XPS分析技术

XPS分析技术
XPS分析技术

18.1 引言

固体表面分析业已发展为一种常用的仪器分析方法,特别是对于固体材料的分析和元素化学价态分析。目前常用的表面成分分析方法有:X射线光电子能谱(XPS), 俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。AES分析主要应用于物理方面的固体材料科学的研究,而XPS的应用面则广泛得多,更适合于化学领域的研究。SIMS和ISS由于定量效果较差,在常规表面分析中的应用相对较少。但近年随着飞行时间质谱(TOF-SIMS)的发展,使得质谱在表面分析上的应用也逐渐增加。本章主要介绍X射线光电子能谱的实验方法。

X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。该方法是在六十年代由瑞典科学家Kai Siegbahn教授发展起来的。由于在光电子能谱的理论和技术上的重大贡献,1981年,Kai Siegbahn获得了诺贝尔物理奖。三十多年的来,X射线光电子能谱无论在理论上和实验技术上都已获得了长足的发展。XPS已从刚开始主要用来对化学元素的定性分析,业已发展为表面元素定性、半定量分析及元素化学价态分析的重要手段。XPS的研究领域也不再局限于传统的化学分析,而扩展到现代迅猛发展的材料学科。目前该分析方法在日常表面分析工作中的份额约50%,是一种最主要的表面分析工具。

m大小,μ在XPS谱仪技术发展方面也取得了巨大的进展。在X射线源上,已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源;传统的固定式X射线源也发展到电子束扫描金属靶所产生的可扫描式X射线源;X射线的束斑直径也实现了微型化,最小的束斑直径已能达到6 使得XPS在微区分析上的应用得到了大幅度的加强。图像XPS技术的发展,大大促进了XPS在新材料研究上的应用。在谱仪的能量分析检测器方面,也从传统的单通道电子倍增器检测器发展到位置灵敏检测器和多通道检测器,使得检测灵敏度获得了大幅度的提高。计算机系统的广泛采用,使得采样速度和谱图的解析能力也有了很大的提高。

由于XPS具有很高的表面灵敏度,适合于有关涉及到表面元素定性和定量分析方面的应用,同样也可以应用于元素化学价态的研究。此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。因此,XPS方法可广泛应用于化学化工,材料,机械,电子材料等领域。

18.2 方法原理

X射线光电子能谱基于光电离作用,当一束光子辐照到样品表面时,光子可以被样品中某一元素的原子轨道上的电子所吸收,使得该电子脱离原子核的束缚,以一定的动能从原子内部发射出来,变成自由的光电子,而原子本身则变成一个激发态的离子。在光电离过程中,固体物质的结合能可以用下面的方程表示:

sφ - Eb - νEk = h (18.1)

?式中Ek 出射的光电子的动能, eV;

X射线源光子的能量, eV;?νh

特定原子轨道上的结合能, eV;?Eb

谱仪的功函,?s φ eV。

谱仪的功函主要由谱仪材料和状态决定,对同一台谱仪基本是一个常数,与样品无关,其平均值为3~4eV。

在XPS分析中,由于采用的X射线激发源的能量较高,不仅可以激发出原子价轨道中的价电子,还可以激发出芯能级上的内层轨道电子,其出射光电子的能量仅与入射光子的能量及原子轨道结合能有关。因此,对于特定的单色激发源和特定的原子轨道,其光电子的能量是特征的。当固定激发源能量时,其光电子的能量仅与元素的种类和所电离激发的原子轨道有关。因此,我们可以根据光电子的结合能定性分析物质的元素种类。

α和Al Kα在普通的XPS谱仪中,一般采用的Mg K X射线作为激发源,光子的能量足够促使除氢、氦以外的所有元素发生光电离作用,产生特征光电子。由此可见,XPS技术是一种可以对所有元素进行一次全分析的方法,这对于未知物的定性分析是非常有效的。

