基于PCA的人脸识别方法

基于PCA的人脸识别方法
基于PCA的人脸识别方法

基于PCA的人脸识别方法

特征提取是人脸识别系统中最为重要的一个组成部分。主成分分析[4]方法是应用最广泛的一种特征提取方法之一,它是一种统计学方法,在信号处理、模式识别、数字图像处理等领域已经得到了广泛的应用。特征脸方法是从主成分分析(PCA)导出的一种人脸识别和描述技术。它将包含人脸的图像区域看作一随机向量,采用K-L变换得到正交K-L基,对应其中较大特征值的基具有与人脸相似的形状,因此又被称为特征脸。利用这些基的线性组合可以描述、表达和逼近人脸图像,所以可进行人脸识别与合成。识别过程就是将人脸图像映射到由特征脸张成的子空间上,并比较其在特征脸空间中的位置。

1、人脸空间的建立

假设一幅人脸图像包含N个像素点,它可以用一个N维向量Γ表示。这样,训练样本库就可以用Γi(i=1,...,M)表示。协方差矩阵C的正交特征向量就是组成人脸空间的基向量,即特征脸。

将特征值由大到小排列:λ1≥λ2≥...≥λr,其对应的特征向量为μk。这样每一幅人脸图像都可以投影到由u1,u2,...,ur张成的子空间中。因此,每一幅人脸图像对应于子空间中的一点。同样,子空间的任意一点也对应于一幅图像。

2、特征向量的选取

虽然协方差矩阵Ω最多有对应于非零特征值的k(k远小于M)个特征向量,但是通常情况下,k仍然很大,而事实上,根据应用的要求,并非所有的特征向量都有需要保留,而特征空间投影的计算速度是直接与创建子空间所用的特征向量的数目相关,若考虑到计算时间的因素,可以适当的减去一些信息量少的特征向量,而且,去掉这些特征向量之后不一定不利于分类结果,有的情况下反而能够提高识别性能。

3、人脸识别

有了这样一个由"特征脸"张成的降维子空间,任何一幅人脸图像都可以向其投影得到一组坐标系数,这组系数表明了该图像在子空间中的位置,从而可以作为人脸识别的依据。换句话说,任何一幅人脸图像都可以表示为这组"特征脸"的线性组合,其加权系数即是K-L变换的展开系数,也可以称为该图像的代数特征。因此,在获得特征脸之后,就可以对每一类别的典型样本进行投影,由此得到每个人脸的投影特征从而构成人脸特征向量,作为下一步识别匹配的搜索空间。

输入图像及其在人脸空间上的投影(重构图像),人脸图像在人脸空间中的投影变化不明显而非人脸图像的投影变化明显。因此,检测一幅图像中是否存在人脸的基本思想是,计算该图像中任意位置处的局部图像与人脸空间之间的距离ε。其中,ε是局部图像是否为人脸的度量。因此,计算给定图像任意一点上的ε,就可以得到一映射图ε(x,y)。

四、实验及结果分析

实验在两个图库上测试,一个是自建人脸库,该库包含31个不同人物,每人有5张不同表情和姿态下的图片,总共155幅。另一个是ORL人脸库,该库包含40个不同人物,每人有10张图片,共400幅。用训练样本进行测试,识别率为100%。而随着训练样本的增加,识别率会有所提升,由于标准人脸库在采集时考虑了多种因素,人脸图像比较标准,所以识别率较自建的人脸库识别率高,但是训练样本并不是越多越好,当超过一定的训练样本数目时,识别率反而有所

下降。训练样本集在协方差矩阵的前k个最大特征值的特征向量的投影能反映样本绝大部分的差异信息。所以我们可以选取这前k个特征向量,尽量保持样本差异的同时达到降维目的。而PCA的这种降维能力是非常显著的。降维也大大节省了计算时间。但是,随着特征脸数目的增加,识别率并不能大幅度提高,即使识别中使用了所有的特征脸,识别率也只有80%左右。特征脸个数在33之前识别率是上升的,之后保持不变,当特征脸的个数超过35时,识别率下降继而保持稳定。由此可以看出特征脸个数并不是越多越好,而是在一定范围之内有最佳值存在。另外因为自建人连库的图片太少,即训练样本太少,也会对结果产生影响。进行直方图均衡化比灰度归一化的识别率高,预处理对识别的效果起着至关重要的作用。而此次实验的预处理还比较粗糙,PCA也只是起到了简单的特征脸降维的作用,要有更好的效果,还必须寻找更好的特征表达,使得可以尽量消除光照、表情、遮掩和姿势的影响。

