pt1000高精度测量电路误差分析

pt1000高精度测量电路误差分析
pt1000高精度测量电路误差分析

Pt1000高精度温度测量电路误差分析

总精度分析:Pt1000在0℃的电阻为1k,变化为3.851Ω/℃

如果要求精度达到0.5℃,对应电阻变化为1.9255Ω

使用电流源为1mA,对应电压为1.9255mV,以0℃为基准,电路要

达到1.9255‰的精度

留一定余量,允许电路产生1.5‰的误差

误差分配:电路由五部分组成:传感器,电流源,补偿电路,信号调理,ADC

传感器部分:主要是导线电阻给电路带来的误差,使用三线制,最高型号

传感器也会引入0.4‰的误差;

电流源:电流源电路的精度主要取决于LM334电流纹波,由于LM334内的基准电压源与温度成正比,所以需要更改电路为:

以降低电流源电路对温度的敏感度;

补偿电路:

若R6=R5=2R4,

根据电路原理分析,误差的来源主要是R2和R3的差值:

电阻R4,R5,R6的精度带来的误差:

可知此三电阻的精度使用1%,即可只分配0.04‰的误差信号调理电路:

假设运放为理想运放,则传递函数为:

若R9=3R11,

若有R9<

在理想运放下,传递曲线:

△Vout=Vout1-Vout2,而且和输入电压V3有关

根据仿真结果

将R13和R11设置成相差100倍,须给这部分分配0.027‰的误差

电阻R7,R14,R8,R10,R11,R13,R9,R11精度对输出误差的影响:

此组数据说明用正常的精度值无法达到所需的精度,所用的电路结构是

有问题的。如需用本电路实现,则在电路焊接的时,需要人工对电阻进行筛选以达到高精度的要求

人工筛选电阻,为此部分分配0.35‰的误差

ADC:输出电压在0.5V-1.5V之间,最小分辨电压要求为1.5mV,若满刻度为2V,则需要11位ADC,加两位裕量13位AD,ADS1110为16位ADC,满足要求,不引入新的误差

剩下6.9‰的误差分配给运放,要求运放满足:≤6.9mV

Lm358不符合要求

分析化验中的误差

第一节准确度和精密度 在任何一项分析工作中,我们都可以看到用同一个分析方法,测定同一个样品,虽然经过多次测定,但是测定结果总不会是完全一样。这说明在测定中有误差。为此我们必须了解误差产生的原因及其表示方法,尽可能将误差减到最小,以提高分析结果的准确度。 一、真实值、平均值与中位数 (一)真实值 物质中各组分的实际含量称为真实值,它是客观存在的,但不可能准确地知道。 (二)平均值 1.总体与样本 总体(或母体)是指随机变量x i 的全体。样本(或子样)是指从总体中随机抽出的一组数据。 2.总体平均值与样本平均值 在日常分析工作中,总是对某试样平行测定数次,取其算术平均值作为分析结果,若以x 1,x 2,x 3, …,x n 代表各次的测定值,n 代表平行测定的次数,x _ 样本平均值,则 样本平均值不是真实值,只能说是真实值的最佳估计,只有n x n x x x x n i i n ∑==+???++=12 1

在消除系统误差之后并且测定次数趋于无穷大时,所得总体平均值(μ)才能代表真实值 μ=n x n i i ∑=1lim 在实际工作中,人们把“标准物质”作为参考标准,用来校准测量仪器、评价测量方法等,标准物质在市场上有售,它给出的标准值是最接近真实值的。 (三)中位数(x M ) 一组测量数据按大小顺序排列,中间一个数据即为中位数x M 。当测定次数为偶数时,中位数为中间相邻两个数据的平均值。它的优点是能简便地说明一组测量数据的结果,不受两端具有过大误差的数据的影响。缺点是不能充分利用数据。 二、准确度与误差 准确度是指测定值与真实值之间相符合的程度。准确度的高低常以误差的大小来衡量。即,误差越小,准确度越高;误差越大,准确度越低。 误差有两种表示方法———绝对误差和相对误差: 绝对误差(E)=测定值(x)-真实值(T) %100T T RE ?-=) 真实值()真实值()测定值()相对误差(x 由于测定值可能大于真实值,也可能小于真实值,所以绝对误差和相对误差都有正、负之分。

11级电路分析基础实验报告

11级电路分析基础实验报告 篇一:电路分析基础实验 实验一:基尔霍夫定理与电阻串并联 一、实验目的 学习使用workbench软件,学习组建简单直流电路并使用仿真测量仪 表测量电压、电流。 二、实验原理 1、基尔霍夫电流、电压定理的验证。 解决方案:自己设计一个电路,要求至少包括两个回路和两个节点, 测量节点的电流代数和与回路电压代数和,验证基尔霍夫电流和电压 定理并与理论计算值相比较。 2、电阻串并联分压和分流关系验证。 解决方案:自己设计一个电路,要求包括三个以上的电阻,有串联电 阻和并联电阻,测量电阻上的电压和电流,验证电阻串并联分压和分 流关系,并与理论计算值相比较。 三、实验数据分析 1、基尔霍夫电流、电压定理的验证。

测量值验证 (1)对于最左边的外围网孔,取逆时针为参考方向得:U1-U2-U3?20V-8.889V-11.111V?0故满足KVL。 (2)对于最大的外围网孔,取逆时针为参考方向得: U1?I5?R3-U2?20V?(-0.111?100)V-8.889V?0 (3)对于节点4,取流进节点的电流方向为正得: -I1?I2?I3?(--0.444)A?(-0.222)A?(-0.222)A?0 (4)对于节点7,取流进节点的电流方向为正得: -I3?I4?I5?(--0.222)A?(-0.111)A?(-0.111)A?0 理论计算值 U1?I1?(R1?R2//R3//R4) IU1204 1?(R?A?A 1?R2//R3//R4)459 I3//R4 2?R RR?I?1?4A?2 1A 2?R3//4299 I(I422 3?1-I2)?(9-9)A?9A IR1 312