经X射线辐照后,从样品表面出射的光电子的强度是与样品中该原子的浓度有线性关系,可以利用它进行元素的半定量分析。鉴于光电子的强度不仅与原子的浓度有关,还与光电子的平均自由程、样品的表面光洁度,元素所处的化学状态,X射线源强度以及仪器的状态有关。因此,XPS技术一般不能给出所分析元素的绝对含量,仅能提供各元素的相对含量。由于元素的灵敏度因子不仅与元素种类有关,还与元素在物质中的存在状态,仪器的状态有一定的关系,因此不经校准测得的相对含量也会存在很大的误差。还须指出的是,XPS是一种表面灵敏的分析方法,具有很高的表面检测灵敏度,可以达到10-3原子单层,但对于体相检测灵敏度仅为0.1%左右。XPS是一种表面灵敏的分析技术,其表面采样深度为2.0~5.0 nm,它提供的仅是表面上的元素含量,与体相成分会有很大的差别。而它的采样深度与材料性质、光电子的能量有关,也同样品表面和分析器的角度有关。

虽然出射的光电子的结合能主要由元素的种类和激发轨道所决定,但由于原子外层电子的屏蔽效应,芯能级轨道上的电子的结合能在不同的化学环境中是不一样的,有一些微小的差异。这种结合能上的微小差异就是元素的化学位移,它取决于元素在样品中所处的化学环境。一般,元素获得额外电子时,化学价态为负,该元素的结合能降低。反之,当该元素失去电子时,化学价为正,XPS的结合能增加。利用这种化学位移可以分析元素在该物种中的化学价态和存在形式。元素的化学价态分析是XPS分析的最重要的应用之一。

18.3 仪器结构和工作原理

18.3.2超高真空系统

在X射线光电子能谱仪中必须采用超高真空系统,主要是出于两方面的原因。首先,XPS 是一种表面分析技术,如果分析室的真空度很差,在很短的时间内试样的清洁表面就可以被真空中的残余气体分子所覆盖。其次,由于光电子的信号和能量都非常弱,如果真空度较差,光电子很容易与真空中的残余气体分子发生碰撞作用而损失能量,最后不能到达检测器。在X射线光电子能谱仪中,为了使分析室的真空度能达到3×10-8Pa,一般采用三级真空泵系统。前级泵一般采用旋转机械泵或分子筛吸附泵,极限真空度能达到10-2Pa;采用油扩散泵或分子泵,可获得高真空,极限真空度能达到10-8Pa;而采用溅射离子泵和钛升华泵,可获得超高真空,极限真空度能达到10-9Pa。这几种真空泵的性能各有优缺点,可以根据各自的需要进行组合。现在的新型X射线光电子能谱仪,普遍采用机械泵-分子泵-溅射离子泵-钛升华泵系列,这样可以防止扩散泵油污染清洁的超高真空分析室。

18.3.3 快速进样室

X射线光电子能谱仪多配备有快速进样室,其目的是在不破坏分析室超高真空的情况下能进行快速进样。快速进样室的体积很小,以便能在5~10分钟内能达到10-3 Pa的高真空。有一些谱仪,把快速进样室设计成样品预处理室,可以对样品进行加热,蒸镀和刻蚀等操作。

18.3.4 X射线激发源

X射线,光子能量为1486.6α X射线,光子能量为1253.6 eV和Al Kα在普通的XPS谱仪中,一般采用双阳极靶激发源。常用的激发源有Mg K eV。没经单色化的X射线的线宽可达到0.8 eV, 而经单色化处理以后,线宽可降低到0.2 eV,并可以消除X射线中的杂线和韧致辐射。但经单色化处理后,X射线的强度大幅度下降。

18.3.5 离子源

在XPS中配备离子源的目的是对样品表面进行清洁或对样品表面进行定量剥离。在XPS谱仪中,常采用Ar离子源。Ar离子源又可分为固定式和扫描式。固定式Ar离子源由于不能

进行扫描剥离,对样品表面刻蚀的均匀性较差,仅用作表面清洁。对于进行深度分析用的离子源,应采用扫描式Ar离子源。

18.3.6 能量分析器

X射线光电子的能量分析器有两种类型,半球型分析器和筒镜型能量分析器。半球型能量分析器由于对光电子的传输效率高和能量分辩率好等特点,多用在XPS谱仪上。而筒镜型能量分析器由于对俄歇电子的传输效率高,主要用在俄歇电子能谱仪上。对于一些多功能电子能谱仪,由于考虑到XPS和AES的共用性和使用的则重点,选用能量分析器主要依据那一种分析方法为主。以XPS为主的采用半球型能量分析器,而以俄歇为主的则采用筒镜型能量分析器。