对同一个体进行多项观察时,必定涉及多个随机变量X1,X2,…,X p,它们都是的相关性, 一时难以综合。这时就需要借助主成分分析(principal component analysis)来概括诸多信息的主要方面。我们希望有一个或几个较好的综合指标来概括信息,而且希望综合指标互相独立地各代表某一方面的性质。

任何一个度量指标的好坏除了可靠、真实之外,还必须能充分反映个体间的变异。如果有一项指标,不同个体的取值都大同小异,那么该指标不能用来区分不同的个体。由这一点来看,一项指标在个体间的变异越大越好。因此我们把“变异大”作为“好”的标准来寻求综合指标。

1.主成分的一般定义

设有随机变量X1,X2,…,X p,其样本均数记为,,…,,样本标准差记为S1,S2,…,S p。首先作标准化变换

我们有如下的定义:

(1) 若C1=a11x1+a12x2+ … +a1p x p,,且使Var(C1)最大,则称C1为第一主成分;

(2) 若C2=a21x1+a22x2+…+a2p x p,,(a21,a22,…,a2p)垂直于(a11,a12,…,a1p),且使Var(C2)最大,则称C2为第二主成分;

(3) 类似地,可有第三、四、五…主成分,至多有p个。

2. 主成分的性质

主成分C1,C2,…,C p具有如下几个性质:

(1) 主成分间互不相关,即对任意i和j,C i 和C j的相关系数

Corr(C i,C j)=0 i j

(2) 组合系数(a i1,a i2,…,a ip)构成的向量为单位向量,

(3) 各主成分的方差是依次递减的,即

Var(C1)≥Var(C2)≥…≥Var(C p)

(4) 总方差不增不减,即

Var(C1)+Var(C2)+ … +Var(C p)

=Var(x1)+Var(x2)+ … +Var(x p)=p

这一性质说明,主成分是原变量的线性组合,是对原变量信息的一种改组,主成分不增加总信息量,也不减少总信息量。

(5) 主成分和原变量的相关系数Corr(C i,x j)=a ij =a ij

(6) 令X1,X2,…,X p的相关矩阵为R,(a i1,a i2,…,a ip)则是相关矩阵R

的第i个特征向量(eigenvector)。而且,特征值λi就是第i主成分的方差,即

Var(C i)=λi

其中λi为相关矩阵R的第i个特征值(eigenvalue)

λ1≥λ2≥…≥λp≥0

3. 主成分的数目的选取

前已指出,设有p个随机变量,便有p个主成分。由于总方差不增不减,C1,C2等前几个综合变量的方差较大,而C p,C p-1等后几个综合变量的方差较小, 严格说来,只有前几个综合变量才称得上主(要)成份,后几个综合变量实为

“次”(要)成份。实践中总是保留前几个,忽略后几个。

保留多少个主成分取决于保留部分的累积方差在方差总和中所占百分比(即累计贡献率),它标志着前几个主成分概括信息之多寡。实践中,粗略规定一个百分比便可决定保留几个主成分;如果多留一个主成分,累积方差增加无几,便不再多留。

基于PCA算法的人脸识别毕业设计论文

太原科技大学 毕业设计(论文) 设计(论文)题目:基于PCA算法的人脸识别

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期: Ⅰ

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日 Ⅰ

基于PCA的人脸识别系统设计

1 HUNAN UNIVERSITY 毕业设计(论文) 设计论文题目基于PCA的人脸 识别系统 学生姓名李涛 学生学号20080810410 专业班级08级计科四班 学院名称信息科学与工程学院 指导老师潘华伟 学院院长章兢 20012 年 5 月18 日