实验3.2灵敏电流计实验误差分析

误差分析 1. 半片法测检流计内阻的误差讨论 1. 系统误差 半偏法实验条件要求保持0U 不变,但实际上,“半偏”与“满偏”时2R 不同,0U 也 不同,当将2R 调大时,与0R 并联的电路部分电阻阻值增大,该并联线以外的电阻值不变,因此,由欧姆定律可知,在0R 上的分压增大,即0U 与之前的0U 不同了,而我们在实验时,是将两次测得的0U 看成不变的值,这里即存在了系统误差,实验中采用尽量使得0U 的值达到电压表满偏的地方的方法,以减小由于读数的偶然误差而增加的误差。另外也可以证明02R R R g -≈。这里0R 为Ω001.,如果把2R 当作g R ,则有一个固定的系统误差,因此最后确定测量结果时应地这项系统误差进行修正。 修正结果为:Ω=Ω-=-=1715411715502.).(R R R g 2. 由检流计灵敏阈所决定的误差1? 所谓灵敏阈指引起仪表的示值发生一可察觉变化的被测量的最小变化值。检流计的灵敏阈可取为0.2分度所对应的电流值。在检流计中当电流的改变小于灵敏阈时,我们一般很难察觉出光标读数的变化,这就给内阻的测量带来误差。测灵敏阈的方法是在调好半偏后,可以人为地增大2R 到)'R R (?+2,使光标偏转减小2个分度,从而推算出0.2分度所对应的电阻的改变值为0.1'R ?。故灵敏阈对内阻测量的影响约导致 Ω±=Ω?±=?±=?80202810101...'R .。 3. 由于电压U 波动所引起的误差2? 实验要求电压表V 的示值不变,而实际上电压可能有波动,而我们却察觉不出电压表指针的变化。这项误差可按电压表灵敏阈为0.2分度来考虑,即U 的相对误差约为0.2分度的电压值除以电压表的示值,可得 半偏法: Ω ±=Ω???±=?±=?0367042020020201715722022../)..(./).(R g 电压表示值分度的电压值

电路实验七

实验七 日光灯电路改善功率因数实验 班级:13电子(2)班 姓名:郑泽鸿 学号:04 指导教师:俞亚堃 实验日期:2014年11月17日 同组人姓名:吴泽佳、张炜林 一、实验目的 ① 了解日光灯电路的工作原理以及提高功率因数的方法; ② 通过测量日光灯电路所消耗的功率,学会使用瓦特表; ③ 学会日光灯的接线方法。 二、实验仪器与元器件 ① 8W 日光灯装置(灯管、镇流器、启辉器)1套; ② 功率表1只; ③ 万用表1只; ④ 可调电容箱1只; ⑤ 开关、导线若干。 三、实验原理 已知电路的有功功率P 、视在功率S 、电路的总电流I 、电源电压U ,根据定义,电路的功率因数IU P S P == ?cos 。由此可见,在电源电压且电路的有功功率一定时,电路的功率因数越高,它占用电源(或供电设备)的容量S 就越少。 在日光灯电路中,镇流器是一个感性元件(相当于电感与电阻的串联),因此它是一个感性电路,且功率因数很低,大约只有0.5~0.6。 提高日光灯电路(其它感性电路也是一样)的功率因数cos φ的方法就是在电路的输入端并联一定容量的电容器,如图1所示。 图1 并联电容提高功率因数电路 图2 并联电容后的相量图

图1中L 为镇流器的电感,R 为日光灯和镇流器的等效电阻,C 为并联的电容器, 设并联电容后电路总电流I ,电容支路电流C I ,灯管支路电流RL I (等于未并电容前电路中的总电流),则三者关系可用相量图如图2所示。 由图2可知,并联电容C 前总电流为RL I ,RL I 与总电压U 的相位差为L ?,功率因数为L ?cos ;并联电容C 后的总电流为I ,I 与总电压U 的相位差为?,功率因数为?cos ;显然?c o s >L ?cos ,功率被提高了。并联电容C 前后的有功功率 ??c o s c o s IU U I P L RL ==,即有功功率不变。并联电容C 后的总电流I 减小,视在功率IU S =则减小了,从而减轻了电源的负担,提高了电源的利用率。 四、实验内容及步骤 1.功率因数测试。 日光灯实验电路如图3所示,将电压表、电流表和功率表所测的数据记录于表1中。 图3 日光灯实验电路 W 为功率表,C 用可调电容箱。 表1 感性电路并联电容后的测试数据 并联电容C (μF ) 有功功率P(W) U (V ) I (A ) cos φ 0 38.3 220 0.34 0.48 0.47 38.3 220 0.341 0.48 1 39.3 220 0.292 0.57 2.2 38.7 220 0.225 0.71 2.67 38.3 220 0.225 0.71 3.2 39.1 220 0.209 0.83 4.7 38.1 220 0.19 0.85 5.7 39.1 220 0.215 0.78 6.9 38.5 220 0.27 0.61 7.9 39.3 220 0.3 0.53 10.1 38.9 220 0.432 0.37

实验法案例及误差分析

实验法案例及误差分析 第四组成员: 某企业为了了解“托儿”对商品销售的作用,决定采用两组实验设计来确定“托儿”的实际效果。其所选择的三个摊位基本效益差不多,实验结果如表: 商品销售额变动结果 事前测量是否引入“托 事后测量 儿” 实验组100 有150 控制组1 102 无110 控制组2 无有125 分析: 该公司采用前后对照组的实验方法,选择了摊位基本效益差不多的三个小组(实验组/控制组1/控制组2 ),以实现实验前三个小组的相似性,在该实验中: 因变量---商品销售额 自变量---引入托儿 抽样误差:案例中三个小组除基本效益相似外还存在例如位置、摊位摆设等其他外生变量,因此在实施中会产生随机误差。 非抽样误差:在进行实验法的过程中产生的数据收集、处理等不可避免的系统误差。 商品销售额变动结果分析:

根据以上数据,计算结果是: (1)实验组本身总效应=150-100=50 即从实验组来看,引入托儿后销售额增加了50,但不能说明销售额的增加仅仅是由引入托儿引起的,也可能是由于其他外生变量引起的。 (2)前后测量本身可能导致的销售额的差异,也即控制组1所导致的结果差异为: 控制组1导致的结果差异=110-102=8 因为控制组1没有引入托儿及自变量没有发生变化,所有该销售额的变动只能解释为是有其他外生变量引起的。 (3)无前测量所导致的差异(控制组2)=125-(100+102)/2=24 (4)所以控制组的总效应=8+24=32 (5)引入“托儿”及前测的交互效应(实验效果)=50-32=18 在排除外生变量的影响后,可以认为“引入托儿”使销售额增加了18。评价:该实验法的类型是现场实验即在自然环境的环境中操纵自变量,提高了该研究结果在现实生活中推广的可能性即外部效度较高。从所得数据可看出,误差控制得较好。

电路分析基础实验报告模板

实验一 常用仪器使用(一) 成绩及评语 时间:第 周 星期 第 节 院系: 座号: 专业: 课号: 姓名: 学号: ============================================================================================ 一.实验目的 掌握万用表、直流稳定电源、函数信号发生器的使用方法。 二.实验仪器 万用表 1台 直流稳定电源 1台 函数信号发生器 1台 三.预习要求 1.认真阅读课本关于万用表、直流稳定电源、函数信号发生器相关内容。 是否已完成:是【 】 否【 】 2.认真学习万用表、直流稳定电源、函数信号发生器相关课件(360云盘下载)。 是否已完成:是【 】 否【 】 3.利用网络查找并学习GDM-8245台式数字万用表、SS2323直流稳定电源、TFG6020 DDS函数信号发生器使用说明。 是否已完成:是【 】 否【 】 4.掌握峰峰值、有效值的定义及正弦波、方波、三角波这三种波形峰峰值和有效值的转化关系。 是否已完成:是【 】 否【 】 5.请回答以前几个预习问题: (1)测量直流电压时,台式万用表应选择哪个档位? (2)要测量导线通断应该使用台式万用表哪个档位? (3) SS2323直流稳定电源输出控制开关叫什么名字?如果忘记打开会出现什么问题? (4)TFG6020 DDS函数信号发生器A路有哪几种输出波形? (5)请写出用TFG6020 DDS函数信号发生器输出三角波的设置步骤。 (6)请写出峰峰值、有效值的定义。

(7) 有效值为2V的正弦波、方波、三角波,其峰峰值分别为多少? 四.实验原理 根据课件及教师授课按以下要求写出各仪器操作方法: 1.请写出GDM-8245台式数字万用表常用档位作用,红黑表笔插法等简单使用方法。 2.请写出 SS2323直流稳定电源各按键、旋钮作用及简单使用方法,画出40v,±12v电压连接方法。 3. 请写出TFG6020 DDS函数信号发生器常用按键功能及简单使用方法。

分析化学中的误差和分析数据的处理

第一章 分析化学中的误差和分析数据的处理 教学要求: 1、了解误差的意义和误差的表示方法 2、了解定量分析处理的一般规则 3、掌握有效数字表示法和运算规则 重点、难点: 误差的表示方法 随机误差的正态分布 有效数字及运算规则 教学内容: 第一节 分析化学中的误差 一、误差:测定结果与待测组分的真实含量之间的差值。 二、分类: ㈠、系统误差:由某些确定的、经常性的原因造成的。在重复测定中,总是重复出现,使测定结果总是偏高或偏低 1、特点: 重现性:在相同的条件下,重复测定时会重复出现 单向性:测定结果系统偏高或偏低 可测性:数值大小有一定规律 2、原因: ① 方法误差 ② 仪器和试剂误差 ③ 操作误差 ㈡、随机误差(偶然误差):有不固定的因素引起的,是可变的,有时大,有时小,有时正,有时负。 1、特点:符合正态分布 2、规律:对称性:绝对值相同的正、负误差出现的几率相等;单峰性:小误差出现的几率大,大误差出现的几率小。很大的误差出现的几率近于零;有界性:随机误差的分布具有有限的范围,其值大小是有界的,并具有向μ集中的趋势。 第二节 测定值的准确度与精密度 以准确度与精密度来评价测定结果的优劣 一、准确度与误差: 1、准确度:真值是试样中某组分客观存在的真实含量。测定值X与真值T相接近的

程度称为准确度。 测定值与真值愈接近,其误差(绝对值)愈小,测定结果的准确度愈高。因此误差的大小是衡量准确度高低的标志。 2、表示方法: 绝对误差:E a ===x-T(如果进行了数次平行测定,X为平均值) 相对误差:E r === 100×T E a % 3、误差有正、负之分。 当测定值大于真值时误差为正值,表示测定结果偏高; 当测定值小于真值时误差为负值,表示测定结果偏低; 二、精密度与偏差 1、精密度:一组平行测定结果相互接近的程度称为精密度 2、表示方法:用偏差表示 如果测定数据彼此接近,则偏差小,测定的精密度高; 如果测定数据分散,则偏差小,测定的精密度低; ⑴、绝对偏差、平均偏差和相对平均偏差: 绝对偏差:d i =x i -(i=1,2,…,n) ? x 平均偏差:d =n d d d n ±±±…21=∑=n i i d n 1 1 相对平均偏差:d r = 100×x d % ⑵、标准偏差和相对标准偏差 总体:一定条件下无限多次测定数据的全体 样本:随机从总体中抽出的一组测定值称为样本 样本容量:样本中所含测定值的数目称为样本的大小或样本容量。 若样本容量为n,平行测定数据为x 1、x 2、 …、x n ,则此样本平均值为x=∑i x n 1 当测定次数无限多时,所得的平均值即总体平均值μ x n ∞ →lim =μ 当测定次数趋于无限时,总体标准偏差σ表示了各测定值x 对总体平均值 μ的偏离程度: σ= n x i ∑?2 )(μ σ2称为方差