18.3.7 计算机系统

由于X射线电子能谱仪的数据采集和控制十分复杂,商用谱仪均采用计算机系统来控制谱仪和采集数据。由于XPS数据的复杂性,谱图的计算机处理也是一个重要的部分。如元素的自动标识、半定量计算,谱峰的拟合和去卷积等。

18.4 实验技术

18.4.1 样品的制备技术

X射线能谱仪对分析的样品有特殊的要求,在通常情况下只能对固体样品进行分析。由于涉及到样品在真空中的传递和放置,待分析的样品一般都需要经过一定的预处理,分述如下:18.4.1.1样品的大小

由于在实验过程中样品必须通过传递杆,穿过超高真空隔离阀,送进样品分析室。因此,样品的尺寸必须符合一定的大小规范,以利于真空进样。对于块状样品和薄膜样品,其长宽最好小于10mm, 高度小于5 mm。对于体积较大的样品则必须通过适当方法制备成合适大小的样品。但在制备过程中,必须考虑处理过程可能对表面成分和状态的影响。

18.4.1.2 粉体样品

对于粉体样品有两种常用的制样方法。一种是用双面胶带直接把粉体固定在样品台上,另一种是把粉体样品压成薄片,然后再固定在样品台上。前者的优点是制样方便,样品用量少,预抽到高真空的时间较短,缺点是可能会引进胶带的成分。后者的优点是可以在真空中对样品进行处理,如加热,表面反应等,其信号强度也要比胶带法高得多。缺点是样品用量太大,抽到超高真空的时间太长。在普通的实验过程中,一般采用胶带法制样。

18.4.1.3 含有有挥发性物质的样品

对于含有挥发性物质的样品,在样品进入真空系统前必须清除掉挥发性物质。一般可以通过对样品加热或用溶剂清洗等方法。

18.4.1.4 表面有污染的样品

对于表面有油等有机物污染的样品,在进入真空系统前必须用油溶性溶剂如环己烷,丙酮等清洗掉样品表面的油污。最后再用乙醇清洗掉有机溶剂,为了保证样品表面不被氧化,一般采用自然干燥。

18.4.1.5 带有微弱磁性的样品

由于光电子带有负电荷,在微弱的磁场作用下,也可以发生偏转。当样品具有磁性时,由样品表面出射的光电子就会在磁场的作用下偏离接收角,最后不能到达分析器,因此,得不到正确的XPS谱。此外,当样品的磁性很强时,还有可能使分析器头及样品架磁化的危险,因此,绝对禁止带有磁性的样品进入分析室。一般对于具有弱磁性的样品,可以通过退磁的方法去掉样品的微弱磁性,然后就可以象正常样品一样分析。

18.4.2 离子束溅射技术

在X射线光电子能谱分析中,为了清洁被污染的固体表面,常常利用离子枪发出的离子束对样品表面进行溅射剥离,清洁表面。然而,离子束更重要的应用则是样品表面组分的深度

分析。利用离子束可定量地剥离一定厚度的表面层,然后再用XPS分析表面成分,这样就可以获得元素成分沿深度方向的分布图。作为深度分析的离子枪,一般采用0.5~5 KeV的Ar离子源。扫描离子束的束斑直径一般在1~10mm范围,溅射速率范围为0.1 ~50 nm/min。为了提高深度分辩率,一般应采用间断溅射的方式。为了减少离子束的坑边效应,应增加离子束的直径。为了降低离子束的择优溅射效应及基底效应,应提高溅射速率和降低每次溅射的时间。在XPS分析中,离子束的溅射还原作用可以改变元素的存在状态,许多氧化物可以被还原成较低价态的氧化物,如Ti, Mo, Ta等。在研究溅射过的样品表面元素的化学价态时,应注意这种溅射还原效应的影响。此外,离子束的溅射速率不仅与离子束的能量和束流密度有关,还与溅射材料的性质有关。一般的深度分析所给出的深度值均是相对与某种标准物质的相对溅射速率。

