免调谐行波天线宽带阻抗匹配的设计与实现

免调谐行波天线宽带阻抗匹配的设计与实现
免调谐行波天线宽带阻抗匹配的设计与实现

喇叭天线地设计1206030201

微波技术与天线课程设计—— 角锥喇叭天线 :吴爽 学号:1206030201

目录 一.角锥喇叭天线基础知识 (3) 1. 口径场 (3) 2. 辐射场 (4) 3.最佳角锥喇叭 (7) 4. 最佳角锥喇叭远场E 面和H面的主瓣宽度 (7) 二.角锥喇叭设计实例 (7) 1. 工作频率 (8) 2.选用作为激励喇叭的波导 (8) 3.确定喇叭的最佳尺寸 (8) 4.喇叭与波导的尺寸配合 (9) 5.天线的增益 (10) 6.方向图 (10)

一.角锥喇叭天线基础知识 角锥喇叭是对馈电的矩形波导在宽边和窄边均按一定角开而形成的,如下图所示。矩形波导尺寸为a×b,喇叭口径尺寸为D H×D E,其E面(yz 面)虚顶点到口径中点的距离为R ,H 面(xz 面)虚顶点到口径中点的距离为R E,H 面(xz 面)虚顶点到口径中点的距离为R H。 1. 口径场 角锥喇叭的电磁场,目前还未有严格的解析解结果,原因在于,角锥喇叭在x和y两个方向随喇叭的长度方向均是渐变而逐渐扩展的,因而要在一个正交坐标系下求得角锥喇叭的场的严格解析解是困难的。通常近似地认为,矩形角锥喇叭中的电磁场具有球面波特性,而且假设角锥喇叭口径面上的相位分布沿x和y两个方向均为平方律变化。

按此假设,可写出角锥喇叭的口径场为: η πβy X R y R x j H y E H e D x E E E H -==+-)2(022)cos( (1.1) 如果是尖顶角锥喇叭,则 R H = R E ,可用作标准增益喇叭。若是楔形喇叭,则R H ≠R E 。由此口径面场分布计算的远场与实测的结果吻合的很好,说明了假设的口径场分析模型的正确性。 2. 辐射场 由角锥喇叭的口径场分布,仿照前面求 E 面和 H 面扇形喇叭远区辐射场的步骤,就可以求出角锥喇叭的远区辐射场表达式。由于计算过程较繁,这里直接给出结果。 ])cos 1([cos 2])cos 1([sin 200H E r j H E r j I I r e E j E I I r e E j E θ?λθ?λβ?βθ+=+=-- (2.1) 其中:

微波与天线总结

对称阵子天线: 构成:有两根粗线和长度都相同的导线构成,中间为俩个馈电端 原理: 若电线上的电流分布已知,则由电基本阵子的辐射场沿整个导线的积分,便得到对称振子的辐射场。实际上,西振子天线可看成是开路传输线逐渐张开而成,而其电流分布与无耗开路传输线的完全一致,即按正弦驻波分布。 用途:对称振子分为半波对称振子和全波对称振子,半波对称振子广泛的应用于短波和超短波波段,它既可以作为独立天线使用,也可以作为天线阵的阵元,在微波波段还可以作为抛物面天线的馈源。 特点: 方向性比基本振子的方向性稍强一些,平均特性阻抗Z越低R和X随频率的变化越缓慢,其频率特性越好。所以,欲展开对称振子的工作频带,常利用加粗振子直径的方法。当h=λ/4n时,其输入阻抗是一个不大的纯电阻具有很好的频率特性,也有利于同馈线匹配,而在并联谐振点附近是一个高阻抗且输入阻抗随频率变化剧烈,特性阻抗不好。 阵列天线: 构成:将若干辐射单元按某种方式排列所构成的系统。构成天线阵地辐射单元,成为天线原或阵元 原理:天线的辐射场是各天线元所产生的矢量叠加,只要各天线元上的电流,振幅和相位分布满足适当的关系,就可以得到所需要的辐射特性 特点:天线阵的主瓣宽度和旁瓣电平是即相互依赖又相互对立的一对矛盾,天线阵方向图的主瓣宽度小,则旁瓣电平就高,反之,主瓣宽度大则旁瓣电平就低。均匀直线阵的主瓣很窄,但旁瓣数目多,电平高,二项式直线振的主瓣很宽旁瓣就消失了,旁瓣分散了天线的辐射能量,增加量接受的信噪比,但旁瓣又起到了压缩主瓣宽度的作用。 直立阵子天线: 构成:垂直于地面或导电平面架设的天线称为直立阵子天性 原理:单级天线可等效为一对对称振子,对称阵子可等效为一二元阵,但此时等效只是在地面或导体的上半空间成立。理想导电平面上的单级天线的辐射场可直接应用到自由空间对称振子的公式进行计算。 用途:广泛应用于长,中,短波及超短波段。 特点: 当h《λ时辐射电阻很低。单级天线效率也很低改善方法是提高辐射电阻降低损耗电阻。 水平振子天线: 构成: 水平振子天线又称双级天线,阵子的两臂由单根或多股铜线构成,为了避免在拉线上产生较大感应电流,拉线的长度应较小,臂和支架采用高频绝缘子隔开,天线与周围物体要保持适当距离,馈线采用600Ω的平行双导线。 原理:与直立天线的情况类似,无限大导电地面的影响可用水平阵子天线的镜像来代替,架设在理想导电地面上的水平振子天线的辐射场可以用该天线及其镜像所构成的二元阵来分析,但应注意该二元阵的天线元是同幅反相的。 用途:经常用于短波通信电视或其他无线电系统。 特点:架设和馈电方便,地面电导率的变化对水平振子天线的影响较直立天线小,工业干扰大多是垂直极化波,因此,用水平振子天线可以减少干扰对接收的影响。 引向天线: 构成:又称为八木天线,它由一个有源振子及若干个无源振子组成,在无源振子中较长的一个为反射器,其余为引向器 用途:广泛用于米波,分米波的通信、雷达、电视及其它天线电流 原理:引向天线实际上也是一个天线阵,与前述天线相比不同的是它是对其中一个振子馈电,