电路基础

电路基础 一、线路板:(PCB)print circuit board 1、线路板的组成:线路板又称印刷电路板,一般是两层板、四层板、六层板。由环氧树脂板(绝缘)和 敷铜板组成,电路是敷铜板经过三氯化铁腐蚀而成。在印刷电路板上我们可见:元件孔、线路(铜泊、 敷铜)、阻焊膜、(红色、紫色、绿色等级)、焊盘、(焊点、)过孔、(孔壁镀铜、连接各层线路) 2、焊锡配方:63%锡、37%铅、熔点183℃。焊丝一般中心都有松香助焊清洁剂。 3、线路板的分类: a、按元件安装方式分:插装(THT)如CRT显示器、ATX电源、打印机、复印机等; 贴片装如电脑主板和笔记本电脑主板等。 b、按线路板层数分:单层(CRT、ATX)、双层(CRT、A TX、打印机、复印机)、四层(主板、MP3)、 六层(笔记本6-11层)、八层; 接地孔:(地线概念) 一般来说四层板的上下两层是信号线和部分供电线和地线。 中间两层,一层是供电层,一层是地线。供电层和地线层的导线都比较宽,能够承受较大的电流。 4、线路板断线故障处理方法: a、刮掉阻焊膜,用焊锡或导线连接; b、飞线(用带绝缘的导线);; c、刮掉绝缘层涂导电银漆;(适合于不能焊接的软导线,干了以后才通) 5、电路的概念:电路是由电源、用电器(负载)、控制元件和导线及开关组成的回路,闭合的回路电流才 能流动,电才能够做功。 断路(开路) 短路 6、交流电和直流电: 交流电;大小和方向都变化 直流电:(脉动直流)大小变,方向不变 (平滑的直流)大小方向都不变 7、 二、元件的分类和代号: 1、RN、RP、BR、PZ 排阻、网络电阻; 2、CN、CP 排容; 3、L、FB、B、BD、CHOK 电感; 4、X、Y 晶振; 5、RL、RY、K、R 继电器; 6、BZ、BU 蜂呜器; 7、 D 二极管; 8、ZD 稳压二极管; 9、LED、LD 发光二极管; 10、Q 三极管; 11、Q、MN、MP、MF 场效应管; 12、SCR、TR、VS、VT 晶闸管; 13、U、IC 集成电路; 14、PC、OP、OPT 光藕; 15、SW 开关; 16、J、JP 跳线; 17、S、SG 放电管;

化学分析中测量不确定度的评定方法概述

化学分析中测量不确定度的评定方法概述

化学分析中测量不确定度的评定方法概述化学分析是检验检疫工作中使用频率最高的实验方法之一。对化学分析中测量不确定度的评定已进行过广泛的论述。这里,用较为系统的观点对化学分析中测量不确定度评定的一般方法进行讨论,以便为实际工作提供参考。 在总的范围内,化学分析是相对于物理测量等其他测量方法而言的。而在测量的化学方法中,化学分析是相对于仪器分析而言的,这里所涉及的化学分析是指后一种情况。它包括了很多经典的分析方法,如重量法、容量法。同时,为了扩展化学分析方法的分析范围和提高分析水平,可能还包括了某些复杂的样品处理过程等方面。 在不确定度的评定中,化学分析中许多通用的要素的处理方法可以是一致的,本文大体归纳了这些要素,并将它们作为测量不确定度的分量分别考察,探讨各分量不确定度的评定方法及这些分量之间的相互关系。 1.化学分析中的通用分量及其不确定度的评定方法1.1 化学分析中的测量方法和被测量 重量法和容量法是化学分析中的两类基本方法,根据被测量的不同,会采用不同的分析原理或条件,如容量法中有滴定分析、气体容量分析等方法。 但是,化学分析方法具有共同的特点,其被测量都是样品中某特

定元素的含量或纯度。对于含量分析来说,其最终目的是得到该元素的含量值,一般采用直接测量和计算的结果;而纯度是将相关或规定的元素含量扣除后的结果。无论最终结果使用那种单位或形式表示,都可以表示为式1的形式: ()n 21X ,X ,X f Y Λ=, (1) 其中,X i 为对被测量Y 有影响的输入量。这些输入量可以是直接 测量得到的,也可以是从其他测量结果导入的。 1.2 化学分析中涉及的通用分量及其与被测量的关系 大多数情况下,化学分析方法中采用手工方法,对化学分析结果的不确定度产生影响的因素很多,大体可以分为质量、体积、样品因素和非样品因素等。质量因素和样品因素存在于所有化学分析中,而容量分析中必然涉及体积因素。由于测量原理的不完善及测量过程的不同,在化学分析中还可能存在非样品因素。 只要能够明确地给出被测量与对其不确定度有贡献的分量之间的关系(如式1),则这些分量怎样分组以及这些分量如何进一步分解为下一级分量并不影响不确定度的评定。因此,可以将这些通用分量与被测量的关系采用图1所示的因果图表示。

物理实验中的误差分析

物理实验中的误差理论与数据处理 江苏省南通市第二中学陈雅 要深刻地认识和了解实验及现象,深入地研究实验,应该借助实验误差理论。在实验数据处理时,若处理不当,也会引入误差,或增大误差。因此,在处理实验数据时,应该考虑不同处理方法带来的误差影响。本文就以高中物理教材中的一个基本实验──根据打点计时器打出的纸带求物体运动的加速度为例,来说明数据处理方法对实验误差的影响。 为处理纸带方便起见,对纸带上的一列点应标上计数号码。标注计数号码的方法因实验要求不同而异。如在“验证机械能守恒”实验中,计数起点0要标在运动的起点。但是,在“测加速度”的实验中,通常将计数起点0选在靠近运动起点的某一清晰点上。以后各点顺序标以1,2,…,n-1,n,n+1…考虑到实验中加速度常不很大(点迹过密)、不一定要算出各点(时刻)的即时速度、读数误差的影响及数据处理简便等因素,计数点常不以各点顺序逐点标注,而是间隔几个相同数目的点子来标(通常每隔5个点取一个计数点)。如图1所示。 物体做匀变速直线运动,其加速度常用下述公式计算法和图像法确定。 1.公式计算法 ①根据匀变速直线运动中加速度的定义来计算。设T为时间间隔,以下同。 ⑴