18.4.3 样品荷电的校准

对于绝缘体样品或导电性能不好的样品,经X射线辐照后,其表面会产生一定的电荷积累,主要是荷正电荷。样品表面荷电相当于给从表面出射的自由的光电子增加了一定的额外电压, 使得测得的结合能比正常的要高。样品荷电问题非常复杂,一般难以用某一种方法彻底消除。在实际的XPS分析中,一般采用内标法进行校准。最常用的方法是用真空系统中最常见的有机污染碳的C 1s的结合能为284.6 eV,进行校准。

18.4.4 XPS的采样深度

X射线光电子能谱的采样深度与光电子的能量和材料的性质有关。一般定义X射线光电子能谱的采样深度为光电子平均自由程的3倍。根据平均自由程的数据可以大致估计各种材料的采样深度。一般对于金属样品为0.5 ~2 nm, 对于无机化合物为1 ~3 nm, 而对于有机物则为3 ~10 nm。

18.4.5 XPS谱图分析技术

18.4.5.1表面元素定性分析

这是一种常规分析方法,一般利用XPS谱仪的宽扫描程序。为了提高定性分析的灵敏度,一般应加大分析器的通能(Pass energy),提高信噪比。图18.2是典型的XPS定性分析图。通常XPS谱图的横坐标为结合能,纵坐标为光电子的计数率。在分析谱图时,首先必须考虑的是消除荷电位移。对于金属和半导体样品由于不会荷电,因此不用校准。但对于绝缘样品,则必须进行校准。因为,当荷电较大时,会导致结合能位置有较大的偏移,导致错误判断。使用计算机自动标峰时,同样会产生这种情况。一般来说,只要该元素存在,其所有的强峰都应存在,否则应考虑是否为其他元素的干扰峰。激发出来的光电子依据激发轨道的名称进行标记。如从C原子的1s轨道激发出来的光电子用C 1s标记。由于X射线激发源的光子能量较高,可以同时激发出多个原子轨道的光电子,因此在XPS谱图上会出现多组谱峰。大部分元素都可以激发出多组光电子峰,可以利用这些峰排除能量相近峰的干扰,以利于元素的定性标定。由于相近原子序数的元素激发出的光电子的结合能有较大的差异,因此相邻元素间的干扰作用很小。

2产生的卫星峰,携上峰以及X射线激发的俄歇峰等伴峰,在定性分析时必须予以注意。现在,定性标记的工作可由计算机进行,但经常会发生标记错误,应加以注意。对于不导电样品,由于荷电效应,经常会使结合能发生变化,导致定性分析得出不正确的结果。α由于光电子激发过程的复杂性,在XPS谱图上不仅存在各原子轨道的光电子峰,同时还存在部分轨道的自旋裂分峰,K

图18.2是高纯Al基片上沉积的Ti(CN)x薄膜的XPS谱图,激发源为Mg 。αK

从上图可见,在薄膜表面主要有Ti, N, C, O和Al元素存在。Ti, N的信号较弱,而O的信号很强。这结果表明形成的薄膜主要是氧化物,氧的存在会影响Ti(CN)x薄膜的形成。

18.4.5.2 表面元素的半定量分析

首先应当明确的是XPS并不是一种很好的定量分析方法。它给出的仅是一种半定量的分析结果,即相对含量而不是绝对含量。由XPS提供的定量数据是以原子百分比含量表示的,而不是我们平常所使用的重量百分比。这种比例关系可以通过下列公式换算:

(18.2)

式中ciwt - 第i种元素的质量分数浓度;

ci - 第i种元素的XPS摩尔分数;

Ai - 第i种元素的相对原子质量。

在定量分析中必须注意的是,XPS给出的相对含量也与谱仪的状况有关。因为不仅各元素的灵敏度因子是不同的,XPS谱仪对不同能量的光电子的传输效率也是不同的,并随谱仪受污染程度而改变。XPS仅提供表面3~5 nm厚的表面信息,其组成不能反映体相成分。样品表面的C, O污染以及吸附物的存在也会大大影响其定量分析的可靠性。