超宽带天线的研究与设计

超宽带天线的研究与设计 李庆娅李晰唐鸿燊 摘要:本文设计了一款差分微带超宽带天线,通过改变馈线和尺寸和接地板上缝隙的半径,优化了天线的性能,所实现的天线带宽为11.5 GHz,且有较好的辐射特性。在此基础上,通过在两贴片上对称地开槽,得到了在5 GHz处有陷波特性的超宽带天线。 关键词:超宽带天线;差分天线;带阻特性 Research and Design of Ultra-wideband Microstrip Antenna Li Qing-Ya, Li Xi, Tang Hong-Shen Abstract: In this paper, a differential microstrip ultra-wideband antenna is designed. It is optimized by changing dimensions of feeding line and radius of slot in the ground. The simulated and measured results show that the frequency bands of antenna is 11.5 GHz. Also, it has good radiation characteristics. Based on this, by etching the slot in the patch symmetrically, the ultra-wideband antenna with band-notch characteristics at 5 GHz is achieved. Key word s: Ultra-wideband antenna; differential antenna; band-notch characteristics 1 引言 近几年,随着超宽带(UWB)通信技术的快速发展,对应用于短距离无线通信系统中的天线提出了更高的要求,不仅要求天线尺寸小、剖面低、价格便宜,易于加工并可集成到无线电设备内部,同时,还要求天线阻抗带宽足够宽,以便覆盖整个UWB频段。美国联邦通信委员会(FCC)规定UWB信号的频段为3.1 GHz-10.6 GHz。这个通信频段中还存在划分给其他通信系统的频段,如5.15 GHz到5.35 GHz的IEEE802.11a 和5.75 GHz到5.85 GHz的Hiper-LAN/2。 在接地板上开缝是实现超宽带天线的方法之一,常见的缝隙形状如倒锥形[1]、矩形、半圆形、梯形[2]等。文献[2]中仿真优化并制作了一个小型化超宽带微带天线,在整个工作频段2.15-13.47 GHz内,该天线的回波损耗均在-10 dB以下,增益基本稳定在3~6 dB之间,并具有比较稳定的辐射特性。在超宽带天线的基础上通过在辐射贴片上开槽实现带阻特性,槽的形状有L形[3]、矩形[4]、E形[5]等,文献[5]提出了一种新型的具有双阻带特性的超宽带天线,制作出实物并验证了天线的超宽带和陷波特性,即在中心频率3.75 GHz和5.5 GHz附近的频带范围内具有良好的陷波特性。 本文首先设计了超宽带天线,研究了天线的回波损耗S11和辐射特性与天线环形接地板尺寸的关系,改善了天线的带宽。在此基础上,通过改变贴片和微带线的尺寸。并利用折合形开槽技术在贴片上开槽,有效实现阻带。 2 天线设计 本文设计天线结构如图1所示。图1(a)中天线的辐射贴片,位于介质基板的上表面,图1(b)是刻蚀了圆形缝隙的地,位于介质基板的下表面;天线采用介质为RogerS RT/duroid 6006,相对介电常数为6.15,厚为0.5mm的介质基板,尺寸为29.6 mm×33.6 mm;馈电部分为50欧的微带线。