摘要 随着计算机视觉技术的发展,以及社会的各个领域的需要,根据人固有的生物特征对人进行身份验证的课题吸引了一批研究人员,比较常见的有语音识别,指纹识别,人脸识别等技术。其中人脸识别因为识别率高、主动性强、使用方便等因素,在身份验证的各类方法中有独特的优势及相关的应用,成为了人体特征识别中的比较热门的研究课题。 本文首先阐述了人脸识别研究的历史,现状以及发展趋势,并说明了人脸识别的优势和难点。然后详细地说明人脸识别的两个部分:人脸检测和人脸识别。在人脸检测部分,本文主要介绍了基于haar分类器的检测方法,并详细说明了haar分类器的训练过程,讲述了分类器检测人脸的原理。在人脸识别部分,首先获取人的个人信息的,对人脸图像的采集并进行灰度化、归一化等预处理,然后采用PCA(主成分分析法)对采集到的图像进行特征提取,并存储相关的特征信息,最后对待识别的图像进行特征提取和分析,与训练的人脸图像数据计算欧式距离,最终识别出人的身份。在本文的最后,对实现的系统各项功能进行实验,对影响识别率的维数、采集图像数因素进行实验分析,并提出了主成分分析法人脸识别的优点和缺点。最后总结毕业设计中的不足,自己的心得体会,并对未来学习进行展望。 关键词:人脸检测,haar分类器,PCA,人脸识别

Abstract With the development of computer vision technology, and social needs in many areas, the subject of authentication according to the inherent biological characteristics attracted a group of researchers ,Voice recognition, fingerprint recognition, face recognition technology are common。Face recognition with the recognition rate, motivated, easy to use and other factors,has unique advantages in all kinds of authentication methods and related applications,has become a popular research topic in the human feature recognition。 This paper first describes the history, current situation and development trend of face recognition research, and describes the advantages and difficulties of face recognition。And then detail the recognition of two parts: face detection and face recognition。In the face detection part, the paper mainly describes the detection method based on haar classifier, and details of haar classifier training process, about the principle of the classification of the detected face。In face recognition part, it first obtains personal information the acquisition of face images and graying, owned by a pretreatment。And then using PCA (Principal Component Analysis) collected image feature extraction, and storage characteristics of information,int the last ,identifiable image feature extraction and analysis, and training of the face image data to calculate the Euclidean distance, and ultimately identify the identity of the person。In the last experiment, the dimension of the recognition rate, number of images collected factors experimental analysis, and the advantages and disadvantages of the principal component analysis for face recognition system implemented various functions. The final summary of graduate design deficiencies, and their own feelings and experiences and future learning prospects。 Keywords: face detection, Haar classifier, PCA, face recognition

基于matlab的人脸识别算法(PCA)

3.基于matlab的人脸识别算法 3.1 问题描述 对于一幅图像可以看作一个由像素值组成的矩阵,也可以扩展开,看成一个矢量,如一幅 N*N 象素的图像可以视为长度为N2 的矢量,这样就认为这幅图像是位于N2 维空间中的一个点,这种图像的矢量表示就是原始的图像空间,但是这个空间仅是可以表示或者检测图像的许多个空间中的一个。不管子空间的具体形式如何,这种方法用于图像识别的基本思想都是一样的,首先选择一个合适的子空间,图像将被投影到这个子空间上,然后利用对图像的这种投影间的某种度量来确定图像间的相似度,最常见的就是各种距离度量。因此,本次试题采用PCA算法并利用GUI实现。 对同一个体进行多项观察时,必定涉及多个随机变量X1,X2,…,Xp,它们都是的相关性, 一时难以综合。这时就需要借助主成分分析来概括诸多信息的主要方面。我们希望有一个或几个较好的综合指标来概括信息,而且希望综合指标互相独立地各代表某一方面的性质。 任何一个度量指标的好坏除了可靠、真实之外,还必须能充分反映个体间的变异。如果有一项指标,不同个体的取值都大同小异,那么该指标不能用来区分不同的个体。由这一点来看,一项指标在个体间的变异越大越好。因此我们把“变异大”作为“好”的标准来寻求综合指标。3.1.1 主成分的一般定义 设有随机变量X1,X2,…,Xp,其样本均数记为,,…,,样本标准差记为S1,S2,…,Sp。首先作标准化变换,我们有如下的定义: (1) 若C1=a11x1+a12x2+ … +a1pxp,…,且使 Var(C1)最大,则称C1为第一主成分; (2) 若C2=a21x1+a22x2+…+a2pxp,…,(a21,a22,…,a2p)垂直于(a11,a12,…,a1p),且使Var(C2)最大,则称C2为第二主成分; (3) 类似地,可有第三、四、五…主成分,至多有p个。 3.1.2 主成分的性质 主成分C1,C2,…,Cp具有如下几个性质: (1) 主成分间互不相关,即对任意i和j,Ci 和Cj的相关系数 Corr(Ci,Cj)=0 i j (2) 组合系数(ai1,ai2,…,aip)构成的向量为单位向量, (3) 各主成分的方差是依次递减的,即 Var(C1)≥Var(C2)≥…≥Var(Cp)