18.4.5.3表面元素的化学价态分析

表面元素化学价态分析是XPS的最重要的一种分析功能,也是XPS谱图解析最难,比较容易发生错误的部分。在进行元素化学价态分析前,首先必须对结合能进行正确的校准。因为结合能随化学环境的变化较小,而当荷电校准误差较大时,很容易标错元素的化学价态。此外,有一些化合物的标准数据依据不同的作者和仪器状态存在很大的差异,在这种情况下这些标准数据仅能作为参考,最好是自己制备标准样,这样才能获得正确的结果。有一些化合物的元素不存在标准数据,要判断其价态,必须用自制的标样进行对比。还有一些元素的化学位移很小,用XPS的结合能不能有效地进行化学价态分析,在这种情况下,可以从线形及伴峰结构进行分析,同样也可以获得化学价态的信息。

图18.3是PZT薄膜中碳的化学价态谱

从图上可见,在PZT薄膜表面,C 1s的结合能为285.0 eV和281.5eV,分别对应于有机碳和金属碳化物。有机碳是主要成分,可能是由表面污染所产生的。随着溅射深度的增加,有机碳的信号减弱,而金属碳化物的峰增强。这结果说明在PZT薄膜内部的碳主要以金属碳化物存在。

XPS原理

第18章X射线光电子能谱分析 引言 固体表面分析业已发展为一种常用的仪器分析方法,特别是对于固体材料的分析和元素化学价态分析。目前常用的表面成分分析方法有:X射线光电子能谱(XPS), 俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。AES分析主要应用于物理方面的固体材料科学的研究,而XPS的应用面则广泛得多,更适合于化学领域的研究。SIMS和ISS由于定量效果较差,在常规表面分析中的应用相对较少。但近年随着飞行时间质谱(TOF-SIMS)的发展,使得质谱在表面分析上的应用也逐渐增加。本章主要介绍X射线光电子能谱的实验方法。 X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。该方法是在六十年代由瑞典科学家Kai Siegbahn教授发展起来的。由于在光电子能谱的理论和技术上的重大贡献,1981年,Kai Siegbahn获得了诺贝尔物理奖。三十多年的来,X射线光电子能谱无论在理论上和实验技术上都已获得了长足的发展。XPS已从刚开始主要用来对化学元素的定性分析,业已发展为表面元素定性、半定量分析及元素化学价态分析的重要手段。XPS的研究领域也不再局限于传统的化学分析,而扩展到现代迅猛发展的材料学科。目前该分析方法在日常表面分析工作中的份额约50%,是一种最主要的表面分析工具。 在XPS谱仪技术发展方面也取得了巨大的进展。在X射线源上,已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源;传统的固定式X射线源也发展到电子束扫描金属靶所产生的可扫描式X射线源;X射线的束斑直径也实现了微型化,最小的束斑直径已能达到6?m大小, 使得XPS在微区分析上的应用得到了大幅度的加强。图像XPS技术的发展,大大促进了XPS在新材料研究上的应用。在谱仪的能量分析检测器方面,也从传统的单通道电子倍增器检测器发展到位置灵敏检测器和多通道检测器,使得检测灵敏度获得了大幅度的提高。计算机系统的广泛采用,使得采样速度和谱图的解析能力也有了很大的提高。 由于XPS具有很高的表面灵敏度,适合于有关涉及到表面元素定性和定量分析方面的应用,同样也可以应用于元素化学价态的研究。此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。因此,XPS方法可广泛应用于化学化工,材料,机械,电子材料等领域。