②根据匀变速直线运动中位移与时间的关系来计算。 如果将打出的第一点作为计数起点0,则 ⑵如果不以第一点为计数起点,那么 ⑶ 或者用逐差法⑷ ③根据匀加速直线运动中位移和速度的关系来计算。 ⑸ 由于⑴、⑸都要涉及速度,要先把速度计算出来,就增加了不少计算过程,也增加了计算误差,所以一般不用这两种计算方式。 如果用最小刻度为1mm的刻度尺测量长度,打点周期为0.02s,下面就用⑵、⑶两式计算加速度值,对纸带各点测量的误差所引起的偶然误差进行分析: 第一,当用计算时,根据误差公式,有 (单位mm)⑹ 决定于纸带的有效长度,通常为600mm~800mm,所以上式右边前一项

电路分析基础实训.pdf

电路分析基础实验指导书 实验课程名称电路分析基础 院系部机电工程系 指导老师姓名张裴裴 2015 — 2016学年第2学期

实验一直流电路的认识实验 一、实验目的 1.了解实验室规则、实验操作规程、安全用电常识。 2.熟悉实验室供电情况和实验电源、实验设备情况。 3.学习电阻、电压、电流的测量方法,初步掌握数字万用表、交直流毫安表的使用方法。 4.学习电阻串并联电路的连接方法,掌握分压、分流关系。 二、实验仪器 1.电工实验台一套 2.数字万用表一块 3.直流稳压源一台 4.直流电压表一只 5.直流电流表一只 6.电路原理箱(或其它实验设备) 7.电阻若干只 8.导线若干 三、实验步骤 1、认识和熟悉电路实验台设备及本次实验的相关设备 ①电路原理箱及其上面的实验电路版块; ②数字万用表的正确使用方法及其量程的选择; ③直流电压表、直流电流表的正确使用方法及其量程的选择。 2.电阻的测量 (1)用数字万用表的欧姆档测电阻,万用表的红表棒插在电表下方的“VΩ”插孔中,黑表棒插在电表下方的“COM”插孔中。选择实验原理箱上的电阻或实验室其它电阻作为待测电阻,欧姆档的量程应根据待测电阻的数值合理

选取。将数据记录在表1,把测量所得数值与电阻的标称值进行对照比较,得出误差结论。 图1-1 将图1-1所示连成电路,并将图中各点间电阻的测量和计算数据记录在表2中,注意带上单位。 开启实训台电源总开关,开启直流电源单元开关,调节电压旋钮,对取得的直流电源进行测量,测量后将数据填入表1-2中。 (1)按实验线路图1-2连接电路(图中A 、B 两点处表示电流表接入点)。 2 S 2

第3章分析化学中的误差与数据处理(精)

第三章 分析化学中的误差与数据处理 一、选择题: 1.下列论述中错误的是 ( ) A .方法误差属于系统误差 B .系统误差具有单向性 C .系统误差又称可测误差 D .系统误差呈正态分布 2.下列论述中不正确的是 ( ) A .偶然误差具有随机性 B .偶然误差服从正态分布 C .偶然误差具有单向性 D .偶然误差是由不确定的因素引起的 3.下列情况中引起偶然误差的是 ( ) A .读取滴定管读数时,最后一位数字估计不准 B .使用腐蚀的砝码进行称量 C .标定EDTA 溶液时,所用金属锌不纯 D .所用试剂中含有被测组分 4.分析天平的称样误差约为0.0002克,如使测量时相对误差达到0.1%,试样至少应该称 A: 0.1000克以上 B: 0.1000克以下 C: 0.2克以上 D: 0.2克以下 5.分析实验中由于试剂不纯而引起的误差叫 ( ) A: 系统误差 B: 过失误差 C: 偶然误差 D: 方法误差 6.定量分析工作要求测定结果的误差 ( ) A .没有要求 B .等于零 C .在充许误差范围内 D .略大于充许误差 7.可减小偶然误差的方法是 ( ) A .进行仪器校正 B .作对照试验 C .作空白试验 D .增加平行测定次数 8.从精密度就可以判断分析结果可靠的前提是( ) A .偶然误差小 B .系统误差小 C .平均偏差小 D .标准偏差小 9.下列结果应以几位有效数字报出 ( ) A .5 B .4 C . 3 D .2 10.用失去部分结晶水的Na 2B 4O 7·10H 2O 标定HCl 溶液的浓度时,测得的HCl 浓度与实际浓度相比将 ( ) A .偏高 B .偏低 C .一致 D .无法确定 11.pH 4.230 有几位有效数字 ( ) A 、4 B 、 3 C 、 2 D 、 1 12.某人以差示光度法测定某药物中主成分含量时,称取此药物0.0250g ,最后计算其主成分含量为98.25%,此结果是否正确;若不正确,正确值应为( ) A 、正确 B 、不正确,98.0% C 、不正确,98% D 、不正确,98.2% 13.下列情况中,使分析结果产生负误差的是( ) 1000) 80.1800.25(1010.0-?