基于PCA的人脸识别算法实现毕业论文

基于PCA的人脸识别算法实现毕业论文 目录 前言 (1) 第一章人脸识别系统概述 (2) 第一节人脸识别的研究概况 (2) 第二节人脸识别的发展趋势 (3) 一、多数据融合与方法综合 (4) 二、动态跟踪人脸识别系统 (4) 三、基于小波神经网络的人脸识别 (4) 四、三维人脸识别 (4) 五、适应各种复杂背景的人脸分割技术 (4) 六、全自动人脸识别技术 (4) 第三节人脸识别技术的主要难点 (4) 一、复杂条件下人脸的检测和关键点定位 (5) 二、光照问题 (5) 三、资态问题 (5) 四、表情问题 (5) 五、遮挡问题 (5) 第四节人脸识别流程 (5) 一、人脸图像采集 (6) 二、预处理 (6) 三、特征提取 (6) 第五节本章小结 (7) 第二章人脸图像的获取 (9) 第一节人脸图像获取 (9) 第二节人脸分割 (9) 第三节人脸数据库 (10) 第四节本章小结 (11) 第三章人脸图像的预处理 (12)

第一节人脸图像格式 (12) 一、JPEG格式 (12) 二、JPEG2000格式 (12) 三、BMP格式 (13) 四、GIF格式 (13) 五、PNG格式 (13) 第二节人脸图像常用预处理方法 (14) 一、灰度变化 (14) 二、二值化 (15) 三、直方图均衡 (15) 四、图像滤波 (15) 五、图像锐化 (17) 六、图像归一化 (18) 第三节本章小结 (19) 第四章人脸识别 (20) 第一节主成分分析基本理论 (20) 一、什么是主成分分析? (20) 二、例子 (20) 三、基变换 (21) 四、方差 (23) 五、PCA求解:特征根分解 (27) 六、PCA的假设 (28) 七、总结: (28) 八、在计算机视觉领域的应用 (30) 第二节基于PCA人脸识别算法的实现 (31) 一、创建数据库 (32) 二、计算特征脸 (32) 三、人脸识别 (34) 第三节本章小结 (36) 结论 (37) 致谢 (38) 参考文献 (39) 附录 (40) 一、英文原文 (40) 二、英文翻译 (53)

基于PCA的人脸识别

基于PCA的人脸识别 哲盼 (华北电力大学自动化系, 071003) 摘要:人脸识别技术,作为目前模式识别领域研究的热点也是难点之一,其最早提出可以追溯到1888年[1]。然而,到目前为止,由于人脸识别问题自身的复杂性,使得虽然有众多科学研究人员潜心研究多年,也做出了许多的成果,但离彻底解决并达到实用,仍旧有很多关键性的问题需要解决。本文结合研究生阶段参与教研室的科研项目,对人脸识别做了一定的研究。论文首先介绍了人脸识别的背景、研究围以及方法,对人脸识别领域的一些理论方法作了总体的介绍。本文中所采用的人脸识别方法是比较经典的PCA(Principle Component Analysis,主成分分析)[2-6]。 关键词:人脸识别,主成分分析,PCA,特征脸 PCA-based face recognition CHEN Zhe-pan (Department of Automation North China Electric Power University, Baoding 071003 China) Abstract:Techniques for face recognition were proposed by Francis Galton as early as 1888[1]In recent years considerable progress has been made in the area of face recognition:Through the development of techniques like Eigenfaces computers can now outperform humans in many face recognition tasks,particularly those in which large databases of faces must be searched.Whilst these methods performs extremely well under constrained conditions,the problem of face recognition under gross variations remains largely unsolved.This thesis details the PCA(Principle Component Analysis)algorithm and the development of a real-time face recognition system aimed to operate in constrained environments Keywords:face recognition,principle component analysis,PCA, Eigenfaces 0 引言 随着社会的不断发展进步以及各方面对快速有效的身份识别技术的迫切需求,生物特征识别技术在最近十年中得到了很快的发展。生物特征识别技术是为了验证身份而采用自动测量技术对身体的特征或个人行为特点进行采集处理,并将采集的特征或特点与模板进行比较,从而完成身份验证的一种解决方案。由于生物特征识别技术利用人本身所具有的特征(如指纹、虹膜、人脸等)进行身份认证,因而它比传统的根据人所携带物品(如)和你所记忆的容(如账号和密码)更加安全和可靠。我们有理由相信生物特征识别技术将使人们的生活方式产生重大的变化[7]。 人脸识别是生物特征识别技术的一种,它也是人们生活中最常用的一种身份认证手段,同时它也是当前最热门的模式识别研究课题之一。通过人脸我们可以判定许多信息:性别、种族、大致年龄及表情等。与其它的生物特征识别技术相比,人脸识别在采