XPS技术及其在材料微方面中的应用讲解

XPS分析技术及其在材料微分析方面中的应用 摘要:本文介绍了X 射线光电子能谱(XPS)分析技术的基本原理、技术特点、研究进展、分析仪器构成以及在材料微分析方面的实际应用。 关键词:XPS分析技术;微分析;应用 1、引言: 近年来,利用各种物理、化学或机械的工艺过程改变基材表面状态、化学成分、组织结构或形成特殊的表面覆层,优化材料表面,以获得原基材表面所不具备的某些性能,如高装饰性、耐腐蚀、抗高温氧化、减摩、耐磨、抗疲劳性及光、电、磁等,达到特定使用条件对产品表面性能的要求的各种表面特殊功能处理技术得到迅速发展;对表面分析技术发展提出更高要求[1]。 材料表面分析业已发展为一种常用的仪器分析方法,特别是对于固体材料的分析和元素化学价态分析。目前常用的表面成分分析方法有:X射线光电子能谱(XPS),俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。AES分析主要应用于物理方面的固体材料科学的研究,而XPS的应用面则广泛得多,更适合于化学领域的研究[2]。SIMS和ISS由于定量效果较差,在常规表面分析中的应用相对较少[3]。但近年随着飞行时间质谱(TOF-SIMS)的发展,使得质谱在表面分析上的应用也逐渐增加。X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。该方法是在六十年代由瑞典科学家Kai Siegbahn 教授发展起来。三十多年的来,X射线光电子能谱无论在理论上和实验技术上都已获得了长足的发展。XPS已从刚开始主要用来对化学元素的定性分析,业已发展为表面元素定性、半定量分析及元素化学价态分析的重要手段。XPS的研究领域也不再局限于传统的化学分析,而扩展到现代迅猛发展的材料学科。目前该分析方法在日常表面分析工作中的份额约50%,是一种最主要的表面分析工具。在X射线源上,已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源[6];传统的固定式X射线源也发展到电子束扫描金属靶所产生的可扫描式X射线源;X射线的束斑直径也实现了微型化,最小 - 1 -

#拉曼光谱、红外光谱、XPS的原理和应用

拉曼光谱、红外光谱、XPS的原理及使用 拉曼光谱的原理及使用 拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的使用。这些技术是:CCD检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,和激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。 (一)含义 光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是和激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了和原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的和入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接和试样分子振动或转动能级有关。因此,和红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛使用于物质的鉴定,分子结构的研究谱线特征 (二)拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移和入射光的波长无关,只和样品的振动转动能级有关; b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。 c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 (三)拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。 2 拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器 3 拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。 4 因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势。而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。 5 共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。 (四)几种重要的拉曼光谱分析技术 1、单道检测的拉曼光谱分析技术 2、以CCD为代表的多通道探测器用于拉曼光谱的检测仪的分析技术 3、采用傅立叶变换技术的FT-Raman光谱分析技术 4、共振拉曼光谱分析技术

XPS原理

第18章X射线光电子能谱分析 18.1 引言 固体表面分析业已发展为一种常用的仪器分析方法,特别是对于固体材料的分析和元素化学价态分析。目前常用的表面成分分析方法有:X射线光电子能谱(XPS), 俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。AES分析主要应用于物理方面的固体材料科学的研究,而XPS的应用面则广泛得多,更适合于化学领域的研究。SIMS和ISS由于定量效果较差,在常规表面分析中的应用相对较少。但近年随着飞行时间质谱(TOF-SIMS)的发展,使得质谱在表面分析上的应用也逐渐增加。本章主要介绍X射线光电子能谱的实验方法。 X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。该方法是在六十年代由瑞典科学家Kai Siegbahn教授发展起来的。由于在光电子能谱的理论和技术上的重大贡献,1981年,Kai Siegbahn获得了诺贝尔物理奖。三十多年的来,X射线光电子能谱无论在理论上和实验技术上都已获得了长足的发展。XPS已从刚开始主要用来对化学元素的定性分析,业已发展为表面元素定性、半定量分析及元素化学价态分析的重要手段。XPS的研究领域也不再局限于传统的化学分析,而扩展到现代迅猛发展的材料学科。目前该分析方法在日常表面分析工作中的份额约50%,是一种最主要的表面分析工具。 在XPS谱仪技术发展方面也取得了巨大的进展。在X射线源上,已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源;传统的固定式X射线源也发展到电子束扫描金属靶所产生的可扫描式X射线源;X射线的束斑直径也实现了微型化,最小的束斑直径已能达到6?m大小, 使得XPS在微区分析上的应用得到了大幅度的加强。图像XPS技术的发展,大大促进了XPS在新材料研究上的应用。在谱仪的能量分析检测器方面,也从传统的单通道电子倍增器检测器发展到位置灵敏检测器和多通道检测器,使得检测灵敏度获得了大幅度的提高。计算机系统的广泛采用,使得采样速度和谱图的解析能力也有了很大的提高。 由于XPS具有很高的表面灵敏度,适合于有关涉及到表面元素定性和定量分析方面的应用,同样也可以应用于元素化学价态的研究。此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。因此,XPS方法可广泛应用于化学化工,材料,机械,电子材料等领域。 18.2 方法原理 X射线光电子能谱基于光电离作用,当一束光子辐照到样品表面时,光子可以被样品中某一元素的原子轨道上的电子所吸收,使得该电子脱离原子核的束缚,以一定的动能从原子内部发射出来,变成自由的光电子,而原子本身则变成一个激发态的离子。在光电离过程中,固体物质的结合能可以用下面的方程表示: E k = h?- E b - ?s (18.1) 式中E k?出射的光电子的动能, eV; h??X射线源光子的能量, eV; E b?特定原子轨道上的结合能, eV; ?s?谱仪的功函, eV。