欧阻抗天线设计

两层板(双面板)如何控制50欧特性阻抗的设计技巧 我们都知道,在射频电路的设计过程中,走线保持50欧姆的特性阻抗是一件很重要的事情,尤其是在Wi-Fi产品的射频电路设计过程中,由于工作频率很高(2.4GHz或者5.8GHz),特性阻抗的控制就显得更加重要了。如果特性阻抗没有很好的控制在50欧姆,那么将会给射频工程师的工作带来很大的麻烦。 什么是特性阻抗? 是指当导体中有电子”讯号”波形之传播时,其电压对电流的比值称为”阻抗Impedance”。由于交流电路中或在高频情况下,原已混杂有其它因素(如容抗、感抗等)的”Resistance”,已不再只是简单直流电的”欧姆电阻”(OhmicResistance),故在电路中不宜再称为”电阻”,而应改称为”阻抗”。不过到了真正用到”Impedance阻抗”的交流电情况时,免不了会造成混淆,为了有所区别起见,只好将电子讯号者称为”特性阻抗”。电路板线路中的讯号传播时,影响其”特性阻抗”的因素有线路的截面积,线路与接地层之间绝绿材质的厚度,以及其介质常数等三项。目前已有许多高频高传输速度的板子,已要求”特性阻抗”须控制在某一范围之内,则板子在制造过程中,必须认真考虑上述三项重要的参数以及其它配合的条件。 两层板如何有效的控制特性阻抗? 在四层板或者六层板的时候,我们一般会在顶层(top)走射频的线,然后再第二层会是完整的地平面,这样顶层和第二层的之间的电介质是很薄的,顶层的线不用很宽就可以满足50欧姆的特性阻抗(在其他情况相同的情况下,走线越宽,特性阻抗越小)。 但是,在两层板的情况下,就不一样了。两层板时,为了保证电路板的强度,我们不可能用很薄的电路板去做,这时,顶层和底层(参考面)之间的间距就会很大,如果还是用原来的办法控制50欧姆的特性阻抗,那么顶层的走线必须很宽。例如我们假设板子的厚度是

微波工程课程设计实验报告Smith圆图程序设计

一、摘要 Smith圆图主要用语计算微波网络的阻抗、导纳及网络阻抗匹配设计,还可用于设计微波元器件。Smith圆图软件不仅适用于微波工程设计,也可用于电磁场、微波技术及天线与电波传播等。本软件可形象的演示圆图上的阻抗值、导纳值与反射系数。 二、设计目的 微波网络的正弦稳态分析含有复数计算,运算十分繁琐和耗时。在计算机运算速度和存不够发达以前,图解分析法达到长足发展,其中多年来运用最广的事Smith圆图。在计算微波传输线输入阻抗、导纳、及阻抗匹配等问题时,它不仅能避开繁琐的公式及复数运算,是工程设计总相关计算简单便捷,而且图解过程物理概念清晰,所的结果直观形象。但随着计算机技术的飞速发展,图解法在计算精度上的固有缺陷日益显现,因为,圆图的设计精度取决于圆图中必须有足够的圆周数,而且过多的圆周会导致图线过于密集,不便将阻抗,反射系数、电压驻波系数(VSWR)及电长度等相关数据从图上直接读出。通过对圆图构成的基本原理和应用问题的分析,利用现代计算机技术可以解决原图计算精度等问题,为此设计Simth圆图。 三、设计要求 圆图软件设计要求计算结果以图形和数据并行输出,整个圆图软件分为用户图形界面模块、圆图计算模块、圆图演示模块。圆图计算模块分为反射系数计算、单支节匹配计算、输入阻抗计算及整个Smith圆图;画图演示模块分为等归一化电阻圆、等归一化电抗圆、反射系数圆等;确定阻抗值在圆图上的位置、圆图的基本应用、求输入阻抗及其在圆图上的位置以及单支节匹配等问题。

四、程序流程图 程序结构模型: 功能实现图: 五、演示验证过程 1、打开Smith圆图软件 2、点击“Smith圆图”按钮,观察到图形区出现了已经画好的圆图,绿色是反射系数圆,紫色是阻抗圆实部,紫色是阻抗圆虚部。 3、在图形区点住鼠标左键不放,此时移动鼠标时,在图形区中自动画出鼠标所在点的Smith圆图,蓝色是反射系数圆,红色是阻抗圆。在界面的右边可以读出此时的反射系数、阻抗值、导纳值,并且计算出该点的驻波比和行波系数,判断该点是否是波腹或者波节点。

北大天线理论课件:第四章 行波天线

第四章行波天线 天线上电流按行波分布的天线称为行波天线(Travelling Wave Antenna)。行波天线具有如下特点: 1)电流为行波分布,不存在反射电流; 2)输入阻抗和方向图对频率变化不敏感; 3)频带宽,绝对带宽可达1 2 ~ (; : ) 3 4)效率低。 常用的行波天线主要有菱形天线、V形天线和螺旋天线等,用于短波波段的无线通信。 §4.1 长导线天线 长度大于一个波长、其上电流按行波分布的导线构成的天线,称为长导线天线。为使导线上传输单一的行波电流,通常在其末端接一匹配负载 R以抑制反 L 射波,见下图所示。 行波长导线天线

4.1.1 辐射场 假设导线沿z 轴放置,线上电流幅度相等、相位连续滞后。线上电流可以表示成: () ' 0' jkz e I z I -= 远区辐射场为: ()()()()θθθ πηθλ πθθθcos 12 cos 12sin sin 4sin 60cos 120'cos 00''-??????-==------?kl kl e r e klI j dz e e r I j E kl j jkr z r jk l jkz 式中r 为原点到场点的距离,θ为射线与z 轴之间的夹角。由此得到长导线天线的方向函数为: ()()()θθθθcos 12 cos 12sin sin -? ?????-=kl kl F 下图是根据上式画出的行波长导线天线的方向图。 长导线天线方向图随长度的变化