基于PCA的人脸识别研究报告

项目名称:基于PCA的人脸识别算法研究

摘要 随着人类社会的进步,以及科技水平的提高,一些传统的身份认证的方法逐渐暴露出各种问题,因此人们需要采用一种更加可靠安全的身份认证方法。毫无疑问人体的生物特征的独一无二的,特别是其不容易丢失及复制的特性很好满足了身份识别的需要。并且随着计算机科学技术和生物医学的发展使得利用生物特征识别成为了可能。因此基于指纹、人脸、视网膜等生物特征的识别方法也越来越多。由于人脸识别的操作快速简单,结果直观,准确可靠,不需要人的配合等优点已成为人们关注的焦点。主成分分析(PCA)法通过提取高维度的人脸图像的主元,使得图像在低维度空间中被处理来降低了图像处理的难度。由于其有效的解决了图像空间维数过高的问题,已经成为人脸识别领域非常重要的理论。此次研究的就是基于PCA的人脸识别算法的实现。 本文按照完整人脸识别流程来分析基于PCA的人脸识别算法实现的性能。首先使用常用的人脸图像的获取方法获取人脸图像。本文为了更好的分析基于PCA人脸识别系统的性能分别选用了Essex人脸数据库和ORL人脸库,并在后期采用了自建的人脸库。接下来是人脸图像预处理方法。由于采用的人脸图像质量较好,而且已经做过相应的预处理,所以本文试验中只使用灰度处理。接着使用PCA提取人脸特征,使用奇异值分解定理计算协方差矩阵的特征值和特征向量以及使用最近邻法分类器欧几里得距离来进行人脸判别分类。在实验中我们发现基于PCA的人脸识别系统的识别率很高,而且具有一定鲁棒性,所以基于PCA的人脸识别算法的实现的研究还是有意义。 【关键词】人脸识别 PCA算法奇异值分解定理欧几里得距离

人脸识别PCA算法matlab实现及详细步骤讲解

% FaceRec.m % PCA 人脸识别修订版,识别率88% % calc xmean,sigma and its eigen decomposition allsamples=[];%所有训练图像 for i=1:40 for j=1:5 a=imread(strcat('e:\ORL\s',num2str(i),'\',num2str(j),'.jpg')); % imshow(a); b=a(1:112*92); % b 是行矢量1×N,其中N=10304,提取顺序是先列后行,即从上 到下,从左到右 b=double(b); allsamples=[allsamples; b]; % allsamples 是一个M * N 矩阵,allsamples 中每一行数 据代表一张图片,其中M=200 end end samplemean=mean(allsamples); % 平均图片,1 × N for i=1:200 xmean(i,:)=allsamples(i,:)-samplemean; % xmean 是一个M × N 矩阵,xmean 每一行保存的数据是“每个图片数据-平均图片” end; % 获取特征值及特征向量 sigma=xmean*xmean'; % M * M 阶矩阵 [v d]=eig(sigma); d1=diag(d); % 按特征值大小以降序排列 dsort = flipud(d1); vsort = fliplr(v); %以下选择90%的能量 dsum = sum(dsort); dsum_extract = 0; p = 0; while( dsum_extract/dsum < 0.9) p = p + 1; dsum_extract = sum(dsort(1:p)); end i=1; % (训练阶段)计算特征脸形成的坐标系 base = xmean' * vsort(:,1:p) * diag(dsort(1:p).^(-1/2)); % base 是N×p 阶矩阵,除以dsort(i)^(1/2)是对人脸图像的标准化(使其方差为1) % 详见《基于PCA 的人脸识别算法研究》p31 % xmean' * vsort(:,i)是小矩阵的特征向量向大矩阵特征向量转换的过程 %while (i<=p && dsort(i)>0) % base(:,i) = dsort(i)^(-1/2) * xmean' * vsort(:,i); % base 是N×p 阶矩阵,除以dsort(i)^(1/2) 是对人脸图像的标准化(使其方差为1) % 详见《基于PCA 的人脸识别算法研究》p31 % i = i + 1; % xmean' * vsort(:,i)是小矩阵的特征向量向大矩阵特 征向量转换的过程 %end % 以下两行add by gongxun 将训练样本对坐标系上进行投影,得到一个M*p 阶矩阵allcoor allcoor = allsamples * base; % allcoor 里面是每张训练人脸图片在M*p 子空间中的一个点,即在子空间中的组合系数, accu = 0; % 下面的人脸识别过程中就是利用这些组合系数来进行识别