教案-----电路中的基本物理量

教案-----电路中的基本物理量

一、电路的组成和作用 导入:(先在黑板上画一手电筒电路的示意图如1(a)) (c) 图1 手电筒电路手电筒大家都很熟悉,由电池、开关、灯泡、导线四部分组成。电池给灯泡供电,但只有在开关闭合的前提下,才会发亮。所以电池相当于电源,灯泡是供电的对象,称为负载,开关决定着灯亮与灭,所以开关便是控制元件,导线连接整个电路,使其为一闭合回路。电源、负载、控制元件、回路为组成电路的四要素。所以手电筒电路的电路模型如图1(c)。 1、电路组成的四要素: (1)电源(2)负载(3)控制元件(4)回路 2、电路的作用: (1)能量的传输和转换。如手电筒电路,灯泡发光,电池能转换为光能和热能。 (2)信号的传递和处理。如扩音机电路,如图(b),放大器用来放大电信号,而后传 递到扬声器,把电信号还原为语言或音乐, 实现“声-电-声”的放大、传输和转换作用。

前面我们了解了电路的组成和作用,然而描述一个电路的特性光以上这些是不够的,还需要一些其他的物理量来描述电路的特征。电流、电压、电动势便是描述电路特征的最基本的物理量。下面先通过实际测试来体验一下这些物理量的存在及他们的方向。 二、电流 这一小节的教学方法:(1)先让学生按照教师给定的方法测试试验电路1中流过电阻的电流,让学生先感性认识电流存在的形式,再理论分析电流的定义及计算。(2)再让学生用同样的测试方法反向测量,指针式万用表表笔反偏(数字式显示负值),使学生感性认识直流电流是有方向的,再理论分析电流方向的确定。 先测量试验电路1中流过电阻的电流大小。让学生感受电流在电路中存在的形式。 再从理论层面上分析: (一)电流 1、定义:由电荷(带电粒子)有规则的定向运动而形成。 若在1秒内通过导体横截面的电子所带的电荷数为1库仑(1C ),则导体中的电流为1安培(1A )。 (1)交流电流:在dt 时间内,通过导体横截 面S 的电荷为dq ,则电流为 (2)直流电流:电流的大小和方向不随时间变化而变化。 dt dq i

实验大数据误差分析报告与大数据处理

第一章实验数据误差分析与数据处理 第一节实验数据误差分析 一、概述 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验测量值和真值之间,总是存在一定的差异,在数值上即表现为误差。为了提高实验的精度,缩小实验观测值和真值之间的差值,需要对实验数据误差进行分析和讨论。 实验数据误差分析并不是即成事实的消极措施,而是给研究人员提供参与科学实验的积极武器,通过误差分析,可以认清误差的来源及影响,使我们有可能预先确定导致实验总误差的最大组成因素,并设法排除数据中所包含的无效成分,进一步改进实验方案。实验误差分析也提醒我们注意主要误差来源,精心操作,使研究的准确度得以提高。 二、实验误差的来源 实验误差从总体上讲有实验装置(包括标准器具、仪器仪表等)、实验方法、实验环境、实验人员和被测量五个来源。 1.实验装置误差 测量装置是标准器具、仪器仪表和辅助设备的总体。实验装置误差是指由测量装置产生的测量误差。它来源于: (1)标准器具误差 标准器具是指用以复现量值的计量器具。由于加工的限制,标准器复现的量值单位是有误差的。例如,标准刻线米尺的0刻线和1 000 mm刻线之间的实际长度与1 000 mm单位是有差异的。又如,标称值为 1kg的砝码的实际质量(真值)并不等于1kg等等。 (2)仪器仪表误差 凡是用于被测量和复现计量单位的标准量进行比较的设备,称为仪器或仪表.它们将被测量转换成可直接观察的指示值。例如,温度计、电流表、压力表、干涉仪、天平,等等。 由于仪器仪表在加工、装配和调试中,不可避免地存在误差,以致仪器仪表的指示值不等于被测量的真值,造成测量误差。例如,天平的两臂不可能加工、调整到绝对相等,称量时,按天平工作原理,天平平衡被认为两边的质量相等。但是,由于天平的不等臂,虽然天平达到平衡,但两边的质量并不等,即造成测量误差。 (3)附件误差 为测量创造必要条件或使测量方便地进行而采用的各种辅助设备或附件,均属测量附件。如电测量中的转换开关及移动测点、电源、热源和连接导线等均为测量附件,且均产生测量误差。又如,热工计量用的水槽,作为温度测量附件,提供测量水银温度计所需要的温场,由于水槽内各处温度的不均匀,便引起测量误差,等等。 按装置误差具体形成原因,可分为结构性的装置误差、调整性的装置误差和变化性的装置误差。结构性的装置误差如:天平的不等臂,线纹尺刻线不均匀,量块工作面的不平行性,光学零件的光学性能缺陷,等等。这些误差大部分是由于制造工艺不完善和长期使用磨损引起的。调整性的装置误差如投影仪物镜放大倍数调整不准确,水平仪的零位调整不准确,千分尺的零位调整不准确,等等。这些误差是由于仪器仪表在使用时,未调整到理想状态引起的。变化性的装置误差如:激光波长的长期不稳定性,电阻等元器件的老化,晶体振荡器频率的长期漂移,等等。这些误差是由于仪器仪表随时间的不稳定性和随空间位置变化的不均匀性造成的。 2.环境误差 环境误差系指测量中由于各种环境因素造成的测量误差。 被测量在不同的环境中测量,其结果是不同的。这一客观事实说明,环境对测量是有影响的,是测量的误差来源之一。环境造成测量误差的主要原因是测量装置包括标准器具、仪器仪表、测量附件同被测对象随着环境的变化而变化着。 测量环境除了偏离标准环境产生测量误差以外,从而引起测量环境微观变化的测量误差。 3.方法误差

化学分析中测量的误差

化学分析中测量的误差 P. De Bièvre, Duineneind 9, 2460 Kasterlee, Belgium H.Gunzler, Bismarckstr.4, 69469 Weinheim, Belgium (Eds.) Measurement Uncertainty in Chemical Analysis 2003, 283pp. Hardcover EUR 69.95 ISBN 3-540-43990-0 人们逐步地认识到,当报道测量本身时,传送与某一特定测量相关的误差是很重要的。如果不知道误差,对于该结果的使用者来说是不可能知道应对它抱有多少信心的。同时也不可能获取相同参数的不同测量的可比性。本书收集了关于这个主题的近50篇杰出论文。它们大多数发表在1999年至2002年的《鉴定及质量保证(ACQUAL)》杂志上。这些论文提供了评估和报道测量结果误差的基本原理,描述了误差的概念,评估误差的方法和使用适当标准物质的优点,考虑了怎样分析实验的结果。