导线长度为λ5=l 时的立体方向图如上图所示。 方向图特点: 1) 沿轴线方向没有辐射; 2) 随l 增长,最大辐射方向逐渐靠近轴线,同时主瓣变窄,副瓣增大、数目增多; 3) 当λl 很大时,主瓣方向随λl 的变化很小,方向性具有宽频带特性。 4.1.2 性能参数 1) 最大辐射角与零点位置 方向函数可以改写成: ()()?? ? ???-???? ??=θθθcos 12sin 2cot kl F 当l 很长时,()?? ????-θcos 12 sin kl 项随θ的变化比?? ? ??2cot θ项要快 得多,天线的最大辐射方向由()?? ? ???-θcos 12sin kl 决定。令 λ 5=l 行波长导线天线方向图( )

基于HFSS的4_24微带阵列天线的研究与设计_惠鹏飞

第26卷第5期 齐 齐 哈 尔 大 学 学 报 Vol.26,No.5 2010年9月 Journal of Qiqihar University Sep.,2010 基于HFSS 的4×24微带阵列天线的研究与设计 惠鹏飞,夏颖,周喜权,陶佰睿,苗凤娟 (齐齐哈尔大学 通信与电子工程学院,黑龙江 齐齐哈尔 161006) 摘要:微带阵列天线的馈电方式有微带线馈电和同轴馈电两种方式,本文利用HFSS软件对微带阵列天线进行了研 究,分析了两种馈电方式的传输损耗及其对天线方向图的影响,利用模块化的设计方法实现了一种基于同轴线馈 电结构的多元矩形微带阵列天线。在HFSS仿真设计环境里对天线进行了物理建模,该微带阵列天线的方向图特性 良好,工程上实现比较方便。 关键词:微带阵列天线;模块化设计;HFSS 仿真;物理建模;方向图 中图分类号:TN820.1 文献标识码:A 文章编号:1007-984X(2010)05-0009-04 随着无线电技术的发展,微带天线在许多领域得到了越来越广泛的应用,主要应用场合包括:卫星通信、多普勒雷达及其它制式雷达、导弹遥测系统、复杂天线中的馈电单元等[1] 。微带天线通常采用天线阵列的形式,由馈电网络控制对天线子阵的激励幅度和相位,以获得高增益、强方向性等特点。 微带阵列天线的馈电方式主要有微带线馈电和同轴线馈电方式两种。利用微带线馈电时,馈线与微带贴片是共面的,因此可以方便地光刻,但缺点是损耗较大,在高效率的天馈系统里的应用受到较大限制[2]。本文首先对微带馈电网络产生的损耗进行了详细分析,利用HFSS 软件设计了2×4结构的微带子阵,采用同轴馈电的方式,利用模块化设计方法和方向图叠加原理最终实现了4×24矩形微带阵列天线,仿真设计结果表明,该大型矩形微带阵列天线的各项指标参数良好,设计思想得到了很好的验证。 1 微带阵列及馈电网络损耗分析 1.1 微带阵列理论 微带天线单元的增益较小,一般单个贴片单元的辐射增益只有6~8 dB,为了实现远距离传输和获得更大的增益,尤其是对天线的方向性要求比较苛刻的场合,常采用由微带辐射单元组成的微带阵列天线,如果对增益要求较高,可采用大型微带阵列天线结构[3]。 首先分析平面微带阵列天线的激励电流与电场分布情况,无论是线天线还是面天线,其辐射源都是高频电流源,天线系统将高频电流源的能量转换成电磁波的形式发射出去,讨论电流源的辐射场是分析天线的基础。假设由若干相同的微带天线元组成的平面阵结构,建立三维坐标系分析阵列天线的场量分布情况。以阵列的中心为坐标原点,天线在x 轴方向和y 轴方向的单元编号分别用m 和n 表示。以原点天线单元为相位参考点,为了简化分析,假设阵列中各单元间互耦影响可以忽略不计,各单元激励电流为 j()e xs ys m n mn I ψψ?+,天线阵在远区的辐射总场(,)E θ?为 ()(,)(,)E f S θ?θ?θ??,= 式中,(,)f θ?为阵元的方向性函数,(,)S θ?为平面阵的阵方向性函数。平面阵因子是两个线阵因子的乘积,可以利用线阵方向性分析的结论来分析平面阵列的方向性。 1.2 馈电网络及损耗分析 天线只有承载高频电流才能有电磁波辐射,馈线指将高频交流电能从电路的某一段传送到另一段所用 的设备,对天线的馈电包括对单元天线的馈电和阵列天线的馈电两种形式。当利用传输线对阵列结构进行 收稿日期:2010-06-06 基金项目:齐齐哈尔市科技局工业攻关项目(GYGG-09011-2) 作者简介:惠鹏飞(1980-),男,辽宁凌源人,讲师,硕士,主要从事雷达极化信息处理的研究,weibo505@https://www.360docs.net/doc/f410859333.html,。