基于PCA和SVM的人脸识别方法

基于PCA 和SVM 的人脸识别方法 一、PCA 算法 1 计算特征脸 设人脸图像f(x,y)为二维m n ?灰度图像,用nm 维向量R 表示。人脸图像训练集为 {}p i R i ,,2,1 =,其中p 为训练集中图像总数。这p 幅图像的平均向量为: ∑==p i i R p R 1 1 对训练样本规范化,即每个人脸i R 与平均人脸R 的差值向量: R R A i i -= p i ,,2,1 = 其中列向量i A 表示一个训练样本。 训练图像由协方差矩阵可表示为: T AA C = 其中训练样本p nm ?维矩阵],,,[21p A A A A = 特征脸由协方差矩阵C 的正交特征向量组成。对于nm 维人脸图像,协方差矩阵C 的大小为nm ×nm ,对它求解特征值和特征向量是很困难的,由此引入奇异值分解定理来解决维数过高的问题。 2 奇异值分解定理 奇异值分解定理( Singular Value Decomposition 简称SVD 定理)原理表述如下: 其中A 是一个秩为r 的r n ?维矩阵,则存在两个正交矩阵: r n r R u u u U ?-∈=],,,[110 I U U T = r r r R v v v V ?-∈=],,,[110 I V V T = 以及对角矩阵 r r r R diag ?-∈=Λ],,,[110λλλ 且110-≥≥≥r λλλ 满足下试: T V U A 2 1Λ= 其中: )1,,1,0(-=r i i λ为矩阵T AA 和A A T 的非零特征值, i u 与i v 分别为T AA 和A A T

对应于i λ的特征向量。上述分解称为矩阵A 的奇异值分解(简称SVD ),i λ为A 的奇异值。 由上述定理可以得到一个推论: 1 Λ=AV U 由于协方差矩阵T AA C =,故构造矩阵: p p T R A A L ?∈= ,容易求出其特征值i λ及相应的 正交归一特征向量),,2,1(p i v i =。有上述推论可知,C 的正交归一特征向量i u 为: i i i Av u λ1 = p i ,,2,1 = 这就是图像的特征向量,它是计算p p ?低维矩阵L 的特征值和特征向量而间接求出来的。实际上l )(p l <个特征值足够用于人脸识别。因此仅取L 的前l 个最大特征值的特征向量计算特征脸。 3 特征向量的选取 我们总共得到了p (训练样本数目)个特征向量。虽然p 比nm 小很多。但通常情况下,p 仍然会太大。根据应用的要求,并不是所有的i u 都有很大的保留意义。 考虑到使用L K -变换做为对人脸图像的压缩手段,可以选取最大的前l 个特征向量,使得: αλ λ≥∑∑==p i i l i i 11 在实际中,可以选择90.0=α,或者自定义的其他值。这说明样本集在前l 个轴上的能量占到整个能量的90%以上。 4 基于特征脸的人脸识别 基于特征脸的人脸识别过程由训练阶段和识别阶段两个阶段组成。在训练阶段,每个已知规范化后的人脸i A 映射到由特征脸张成的子空间上,得到l 维向量: i T i A U C = p i ,,2,1 = 其中T l i c c c C ],,,[21 =,],,,[21l u u u U =,p 为人脸数目。 在识别阶段,首先把待识别的图像规范化后的人脸R R A i -'='映射到特征脸空间,得到