全书收集25篇论文,题目为:根据测量质量保证的分析步骤;化学中的计量学:一个普遍的任务;化学计量学、化学及化学测量中的误差;标准物质误差的评估;使用线性校准函数分析过程测量误差的评估;通过模拟的方法测量误差的传导;微生物培养方法中测量的误差;与可接受极限相比较;校正的误差;在标准物质鉴定中误差计算(1.变量分析的原理,2.均匀性研究,3.稳定性研究);使用标准物质测量误差评估的某些方面;误差――化学中计量学的关键课题;为合作研究方法的验证和方法性能参数的测量误差及它的实质;化学分析的误差与分析方法的验证――石油中酸值的测量;采样误差评估的实用方法;食物中微量元素分析数据的质量保证;评价分析测量中的误差――追求准确性;化学分析中采样的误差;适当地而不是有代表性地采样――依据误差可以接受的水平;来自方法证实研究的测量误差估计;测量误差估计是对证实的一个可行的替代吗?通过原子光谱测定法测量土壤样品中成份的误差评估的证实;用于快速测试与离散判读的误差统计学评估――垃圾与土壤的检测;为准备NO和SO4标准气体混合物的静态测量体积方法的误差计算与实现;钡离子重量分析法误差的研究。 本书可供化学家、化学计量学家及研究生阅读参考。 胡光华,高级软件工程师 (原中国科学院物理学研究所)

电路分析基础实验指导书(城市学院)

东莞理工学院城市学院自编教材 电路分析基础实验指导书 东莞理工学院城市学院计算机与信息科学系

《电路分析基础》是电子、通信技术类专业的一门重要技术基础课,而电路分析基础实验又是学好该学科的一个重要环节,通过实验教学不仅能进一步巩固和加深课堂所学理论知识,而且能提高学生的动手能力、解决实际问题的能力和创新精神,培养学生科学态度和良好的工作作风。电路分析基础实验的教学目标是通过实验要求学生掌握各种电路(电阻电路、动态电路、正弦稳态电路)的连接、测试和调试技术;熟悉常用电子电工仪表的工作原理及使用方法;熟悉安全用电知识,了解电路故障的检查和排除方法,提高学生综合素质,为后续课程的学习和从事实践技术工作奠定扎实基础。 为结合理论课程教学的需要,共设置16学时的实验课时。

第一部分绪论 (1) 一、课程所属类型及服务专业 (1) 二、实验教学目的和要求 (1) 三、实验项目和学时分配 (1) 第二部份基本实验指导 (2) 实验一元件伏安特性的测定 (2) 一、实验目的 (2) 二、原理及说明 (2) 三、仪器设备 (2) 四、实验步骤 (3) 五、思考题 (4) 实验二验证基尔霍夫定律 (5) 一、实验目的 (5) 二、实验原理 (5) 三、实验设备 (5) 四、实验步骤 (5) 五、注意事项 (6) 六、思考题 (6) 实验三叠加定理 (7) 一、实验目的 (7) 二、实验原理 (7) 三、实验设备和器材 (7) 四、实验电路和实验步骤 (7) 五、实验结果和数据处理 (8) 六、实验预习要求 (9) 七、思考题 (9) 实验四验证戴维南定理 (10) 一、目的 (10) 二、设备、仪表 (10) 三、原理电路图 (10) 四、步骤 (10) 五、注意事项 (11) 六、预习要求 (11) 七、总结报告 (12) 八、思考题 (12) 实验五 RC电路的响应 (13) 一、目的 (13) 二、设备和元件 (13) 三、实验电路图 (13) 四、内容和步骤 (14) 五、预习要求 (16) 六、注意事项 (16)

电子电路测量技术的基本知识

第一部分:电子技术基础实验的基本知识 1.1 电子电路测量技术的基本知识 一、要点提示 1、电子技术基础实验的目的和意义 2、电子技术基础实验的一般要求 3、误差分析与测量结果的处理 4、测量仪器的阻抗对测量的影响 5、接地、电源接地 二、内容简介 1.1.1 电子技术基础实验的目的和意义 实验是将事物置于控制的或特定的条件下加以观测。是对事物发展规律进行科学认识的必要环节,是科学理论的源泉,自然科学的根本,工程技术的基础。任何科学技术的发展都离不开实验。电子技术是一门实践性很强的学科,它的任务是使学生获得电子技术方面的基础理论、基础知识和基本技能。加强实验训练特别是技能的训练,对提高学生分析问题和解决问题的能力,特别是毕业后的实际工作能力,具有十分重要的意义。 电子技术是一门飞速发展的学科,市场经济需要的是具有一定实际工作能力的复合型人才,而实验教学在培养学生诸能力方面有一定的优势。在实验过程中,通过分析、验证器件和电路的工作原理及功能;对电路进行分析、调试、故障排除和性能指标的测量;自行设计、制作各种功能的实际电路等多方面的系统训练,可以使学生的各种实验技能得以提高,实际工作能力也得到了锻炼。同时,学生的创造性思维能力、观测能力、表达能力、动手能力、查阅文献资料的能力等综合素质也得到了提高。此外,通过实验还可以培养学生勤奋进取、严肃认真、理论联系实际的务实作风和为科学事业奋斗的精神。 电子技术实验,按性质可分为验证性实验、训练性实验、综合性实验和设计性实验四大类。 验证性实验和训练性实验是针对于电子技术基础理论而设置的,通过实验获得感性认识。验证和巩固重要的基础理论,同时使学生掌握测量仪器的工作原理和规范使用,熟悉常用元器件的原理和性能,掌握其参数的测量方法和元器件的使用方法,掌握基本实验知识、基本实验方法和基本实验技能。同时,培养学生一定的安装、调试、分析、寻找故障等技能。 综合性实验侧重于对一些理论知识的综合应用和实验的综合分析,其目的是培养学生综合应用理论知识能力和解决较复杂的实际问题的能力,包括实验理论的系统性、实验方案的完整性、可行性、元器件及测量仪器的综合应用等。 设计性实验对学生来说,既有综合性又有探索性。它主要侧重于某些理论知识的灵活应用。要求学生在教师的指导下独立查阅资料、设计方案与组合实验等工作,并写出试验报告。借助于计算机仿真实验,可以使实验方案更加完善、合理。这类实验对提高学生的科学实验能力等方面非常有益。 1.1.2 电子技术基础实验的一般要求 尽管每个电子技术实验的目的和内容不同,但为了培养良好的学风,充分发挥学生的主动精神,促使其独立思考、独立完成实验并有所创新。我们对电子技术实验的准备阶段、进行阶段、完成阶段和实验报告分别提出下列基本要求。