HFSS的天线课程设计报告书

. . . . . 图1:微带天线的结构 一、 实验目的 ●利用电磁软件Ansoft HFSS 设计一款微带天线。 ◆微带天线要求:工作频率为2.5GHz ,带宽 (回波损耗S11<-10dB)大于5%。 ●在仿真实验的帮助下对各种微波元件有个具体形象的了解。 二、 实验原理 1、微带天线简介 微带天线的概念首先是由Deschamps 于1953年提出来的,经过20年左右的发展,Munson 和Howell 于20世纪70年代初期制造出了实际的微带天线。微带天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线通信中。 图1是一个简单的微带贴片天线的结构,由辐射源、介质层和参考地三部分组成。与天线性能相关的参数 包括辐射源的长度L 、辐射源的 宽度W 、介质层的厚度h 、介质 的相对介电常数r ε和损耗正切 δtan 、 介质层的长度LG 和宽度WG 。图1所示的微带贴片天线是采用微带天线来馈电的,本次将要设计的矩形微带贴片天线采用的是同轴线馈电,也就是将同轴线街头的心线穿过参考地和介质层与辐射源相连接。 对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能,矩形贴片微带天线的工作主模式是TM10模,意味着电场在长度L 方向上有2/g λ的改变,而在宽度W 方向上保持不变,如图2(a )所示,在长度L 方向上可以看做成有两个终端开路的缝隙辐射出电磁能量,在宽度W 方向的边缘处由于终端开路,所以电压值最大电流值最小。从图2(b )可以看出,微带线边缘的电场可以分解成垂直于参考地的分量和平行于参考地的分量两部分,两个边缘的垂直电场分量大小相等、方向相反,平行电场分量大小相等,方向相反;因此,远区辐射电场垂直分量相互抵消,辐射电场平行于天线表面。

射频微波技术课程设计

射频微波技术课程设计 专业班级: 学号: 学生姓名: 指导教师: 年月日

设计题目:圆极化微带天线仿真设计 一、内容摘要 微带天线(microstrip antenna)在一个薄介质基片上,一面附上金属薄层作为接地板,另一面用光刻腐蚀方法制成一定形状的金属贴片,利用微带线或同轴探针对贴片馈电构成的天线。微带天线分2 种:①贴片形状是一细长带条,则为微带振子天线。②贴片是一个面积单元时,则为微带天线。如果把接地板刻出缝隙,而在介质基片的另一面印制出微带线时,缝隙馈电,则构成微带缝隙天线。 二、设计任务及指标: 设计一种谐振频率为920MHz的圆极化贴片天线,利用Ansoft公司的HFSS13.0对其进行建模并对其进行仿真分析天线的远区辐射场特性并进行一系列优化。进一步理解微带天线的特性与应用,掌握微波天线的工程设计方法和技巧,熟悉三维电磁场仿真工具HFSS,了解微波天线产品的系统概念,提高专业素质和工程实践能力。 (1)工作频段:900~1200MHz。 (2)基板FR4:H=1.5mm,Er=4.4,tand=0.02。 (3)驻波比小于1.5。 (4)轴比小于3dB。 (5)方向性系数高于3dB。 (6)极化方式RHCP。 三、设计原理: 1.微带贴片天线的工作原理 微带贴片天线是由介质基片、在基片一面上有任意平面形状的导电贴片和基片另一面上的地板所构成。 天线要解决的两个重要问题是阻抗特性和方向特性。前者要解决天线与馈线的匹配问题; 后者要解决定向辐射或定向接收问题,也就是要解决提高发射功率或接收机灵敏度的问题。 而不论是阻抗特性还是方向特性都必须首先求出天线在远区的电磁场分布,为此要求解满足天线边界条件的麦克斯韦方程组。对于这样一个电磁场的边值问题,严格的数学求解是很困难的。因此,经常采用工程近似的方法进行研究,即用某种初始场的近似分布代替真实的准确分布来计算辐射场。 微带天线的辐射机理实际上是高频的电磁泄漏。一个微波电路如果不是被导体完全封闭,电路中的不连续处就会产生电磁辐射。例如微带电路的开路端,结构尺寸的突变、折弯等不连续处也会产生电磁辐射(泄漏)。当频率较低时,这些部分的电尺寸很小,因此泄漏也笑;但随着频率的增高,电尺寸增大,泄漏就大。在经过特殊设计,即放大成贴片状,并使其工作在谐振状态,辐射就明显增强,辐射效率就大大提高,从而成为有效的天线。 图1是一个简单的微带贴片天线的结构,由辐射元、介质层和参考地三部分组成。与天线性能相关的参数包括辐射元的长度L、辐射元的宽度W、介质层的厚度h、介质的相对介