基于PCA进行人脸识别的Matlab代码

%一个修改后的PCA进行人脸识别的Matlab代码 % calc xmean,sigma and its eigen decomposition allsamples=[];%所有训练图像 for i=1:40 for j=1:5 a=imread(strcat('D:\rawdata\ORL\s',num2str(i),'\',num2str(j),'.pgm')); % imshow(a); b=a(1:112*92); % b是行矢量1×N,其中N=10304,提取顺序是先列后行,即从上到下,从左到右 b=double(b); allsamples=[allsamples; b]; % allsamples 是一个M * N 矩阵,allsamples 中每一行数据代表一张图片,其中M=200 end end samplemean=mean(allsamples); % 平均图片,1 × N for i=1:200 xmean(i,:)=allsamples(i,:)-samplemean; % xmean是一个M × N矩阵,xmean每一行保存的数据是“每个图片数据-平均图片” end; sigma=xmean*xmean'; % M * M 阶矩阵 [v d]=eig(sigma); d1=diag(d); [d2 index]=sort(d1); %以升序排序 cols=size(v,2);% 特征向量矩阵的列数 for i=1:cols vsort(:,i) = v(:, index(cols-i+1) ); % vsort 是一个M*col(注:col一般等于M)阶矩阵,保存的是按降序排列的特征向量,每一列构成一个特征向量dsort(i) = d1( index(cols-i+1) ); % dsort 保存的是按降序排列的特征值,是一维行向量 end %完成降序排列 %以下选择90%的能量 dsum = sum(dsort); dsum_extract = 0; p = 0; while( dsum_extract/dsum < 0.9) p = p + 1; dsum_extract = sum(dsort(1:p)); end i=1; % (训练阶段)计算特征脸形成的坐标系 while (i<=p && dsort(i)>0)

基于SVM的人脸识别

基于SVM的人脸识别 摘要:主成分分析(PCA)是人脸识别中特征提取的主要方法,支持向量机(SVM)具有适合处理小样本、非线性和高维数问题,利用核函数且泛化能力强等多方面的优点。文章将两者结合,先用快速PCA算法进行人脸图像特征提取和选择,用所选择的人脸特征向量训练多个支持向量机(SVM),最后用训练好的支持向量机(SVM)进行人脸识别的分类。在ORL人脸数据库上进行了实验,取得了满意的识别效果。 关键词:人脸识别;主成分分析(PCA);奇异值分解(SVD);支持向量机(SVM)引言 人脸识别[1]是计算机视觉和图像模式识别领域的一个重要研究课题,它在生物领域、安全领域、商贸领域及经济领域都有着广泛的应用前景,诸如身份验证、指纹识别、监控系统等。但由于人脸表情丰富,人脸随年龄增长而不断变化,人脸受光照、成像角度及成像距离等影响,这诸多因素使得人脸识别成为一项极富挑战性的课题。人脸识别技术主要包括人脸检测阶段、特征提取阶段和人脸识别阶段,特征提取和人脸识别是研究的重中之重,当前主要的特征提取方法有主成分分析、小波分析、奇异值特征向量等,这些提取方法都是在光照变化不大的前提下才能取得良好的效果,但是光照变化比较大时,计算就会比较复杂,容易获得带噪声的人脸特征向量,导致人脸识别的精度低。人脸分类器主要有:判别分析、贝叶斯分类器、最近邻分类器和K近邻分类器等,这些方法是基于线性的分类器,对于人脸这种高维的特征向量的分类识别率不高,由于面部表情之间差别比较大,因此识别率比较低。神经网络分类识别能力强,但由于其是一种大样本方法,且存在过拟合和局部最优的缺陷等也不是一种非常理想的分类器。支持向量机是一种专门针对小样本、非线性高维的模式识别问题,解决了神经网络的存在的缺陷,因此备受研究人士的亲睐[2]-[5]。 1.人脸特征提取 图像识别中,常常用矩阵来表示人脸图像。然而,高维图像数据对整个识别系统的识别速度有限的,也不利于实时识别系统的实现。降维技术是解决这一问题的常用方法,使数据从原始图像高维空间转化为维数大大减小的特征空间,同时,又保留原始图像数据的绝大部分信息。 主成分分析利用K-L变换得到高维图像空间的一组正交基,保留其中较大的特征值对应的正交基,组成特征脸空间。将PCA用于人脸图像的最优表示,应用主分量重构人脸,提出特征脸(Eigenface)的概念,用PCA实现人脸图像的紧致表示,认为任何一幅图像都可以用一组特征脸的线性加权和来近似重构,其权重系数可以通过将人脸图像在本征脸空间投影得到,然后用投影到低维空间中基函数上的系数来表示人脸并进行识别,并采用奇异值分解(SVD)算法简化了

相关文档
最新文档