X射线光电子能谱的原理及应用XPS

X射线光电子能谱的原理及应用(XPS) (一)X光电子能谱分析的基本原理 X光电子能谱分析的基本原理:一定能量的X光照射到样品表面,和待测物质发生作用,可以使待测物质原子中的电子脱离原子成为自由电子。该过程可用下式表示: hn=Ek+Eb+Er 其中: hn:X光子的能量;Ek:光电子的能量;Eb:电子的结合能;Er:原子的反冲能量。其中Er很小,可以忽略。 对于固体样品,计算结合能的参考点不是选真空中的静止电子,而是选用费米能级,由内层电子跃迁到费米能级消耗的能量为结合能Eb,由费米能级进入真空成为自由电子所需的能量为功函数Φ,剩余的能量成为自由电子的动能Ek, 式(103)又可表示为:hn=Ek+Eb+Φ (10.4)Eb= hn- Ek-Φ (10.5) 仪器材料的功函数Φ是一个定值,约为4eV,入射X光子能量已知,这样,如果测出电子的动能Ek,便可得到固体样品电子的结合能。各种原子,分子的轨道电子结合能是一定的。因此,通过对样品产生的光子能量的测定,就可以了解样品中元素的组成。元素所处的化学环境不同,其结合能会有微小的差别,这种由化学环境不同引起的结合能的微小差别叫化学位移,由化学位移的大小可以确定元素所处的状态。例如某元素失去电子成为离子后,其结合能会增加,如果得到电子成为负离子,则结合能会降低。因此,利用化学位移值可以分析元素的化合价和存在形式。 (二)电子能谱法的特点 ( 1 )可以分析除H 和He 以外的所有元素;可以直接测定来自样品单个能级光电发射电子的能量分布,且直接得到电子能级结构的信息。 ( 2 )从能量范围看,如果把红外光谱提供的信息称之为“分子指纹”,那么电子能谱提供的信息可称作“原子指纹”。它提供有关化学键方面的信息,即直接测量价层电子及内层电子轨道能级。而相邻元素的同种能级的谱线相隔较远,相互干扰少,元素定性的标识性强。 ( 3 )是一种无损分析。 ( 4 )是一种高灵敏超微量表面分析技术。分析所需试样约10 -8 g 即可,绝对灵敏度高达10 -18 g ,样品分析深度约2nm 。 (三) X 射线光电子能谱法的应用 ( 1 )元素定性分析 各种元素都有它的特征的电子结合能,因此在能谱图中就出现特征谱线,可以根据这些谱线在能谱图中的位置来鉴定周期表中除H 和He 以外的所有元素。通过对样品进行全扫描,在一次测定中就可以检出全部或大部分元素。 ( 2 )元素定量分折 X 射线光电子能谱定量分析的依据是光电子谱线的强度(光电子蜂的面积)反映了原于的含量或相对浓度。在实际分析中,采用与标准样品相比较的方法来对元素进行定量分析,其分析精度达1 %~2 %。 ( 3 )固体表面分析 固体表面是指最外层的1 ~10 个原子层,其厚度大概是(0.1~1) n nm 。人们早已认识到在固体表面存在有一个与团体内部的组成和性质不同的相。表面研究包括分析表面的元素组成和化学组成,原子价态,表面能态分布。测定表面原子的电子云分布和能级结构等。X 射线 光电子能谱是最常用的工具。在表面吸附、催化、金属的氧化和腐蚀、半导体、电极钝化、薄膜材料等方面都有应用。 ( 4 )化合物结构签定 X 射线光电子能谱法对于内壳层电子结合能化学位移的精确测量,能提供化学键和电荷

相关文档
最新文档