P波段小型化锯齿缝隙超宽带天线设计-易迪拓培训

第15卷第3期 空 军 工 程 大 学 学 报(自然科学版)Vol.15No.3 2014年6月 JOURNAL OF AIR FORCE ENGINEERING UNIVERSITY (NATURAL SCIENCE EDITION ) Jun.2014 收稿日期:2013-11-22 基金项目:国家自然科学基金资助项目(61271100);陕西省自然科学基金资助项目(2010JZ010;2012JM8003) ;国家重点实验室基金资助项目(20131007) 作者简介:郭 蓉(1990-),女,陕西咸阳人,硕士生,主要从事微带天线研究.E -mail :ber y fl y in g @https://www.360docs.net/doc/f410859333.html, *通信作者:曹祥玉(1964-),女,教授,博士生导师,主要从事天线与电磁兼容二电磁超材料等研究.E -mail :gjgj 9694@163. com 引用格式:郭蓉,曹祥玉,李思佳,等.P 波段小型化锯齿缝隙超宽带天线设计[J ].空军工程大学学报:自然科学版,2014,15(3):66-70.GUO Ron g ,CAO Xian gy u ,LI Si j ia ,et al.A desi g n of P -band miniaturized saw -tooth -ed g ed ultra -wideband antenna [J ].Journal of air force en g ineerin g universit y :natural science edition ,2014,15(3):66-70. P 波段小型化锯齿缝隙超宽带天线设计 郭 蓉, 曹祥玉, 李思佳, 张 昭, 徐雪飞 (空军工程大学信息与导航学院,陕西西安,710077) 摘要 设计了一种P 波段小型化超宽带天线三该天线采用微带线对五边形辐射单元进行馈电, 接地板上蚀刻了锯齿形边沿的矩形宽缝三通过天线参数的仿真优化,最终实现了相对带宽约95%二尺寸为0.27λ?0.17λ(λ为低频点的自由空间波长)的超宽带P 波段小型化印刷天线三仿真结果表明:天线的工作频带为300.5~848.8MHz ,带内回波损耗均在-10dB 以下,整个频段内天线的增益均在3dBi 以上,天线为全向辐射三该天线具有平面结构,形状简单,易于共形的特征三最后制作了天线样件并进行了测试,测量结果与仿真结果吻合较好三关键词 印刷宽缝天线;小型化;P 波段; 超宽带DOI 10.3969/j .issn .1009-3516.2014.03.016中图分类号 TN82 文献标志码 A 文章编号 1009-3516(2014)03-0066-05 A Desi g n of P -band Miniaturized Saw -tooth -ed g ed Ultra -wideband Antenna GUO Ron g ,CAO Xian g -y u ,LI Si -j ia ,ZHANG Zhao ,XU Xue -fei (Information and Navi g ation Colle g e ,Air Force En g ineerin g Universit y ,Xi ?an 710077,China )Abstract :A miniaturized ultra -wideband antenna is desi g ned in P band.The antenna is fed b y a p enta g on cou p led feedin g structure.An im p roved rectan g ular slot with saw -tooth ed g e is etched on the g round.The results of p arameters show that the bandwidth of the desi g ned antenna is 293.4~830.3MHz with relative bandwidth 95%and the return loss is less than -10dB.The size of the antenna is (is the wavelen g th of the lowest fre q uenc y ).The avera g e g ain is over 3dBi in the o p eratin g ran g e and the antenna is a kind of omni antenna.The antenna is a p lanar construction and is sim p le in sha p e and eas y in conformation.A sam p le antenna is fabricated and tested.The ex p erimental results are in g ood a g reement with the simula -tion results.Ke y words :p rinted wide -slot antenna ;miniaturization ;P band ;ultra -wideband 工作于P 波段的超宽带雷达(UWB SAR )具有很强的叶簇穿透能力,并能够探测地表下的隐蔽物三国际上至今已有多个P 波段的机载SAR 系统,如 FOA 的CARABAS [1],SRI 的FOLPEN [2] 系列等三 国内也进行了P 波段轨道超宽带SAR 和机载超宽 带SAR 的研究和实验[ 3-4] 三目前,工作在P 波段(230~1000MHz ) 的天线主要形式有蝶形天线二印刷偶极子天线二印刷单极子

微带天线课程设计报告

课程设计报告 课设名称:微波技术与天线课设题目:微带天线仿真设计课设地点:跨越机房 专业班级:学号: 学生姓名: 指导教师: 2012年 6 月 23 日

一、设计要求: 矩形贴片是微带贴片天线最基本的模型,本设计就是基于微带贴片天线基础理论以及熟练掌握HFSS10仿真软件基础上,设计一个右手圆极化矩形贴片天线,其工作频率为2.45GHz,分析其远区辐射场特性以及S曲线。 矩形贴片天线示意图 二、设计目的: 1.理解和掌握微带天线的设计原理 2.选定微带天线的参数:工作频率、介质基片厚度、贴片模型及馈电点位置 3.创建工程并根据设计尺寸参数指标绘制微带天线HFSS模型 4.保存工程后设定边界条件、求解扫描频率,生成S参数曲线和方向图 5.观察对比不同尺寸参数的微带天线的仿真结果,并分析它们对性能的影响 三、实验原理: 用传输线模分析法介绍它的辐射原理。。 设辐射元的长为L,宽为ω,介质基片的厚度为h。现将辐射元、介质基片和接地板视为一段长为L的微带传输线,在传输线的两端断开形成开路,根据微带传输线的理论,由于基片厚度h<<λ,场沿h方向均匀分布。在最简单的情况下,场沿宽度ω方向也没有变化,而仅在长度方向(L≈λ/2)有变化。 在开路两端的电场均可以分解为相对于接地板的垂直分量和水平分量,两垂直分量方向相反,水平分量方向相同,因而在垂直于接地板的方向,两水平分量电场所产生的远区场同向叠加,而两垂直分量所产生的场反相相消。因此,两开路端的水平分量可以等效为无限大平面上同相激励的两个缝隙,缝的电场方向与长边垂直,并沿长边ω均匀分布。缝的宽度△L≈h,长度为ω,两缝间距为L≈