化学分析测量误差,不确定度评定和数据处理

化学分析测量误差、不确定度评定和数据处理 一、化学分析测量误差 1.测量及其分类 1.1 测量就是将待测量与选作计量标准的同类量进行比较得出其倍数的过程。倍数值称为待测量的数值,选作的计量标准称为单位,因此,表示一个被测对象的测量值必须包括数值和单位。 1.2 根据测量方式测量分为直接测量和间接测量。 直接测量:可直接从仪器或量具上直接读出待测量大小的测量。例如:用天平称取样品的质量;从滴定管上读取溶液体积等。 间接测量:待测量的量值是由若干个直接测量量值经过一定的函数关系运算才获得,这样的测量称为间接测载量。 1.3根据测量条件是否相同测量又可分为等精度测量和不等精度测量。 在相同条件下进行的一系列测量是等精度测量。例如:同一个人,使用同一仪器,采用同样方法,对同一待测量连续进行多次重复测量,此时应该认为每次测量的可靠程度都相同,故称为等精度测量。这样一组测量值称为测量列。应该指出:重复测量必须是重复进行测量整个操作过程,而不是仅仅为重复读数。 在对某一被测量进行多次测量时测量条件完全不同或部分不同则各次测量结果的可靠程度自然也不同的一系列测量称为不等精度测量。例如,对同一待测量连续进行多次重复测量时,选用的仪器不同,或测量方法不同,或测量人员不同等,都属于不等精度测量。处理不等精度测量的结果时,根据每个测量的“权重”进行“加权平均”。事实上,在化学分析测试中,保持测量条件完全相同的多次测量是极其困难的,但条件变化对测试结果影响不大时,仍可认为这种测量为等精度测量,等精度的误差分析和数据处理比较容易,所以将绝大多数的化学分析测量都采用等精度测量。 2.误差及其分类 2.1 (量的)真值 与给定的特性量定义一致的值称为真值。 量的真值只有通过完善的测量才有可能获得,真值按其本性是不确定的,与给定的特性量定义一致的值不一定只有一个。 2.2 (测量)误差 测量结果减去被测量的真值称为(测量)误差。 误差之值只取一个符号非正即负。因为它是指与真值之差值常称为绝对误差。绝对误差是一个有量纲的数值,它表示测量值偏离的程度。绝对误差除以真值称为相对误差。相对误差是一个无量纲的量,常常用百分比来表示准确度的高低。 2.3 误差的分类

【最新】电路基础教学指导书-优秀word范文 (17页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除! == 本文为word格式,下载后可方便编辑和修改! == 电路基础教学指导书 篇一:电路分析教学指导书 篇一:电路分析基础实验指导书 《电路分析基础》 实验教学指导书 课程编号:1038171002 湘潭大学信息工程学院 201X年03月20日 前言 一、实验总体目标 初步具备电压表、电流表、万用表等电工实验设备的操作使用能力和电路仿真 软件的应用能力,根据实验任务确定实验方案、设计实验线路和选择仪器设备,正确测量参数和处理数据。 二、适用专业年级 电子信息工程、通信工程专业一年级本科学生。三、先修课程 《高等数学》、《大学物理》。五、实验环境 电工综合实验台:40套。主要配置:直流电路模块实验板、动态电路模块实验板、多路直流电压源、多路直流电流源、信号源、直流电压表、直流电流表、 示波器等。 multisim电路仿真分析软件。六、实验总体要求 1、正确使用电压表、电流表、万用表、功率表以及一些电工实验设备; 2、按电路图联接实验线路和合理布线,能初步分析并排除故障;

3、认真观察实验现象,正确读取实验数据和记录实验波形并加以检查和判断,正确书写实验报告和分析实验结果; 4、正确运用实验手段来验证一些定理和结论。 5、具有根据实验任务确定实验方案、设计实验线路和选择仪器设备的初步能力。 6、按每次实验的具体要求认真填写实验报告。七、本课程实验的重点、难点 及教学方法建议 本课程实验的重点是仪表的正确使用、电路的正确连接、数据测试和分析;本课程实验的难点是动态电路参数测试和分析。 在教学方法上,本课程实验应提前预习,使学生能够利用原理指导实验,利用 实验加深对电路原理的理解,掌握分析电路、测试电路的基本方法。目录 实验一电阻电路测量与分析综合实验????????????????1 实验二电源等效电路 综合实验???????????????????11 实验三动态电路仿真实验?????????????????????18 实验四rc 频率特性和rlc谐振仿真实验???????????????24实验一电阻电路测量与分析综合实验 一、实验目的 1、熟悉并掌握直流电压表、电流表、恒压源等使用; 2、学会电阻元件的伏安特性的逐点测试法; 3、学会电路中电位、电压的测量方法,掌握电路电位图的测量、绘制方法; 4、验证基尔霍夫定律,学会检查、分析电路简单故障; 5、验证叠加原理,学会 叠加原理的应用。 二、实验原理 1、电阻元件的伏安特性 任一二端电阻元件的特性可用该元件上的端电压u与通过该元件的电流i之间 的函数关系u=f(i)来表示,即用u-i平面上的一条曲线来表征,这条曲线称 为该电阻元件的伏安特性曲线。根据伏安特性的不同,电阻元件分两大类:线 性电阻和非线性电阻。线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1中(a)所示,该直线的斜率只由电阻元件的电阻值 r决定,其阻值为常数,与元件 两端的电压u和通过该元件的电流i无关;非线性电阻元件的伏安特性是一条 经过坐标原点的曲 图1-1

相关文档
最新文档