波会影响无线电发射系统、雷达系统、核磁共振等设备的工作性能,造成噪音干扰和图像紊乱。 二、谐波检测 1. 模拟电路 消除谐波的方法很多,既有主动型,又有被动型;既有无源的,也有有源的,还有混合型的,目前较为现金的是采用有源电力滤波器。但由于其检测环节多采用模拟电路,因而造价较高,且由于模拟带通滤波器对频率和温度的变化非常敏感,故使其基波复制误差很难控制在10%以内,严重影响了有源滤波器的控制 性能。 2. 傅立叶变换 利用傅立叶变换可在数字域进行谐波检测,电力系统的谐波分析,目前大都是通过该方法实现的,离散傅立叶变换所需要处理的是经过采样和A/D 转换得到的数字信号,设待测信号为x(t), 采样间隔为t 秒,采样频率=1/t 满足采样定理,即大于信号最高频率分量的2 倍,则采样信号为x(n t) ,并且采样信号总是

有源电力滤波器参考文献

重庆科技学院学生毕业设计(论文) 文献综述 题目有源电力滤波器技术 院(系)电子信息学院 专业班级自普本05 学生姓名金涛学号2005441140 指导教师(签字)

有源滤波技术文献综述 摘要: 随着各种功率器件的广泛应用,大量的谐波和无功电流注入电网,引起电网污染,造成电网电能质量问题日益严重但电力电子装置自身所具有的非线性也使得电网的电压和电流发生畸变。过去,国内外大量采用无源滤波装置来进行谐波抑制和无功补偿,提高功率因数。但无源滤波装置也存在着自身无法克服的不足和缺陷,有源电力滤波器由于具有高度可控性和快速响应性,能对频率和幅值都变化的谐波进行跟踪补偿,因而受到广泛的重视,成为目前国内外供电系统谐波抑制研究的热点。 关键词:有源电力滤波器逆变器 1 引言 随着电力电子技术的飞速发展,越来越多的电力电子装置被广泛应用到各个领域,近年来配电网中整流器、变频调速装置、电弧炉等非线性负荷不断增加,这些负荷的非线性、冲击性和不平衡的用特性,使电网中暂态冲击、无功功率、高次谐波及三相不平衡问题日趋严重,对公用电网的供电质量造成了严重影响,因此,消除电网中的谐波污染已成为电能质量研究中的一个重要课题。 有源电力滤波器(APF)是一种消除电网谐波的有效装置,具有高度可控和快速响应的特性,它不仅能补偿各次谐波,还可抑制闪变、补偿无功,有一机多能的特点。其滤波特性不受系统阻抗的影响,同时还具有自我适应功能,可自动跟踪补偿变化的谐波。

有源滤波技术现状 有源电力滤波器的基本工作原理是由HSasaki和HMachida于1971年首先提出的[1]。他们首次提出了有源滤波器的原始结构模型,并建立了有源滤波器的基本理论。他们提出的有源电力滤波器向电网注入一个与负载谐波电流 幅值相等、相位相反的电流,从而抵消了电网中的谐波电流。但由于当时是采用线性放大的方法产生小补偿电流,其损耗大,成本高,因而仅在实验室研究,未能在工业中实用。1976年,LGyugyi和ECStyaula提出了用PWM逆变器构成的有源电力滤波器[2]。这些采用PWM逆变器构成的有源电力滤波电路现已成为有源电力滤波器的基本结构。20世纪80年代,随着电力电子技术和PWM控制技术的发展,对有源电力滤波器的研究逐渐活跃起来,成为电力电子技术领域的研究热点之一。1983年赤木泰文等人提出的“三相电路瞬时无功功率理论”[3]极大的推动了有源电力滤波器的发展及其工 程应用。 在国外,有源电力滤波器已开始在工业和民用设备上得到广泛使用,并且谐波补偿的次数逐步提高,有的可以高达25次谐波;单机装置的容量逐步提高。如在日本和美国,应用领域可以接受的APF的容量已增加到50MVA,其应用领域从补偿用户自身的谐波向改善整个电力系统供电质量的 方向发展。

电力系统的谐波产生的原因

电力系统的谐波产生的原因电网谐波来自于3个方面: 一是发电源质量不高产生谐波: 发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来说很少。 二是输配电系统产生谐波: 输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。它的大小与磁路的结构形式、铁心的饱和程度有关。铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流0.5%。 三是用电设备产生的谐波: 晶闸管整流设备。由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。如果整流装置为三相全控桥6脉整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也还有11次及以上奇次谐波电流。经统计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。变频装置。变频装置常用于风机、水泵、电梯等设备中,由于采用了相位控制,谐波成份很复杂,除含有整数次谐波外,还含有分数次谐波,这类装置的功率一般较大,随着变频调速的发展,对电网造成的谐波也越来越多。 电弧炉、电石炉。由于加热原料时电炉的三相电极很难同时接触到高低不平的炉料,使得燃烧不稳定,引起三相负荷不平衡,产生谐波电流,经变压器的三角形连接线圈而注入电网。其中主要是2 7次的谐波,平均可达基波的8% 20%,最大可达45%。 气体放电类电光源。荧光灯、高压汞灯、高压钠灯与金属卤化物灯等属于气体放电类电光源。分析与测量这类电光源的伏安特性,可知其非线性十分严重,有的还含有负的伏安特性,它们会给电网造成奇次谐波电流。 家用电器。电视机、录像机、计算机、调光灯具、调温炊具等,因具有调压整流装置,会产生较深的奇次谐波。在洗衣机、电风扇、空调器等有绕组的设备中,因不平衡电流的变化也能使波形改变。这些家用电器虽然功率较小,但数量巨大,也是谐波的主要来源之一。 供电系统的无功补偿及谐波治理 在供电系统中,为了节能降损、提高电压质量和电网经济运行水平,经常采用各种无功补偿装置。近年来,配电网中整流器、变频调速装置、电弧炉、各种电力电子设备以及电

相关文档
最新文档