微带天线设计

班级:通信13-3班 姓名:王亚飞 学号:1306030318 指导教师:徐维 成绩: 电子与信息工程学院 信息与通信工程系

目录 1微带天线设计 (3) 1.1微带天线简介 (3) 1.2设计要求 (3) 1.3设计指标和天线几何结构参数计算 (4) 2 HFSS 设计和建模概述 (5) 2.1创建微带天线模型 (5) 2.1.1新建HFSS 工程 (5) 2.1.2建立模型 (6) 2.2相关条件设置 (14) 2.2.1设置激励端口 (14) 2.2.2添加和使用变量 (15) 2.2.3求解设置 (17) 3设计检查和运行仿真分析 (19) 3.1查看天线谐振点 (19) 3.1变量Length、Width扫描分析 (21) 3.2查看S11参数以及Smith圆图结果 (21) 3.3查看驻波比 (22) 3.4查看天线的三维增益方向图 (22) 3.5查看平面方向图 (23) 4总结体会 (23)

1微带天线设计 1.1微带天线简介 微带天线是近30年来逐渐发展起来的一类新型天线。早在1953年就提出了微带天线的概念,但并未引起工程界的重视。在50年代和60年代只有一些零星的研究,真正的发展和使用是在70年代。常用的一类微带天线是在一个薄介质基(如聚四氟乙烯玻璃纤维压层)上,一面附上金属薄层作为接地板,另一面用光刻腐蚀等方法作出一定形状的金属贴片,利用微带线和轴线探针对贴片馈电,这就构成了微带天线。当贴片是一面积单元时,称它为微带天线;若贴片是一细长带条则称其为微带振子天线。 图1.1 是一个简单的微带贴片天线的结构,由辐射元、介质层和参考地三部分组成。与天线性能相关的参数包括辐射元的长度L、辐射元的宽度W、介质层的厚度h、介质的 相对介电常数εr 和损耗正切tan δ、介质层的长度LG 和宽度WG。图10.1 所示的微带贴片天线是采用微带线来馈电的,本章将要设计的矩形微带贴片天线采用的是同轴线馈电,也就是将同轴线接头的内芯线穿过参考地和介质层与辐射元相连接。 图1.1微带天线的结构 1.2设计要求 设计一个矩形微带天线,工作频率为2.45Ghz ,天线使用同轴线馈电。天线的中心频率为2.45GHz,因此设置HFSS 的求解频率(即自适应网格剖分频率)为2.45GHz,同时添加1.5~3.5GHz 的扫频设置,分析天线在1.5~3.5GHz 频段内的回波损耗或者电压驻波比。

一种超宽带天线的设计与研究毕业设计论文

摘要 超宽带天线广泛应用于如电视、调频广播、遥测技术、宇航和卫星通信等领域中。尤其是近年来兴起的超宽带无线通信技术,使此类天线成为当今通信领域的研究焦点。 本文设计并研究了两种类型的超宽带天线,一种是带两个对称臂的矩形平面单极子天线,另一种是弯折结构的平面单极子天线。 所研究的第一种天线实现了在工作频率范围内回波损耗都在-10dB以下,基本满足了超宽带通信的要求,天线的工作频带是 2.7-9GHz。回波损耗与频率的关系曲线产生两个低峰值,特别适合于双频带通信使用。文中研究了通过改变切口尺寸、介质损耗对低峰值频率位置的影响关系,还讨论了端口大小对仿真准确度的影响,得到系列结论。 所研究的第二种天线实现了真正意义上超宽带天线,天线结构简单,易于构建,小尺寸、低剖面,能够在回波损耗小于-10dB条件下有效地工作在2.8~9.5GHz的频率范围。 天线采用热转印法自制了实验模型,并通过矢量网络分析仪测量了回波损耗与频率的关系曲线,测量结果与仿真结构基本吻合。 两种天线的研究还包含了增益和方向图等,从而对天线性能进行了全面分析。 关键词: 超宽带天线;单极子天线;有限元法;电磁仿真;热转印法

Abstract UWB antenna is widely used in television, FM radio, telemetry, aerospace and satellite communications fields. In particular, with the rise of ultra-wideband wireless communications technology in recent years, making such antennas become the focus of communication research field. This paper studies two types of ultra-wideband antenna, one is a symmetric planar monopole antenna with two symmetrical rectangular incision, the other is bent planar monopole antenna structure. The first designed antenna can satisfy the demand of UWB communication that the Return Loss of the antenna in the scope of working frequency, which is between 2.7-9GHz, is below -10dB. Return loss vs. frequency curves generated two low peaks, which is particularly suitable for dual-band communications. A study of the incision by changing the size of the low dielectric loss peak frequency position of the relationship between port size also discussed the impact on simulation accuracy, get series conclusion. The study of the second antenna to achieve a truly ultra-wideband antenna, the antenna structure is simple, easy to build, small size, low profile, can be less than-10dB return loss under the conditions of effective work in the 2.8 ~ 9.5GHz frequency range. Antenna made by heat transfer method of the experimental model, and vector network analyzer by measuring the return loss versus frequency curve, the measurement results and simulation of structure of the basic agreement. thermal transfer printing technology The study also includes two antenna gain and pattern, etc., and thus a comprehensive analysis of antenna performance. Key words: UWB antenna; monopole antenna; finite element method; electromagnetic simulation

通信系统天线综合课程设计报告书

J I A N G S U U N I V E R S I T Y 通信系统天线综合课程设计 学院名称: 专业班级: 学生: 学生学号:

一、课程设计目的 通过综合课程设计,在学习EDA仿真软 件HFSS使用方法的基础上,掌握常见通信系 统天线的仿真设计方法。 二、课程设计容: 以“通信系统天线”课程课件“Ch4.1 偶 极和单极天线”、“Ch4.2 常用振子天线和馈 电技术”、“Ch5 宽带天线_c”、“Ch6 移动系 统常用天线_c”为参考资料,分别仿真偶极 子天线、UHF probe 振子天线、共面波导馈 电领结天线和同轴馈电贴片天线,并对天线 进行分析。 三、设计步骤及仿真结果 天线设计实例1:偶极子天线 1)设计步骤 打开HFSS并保存一个新项目 打开File选项(alt+F),单击Save as。输入 项目名hfss_dipole。 一.Step1 创建模型 1、创建振子1 (1)选择cylinder图标 (2)输入参数: 切换到参数设置区(在工作区的右下角),设置圆柱体的基坐标为(x=0 mm,y=0 mm,z=1.25mm); 按下Enter 键后输入半径和长度:dx =2.5mm, dy=0 mm, dz=73.75mm 。 (3)设置振子1的名称和材料 在对象列表中双击cylinder1, 弹出如下属性窗口。 设置名称:将Name改为“pole1”。 设置材料:单击Material的Value,在如下对话框中输入“pec”并确定。

2、创建振子2 (1)选择cylinder图标 (2)输入参数: 切换到参数设置区,设置圆柱体的基坐标为(x=0 mm,y=0 mm,z=-1.25mm); 按下Enter 键后输入半径和长度:dx =2.5mm, dy=0 mm, dz=-73.75mm 。注意此时坐标的选取。 (3)设置名称和材料 设置名称为“pole2”,材料同为“pec”。设置完毕,如下图所示。

超宽带天线设计与研究详解

超宽带天线的研究与设计 中文摘要 近几年来,超宽带天线的研究已经成为热潮。本文的思想也是研究小型化超宽带平板天线,让其在生活中的硬件设计产品中满足超宽带天线的技术需要。因为超宽带天线在WiMAX和WLAN的窄带系统和装载切口天线设计结构上产生的影响。实现WiMAX和WLAN频带的双凹槽在超宽带天线结构设计。在设计过程中主要是使用HFSS软件进行天线结构的仿真优化。主要利用了HFSS软件仿真和天线结构的优化设计过程。我们针对其超宽带天线的性能参数,相应的提升平面单极子天线的基础研究。传统平面单极子天线与狭槽,狭槽装载方法的横截面,提出了几种平面单极子天线从频域和时域研究,从而从单极子天线的相关性能参数出发,研究平面单极子天线在频率范围为3.1GHZ-11GHZ,使超宽带天线能够达到市场对硬件方面的应用需求。 关键词:平面单极子天线;超宽带;HFSS仿真 I

Research and design of ultra-wideband antenna Abstract In recent years, the research of ultra-wideband antenna has become a boom. Thought of this paper is to study ultra-wideband planar antenna miniaturization, let the life in the hardware design of the product satisfy the need of ultra-wideband antenna. Because of ultra-wideband antenna in WLAN and WiMAX narrowband systems and the impact loading of incision on the antenna design. Both WiMAX and WLAN band grooves in the ultra-wideband antenna structure design. In the design process is mainly using HFSS software for simulation of antenna structure optimization. Mainly using HFSS software simulation and optimization of the antenna structure design process. We according to the performance of ultra-wideband antenna parameters, the corresponding increase of planar monopole antenna of basic research. Traditional planar monopole antenna and the slot, slot loading method of cross section, and puts forward several planar monopole antenna from frequency domain and time domain research, thus starting from the related performance parameters of monopole antenna, the planar monopole antenna in the frequency range of 3.1 GHZ - 11 GHZ, the ultra-wideband antenna can meet the market demand for hardware applications. Key words: Planar monopole antenna; Ultra-Wideband; HFSS simulation 目录 I

相关文档
最新文档